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Abstract. A framework to infer volume water fraction, solu-
ble fraction and dry size distributions of fine-mode aerosol
from multi-angle, multi-spectral polarimetry retrievals of
column-averaged ambient aerosol properties is presented.
The method is applied to observations of the Research Scan-
ning Polarimeter (RSP) obtained during two NASA aircraft
campaigns, namely the Aerosol Cloud meTeorology Inter-
actions oVer the western ATlantic Experiment (ACTIVATE)
and the Cloud, Aerosol, and Monsoon Processes Philippines
Experiment (CAMP2Ex). All aerosol retrievals are statisti-
cally evaluated using in situ data. Volume water fraction is
inferred from the retrieved ambient real part of the refrac-
tive index, assuming a dry refractive index of 1.54 and by
applying a volume mixing rule to obtain the effective am-
bient refractive index. The uncertainties in inferred volume
water fraction resulting from this simplified model are dis-
cussed and estimated to be lower than 0.2 and decreasing
with increasing volume water fraction. The daily mean re-
trieved volume water fractions correlate well with the in situ
values with a mean absolute difference of 0.09. Polarimeter-
retrieved ambient effective radius for daily data is shown
to increase as a function of volume water fraction as ex-
pected. Furthermore, the effective variance of the size distri-
butions also increases with increasing effective radius, which
we show is consistent with an external mixture of soluble
and insoluble aerosol. The relative variations of effective ra-
dius and variance over an observation period are then used
to estimate the soluble fraction of the aerosol. Daily results
of soluble fraction correlate well with in situ-observed sul-
fate mass fraction with a correlation coefficient of 0.79. Sub-

sequently, inferred water and soluble fractions are used to
derive dry fine-mode size distributions from their ambient
counterparts. While dry effective radii obtained in situ and
from RSP show similar ranges, in situ values are generally
substantially smaller during the ACTIVATE deployments,
which may be due to biases in RSP retrievals or in the in
situ observations, or both. Both RSP and in situ observations
indicate the dominance of aerosol with low hygroscopicity
during the ACTIVATE and CAMP2Ex campaigns. Further-
more, RSP indicates a high degree of external mixing of par-
ticles with low and high hygroscopicity. These retrievals of
fine-mode water volume fraction and soluble fraction may
be used for the evaluation of water uptake in atmospheric
models. Furthermore, the framework allows us to estimate
the variation in the concentration of fine-mode aerosol larger
than a specific dry radius limit, which can be used as a proxy
for the variation in cloud condensation nucleus concentra-
tions. This framework may be applied to multi-angle, multi-
spectral satellite data expected to be available in the near fu-
ture.

1 Introduction

Terrestrial aerosol is a complex mixture of liquid, solid, or
mixed-phase particles emitted by natural and anthropogenic
sources either directly to the atmosphere or produced in the
atmosphere through complex physical and chemical path-
ways from precursor gases (Riemer et al., 2019). Aerosols
affect Earth’s climate as they scatter and absorb radiation and
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act as condensation nuclei for cloud droplets and ice crystals.
Furthermore, aerosols affect air quality and health.

Substantial changes in anthropogenic aerosol emissions in
the industrial age occurred (Bauer et al., 2020). The over-
all increase in aerosol emissions has led to a general cool-
ing of Earth’s atmosphere, compensating for part of the tem-
perature increase imposed by anthropogenic greenhouse gas
emissions (Samset et al., 2018; Bauer et al., 2020). Reduc-
tions in global aerosol emissions are expected in the next
decades, improving air quality but also likely providing a
net positive climate forcing. Prevailing uncertainties in the
effective radiative forcing from anthropogenic aerosol emis-
sions continues to hamper improving the accuracy of esti-
mates of global climate sensitivity to changes in greenhouse
gas concentrations (IPCC, 2021). A better understanding of
the physics and chemistry of terrestrial aerosols and an im-
proved representation of aerosols and their direct and indirect
radiative effects in climate models are essential for reducing
the uncertainties in modeled climate sensitivity.

Both the climate and air quality effects of aerosols de-
pend on their concentrations, size, shape, composition, hy-
groscopicity, and mixing state, as well as on their geograph-
ical location and meteorological environment. Models gen-
erally define a number of aerosol types or modes with fixed
properties, such as composition and hygroscopicity, and di-
agnose their evolution with respect to, e.g., concentrations,
size, and internal and/or external mixing state (e.g., Bauer et
al., 2008; Zhang et al., 2012). Modeled aerosol composition
and especially water uptake are highly variable among mod-
els (Textor et al., 2006). Satellite remote sensing products
are essential to evaluate these global aerosol simulations and
the direct and indirect effects, although such evaluations are
hampered by the limited information content of most tradi-
tional satellite observations generally providing only aerosol
spectral optical depth. For example, using variations in spec-
tral optical depth to estimate variations in cloud condensa-
tions nuclei (CCN) concentrations may lead to substantial
biases in assessments of modeled aerosol–cloud interactions
(Hasekamp et al., 2019). Furthermore, many combinations
of aerosol loading, size, hygroscopicity and atmospheric hu-
midity may lead to the same aerosol optical depth, and thus
biases in these properties may compensate for each other
(Bian et al., 2009). Multi-angle, multi-spectral polarimet-
ric satellite observations provide extended information con-
tent for remote sensing of aerosol properties, yielding in-
formation about size, complex refractive index and height
(Mishchenko et al., 2004; Hasekamp and Landgraf, 2007;
Wu et al., 2016; Xu et al., 2017; Dubovik et al., 2019), which
can be used to determine and to better constrain aerosol types
(Kacenelenbogen et al., 2022), emissions and evolution (e.g.,
Chen et al., 2019; Tsikerdekis et al., 2022), and aerosol–
cloud interactions (Hasekamp et al., 2019).

Of particular interest is constraining the amount of water
in the aerosol, as this affects the aerosol optical depth, size
and absorption. Quantification of water fraction and mix-

ing state allows us to estimate dry size distribution based
on their ambient counterpart that is inferred, e.g., using po-
larimetry. Dry size is one of the main factors determining
whether an aerosol particle is an effective CCN at a given
supersaturation or not (Dusek et al., 2006; Crosbie et al.,
2015). Hence, the variation in the concentration of fine-mode
aerosol larger than a specific dry radius limit may be used as a
proxy for variation in CCN concentrations. This concept was
applied to multi-angle, multi-spectral polarimetry retrievals
by Hasekamp et al. (2019). However, in their implementa-
tion, ambient size distributions were used in lieu of dry size
distribution retrievals, which may lead to a bias in estimated
variation in CCN concentrations related to water uptake.

Of additional interest is quantification of the aerosol mix-
ing state. Zheng et al. (2021) found a high degree of ex-
ternal mixing of hygroscopic (soluble) and nonhygroscopic
(insoluble) aerosol components that is seasonably varying.
Consequently, humidification of the aerosol leads to an un-
equal distribution of the water in the aerosol population.
Ching et al. (2017) showed that an unrealistic assumption
of 100 % internally mixed aerosol may lead to errors in esti-
mated CCN concentrations from model simulations that may
exceed 100 %, depending on the true mixing state. The de-
gree to which an aerosol is externally mixed also depends on
the considered vertical and horizontal spatial scales and the
inhomogeneity of aerosol properties on those scales.

Here, we provide a framework for deriving water volume
fraction, dry size distributions and soluble fraction of fine-
mode aerosol from the ambient aerosol properties retrieved
by multi-angle, multi-spectral polarimeters. Fine-mode water
volume fraction is inferred using the retrieved real part of the
refractive index. Since the refractive index of water is lower
than that of dry aerosol, the refractive index decreases as the
total water volume fraction in the aerosol increases. This be-
havior has been used previously to estimate the aerosol vol-
ume fraction of water, in addition to general composition,
from ground-based sun-photometer observations (Schuster et
al., 2009; Wang et al., 2013; van Beelen et al., 2014; Zhang et
al., 2020). Here we propose a simplified approach focusing
on water volume fraction only. Furthermore, we show that
the soluble fraction can be estimated from a set of aerosol
size distribution retrievals collected over a time period (or
within a region) during which a substantial variation in vol-
ume water fraction occurs. Finally, the water and soluble
fractions are used to derive effective radius and variance of
the dry size distributions.

The presented method is applied to observations of the
airborne Research Scanning Polarimeter. We evaluate the
results using in situ observations that are made during the
same campaign flights. The method and data are described in
Sects. 2 and 3, after which results are presented in Sect. 4.
The assumptions and related uncertainties are discussed in
Sect. 5, after which we conclude the paper in Sect. 6.
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2 Definitions and method

2.1 Aerosol water uptake: humidified soluble aerosols

The number size distribution Na(r) of aerosols in terms of
their spherical radius r is represented by a log-normal dis-
tribution of the form (Seinfeld and Pandis, 1998; Stamnes et
al., 2018)

Na(r)=
Ntot

r
√

2πσg
exp

−( ln r − ln rg
√

2σg

)2
 , (1)

where Ntot is the total aerosol number concentration, and rg
and σg are the geometric mean radius and geometric stan-
dard deviations, respectively. For a log-normal distribution,
the geometric mean radius also corresponds to the distribu-
tion’s median. Other commonly used parameters to indicate
the characteristic size and width of a size distribution are the
effective radius re and effective variance ve, formally defined
as, respectively,

re =
〈r3
〉

〈r2〉
(2)

and

ve =
〈r4
〉 〈r2
〉

〈r3〉2
− 1, (3)

where 〈rx〉 represents the xth moment of the size distribu-
tion (Hansen and Travis, 1974). For a log-normal distribution
(Eq. 1), re and ve are related to rg and σg by

re = rg exp
(
−

5
2
σ 2

g

)
(4)

and

ve = exp(σ 2
g )− 1. (5)

Upon water uptake, a soluble aerosol will be diluted, re-
sulting in an increase in its radius and a change in its refrac-
tive index. For a particle with dry radius rdry, the wet radius
rRH it will obtain upon exposure to relative humidity RH (ex-
pressed here as a fraction) is given by kappa-Köhler theory
(Petters and Kreidenweis, 2007), namely by

RH=
r3

RH− r
3
dry

r3
RH− r

3
dry(1− κ)

exp
(

2σsMw

RT ρwrRH

)
, (6)

where σs is the surface tension of water at the particle-to-air
interface, R is the universal gas constant, T is temperature,
and Mw and ρw are the molecular weight and density of wa-
ter, respectively. Furthermore, κ is a variable to parameterize
the hygroscopicity of the aerosol. Increasing hygroscopicity
is parameterized by increasing κ , while for completely insol-
uble particles κ ≡ 0. The exponential term in Eq. (6) repre-
sents the effects of curvature of the drop on its growth and

is commonly referred to as the Kelvin term. In practice, the
Kelvin term is often ignored as its effect is only substan-
tial for RH close to 100 % and/or small radii (Wex et al.,
2008; Ruehl et al., 2010). Setting the Kelvin term to unity
and defining a particle volume growth factor

gV,sol =
r3

RH

r3
dry
, (7)

we obtain (cf. Brock et al., 2016a)

gV,sol(RH)≈ 1+ κ
RH

1−RH
. (8)

Since the Kelvin term is ignored, the volume growth factor
does not depend on size, and Eq. (8) also represents the bulk
volume growth factor of the size-integrated wet particle vol-
ume. Hence, the geometric mean radius of the size distribu-
tion of the humidified aerosol is then approximated by

rg,wet(RH)= rg,dry g
1/3
V,sol(RH). (9)

The geometric standard deviation does not change with wa-
ter uptake if the Kelvin term is ignored. Hence, the effective
radius also scales as

re,wet(RH)= re,dry g
1/3
V,sol(RH). (10)

Furthermore, the volume fraction of water in an humidified
soluble aerosol fw is given by

fw(RH)=
gV,sol(RH)− 1
gV,sol(RH)

, (11)

equivalent to

gV,sol(RH)=
1

1− fw(RH)
. (12)

For an arbitrary dry effective radius of 0.15 µm, the in-
crease in re,wet as a function of fw is shown in Fig. 1 (black
line). To further justify neglecting the Kelvin effect in our
analysis, we note that for a typical value of κ of 0.15, ig-
noring the Kelvin effect (Eq. 8) leads to an underestimation
of the growth factor of less than 3 % at a fw = 0.9. In the
case of humidified soluble aerosol and known aerosol vol-
ume water fraction fw, the dry geometric and effective radii
can be estimated from their wet equivalents, using Eqs. (12),
(9) and (10), respectively.

2.2 Aerosol water uptake: external mixtures of
humidified aerosol and insoluble aerosol

Aerosol populations may also be represented as external mix-
tures of soluble (with κsol > 0) and insoluble (κinsol ≡ 0) par-
ticles (Heintzenberg et al., 2001; McFiggans et al., 2006;
Swietlicki et al., 2008; Wex et al., 2010; Holmgren et al.,
2014; Riemer et al., 2019; Kim et al., 2020). As evident from
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Figure 1. Modeled effective radius (a) and effective variance (b) of
an aerosol size distribution as a function of water volume fraction
for a fully soluble aerosol (black, fsol = 1) and for external mix-
tures of insoluble and soluble aerosol with different soluble frac-
tions fsol represented by different colors. Here, re,dry = 0.15 µm
and ve,dry = 0.15. Panel (c) shows the relative change in ve+1 ver-
sus relative change in effective radius for different values of fsol.

Eq. (8), insoluble aerosol do not grow upon exposure to hu-
midity (i.e., gV,insol = 1). For such aerosol populations, the
increase in aerosol size upon exposure to a given relative hu-
midity depends on the fractional contribution by soluble par-

ticles to the total population in addition to their hygroscopic-
ity. Furthermore, since the insoluble particles are not growing
with increasing relative humidity, the total aerosol size dis-
tribution widens upon humidification depending on the frac-
tion of soluble particles. Here, we describe the relationship
between the size distribution parameters, water fraction and
the fraction of soluble particles.

Defining fsol as the soluble volume fraction of a dry ex-
ternal mixture of soluble and insoluble particles, the mixture
growth factor gV,mix is given by (omitting the RH dependen-
cies here and in the rest of this section)

gV,mix = fsol gV,sol+ (1− fsol), (13)

equivalent to

gV,sol =
gV,mix+ fsol− 1

fsol
. (14)

The water volume fraction of the mixture is related to the
growth factor as

gV,mix =
1

1− fw
, (15)

where fw represents the volume water fraction of the total
aerosol population, i.e., including soluble and insoluble par-
ticles.

The size distribution of the mixture of humidified solu-
ble aerosol and insoluble aerosol can be represented by a bi-
modal log-normal distribution, of which the geometric mean
and standard deviations are given by, respectively,

ln
(
rg,mix

)
= fsol ln

(
rg,wet

)
+ (1− fsol) ln

(
rg,insol

)
(16)

and

σ 2
mix =

[
ln
(
rg,insol

)
− ln

(
rg,wet

)]2
fsol (1− fsol)

+ fsolσ
2
wet+ (1− fsol)σ

2
insol. (17)

We make the assumption that the size distributions of the
insoluble component and the dry soluble component of the
mixture are the same, i.e., rg,insol = rg,dry and σinsol = σdry.
This assumption and its implications are further discussed
below. Then, combining Eq. (9) with Eqs. (16) and (17) leads
to

rg,mix = rg,dry g
fsol/3
V,sol (18)

and

σ 2
mix = σ

2
dry+

1
9

ln
(
gV,sol

)2
fsol (1− fsol) . (19)

When approximating the resulting size distribution of the
mixture as a single log-normal distribution, its effective ra-
dius and variance can be approximated by, respectively,

re,mix = re,dry g
fsol/3
V,sol exp

[
5
18

ln
(
gV,sol

)2
fsol (1− fsol)

]
(20)
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and

ve,mix =
(
ve,dry+ 1

)
exp

[
1
9

ln
(
gV,sol

)2
fsol (1− fsol)

]
− 1. (21)

From Eqs. (20), (21), (14) and (15) it is clear that effective
radius generally increases with fw when fsol > 0, while the
effective variance also increases with fw when 0< fsol < 1.
Note that, under the assumptions laid out in the text above,
the relationships between fw and re,mix and ve,mix+ 1 only
depend on fsol and not on the size distributions themselves
or on κ .

The variation of re,mix and ve,mix with fw for various val-
ues of fsol is shown in Fig. 1a and b, respectively, for arbi-
trary dry values of 0.15 µm and 0.15, respectively. Note that
these curves are derived not by using Eqs. (20) and (21), but
by calculating the geometric mean and standard deviation of
a bi-modal size distribution resulting from an external mix-
ture of humidified soluble and insoluble aerosol and apply-
ing Eqs. (4) and (5) to obtain corresponding effective radii
and variances. However, applying Eqs. (20) and (21) directly
yields similar results. Figure 1a shows that, for 1≥ fsol >∼

0.15, the increase in re,mix with fw is generally steeper than
for fsol = 1, with the steepest increase at fsol ∼ 0.5, while for
fsol <∼ 0.15 the relationship between re,mix and fw is shal-
lower. The increase in ve,mix as a function of fw is shown
in Fig. 1b. As discussed in Sect. 2.1, the effective variance
does not change with water fraction if fsol = 1. Generally the
slope of ve,mix with respect to fw increases with decreasing
fsol when fsol >∼ 0.15. For fsol <∼ 0.15, the relationship
between ve,mix and fw is shallower and notably different than
for higher soluble fractions. From Eqs. (20) and (21) we can
conclude that the slope of re,mix and ve,mix+1, both relative to
the dry values, only depends on fsol. This is shown in Fig. 1c,
where ve,mix+ 1 is plotted against re,mix, both relative to the
dry values, revealing approximately linear relationships with
a systematically increasing slope with decreasing fsol. As
will be shown in Sect. 4.2, the slope of retrieved re with re-
spect to retrieved ve+1 within a region or time period may be
used to infer fsol. Furthermore, in the case of an external mix-
ture of humidified soluble aerosol and dry insoluble aerosols,
the dry effective radius and variance may be retrieved from
their ambient values for known aerosol volume water fraction
fw and known fsol using Eqs. (20) and (21).

To derive Eqs. (18)–(21), we assumed that the size dis-
tributions of the insoluble component and the dry soluble
component of the mixture are the same. Some observations,
such as from Holmgren et al. (2014) and Kim et al. (2020),
suggest that hygroscopicity increases with particle size. To
test the impact of assuming the same dry particle distribu-
tion of insoluble and soluble aerosols, we simulated re,mix
and ve,mix as a function of fsol for a range of fw and for an
aerosol with a soluble component with re,dry = 0.15 µm and
an insoluble component that is 1re smaller. For both com-
ponents we assume ve,dry = 0.15. Using these simulations as
our dataset, we subsequently infer fsol, re,dry and ve,dry while

assuming an aerosol mixture with equal soluble and insolu-
ble components. The differences between the inferred fsol,
re,dry and ve,dry and the true values in the simulations yield
an estimated sensitivity to 1re. Detailed results are given in
the Supplement. For a 1re of 0.03 µm, maximum underes-
timations of fsol, re,dry and ve,dry are 0.23, 9 % and 17 %,
respectively, occurring at true fsol values of 0.65, 0.28 and
0.16, respectively. These biases scale approximately linearly
with1re. Hence, especially retrieved fsol and ve,dry are quite
sensitive to our assumption of the same dry particle distribu-
tion of insoluble and soluble aerosols. However, a realistic
estimate of the range of 1re is not available.

2.3 Refractive indices of aqueous solutions of aerosol
and their external mixtures with insoluble aerosol

To obtain the refractive index of an aqueous solution nwet of
aerosol with known dry refractive index ndry, several mix-
ing rules are commonly used, of which the Lorentz–Lorenz
and molar refractions mixing rules are generally considered
the most fundamental (Brocos et al., 2003; Liu and Daum,
2008). However, the simplest approach that is perhaps most
widely used in the atmospheric science community is esti-
mating nwet by a volume-weighted average of ndry and that
of water nwater, i.e.,

nwet = fw nwater+ (1− fw) ndry. (22)

In the case of ideal mixtures, i.e., when the volume (or den-
sity) of a mixture is equal to the sum of the volumes (or
densities) before mixing, differences between nwet calculated
using volume averaging (Eq. 22) and Lorentz–Lorenz or mo-
lar refraction mixing may be considered negligible (Brocos
et al., 2003). In the case of substantial deviations from ide-
ality, however, as observed for pure inorganic salts such as
ammonium sulfates and sodium chloride, Eq. (22) substan-
tially overestimates nwet for solutions with water fractions
below about 50 % (Tang and Munkelwitz, 1991; Schuster et
al., 2009; Erlick et al., 2011; see also the Supplement). Fur-
thermore, salts effloresce at low humidities, leading to max-
imum refractive indices in their aqueous state that are sub-
stantially lower than their refractive index in the dry state
(Schuster et al., 2009). In the case of aqueous solutions of
soluble organic aerosol, however, refractive indices are well
approximated by Eq. (22) (Lienhard et al., 2012; Cai et al.,
2016; see also the Supplement). Moreover, refractive indices
of ternary aqueous mixtures containing both organics and in-
organic salts at a 1 : 1 molar ratio are also well approximated
by Eq. (22) over the full range of fw, as also demonstrated in
the Supplement based on the data of Lienhard et al. (2012).
Furthermore, efflorescence of the salt seems to be suppressed
by the organics in the solution (Lienhard et al., 2012; Jing et
al., 2016; Wu et al., 2020). Since aerosol particles are gener-
ally internally mixed with many components (Riemer et al.,
2019), densities are not known, and accounting for density
changes when estimating refractive indices of the mixtures
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is practically impossible. However, organics generally make
up 20 % to 90 % of the particle mass (Jimenez et al., 2009),
which may be considered sufficient for the volume mixing
rule of Eq. (22) to be generally applicable (cf. Stokes and
Robinson, 1966).

In the case of externally mixed aerosol, the retrieved re-
fractive index inferred by remote sensing or in situ observa-
tions may be considered an effective value that is radiatively
equivalent to that of the externally mixed aerosol. Here, we
use the volume mixing rule also to estimate the effective re-
fractive index of externally mixed aerosols based on the re-
fractive indices of individual components in the mixture. Us-
ing simulations presented in the Supplement, we conclude
that a volume mixing rule generally yields the effective re-
fractive index of an external mixture to within about 0.02.
Hence, for mixtures of soluble (with κsol > 0) and insoluble
(κinsol ≡ 0) aerosol, the refractive index of the mixture nmix
is then approximated by

nmix = fwnwater+ (1− fw)[
fsolndry,sol+ (1− fsol)ninsol

]
, (23)

where fw is the volume fraction of water within the total
aerosol population, and ndry,sol and ninsol are the refractive
indices of the dry soluble and insoluble aerosol particles, re-
spectively. If ndry is taken as the weighted average of ndry,sol
and ninsol, Eq. (23) is equivalent to Eq. (22). Hence, for our
purpose of inferring volume water fraction from the retrieved
effective refractive indices, the mixing state of the aerosol is
generally irrelevant.

In the case of humidified aerosol, its aerosol volume wa-
ter fraction fw may be estimated from its refractive index
nwet using Eq. (22) and under assumptions of ndry and nwater.
At a wavelength of 555 nm, nwater is 1.3337 (Segelstein,
1981). For a wide variety of aerosol types, including ma-
rine, biogenic, urban, background, and tropospheric aerosols
and those associated with biomass burning from agricultural
and wild fires, many studies (Levoni et al., 1997; Sorooshian
et al., 2008; Shingler et al., 2016a; Brock et al., 2016b; Ald-
haif et al., 2018; Espinosa et al., 2019; Bian et al., 2020)
found that effective real parts of the refractive index for dry
fine-mode aerosol are about 1.52–1.54 on average. While ob-
served ranges may extend from about 1.42 to 1.60, the stan-
dard deviations (or interquartile ranges) of the observations
are generally small at about 0.02 (or 0.04). The refractive in-
dex of an aerosol depends on its chemical composition and
mixing state, which are in turn determined by its emission
source, age and history of environmental conditions (Riemer
et al., 2019). However, relationships between these factors
and dry refractive indices are highly uncertain. For exam-
ple, dry refractive indices of organic aerosol have been re-
ported to increase or decrease with chemical aging (Mack et
al., 2010; Moise et al., 2015; Li et al., 2017; He et al., 2018;
Aldhaif et al., 2018). Individual particles within an aerosol
are complex mixtures of different chemical species (Riemer

et al., 2019). Lang-Yona et al. (2010) showed that dry refrac-
tive indices of such internally mixed aerosol are generally
well approximated by a weighted average of their compo-
nents using a volume mixing rule. Since refractive indices of
organic compounds, as well as of many common inorganics,
are generally within the range of 1.48–1.60 (e.g, Aldhaif et
al., 2018), it may not be surprising that the observed mean ef-
fective refractive indices of fine-mode aerosol in various air
masses are generally close to 1.54.

While systematic relationships of dry refractive index with
source, age and environmental conditions may be hard to
establish, a systematic decrease in refractive index with
increased water fraction in the aerosol may generally be
assumed, since the refractive index of water is generally
smaller than that of dry aerosol. As argued above, for a chem-
ically heterogeneous aerosol that is internally and externally
mixed, a linear decrease in refractive index with increased
water volume fraction as represented by Eqs. (22) and (23)
may be assumed. Figure 2 shows the refractive index of a
humidified aerosol as a function of the volume water frac-
tion, as calculated by Eq. (22), under the assumption that
ndry = 1.54. This relationship is the basis of the volume wa-
ter fraction retrievals from the observed ambient fine-mode
refractive index presented in this paper. The ranges of refrac-
tive index of the aqueous mixture when assuming the dry
refractive index is smaller/greater than 1.54 by 0.02 and 0.04
are also shown in Fig. 2 by the blue and grey shading, respec-
tively. Hence, the uncertainty of the volume water fraction
inferred from a given refractive index decreases with water
fraction and has a maximum of about 0.18 and 0.32 when
assuming the uncertainty in dry refractive index to be ±0.02
and ±0.04, respectively. Under the consideration of the as-
sumptions and uncertainties discussed above, uncertainties in
retrieved water fraction from an observed ambient refractive
index are likely within those represented by the blue range
in Fig. 2 for most cases and regions, while the greater un-
certainties represented by the grey range may occur for cases
and regions with particularly low or high dry refractive in-
dices.

3 Data

3.1 Campaigns

The data used in this paper were collected during the NASA
the Aerosol Cloud meTeorology Interactions oVer the west-
ern ATlantic Experiment (ACTIVATE) aircraft campaign
(Sorooshian and Chen, 2022; Sorooshian et al., 2019; Corral
et al., 2021) and the NASA Cloud, Aerosol, and Monsoon
Processes Philippines Experiment (CAMP2Ex) aircraft cam-
paign (Reid and Chen, 2022; Hilario et al., 2021; Reid et al.,
2022).

ACTIVATE is a 5-year-long campaign based at NASA
Langley Research Center in Hampton, VA, on the US East
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Figure 2. Modeled aerosol refractive index versus volume water
fraction when assuming a volume-weighted average of the refrac-
tive index of water and a dry aerosol refractive index of 1.54 (solid
line). The blue shaded area indicates the range between results when
the dry refractive index is 1.52 and 1.56, respectively, while the grey
shaded area indicates the range between results when the dry refrac-
tive index is 1.50 and 1.58, respectively.

Coast. The overarching goal of the campaign is to robustly
characterize aerosol–cloud–meteorology interactions using
extensive, systematic, and simultaneous in situ and remote
sensing airborne measurements with two aircraft and a hier-
archy of models. Here we use data from the first two deploy-
ments of the campaign in the winter and summer of 2020. Re-
mote sensing instruments, including the RSP, were mounted
on a King Air aircraft, while in situ observations were made
using a HU-25 Falcon aircraft. Most flights were coordinated
so that the remote sensing and in situ observations were ob-
tained close in time and in the same area.

The CAMP2Ex campaign was based at Clark International
Airport in Luzon, the Philippines, from 24 August to 5 Oc-
tober 2019. It was designed to study the covariability and
mutual influences of aerosol, clouds, chemistry, meteorol-
ogy, convection and radiation. All remote sensing and in situ
observations used in the paper were made with instruments
mounted on the P3-B aircraft which flew at altitudes near the
surface to about 8 km.

The majority of the data during these campaigns were col-
lected over ocean. Furthermore, the RSP aerosol retrieval
algorithm (Sect. 3.2) is currently limited to ocean surfaces.
Hence, only data over ocean are used here.

The dates and times at which data were collected are listed
in Tables S2 and S3 in the Supplement.

3.2 Remote sensing observations

Aerosol properties are retrieved from multi-angle, multi-
spectral total and polarized radiances using the Microphys-
ical Aerosol Properties from Polarimetry (MAPP) algorithm
described by Stamnes et al. (2018). This algorithm is based

on an optimal estimation approach and retrieves the aerosol
optical depth at 555 nm, effective radius and effective vari-
ance in both a fine and coarse aerosol size mode, in addition
to the complex refractive index at 555 nm and layer height
of the fine mode. The coarse mode is assumed to have the
refractive index of hydrated sea salt and is homogeneously
mixed below 0.5 km. The surface reflectance is modeled us-
ing a bio-optical ocean model in terms of a chlorophyll con-
centration and wind speed, which are also retrieved alongside
the aerosol parameters.

The fine-mode total number concentrations Ntot,f are sub-
sequently derived using the approximation (Schlosser et al.,
2022)

Ntot,f =
τf

σf 1zf
, (24)

where τf and 1zf are the retrieved fine-mode aerosol optical
depth and layer height, and σf is the extinction cross section,
which in turn is calculated using the retrieved fine-mode size
distribution and Mie theory.

The MAPP algorithm is applied to data from the Research
Scanning Polarimeter (RSP, Cairns et al., 1999), which mea-
sures the I , Q and U Stokes parameters at nine wavelengths
in the visible and shortwave infrared. RSP scans along track
at a rate of about 0.86 s, during which observations at more
than 100 viewing angles are collected. Accuracy of the mea-
sured intensity and degree of polarization is generally bet-
ter than 3 % and 0.2 %, respectively. The latitude and longi-
tude of each view projected to the surface is determined, and
the data are rearranged so that multi-angle views at consec-
utive “pixels” on the surface are obtained. To improve the
RSP data signal and reduce the computational effort of re-
trieval processing, data for 20 consecutive pixels are aver-
aged together and used as input to the MAPP retrieval algo-
rithm. To avoid clouds, generally data closer than 24 scans
to clouds are removed. For ACTIVATE this is reduced to 12
scans to increase the number of data points. Note that con-
tamination by clouds below the aircraft as well as substantial
cirrus clouds above the aircraft is effectively filtered out by
the goodness-of-fit tests applied in the aerosol retrieval algo-
rithm (Stap et al., 2015; Stamnes et al., 2018). Uncertainties
in the derived water fraction, soluble fraction and dry size
distributions resulting from measurement uncertainties (see
e.g., Knobelspiesse et al., 2012) are expected to be substan-
tially smaller than those arising from the assumptions made
in these derivations, as discussed in Sects. 2, 4 and 5.

3.3 In situ observations

In situ aerosol observations used here are obtained with
the Langley Aerosol Research Group Experiment (LARGE)
instrument package or both ACTIVATE and CAMP2Ex
datasets. All aerosol measurements are made from a forward-
facing, shrouded, solid diffuser inlet that efficiently samples
particles with aerodynamic diameter less than 5.0 µm (Mc-
Naughton et al., 2007). Observations in cloud are excluded
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by requiring that the liquid water content observed by the
(fast) cloud droplet probe (Stratton Park Engineering Com-
pany, Boulder, CO, USA) is below 0.02 g cm−3 and that the
ambient relative humidity obtained by the diode laser hy-
grometer (DLH, Podolske et al., 2003) is below 100 %. Data
are reported at 1 Hz resolution.

In general, aerosol particles are dried before their proper-
ties are measured by in situ probes. However, their hygro-
scopicity is estimated by using a nephelometer (model 3563,
TSI Inc., Minneapolis, MN, USA) to measure the aerosol
scattering coefficient σs at 550 nm for low-humidity (“dry”)
conditions (RH0) and after exposing the aerosol to humid
conditions with relative humidity RH, leading to the ratio
(Ziemba et al., 2013)

f (RH,RH0)=
σs(RH)
σs(RH0)

. (25)

As discussed by Brock et al. (2016a), the aerosol scattering
cross section is roughly proportional to the aerosol volume,
and hence f (RH) is approximately equivalent to the volume
growth factor gV (Eq. 7) when RH0 = 0 %. Based on this
approximation and Eq. (8), Brock et al. (2016a) proposed the
parameterization

f (RH,0%)= 1+ κext
RH

1−RH
. (26)

During the CAMP2Ex and ACTIVATE missions, the scat-
tering coefficients are reported at dry conditions with RH≈
20 % and humid conditions with RH≈ 80 % when both val-
ues exceed 5 M m−1. Using Eq. (26), this leads to

f (80%,20%)≈
1+ 4κext

1+ κext/4
. (27)

For an observed f (80 %, 20 %), κext can be estimated us-
ing Eq. (27). As discussed by Brock et al. (2016a), the pa-
rameters κ (Eq. 8) and κext are not the same but are related
and vary approximately proportionally. Their ratio depends
on several factors, including particle size and κ itself. Based
on the slope of linear fit through observed corresponding κext
and κ values reported by Brock et al. (2016a), we use the
approximation

κ ≈
κext

0.56
. (28)

Furthermore, based on the values of κext versus κ plotted by
Brock et al. (2016a, their Fig. A3), we estimate a 40 % un-
certainty of this conversion factor. Subsequently, from the in-
dependent DLH measurements of ambient RH, the growth
factor and thus water volume fraction fw at ambient condi-
tions at the location and time of the in situ observation can
be derived using Eqs. (27), (28), (8) and (12).

Probably the greatest source of uncertainty of this ap-
proach to derive fw is the conversion factor between κext and
κ (Eq. 28). A 40 % underestimation or overestimation of κ

leads to an underestimation or overestimation of fw that is
generally below 0.13. As discussed by Shingler et al. (2016b)
and also shown in Sect. 4, f (80 %, 20 %) may sometimes be
observed to be below unity. Such values below unity are also
commonly observed and generally attributed to measurement
uncertainties in the case of aerosol with low hygroscopicity
modes (e.g., Holmgren et al., 2014; Kim et al., 2020). We
refer to Shingler et al. (2016b) for a discussion on possible
other causes. Here, we set κ to zero for cases with observed
f (80 %, 20 %)< 1.

Dry optical size distribution data were observed in situ by
the laser aerosol spectrometer (LAS, TSI model 3340, Hi-
lario et al., 2021; Moore et al., 2021). Sizing is corrected dur-
ing post-flight processing using monodisperse ammonium
sulfate aerosol so that derived size distributions are refer-
enced to a real refractive index of 1.53. From these, the
integrated particle number concentration, total volume and
total surface areas for particle diameters between 100 and
1000 nm are derived. In turn, the effective radii are calculated
from the total volume and surface area via Eq. (2). Number
concentrations are reported at a standard pressure and tem-
perature and scaled to the ambient conditions. Uncertainty of
the LAS data is estimated at 20 %.

Sulfate mass fraction is used as a proxy for soluble fine-
mode aerosol mass fraction. Sulfate aerosol mass fractions
are derived from observations of the high-resolution time-
of-flight aerosol mass spectrometer (HR-ToF-AMS, Aero-
dyne Research, Canagaratna et al., 2007). The inlet max-
imum diameter cutoff for these observations is effectively
submicron. The AMS uses thermal vaporization of the par-
ticles at 600 ◦C, electron impaction ionization and provides
ensemble-averaged mass concentrations of non-refractory
chemical components. Organic and inorganic components of
the aerosols, such as sulfates, are identified through charac-
teristic ion fragments. Sulfate mass fraction fm,sul is calcu-
lated as the ratio of total sulfate mass collected over a se-
lected flight segment and the total mass of ammonium, ni-
trate, sulfate, chloride and organic species of that flight seg-
ment (cf. Quinn et al., 2005).

4 Results

Here we compare the remote sensing results to correspond-
ing in situ observations. However, in situ and remote sensing
results are generally not exactly colocated in space and time,
especially when using a single aircraft as was the case during
CAMP2Ex. Therefore, we opt for comparisons of campaign-
wide and daily statistics of remote sensing and in situ mea-
surements on the premise that statistics of the observations
over a similar time range and region should be consistent.
For this, parts of flights were selected during which suffi-
cient remote sensing and in situ data were collected within a
5◦×5◦ region. The dates and time ranges of the included re-
mote sensing and in situ data are listed in Tables S2 and S3,
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respectively. In situ observations were collected within the
time ranges of the RSP observations or at most 100 min be-
fore and after these times. Furthermore, only in situ mea-
surements taken at altitudes below 2 km are used, since most
aerosols are expected to be confined to the boundary layer.
Statistics of all data are given in Sect. S1 in the Supplement.

4.1 Retrieval of volume water fraction

Figure 3 shows histograms of in situ observations of f (80 %,
20 %) and derived κext for ACTIVATE winter and summer
and CAMP2Ex, respectively. Values of f (80 %, 20 %) range
from about 0.5 to 2.5, with modes near 1.1–1.3. The low-
est values, smallest mean and narrowest distribution are seen
for the winter deployment of ACTIVATE. The summer de-
ployment of ACTIVATE shows a slightly higher mode and
broader distribution. During CAMP2Ex, the largest mode
is observed, and interestingly a second maximum around
f (80 %, 20 %)= 1 is apparent. Note that the f (80 %, 20 %)
and κext values represent the hygroscopicity of bulk aerosol
observed at 1 Hz. Hence, the instrumentation is not able
to resolve multi-modal hygroscopicity within a single mea-
surement, while such multi-modal hygroscopicity distribu-
tions are frequently observed in a range of conditions using
other instruments (Heintzenberg et al., 2001; Swietlicki et
al., 2008; Wex et al., 2010; Holmgren et al., 2014; Kim et al.,
2020). The continuous f (80 %, 20 %) distributions observed
during ACTIVATE suggest that the observed aerosols are
variable mixtures and not representative of a single source
or aerosol type, while the resolved low and high modes ob-
served during CAMP2Ex may be indicative of separately
sampling biomass burning emissions from Borneo and trans-
ported Asian emissions, respectively. The many values of
f (80 %, 20 %) near or below unity lead to a strong peak in
the distributions of κext at zero. A second peak is seen near
κext values of 0.05–0.08. Figure 4 shows that the relative hu-
midity distributions during ACTIVATE display considerable
ranges with multiple peaks, while the CAMP2Ex relative hu-
midity is generally near 80 %, representing the humid envi-
ronment around the Philippines during late summer.

Figure 5 shows histograms of RSP-retrieved fine-mode re-
fractive indices and water volume fractions derived as dis-
cussed in Sect. 2. Only RSP retrievals with a fine-mode op-
tical depth greater than 0.05 are included. In addition, the
water volume fractions derived from in situ measurements as
discussed in Sect. 3.3 are shown. For the winter deployment
of ACTIVATE, the retrieved refractive indices show two dis-
tinct peaks. One peak is near 1.54, corresponding to our as-
sumed refractive index of dry aerosol (see Sect. 2.3). Another
peak is near 1.48, which corresponds to the a priori value of
the refractive index in the optimal estimation scheme of the
retrieval algorithm. The peak near the a priori value is also
seen in the results of the summer ACTIVATE data, albeit to
a lesser extent, while it is not apparent for the CAMP2Ex
data. For the data of the summer deployment of ACTIVATE,

a broader peak between about 1.50–1.56 is seen, while for
CAMP2Ex a broad peak occurs around 1.45 in addition to a
weak peak at 1.54.

The prevalence of retrievals around the a priori value of the
refractive index indicates that during the ACTIVATE cam-
paign the information content of the RSP measurements with
respect to refractive index was limited for a substantial num-
ber of cases. For most days for both ACTIVATE deploy-
ments, there is a prevalence of refractive index retrievals near
the a priori value. Similar statistics are obtained when limit-
ing the data to those with optical depths above 0.2, where
information content may be expected to be higher. We spec-
ulate that the reduced information content of some of the AC-
TIVATE data compared to that of CAMP2Ex may be related
to the fact that flight planning during ACTIVATE was con-
strained by available corridors for civil aviation to fly off-
shore and a desire in many cases to fly in the direction of
the boundary layer wind, while during CAMP2Ex airplane
headings were often selected to obtain observations within
the principal plane, which maximizes information content
for fine-mode aerosol retrievals (Fougnie et al., 2020). Fur-
thermore, while cases influenced by cirrus above the air-
craft are mostly filtered out by the cost function filter (see
Sect. 2), some cases may remain in the dataset, possibly caus-
ing the prevalence of refractive index retrievals near the a
priori value. However, more investigation is needed into why
the information content with respect to refractive index may
have been lower for part of the retrievals of ACTIVATE.

The water volume fractions derived from the retrieved re-
fractive indices show a larger peak at zero for all three cam-
paigns, corresponding to retrieved refractive indices ≥ 1.54.
For the ACTIVATE campaigns, a peak near fw = 0.3 is seen,
which corresponds to the a priori value of the refractive in-
dex, as discussed above. The figures also show the water frac-
tions estimated from the in situ observations, as described in
Sect. 3.3. Similarly to the RSP retrievals, these also show a
large peak at zero, corresponding to κ = 0. For the ACTI-
VATE data, the frequency of in situ-observed water fraction
generally decreases with its value, while the CAMP2Ex re-
sults show a broader distribution peaking around fw = 0.45,
similarly to the RSP distribution. Using the Kolmogorov–
Smirnov test reveals a 89 % likelihood that the in situ and
RSP water fractions from the CAMP2Ex data are drawn from
the same distribution. For the ACTIVATE data, this theoreti-
cal likelihood calculated with the Kolmogorov–Smirnov test
is 3 %, presumably because of the prevalence of the retrieved
refractive index near a priori values.

Next, we investigate the daily mean water volume fraction
obtained from the RSP and in situ measurements. Figure 6
shows that the RSP and in situ values compare reasonably,
although the spread is greater than the uncertainty in RSP re-
trievals expected from the assumed ±0.02 uncertainty in dry
refractive index. However, given the estimated uncertainty in
in situ-derived water fraction of about 0.13 and the standard
deviations of the daily values that are 0.21 and 0.20 for the in
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Figure 3. Histograms of the in situ observations of f (80 %, 20 %) (a, c, e) and κext (b, d, f), obtained during the ACTIVATE winter (a, b)
and summer (c, d) deployments and CAMP2Ex (e, f). The dashed line in the left panels indicates f (80 %, 20 %)= 1.

situ and RSP-retrieved values, respectively, the comparison
may be considered favorable. The mean absolute difference
between all RSP and in situ means is 0.09, with a correla-
tion coefficient of 0.68. Daily values for CAMP2Ex show the
best agreement between RSP and in situ water fractions with
a mean absolute difference of 0.080 and a correlation coeffi-
cient of 0.82.

4.2 Retrieval of soluble aerosol fraction

As discussed in Sect. 2, effective radii and variances are ex-
pected to increase with volume water fraction depending on
the fraction of soluble aerosol. Examples of retrieved effec-
tive radii and variances as a function of derived volume wa-
ter fraction are shown in Figs. 7 and 8. On 2 September 2020
during ACTIVATE, a clear increase in both effective radius
and variance with volume water fraction is seen, although a
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Figure 4. Histograms of the in situ observations of relative humidity
obtained during the ACTIVATE winter (a) and summer (b) deploy-
ments and CAMP2Ex (c).

substantial spread is also observed. On 21 September 2019
during CAMP2Ex, the increase in effective radius and vari-
ance with volume water fraction is also apparent but weaker.
The spread in the data may be attributable to natural varia-

tion of aerosol dry size distributions during the observation
period, as well as uncertainties in effective radius retrievals
and water fraction estimates. As discussed in Sect. 2.2, an ap-
proximately linear relationship between ve+ 1 and re, both
relative to their dry values, is expected. The reference dry
values for each day, here indicated as ve,ref and re,ref, are es-
timated from the retrieved ve and re values for water frac-
tions 0< fw < 0.2, which are assumed to represent nearly
dry but partly soluble aerosol. To estimate ve,ref and re,ref, we
fit modeled ve and re as a function of fw for a default soluble
fraction of fsol = 0.3 (via Eqs. 21 and 20) to these daily cases
with 0< fw < 0.2. The modeled ve,dry and re,dry values asso-
ciated with the lowest root-mean-squared difference between
model and data are used as ve,ref and re,ref, respectively, for
that day. Rather than taking averages of the ve,ref and re,ref
observations at 0< fw < 0.2, this approach allows us to ap-
proximately account for the slight variation of ve and re with
fw. Using a model for other values of fsol for this estimation
of ve,ref and re,ref yields similar overall results. The bottom
panels of Figs. 7 and 8 show the retrieved ve+1 and re values
relative to ve,ref+ 1 and re,ref for all retrievals with fw > 0.
The expected approximately linear relationship is observed
for both cases, with a steeper slope for the ACTIVATE case
(Fig. 7) compared to the CAMP2Ex case (Fig. 8). Subse-
quently, we find the lowest root-mean-square difference be-
tween the observations of (ve+1)/(ve,ref+1) versus re/re,ref
and values in a pre-calculated lookup table with values of
ve+ 1 and re relative to their dry values modeled according
to Sect. 2.2 for various fsol. A minimum of fsol of 0.05 is
assumed, as for lower values unrealistically large growth fac-
tors gV,sol need to be assumed to obtain considerable fw. The
resulting best fits for ACTIVATE and CAMP2Ex cases are
for fsol values of 0.23 and 0.62, respectively, and the corre-
sponding modeled relationships are shown in the bottom pan-
els of Figs. 7 and 8. For reference and a consistency check,
the modeled re and ve as a function of fw corresponding
to the inferred fsol, as given by Eqs. (20) and (21), respec-
tively, are also shown in Figs. 7 and 8, where re,dry = re,ref
and ve,dry = ve,ref. Note that the retrieval of fsol is mostly
constrained by the retrieved re and ve values and only relies
on the retrievals of fw to select cases with low fw in order to
derive the re,ref and ve,ref.

This approach is applied to the daily data of ACTIVATE
and CAMP2Ex. Only days for which at least two data points
with 0< fw < 0.2 and at least two with fw > 0.2 are avail-
able are selected, which excludes 6 d from CAMP2Ex. In ad-
dition, as a proxy for soluble aerosol contribution to the fine
mode, we derive the daily average mass fraction of sulfates
from the AMS data as described in Sect. 3.3. Mass fractions
of ammonium, nitrate and organics are given in Table S3.
Generally, the majority of the mass other than sulfate is com-
posed of organics. Note that the sulfate mass fraction can be
interpreted as the fraction of all sulfate that is externally and
internally mixed in all aerosols analyzed by the AMS during
the selected time period, while the RSP soluble fraction is an
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Figure 5. Similar to Fig. 3 but showing the RSP-retrieved refractive index (a, c, e) and derived volume water fraction (b, d, f). Grey bars in
the right panels show the volume water fraction derived from the in situ observations. Volume water fraction histograms are normalized to
their maximum value. The dashed lines in the left panels indicate the assumed ndry = 1.54.

estimate of volume fraction of fine-mode aerosol that has a
κ value greater than zero. Hence, they may be expected to
correlate but are not fundamentally the same.

Figure 9 shows the daily RSP retrievals of soluble aerosol
fraction versus in situ-observed sulfate mass fractions for the
three campaigns. The soluble fraction is generally low, espe-
cially during ACTIVATE. During the winter deployment of

ACTIVATE, all days have fsol < 0.2, while values are all be-
low 0.4 during the summer deployment. The largest spread
of fsol is seen during CAMP2Ex, with values up to 0.73.
These differences between campaigns are qualitatively con-
sistent with the differences in f (80 %, 20 %) and κext as seen
in Fig. 3.
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Figure 6. Daily mean volume water fractions retrieved from RSP
versus those derived from the in situ data. Data from the ACTI-
VATE winter, summer and CAMP2Ex campaigns are indicated by
green diamonds, purple circles and red squares, respectively. The
blue and grey shaded regions show the expected accuracy of the
RSP retrievals based on an uncertainty in ndry of±0.02 and±0.04,
respectively, as also indicated in Fig. 2.

Turning our attention to the in situ observations of mass
fraction of sulfates shown in Fig. 9, it can be seen that sul-
fate mass fractions between 0.15 and 0.4 are observed during
ACTIVATE, while a larger range is seen during CAMP2Ex.
Most of the remaining aerosol mass generally consists of or-
ganics (see Table S3). The soluble aerosol fraction retrieved
from RSP reasonably correlates with the sulfate mass frac-
tion with a Pearson correlation coefficient of 0.79, although
the number of points is low and the correlation is mostly
driven by CAMP2Ex results. A linear fit of the form fsol =

1.09× fm,sul− 0.12 is also shown in Fig. 9. While the fitted
slope is close to unity, we may not expect the RSP-retrieved
soluble fraction to perfectly correlate with the sulfate mass
fraction with a 1 : 1 dependence as (a) other species, includ-
ing organics, may contribute to the total soluble mass frac-
tion and (b) the RSP retrievals assume an external mixture of
soluble and insoluble particles while the AMS vaporizes all
particles and observes the sulfate mass fraction regardless of
original mixing state. We may, however, expect the intercept
of the linear fit to be near zero as a population with negligi-
ble contribution of soluble particles would also be expected
to contain negligible sulfate mass. The fact that the intercept
is −0.12 indicates that the RSP soluble fraction is underesti-
mated when the real soluble fraction is low. As discussed in
Sect. 2.2 this bias may be related to our assumption of equal
dry size distributions for the insoluble and soluble aerosol
components. Further discussion is provided in Sect. 5.

Figure 7. Examples of effective radius (a) and variance (b) as a
function of volume water fraction for an ACTIVATE case with rel-
atively low retrieved soluble aerosol fraction. Panel (c) shows the
ratio (ve+ 1)/(ve,ref+ 1) versus the ratio re/re,ref (see text) for
cases with fw > 0. Red lines in all panels show the model values
that correspond to the soluble fraction that leads to the best fit to the
(ve+ 1)/(ve,ref+ 1) versus re/re,ref data points.

https://doi.org/10.5194/amt-15-7411-2022 Atmos. Meas. Tech., 15, 7411–7434, 2022



7424 B. van Diedenhoven et al.: Retrieval of aerosol water and soluble fraction and dry size

Figure 8. Same as Fig. 7 but for a case with relatively high retrieved
soluble aerosol fraction during CAMP2Ex.

Figure 9. Daily RSP retrievals of the soluble aerosol fraction fsol
versus daily in situ-measured sulfate aerosol mass fractions. The
dashed line shows a linear least-squares fit (fsol = 1.09× fm,sul−
0.12) through all points. Data from the ACTIVATE winter, summer
and CAMP2Ex campaigns are indicated by green diamonds, purple
circles and pink squares, respectively.

4.3 Retrieval of dry aerosol size distribution

For known volume water fraction and soluble fraction, the
relative increase in effective radius and ve+ 1 is given by
Eqs. (20) and (21), respectively. Using the volume water
fraction retrieved for each observation along with the daily
values of soluble fraction, we calculate the inferred dry ef-
fective radius and variance for all data from the three cam-
paigns, of which histograms are shown in Fig. 10. Note that
for the 6 d from CAMP2Ex for which retrievals of soluble
fraction is not possible, we assume fsol = 0.3. Since the vari-
ations of re,mix and ve,mix with fw vary relatively weakly for
0.1< fsol < 0.6 (Fig. 1), no noticeable difference in the his-
togram is seen if a different value fsol is assumed within this
range.

The largest values of both effective radius and variance
are seen during the summer deployment of ACTIVATE and
the smallest values during its winter deployment. Differences
between ambient and dry values of effective radius and vari-
ance are smallest for the winter deployment of ACTIVATE,
namely 0.013 µm and 0.022, respectively, on average, which
is consistent with the low volume water and soluble fractions
seen in that deployment. Average differences between ambi-
ent and dry effective radii and variances for the winter AC-
TIVATE deployment are 0.020 µm and 0.028, respectively,
while largest differences of, respectively, 0.034 µm and 0.042
on average are seen for the CAMP2Ex data, consistent with
broader distributions of volume water fraction and soluble
fraction.

Dry effective radii are estimated from the in situ-measured
total volume and surface areas as described in Sect. 3.3.
These reported volume and surface areas pertain to the parti-
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Figure 10. Histograms of RSP-retrieved fine-mode effective radii (a, c, e) and effective variance (b, d, f) obtained during the ACTIVATE
winter (a, b) and summer (c, d) deployments and CAMP2Ex (e, f). Blue bars represent ambient values, while colored bars indicate the
corresponding dry values derived as described in the text.

cles with dry radii between 0.05 and 0.5 µm. Hence, the RSP
dry effective radii are scaled to include only particles with
radii between 0.05 and 0.5 µm in order to directly compare
them to LAS observations. Figure 11 show histograms for the
three campaigns of RSP and LAS-derived dry effective radii.
The ranges of in situ-observed effective radii and those re-
trieved by RSP agree well, although mean values observed in
situ are generally smaller (see also Table S1). The largest dif-
ferences are seen for the summer deployment of ACTIVATE,

while best agreement is seen for the CAMP2Ex campaign.
Daily mean values of in situ-observed and RSP-retrieved dry
effective radii for radii between 0.05 and 0.5 µm are com-
pared in Fig. 12. The mean absolute difference between daily
averages is 0.024 µm. However, the spread is generally large
and the correlation is rather poor. The best comparison is for
CAMP2Ex, with values agreeing within 0.019 µm on aver-
age. Note that the daily standard deviations of effective ra-
dius is 0.02 or larger for most days (see Table S1). Further

https://doi.org/10.5194/amt-15-7411-2022 Atmos. Meas. Tech., 15, 7411–7434, 2022



7426 B. van Diedenhoven et al.: Retrieval of aerosol water and soluble fraction and dry size

discussion on the comparisons of dry effective radii and pos-
sible biases in RSP and in situ observations is provided in
Sect. 5.

4.4 Retrieval of aerosol number concentration in given
dry size ranges

Column-averaged fine-mode aerosol number concentrations
Nf,tot are estimated by the RSP using Eq. (24). Knowledge of
the dry particle size distribution allows estimating the num-
ber concentrations within a given dry particle size range.
This allows remotely sensed number concentrations to be ad-
justed to take into account in situ probe size limits for better
comparison with in situ observations. Furthermore, as small
aerosol are less effective CCN, the variation in Nf,tot larger
than a given radius limit rlim can be used as proxy for varia-
tion in CCN concentrations (Dusek et al., 2006; Hasekamp et
al., 2019). However, using ambient size distributions in lieu
of dry size distribution retrievals in this approach may lead
to a bias in estimated variation in CCN concentrations related
to water uptake Hasekamp et al. (2019).

Figure 13 shows the mean and standard deviation of the
fraction of fine-mode particles larger than a dry minimum ra-
dius rlim for the three campaigns. Fractions are close to unity
for rlim up to about 0.04 µm but then steadily decrease with
increasing rlim up to about 0.2 µm. Fractions at a given rlim
are largest for the ACTIVATE summer campaign because of
the relatively large re,dry values at that campaign. The rlim
values at which 50 % of the particles are larger than rlim are
0.095, 0.010 and 0.089 µm for the ACTIVATE winter, sum-
mer and CAMP2Ex campaigns, respectively.

The LAS in situ instrument provides number concentra-
tions for particles with dry radii between 0.05 and 0.5 µm.
Daily geometric mean number concentrations derived from
the in situ observations and RSP are compared in Fig. 14.
Here, RSP Nf,tot values are scaled using rlim = 0.05 µm, al-
though this scaling has limited effect as can be concluded
from Fig. 13. Generally RSP and in situ daily means agree
within a factor 2 and correlate with a correlation coeffi-
cient of 0.86. The mean absolute difference for all days is
138 cm−3. Note that the geometric standard deviation fac-
tor often exceeds 2 for the in situ observations of num-
ber concentrations, while it is generally around 1.5 for the
RSP retrievals (see Table S1). Similar comparisons between
RSP and LAS number concentrations have been shown by
Schlosser et al. (2022).

5 Discussion on assumptions and uncertainties

The presented methods to infer volume water fraction and
daily soluble fraction are largely independent from each
other. The derivation of dry effective radius from its ambient
counterpart is mostly relying on the retrieved volume water

Figure 11. Histograms of dry fine-mode effective radii retrieved
by RSP (colored bars) and those derived from in situ data (grey)
for the ACTIVATE winter (a) and summer (b) deployments and
CAMP2Ex (c). Effective radii are computed including only particles
with radii between 0.05 and 0.5 µm. The histograms are normalized
to their maximum value.
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Figure 12. Daily means of dry fine-mode effective radii retrieved
by RSP and those derived from in situ data for the three campaigns.
Effective radii are computed including only particles with radii be-
tween 0.05 and 0.5 µm. Data from the ACTIVATE winter, summer
and CAMP2Ex campaigns are indicated by green diamonds, pur-
ple circles and red squares, respectively. Days with a successful re-
trieval of soluble aerosol fraction are marked by a plus.

Figure 13. The mean (solid lines) and standard deviation (dashed
lines) of the fraction of fine-mode particles larger than a dry mini-
mum radius rlim for the three campaigns.

fraction, while the derivation of dry effective variance also
substantially depends on estimated soluble fraction.

The volume fraction of water in the observed aerosol is in-
ferred from the retrieved ambient refractive index using the
assumptions that the volume mixing rule applies to the re-
fractive index of internally and externally mixed aerosol and
that the dry refractive index is 1.54. While both of these as-
sumptions lead to uncertainties, we estimate that these uncer-
tainties in the retrieved volume water fraction are generally
below about 0.2 and decrease with increasing volume water
fraction. Furthermore, while substantial deviations from dry
refractive indices of 1.54 occur in individual in situ observa-

Figure 14. Daily means of number concentrations retrieved by RSP
and those derived from in situ data for the three campaigns. Data
from the ACTIVATE winter, summer and CAMP2Ex campaigns are
indicated by green diamonds, purple circles and red squares, respec-
tively. Days with a successful retrieval of soluble aerosol fraction
are marked by a plus.

tions, the standard deviations for data collected over regions
or periods are generally small (e.g., Aldhaif et al., 2018),
suggesting the accuracy of retrieved volume water fraction
generally improves upon averaging. However, for regions
and periods with aerosol mixtures that have average dry re-
fractive index systematically smaller than 1.5, the presented
method will yield biased results. Furthermore, in the case of
pure salt aerosol, the use of the volume mixing rule may lead
to an overestimation of volume water fraction if the real wa-
ter fraction is below about 50 % (Schuster et al., 2009; see
also Sect. S2).

We further assume that the aerosol consists of externally
mixed soluble (κ > 0) and insoluble (κ = 0) components
with equal dry size distributions. While this model explains
the co-variation of retrieved fine-mode effective radius and
variance reasonably well and is based on previous in situ ob-
servations under many conditions with instruments that can
resolve multi-modal hygroscopicity, it is considered a prac-
tical, oversimplified model. In reality, insoluble and soluble
components have distributions of (effective) κ values around
zero and non-zero values, respectively (Heintzenberg et al.,
2001; Holmgren et al., 2014; Kim et al., 2020). Furthermore,
the approach to estimate the soluble aerosol fraction uses
daily data and makes the assumption that the soluble aerosol
fraction is fixed during the observation period. While the re-
trieved daily soluble fractions reasonably correlate with in
situ estimated sulfate mass fraction, the method yields many
soluble fractions below 0.2, while the sulfate mass fractions
are generally greater than 0.2 (see Fig. 9). We speculate that
the oversimplified aerosol model used here may be biasing
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results low if the soluble component in reality has a broad
distribution of κ values further broadening the size distri-
butions. Furthermore, Holmgren et al. (2014) show hygro-
scopicity generally increases with size, which is inconsistent
with our assumption of equal size distributions for the sol-
uble and insoluble components and may promote increased
broadening of the size distribution upon humidification, in
turn resulting in a low bias in the soluble fraction estimate,
as shown in the Supplement. Future studies based on simu-
lated measurements are needed to further study these effects.

We also assume that all soluble particles are hydrated at
the ambient conditions, i.e., that the RH is above the efflo-
rescence and/or deliquescence points for all soluble parti-
cles. If in reality a substantial fraction of the soluble aerosol
is not deliquesced, this may bias the estimated soluble frac-
tion low. However, there is no correlation apparent between
daily-average RH and inferred soluble fraction (see Tables S1
and S3). Furthermore, the f (80 %, 20 %) observations con-
firm the generally low hygroscopicity, although these are not
affected by the ambient RH.

Another implicit assumption made in the method is that
all observed aerosol is exposed to a similar relative humidity.
While most aerosol is confined to the boundary layer which
is generally well mixed, the relative humidity may be ex-
pected to increase with decreasing temperature and thus with
altitude. A substantial variation in relative humidity in the
aerosol-loaded column may contribute to a broadening of the
column-averaged size distributions and possibly a bias in in-
ferred soluble fraction. We perform a simple test for whether
the RSP-retrieved soluble fractions and ambient size distri-
butions are consistent with the relative humidity observed in
situ below 2 km altitude. For this, we first assume a κsol value
of 0.5 for the soluble fraction, which is representative of am-
monium sulfate (Petters and Kreidenweis, 2007), and esti-
mate an aerosol average κ from κ = κsol×fsol. Subsequently,
the relative humidity can be estimated for each observation
using Eq. (26) and the growth factor derived from the ambi-
ent reff relative to the estimated reff,dry (see Sect. 4.2). This
yields daily mean relative humidity values that are within
3.5 %, 3.2 % and −4.8 % (absolute values) of the daily mean
in situ-observed values for the ACTIVATE winter and sum-
mer deployments and the CAMP2Ex campaign, respectively.
This generally good agreement suggests an overall consis-
tency between the soluble fraction and ambient size distri-
butions from RSP and the relative humidity observed in situ
below 2 km altitude.

Using the volume water fraction and soluble fractions, the
dry effective radii and variances were estimated from the am-
bient RSP retrievals. While the total ranges of RSP-derived
and in situ-measured dry effective radius are consistent, the
in situ values are substantially smaller on average, and RSP
and in situ daily averages correlate rather poorly, especially
for the ACTIVATE deployments. This may suggest a sub-
stantial low bias in the RSP-retrieved volume water fraction,
although this is unlikely considering its generally favorable

comparison to water fractions derived from in situ observa-
tions. Furthermore, a positive bias in the retrievals of ambi-
ent effective radius may possibly be the culprit. Alternatively,
the LAS observations of total volume and surface area may
be biased low or high, respectively. There are indications that
relatively large aerosol particles are “lost” in the tubing sys-
tem of the aerosol observation package, which would be con-
sistent with a low bias in effective radius. Further analysis of
these and future LAS data is needed to evaluate this poten-
tial issue. Furthermore, further evaluation of the dry effective
radius derived from RSP data with the presented method is
needed using other past or future campaign data.

6 Conclusions

We present a framework to infer volume water fraction, sol-
uble fraction and dry size distributions from multi-angle,
multi-spectral polarimetry retrievals of column-averaged
fine-mode ambient aerosol properties. Volume water frac-
tion is inferred from the ambient refractive index, while av-
erage soluble fraction is mostly derived from size distribu-
tions within a region or time period. Both volume water frac-
tion and soluble fractions are used to infer dry size distribu-
tions from their ambient counterparts. The approach is ap-
plied to observations of the RSP during the ACTIVATE and
CAMP2Ex field campaigns and compared to in situ observa-
tions obtained below 2 km.

The daily-averaged volume water fractions from RSP and
in situ observations show good correlation and have a mean
absolute difference of 0.09. Daily estimates of soluble frac-
tion correlate reasonably well with in situ-observed sulfate
mass fraction, although the soluble fraction appear to be bi-
ased low. The RSP-derived dry effective radius shows a simi-
lar range as in situ-observed values. However, during the AC-
TIVATE deployments, the in situ-derived effective radius is
generally smaller by about 0.02–0.05 µm. Possible causes of
this inconsistency may be related to RSP or in situ observa-
tions. RSP-retrieved number concentrations generally agree
well with the in situ observations. Best agreements overall
are seen for the CAMP2Ex campaign. The ACTIVATE RSP
data appear to be hampered by lower information content
possibly caused by non-favorable flight direction or cirrus
above the aircraft, leading to retrievals of refractive index be-
ing frequently strongly weighted towards the a priori value.
We note that the RSP and in situ observations are not strictly
co-located in space and time but are compared on the premise
that mean values and standard deviations of the observations
over a similar time range and region should be consistent.

Both RSP and in situ observations indicate the dominance
of aerosol with low hygroscopicity during the ACTIVATE
and CAMP2Ex campaigns. Furthermore, RSP indicates a
high degree of external mixing that is not resolved by the
in situ observations. This is consistent with a high degree of
external mixing of modes with low and high hygroscopicity
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shown by Swietlicki et al. (2008) and Holmgren et al. (2014)
and others for various aerosol sources. Furthermore, Holm-
gren et al. (2014) showed that the contribution of low hy-
groscopicity particles is seasonally varying, peaking in win-
ter, which may be consistent with the relatively low water
and soluble fractions found in the ACTIVATE winter de-
ployment. The hydrophobic or insoluble particles may con-
sist of long-lived and externally mixed primary (Petters and
Kreidenweis, 2007) or secondary (Pun et al., 2002) organic
aerosol or “tar balls” that have their origin in biomass burn-
ing (Pósfai et al., 2004; Yuan et al., 2021). Such particles
may originate from fires that were prevalent in the ACTI-
VATE (Corral et al., 2021) and CAMP2Ex (Hilario et al.,
2021; Reid et al., 2022) areas.

The remote sensing of fine-mode water volume fraction
may be used for evaluation of water uptake in atmospheric
models. We also demonstrate how the derived dry size dis-
tributions can be used to derive the fraction of fine-mode
particles within a given dry particle size range. This is rel-
evant for relating retrieved total fine-mode particles to CCN
concentrations, as it has been shown that variations in CCN
concentrations may better correlate with concentrations of
aerosol above a certain size rather than the concentrations
of all aerosol (Dusek et al., 2006; Hasekamp et al., 2019).
Knowledge on the hygroscopicity of the particles and the
soluble fraction of externally mixed aerosol may also be im-
portant for estimating CCN from total aerosol concentrations
(Wex et al., 2010), although insoluble particles may still act
as effective CCN (Kumar et al., 2009).

The presented approach may be applied to any multi-
angular, multi-spectral polarimeter observations over land
and ocean that are sufficiently accurate to infer fine-mode re-
fractive index, effective radius and variance (Mishchenko et
al., 2004; Hasekamp and Landgraf, 2007). The HARP-2 and
SPEXone (Hasekamp et al., 2019) instruments on NASA’s
PACE satellite mission (Werdell et al., 2019) to be launched
in 2024 are expected to provide such observations at a spatial
resolution of about 5× 5 km2. The derivation of water vol-
ume fraction may be directly applied to pixel-level satellite
retrievals of refractive index, while regional data may be used
to estimate soluble fraction. Furthermore, pixel-level dry size
distributions may be computed from the retrieved ambient
values according to the availability of successful water vol-
ume and soluble fraction retrievals.

In conclusion, we have shown that aerosol water volume
fraction may be derived from the retrieved ambient refrac-
tive index with an uncertainty estimated to be better than
0.2 and which decreases further with increasing volume wa-
ter fraction. For regional data, the retrieved particle sizes in-
crease with water volume fraction as expected, further bol-
stering confidence in the water fraction retrievals. Further-
more, the observed particle size distribution width generally
also increases with water fraction, which, as we show, points
to the presence of external mixtures of soluble and insolu-
ble aerosol particles. To our knowledge, these results repre-

sent the first airborne remote sensing observations of aerosol
water volume fraction that are evaluated with correspond-
ing in situ measurements. Application of this approach to
global satellite observations may be useful to better constrain
aerosol water uptake represented in models and to improve
estimates of CCN concentrations from remote sensing.
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