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Abstract. A complex and varied terrain has a great impact
on the distribution of wind energy resources, resulting in un-
certainty in accurately assessing wind energy resources. In
this study, three wind speed distributions of kernel, Weibull,
and Rayleigh type for estimating average wind power den-
sity were first compared by using meteorological tower data
from 2018 to 2020 under varied desert steppe terrain con-
texts in northern China. Then three key parameters of scale
factor (c) and shape factor (k) from the Weibull model and
surface roughness (z0) were investigated for estimating wind
energy resource. The results show that the Weibull distribu-
tion is the most suitable wind speed distribution over that
terrain. The scale factor (c) in the Weibull distribution model
increases with an increase in height, exhibiting an obvious
form of power function, while there were two different forms
for the relationship between the shape factor (k) and height:
i.e., the reciprocal of the quadratic function and the logarith-
mic function, respectively. The estimated roughness length
(z0) varied with the withering period, the growing period, and
the lush period, which can be represented by the estimated
median value in each period. The maximum and minimum
values of surface roughness length over the whole period are
0.15 and 0.12 m, respectively. The power-law model and the
logarithmic model are used to estimate the average power
density values at six specific heights, which show greater
differences in autumn and winter, and smaller differences in

spring and summer. The gradient of the increase in average
power density values with height is largest in autumn and
winter, and smallest in spring and summer. Our findings sug-
gest that dynamic changes in three key parameters (c, k, and
z0) should be accurately considered for estimating wind en-
ergy resources under varied desert steppe terrain contexts.

1 Introduction

Wind energy is a renewable, environmentally friendly, and
popular alternative source of clean energy (Islam et al., 2013;
Gabbasa et al., 2013), and as a source of power it has great
potential (Chaurasiya et al., 2019). In 2020, 93 GW of new
installations brought the global cumulative wind power ca-
pacity up to 743 GW. In the onshore market, 86.9 GW was
installed, an increase of 59 % compared to 2019. China and
the United States remain the world’s largest markets for new
onshore installations (Joyce and Feng, 2021). To use this kind
of nonpolluting energy, a lot of research has been conducted
through a variety of different methods to develop an accurate
and reliable wind energy evaluation model.

The probability density function (PDF) of wind speed
can effectively characterize wind speed. Therefore, the wind
speed PDF is of great significance in selecting wind tur-

Published by Copernicus Publications on behalf of the European Geosciences Union.



758 S. Zhou et al.: Estimating wind power density using tower observation

bine sites, in wind farm design, in generator design, in de-
termining the dominant wind direction, and in evaluating
the management and operation of wind conversion systems
(Masseran, 2015; Li and Shi, 2010). Wind displays large dif-
ferences with various topographies, landforms, and meteoro-
logical conditions. The magnitude and direction of the wind
speed exhibit significant differences when wind flows over
rough ground or obstacles in a complex terrain. In addition,
the surface topography and roughness of the area around the
location of the wind measurement tower will affect the pre-
dicted wind resources (Kim and Lim, 2017). Therefore, the
wind speed PDF and roughness are important input factors
in the estimation of the power density of wind energy.

Different distribution functions have different fitting ef-
fects on the actual wind speed values in distinct study ar-
eas. According to previous studies (Lo Brano et al., 2011;
Celik, 2004; Masseran et al., 2012), seven wind PDFs have
been widely used to fit the actual wind speed values: i.e.,
Weibull, Rayleigh, lognormal, gamma, inverse Gaussian,
Pearson type V, and Burr. These models exhibited different
advantages and disadvantages for estimating wind probabil-
ity density. For instance, Celik (2004) used the Weibull and
Rayleigh models to perform a statistical analysis of wind en-
ergy density in southern Turkey and found that the Weibull
model not only fits the measured monthly probability den-
sity distribution better but also provides a better power den-
sity estimation compared to the Rayleigh model. Masseran et
al. (2012) used nine different wind speed PDF models to de-
scribe wind speed conditions in different regions of Malaysia
and found that gamma, Weibull, and inverse gamma models
fit the wind speed data better. Chang (2011a) used six differ-
ent PDFs, namely, Weibull, a mixture of gamma and Weibull,
a mixture of normal, a mixture of normal and Weibull, a
mixture of Weibull, and principle of maximum entropy dis-
tributions. They were tested on the wind data of three wind
farms in Taiwan and it was found that, when the current wind
speed distribution is unimodal, the fitting effects of these six
PDFs are not significantly different. When the wind speed
distribution is bimodal, the other five PDFs are better than
Weibull at describing wind characteristics. In addition, many
other PDFs have been invented to provide more accurate re-
sults for the estimation of wind power density in a specific
area (Masseran, 2015; Carta et al., 2009; Jaramillo and Borja,
2004).

Among the aforementioned types of wind speed PDFs, the
Weibull and Rayleigh distributions remain the more tradi-
tional and widely applicable typical wind speed distribution
forms. The key issue in the study of the Weibull distribu-
tion is how to accurately determine the values of Weibull
scale factor c and shape factor k (Azad et al., 2014; Ka-
plan, 2017). Generally, six different methods, i.e., graph-
ical method (Basu et al., 2009), empirical method (Costa
Rocha et al., 2012; Kaoga et al., 2014), maximum like-
lihood method (Andrade et al., 2014; Azad et al., 2014),
energy trend method (Chang, 2011b; Akdağ and Dinler,

2009), energy pattern method (Andrade et al., 2014), and
the moment method (Azad et al., 2014; Kaplan, 2017; Costa
Rocha et al., 2012), have been employed to calculate the c
and k of the Weibull distribution model. But these methods
perform differently in different regions. For instance, Ka-
plan (2017) found that the energy pattern method and the
moment method were the best methods between 2009 and
2013 in the Hatay and Osmaniye regions. When the time
series of wind data is provided, the maximum likelihood
method is more robust and accurate than other methods (Se-
guro and Lambert, 2000; George, 2014). In addition, there
is a strong time dependence and a high change dependence
for the changes in shape factor k and scale factor c (Lun and
Lam, 2000; Justus and Mikhail, 1976): e.g., the scale factor
c has a power-law functional relationship with height and the
shape factor k has a reciprocal logarithmic functional rela-
tionship with height. Therefore, we can explore its general
laws by studying the seasonal changes and height changes in
shape and scale parameters in a specific area.

Roughness length plays a key role in estimating wind en-
ergy resources. For example, Laporte (2010) pointed out that
the roughness estimation error can cause 5–10 % of the wind
energy resource estimation error. Current wind energy re-
source assessment is based on measured wind data at a height
of 60–80 m from the ground, but the actual height of the hub
may be greater than these heights. Therefore, we need to
combine the surface roughness length and the known wind
speed value of the measured height to extrapolate the wind
speed value at the height of the hub (Nayyar and Ali, 2020).
Theoretically, the surface roughness length z0 is the height at
which the average wind decreases to zero with height. The
value z0 varies with the underlying surface (Davenport et al.,
2000; Duan et al., 2021). Currently, three approaches (the
analysis method, the Charnock method, and the statistical
method) are widely applied to estimate the surface rough-
ness length of offshore wind energy (Golbazi and Archer,
2019). Among them, the statistical method is convenient, as
it needs only three layers of wind speed data. After compar-
ing the average value and median value of roughness z0, it is
found that the median value is an order of magnitude closer
to the roughness length calculated from the other two meth-
ods. Therefore, when using the field measurement method to
statistically determine the surface roughness length, attention
should be paid to using the median value instead of the aver-
age value; otherwise huge errors will be generated when the
wind speed is extrapolated to the height of the hub, which
will have a major impact on the evaluation of wind energy
resources.

As an important production base of wind power energy
in northern China, Inner Mongolia is under the influence of
the westerly wind all year round. The types of underlying
surfaces of wind power towers in China are complex and di-
verse, including offshore, mountainous, urban outskirts, and
grasslands. In Inner Mongolia, especially the desert grass-
land, the terrain is open, the vegetation is low and sparse, and

Atmos. Meas. Tech., 15, 757–773, 2022 https://doi.org/10.5194/amt-15-757-2022



S. Zhou et al.: Estimating wind power density using tower observation 759

its wind resources are very rich. Thus, taking the Ningyuan-
bailiutu site as an example, in-depth data mining was carried
out on the four heights of 10, 30, 50, and 70 m for the me-
teorological element data of a 100 m wind tower from the
autumn of 2018 to the summer of 2020 in Damaoqi, Baotou
City, Inner Mongolia, China. The following three steps are
used to study the three important key parameters that affect
the evaluation of wind energy resources: the surface rough-
ness length z0, the scale factor c, and the shape factor k in the
Weibull distribution function. First, we need to determine the
uniqueness and importance of the Weibull distribution func-
tion in the wind speed time series data in the Damaoqi area.
This is reflected in the advances and shortcomings of the ker-
nel distribution model, the Rayleigh distribution model, the
Weibull distribution function, and the frequency distribution
model using actual wind speed, which are used to calculate
the monthly, seasonal, and all-time average power densities.
Second, by studying the monthly and seasonal changes in
the surface roughness length and the changes in different in-
coming flow directions, we will gain a comprehensive under-
standing of the roughness of the site area in Inner Mongolia.
Finally, by using two different models, namely, the power-
law model with scale parameter c and the logarithmic model
with roughness information, the average wind power densi-
ties at six specific heights (75, 80, 85, 90, 95, and 100 m)
per month, per season, and throughout the period are calcu-
lated. In this way, we discuss the application significance of
the two models for wind energy development, and provide a
scientific reference to further our understanding of the wind
energy resources in the region.

2 Study site, data, and methods

2.1 Study site and data

In this study, long-term in situ measurement was conducted
in Damaoqi, Baotou City, Inner Mongolia (42◦04′25.738′′ N,
110◦29′2.778′′ E; 1376 m above sea level) from 1 Septem-
ber 2018 to 31 August 2020 (Fig. 1). The observation wind
tower is located at the northern foot of Daqing Mountain
in the central area of the Inner Mongolia Plateau. Wind
speed and wind direction (010C cup anemometers and 020C
wind vanes, Metone, USA), atmospheric pressure (CS106
Campbell, USA), air temperature, and humidity (HC2-S3,
Rotronic, Switzerland) were measured at four levels (i.e.,
10, 30, 50, and 70 m) of the tower, which is surrounded by
typical desert grassland. The site is characterized by a mid-
dle temperate zone and semi-arid continental climate. During
the study period, the daily air temperature at the 2 m height
ranged between −27.3 and 33.9◦, with an average value of
6.3◦ (Fig. 2a). Surface-level air pressure has an inverse rela-
tion with air temperature, with an average value of 862.9 hPa
(Fig. 2b). In addition, the daily average relative humidity at
the 2 m height maintains a level of 41.02 % and fluctuates

back and forth. The average wind speed at the 70 m height is
7.6 m s−1. The daily averaged wind speed in spring and au-
tumn occasionally exceeds the level of 10.0 m s−1, indicating
that the site has sufficient wind resources in these two sea-
sons (Fig. 2c). The predominant wind direction was south-
westerly and northwesterly during the whole observation pe-
riod (Figs. 2d and 3).

2.2 Methods

2.2.1 Kernel, Weibull, and Rayleigh distributions

The kernel density estimator is the estimated PDF of a ran-
dom variable. For any real values of v, the formula for the
kernel density estimator is given by:

fh(v)=
1
nh

n∑
i=1

K

(
v− vi

h

)
, (1)

where v1, v2, . . . , vi are random wind samples from an un-
known distribution, n is the sample size, K(·) is the kernel
smoothing function, and h is the bandwidth.

The PDF of the Weibull distribution is given by:
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The Rayleigh model is a special and simplified case of the
Weibull model. It is obtained when the shape factor k of the
Weibull model is assumed to be equal to 2.

The maximum likelihood estimation method is a mathe-
matical expression recognized as a likelihood function of the
wind speed data in a time series format. In this method, many
numerical iterations can be required to determine the k and
c parameters of the Weibull function. The parameter estima-
tion formula of the maximum likelihood method is as fol-
lows:
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. (4)

The average value and standard deviation of the wind speed
can be obtained from the following formulas, respectively:

vm =
1
n

[
n∑
i=1
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]
, (5)
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[
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2
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. (6)
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Figure 1. (a) The observation site marked as a black spot in the Inner Mongolia Autonomous Region of China (the red line indicates the
border of the Inner Mongolia Autonomous Region); (b) terrain elevation map of the 28 km× 28 km grid; (c) Google satellite historical
imagery of the 28-km× 28-km grid (from © Google Maps 2021); the red dots indicate wind turbines.

Figure 2. Panels (a), (b), (c), (d), and (e) represent 2 m daily average temperature (◦), surface-level daily average pressure (hPa), 70 m
daily and monthly average wind speed (m s−1), 70 m daily average wind direction (◦), and the average 2 m daily relative humidity (%),
respectively.
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Figure 3. The distribution of the high-altitude wind speed and direc-
tion rose diagram of the wind measurement tower on the Ningyuan-
bailiutu wind farm from September 2018 to August 2020. Pan-
els (a), (b), (c), and (d) represent 10, 30, 50, and 70 m in altitude,
respectively.

Alternatively, the mean wind speed can be determined
from:

vm =

∞∫
0

vf (v)dv, (7)

if the PDF is known.
If Eq. (7) is solved together with Eq. (2) making the sub-

stitution of ξ = (v/c)k for v, the following is obtained for the
mean wind speed:

vm = c0

(
1+

1
k

)
. (8)

Note that the gamma function has the properties of 0(x)=∫
∞

0 ξx−1 exp(−ξ)dξ and 0(1+ x)= x0(x).

2.2.2 Power density

The mean power density for the kernel smoothing function
becomes:

PK =

n∑
i=1

[
1
2
ρv3

m,ifh (vi)

]
. (9)

The mean power density for the Weibull function becomes:

PW =
1
2
ρc30

[
1+

3
k

]
. (10)

The mean power density for the Rayleigh model is found to
be:

PR =
3
π
ρv3

m, (11)

where ρ is the air density.

2.2.3 Weibull parameters

The relationship between scale factor c and height can be
expressed as follows:

c/c10 = (z/10)α. (12)

Here c10 represents the scale factor at 10 m height, z repre-
sents the height, and α represents the power exponent param-
eter to be estimated.

The relationship between scale factor k and height can be
expressed as follows:

k = a(z/10)2+ b′(z/10)+ d, (13)

where a, b′, and d are unknown parameters to be fitted to the
quadratic function.

In addition, as shown in Fig. 6c, Justus and Mikhail (1976)
gave the following formula for the shape factor k with height:

k10/k = 1+ b10 ln(z/10), (14)

where k10 is the shape factor at a reference height of 10 m.
At a reference height of 10 m, b = b10 is just some constant,
whose value can be determined by a least squares fit of rela-
tion (14) to the data.

2.2.4 Surface roughness length

When the wind speed at three or more heights is measured,
the roughness length calculated by the least square regres-
sion (Archer and Jacobson, 2003; Archer, 2005; Golbazi and
Archer, 2019) is:

ln(z0)=

U (zR)
{∑

[ln(zi)]2
− ln(zR)

∑
ln(zi)

}
− ln(zR)

∑[
Ui ln

(
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)]
U (zR)

∑
ln(zi)−

∑[
Ui ln

(
zi
zR

)]
−N ·U (zR) ln(zR)

, (15)

where zR is the reference height, zi is the height of the other
three layers, N = 4 representing four vertical layers, and Ui
is the wind speed corresponding to the height of the other
three layers. In most cases, it is a purely mathematical statis-
tical method, and therefore this simple mathematical method
does not require a physical explanation for roughness estima-
tion.

In addition, the aforementioned method is obtained from
the logarithmic wind speed profile, which is a typical form
of wind speed profile under neutral stratification. A calcula-
tion of the wind speed at other altitudes under the reference
altitude can be obtained from the following formula (Golbazi
and Archer, 2019; Archer and Jacobson, 2003):

U(z)= U (zR)
log

(
z
z0

)
log

(
zR
z0

) , (16)

where z0 is the estimated surface roughness length, assuming
that the friction speed near the ground does not change with
height.
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3 Results

3.1 Comparisons of kernel, Weibull, and Rayleigh
models

The monthly, seasonal, and annual average wind speed val-
ues and standard deviations calculated using Eqs. (5) and (6)
for the available time series data are shown in Table 1. It can
be seen from Table 1 that the highest average wind speeds oc-
curred in May and December 2019 and in May 2020, and the
lowest average wind speeds occurred in February and August
2019. Over about 2 years, it was found that the average wind
speed in the spring of 2019 and 2020 was higher, and the av-
erage wind speed in the summer of 2019 and 2020 was lower.
During the entire study period, the average wind speed val-
ues at 10, 30, 50, and 70 m were 6.0, 6.8, 7.2, and 7.6 m s−1,
respectively, which also shows that the wind speed value in-
creases with an increase in altitude.

Figure 4 shows the frequency density histogram of the
wind speed at 70 m for about 2 years and the probability
density curves of the Weibull, kernel, and Rayleigh distribu-
tions. First of all, it is obvious from the frequency histogram
that the wind speed at 70 m fluctuated drastically in the au-
tumn of 2018, spring of 2019, and summer of 2020. This
conclusion can also be confirmed from the data in Table 1.
The shape factor k values of these three specific seasons are
2.18, 2.13, and 2.11, respectively, which are slightly higher
than the shape factor k value of the Rayleigh distribution.
In combination with Table 1, it is also found that the higher
the value of the scale factor c, the smoother the three spe-
cific probability distribution curves. By contrast, as shown in
Fig. 4d, its three specific probability density curves are very
sharp.

Although the kernel distribution also has specific parame-
ters to control its probability density curve, it does not have
the general form of wind speed distribution. Moreover, the k
value of the Weibull distribution is∼ 2. To select the specific
wind speed distribution form suitable for the Ningyuanbail-
iutu site, therefore, the model prediction accuracies of the
Weibull distribution and the Rayleigh distribution for aver-
age wind power need to be compared further.

The mean power densities calculated from the measured
probability density distributions and those obtained from the
models are shown in Fig. 5. The mean power density shows
significant monthly and seasonal variation. The minimum av-
erage power density appeared in August 2019 and was only
214.9 W m−2. In addition, smaller mean wind power den-
sities appeared in July and September 2019 and January,
July, and August 2020, which were generally lower than
350.0 W m−2. Generally, the maximum value of monthly
mean wind power density reached 862.4 W m−2 in May
2019, and the seasonal mean wind power density peaked in
spring 2020.

The differences between the kernel distribution, Weibull
distribution, and Rayleigh distribution are explored when

calculating the average wind power density and the fre-
quency distribution using the original wind speed data. The
2-year mean absolute percentage error (MAPE) values in cal-
culating the mean power density using the kernel, Weibull,
and Rayleigh functions are 1.17 %, 1.05 %, and 4.20 %, re-
spectively. The RMSEs of the kernel distribution, Weibull
distribution, and Rayleigh distribution are 45.8, 60.5, and
875.3 W m−2, respectively. The Weibull and kernel models
return smaller error values in calculating the mean power
density compared to the Rayleigh model. The mean power
density is estimated by the Rayleigh model to have a very
large absolute error value of 83.1 W m−2 in December 2019.
On the other hand, the highest absolute error value occurs in
May 2019 with 21.3 W m−2 for the Weibull model.

Analysis of residual error and average percentage error
suggests that the average wind power density estimated by
the Weibull distribution with specific parameter control is
very similar to the kernel distribution, which is closest to
the original wind frequency distribution (Fig. 5c). The lower
limit of the 95 % prediction interval is each predicted value
minus 1.96 standard deviations, and the upper limit is each
predicted value plus 1.96 standard deviations (Fig. 5b–d).
This suggests that the interval applicability of the three spe-
cific distribution models is good.

3.2 Vertical characteristics of Weibull parameters

Figure 6 shows the characteristic variation of the scale fac-
tor c and the shape factor k with height estimated from
the Weibull distribution for original wind speed data during
the study period, exhibiting power exponential and quadratic
function variations, respectively.

Table 2 gives in detail the values of α, a, b′, d, and b10
obtained by the least squares fitting method for each month,
each season, and all time periods, as well as the correspond-
ing RMSEs obtained from the formula. When using the
power exponent formula (12) to fit the relationship between
the scale factor c and the height, the RMSE has the smallest
values in January 2019 and July and August 2020. However,
in December 2019, January 2020, and February 2020 it has
the largest values. This shows that formula (12) has a better
fitting effect in the winter of 2018, and a poor fitting effect
in the winter of 2019. Justus and Mikhail (1976) found that
the mean value of α was 0.23. In the present study, the mean
value of a for each month over the whole 2 years is 0.117,
and the corresponding standard deviation is 0.016.

Figure 6b and c indicate that the two different formula
forms have a good fitting relationship for shape factor k and
height. The RMSEs of Table 2 also suggest that the effect
of the quadratic function fitting is better than the logarithmic
reciprocal function of Justus and Mikhail (1976). The RMSE
of the quadratic function fitted to all data for 2 whole years is
0.0078, but the RMSE of the logarithmic reciprocal function
is 0.0214, which is close to a multiple of 1 : 3. Both of these
two types of formula are basically applicable only to heights
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Table 1. Calculated monthly, seasonal, and annual distribution parameters based on the time series wind speed data measured every 15 min
from Damaoqi Wind Tower. (The red shading and blue shading represent the larger and smaller values in the table, respectively. The darker
the color, the more extreme the value.)

below 100 m. In addition, from a comparison of Fig. 6b and c,
it can be seen that there will be different trends in the change
in the k value with height, and the increasing or decreasing
speed of the k value in the form of a quadratic function will
be higher than that found by Justus and Mikhail (1976) when

the height is greater than 70 m. This different trend will lead
to large errors in estimating wind energy resources above
70 m.
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Figure 4. Frequency density histogram of wind speed at 70 m height from autumn 2018 to summer 2020; the probability density curve
obtained by fitting the Weibull, kernel, and Rayleigh distribution functions to the original data. Panels (a), (b), (c), (d), (e), (f), and (h)
represent each season, respectively.

3.3 Spatial–temporal variations in surface roughness
length

The shape of the wind profile is greatly affected by the sur-
face roughness in the direction of the incoming flow. Thus,
surface roughness is a key element in wind energy resource
evaluation and forecasting models. In calculating aerody-
namic roughness, especially in practical applications, the
least squares approximation of the logarithmic profile equa-
tion to the measured wind speed profile method has been
widely used, referred to as the “logarithmic profile method”.

After calculating the 15 min continuous wind speed data
using the above method, quality control of the data is car-
ried out. In this study, we eliminated wind speeds greater
than or equal to 6.0 m s−1 at 50 m, and the estimated ab-
normal roughness data are infinitely large or infinitely small.
Figure 7 shows that both the average and median monthly

roughness lengths in January, February, and March 2019 are
significantly less than those in August, September, and Octo-
ber 2019. The largest value of median roughness was close to
0.19 m in October 2019, and the maximum value of average
roughness was approximately equal to 0.27 m. In June 2020,
the median and average roughness values reached 0.18 and
0.25 m, respectively. The minimum value of median rough-
ness was about 0.10 m in January 2019, and the smallest
value of average roughness value was about 0.20 m in Jan-
uary 2020.

In addition, the median and average roughness length were
lowest at about 0.12 and 0.22 m in the winter of 2018 and
2019, while the highest were about 0.15 and 0.25 m in the au-
tumn of 2019. It is notable that the roughness length steadily
increases from winter to autumn. In short, this suggests that
the grassland vegetation in the site area has an obvious wilt-
ing period, growing season, and lush period. Compared with
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Figure 5. (a) The average power density values calculated by the four distributions: the frequency distribution of the original wind speed time
series data, the kernel distribution, the Weibull distribution, and the Rayleigh distribution, for each month, each season, and the total period
of about 2 years. The dotted red line represents the actual grid-connected average power density when the fan blade length is assumed to be
41.5 m. Panels (b), (c), and (d) represent the residual and 95 % confidence interval under the three specific probability model distributions,
respectively. The unit of the legend is W m−2. The total average power density on the right y axis in (a) is the average power density of the
grid-connected wind turbine with a radius of 41.5 m represented by the red dots in Fig. 1c. The blue left y axis in panels (b), (c), and (d)
matches the shaded part formed by the blue line, which represents the average power density; the red right y axis matches the red rectangle,
which represents the residual error between the model value and the actual value.
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Figure 6. (a) The characteristic variation of scale factor c with height based on Eq. (12). The characteristic variation of shape factor k with
height based on (b) Eq. (13) and (c) Eq. (14).

Figure 7. The average and median values of estimated roughness in each month for the total period.

the average roughness length, the representative roughness
length of the area fitted the median value more closely.

According to the Davenport land type roughness classifi-
cation (Davenport et al., 2000) and the summary of rough-
ness length over the wind tower sites and the corresponding

land types (Li et al., 2021), in the case of land types with less
vegetation and cropland, the roughness length is generally es-
timated to be a slightly rough open area of about 0.10 m. The
area we studied belongs to the grassland vegetation type, and
the roughness estimate should be around 0.13 m, and will not
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Table 2. The values of various parameters in different time periods and the corresponding RMSEs under least squares formula fitting. (The
red shading and blue shading represent the larger and smaller values in the table, respectively. The darker the color, the more extreme the
value.)

be classified as rough; that is, the roughness length is as high
as 0.25 m. In addition, in a study (Golbazi and Archer, 2019)
on the estimation of sea surface roughness length in coastal
waters, it is mentioned that the statistical method uses a sin-
gle constant value of z0 in the representative area, and the
median value can be worth recommending.

Figure 8 shows the variation in the estimated roughness
length in 12 different incoming wind directions. When the
wind direction is 120 or 240◦, the estimated roughness length
is highest, and the median value and average value are about
0.23 and 0.30 m, respectively. Secondly, when the wind di-
rection is 30 or 300◦, the estimated roughness length is low-
est, and the median value and average value are about 0.08
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Figure 8. The average and median values of estimated roughness in 12 different directions of incoming flow.

and 0.18 m, respectively. Therefore, between the highest and
lowest estimated roughness lengths, there is a specific trend
of increasing or decreasing. This phenomenon can be ex-
plained in conjunction with Figs. 1 and 3. There is a hillside
to the west of the wind tower. Therefore, when the incoming
wind direction is 120 or 240◦, it is on the windward side or
leeward side, respectively, of the wind-measuring tower. In
this way, there will be a pressure difference, which will in-
crease friction loss and increase the estimate of the effective
roughness length. When the incoming wind direction is 30
or 330◦, it is found that the wind passing through the wind
measurement tower will not be greatly affected by the ter-
rain. The terrain is relatively flat, and the estimated roughness
length is close to the normal value of 0.10 m. In addition, in
the plot of roughness length estimation with wind direction,
there are obviously more data points in the wind directions
from 180 to 330◦ than in the other wind directions. The 240◦

wind direction has the most data points, which also shows
that the site has a southwesterly wind blowing all year round.

3.4 Extrapolation of the average wind power density

With the scale factor c changing with height in the form of a
power function, and shape factor k changing with height in
the form of a quadratic function, the scale factor c and the
shape factor k at 75, 80, 85, 90, 95, and 100 m are calculated.
Then the average wind power density (Fig. 9b) is calculated
for each month, each season, and the whole time period from
formula (10). On the other hand, when studying the rough-
ness length parameter in the previous section, we assume that
the roughness length calculated from the four-layer height is
dynamic. Then through the logarithmic form of formula (16),
we can calculate the wind speed values at 75, 80, 85, 90,
95, and 100 m every 15 min. Finally, the “reference average
power density” (Fig. 9a) at six specific heights can also be
obtained.

Both the power-law model and the logarithmic model
can estimate the average wind power density of six specific

heights, and as seen in Fig. 9 the values estimated by the
two methods show greater differences in autumn and winter,
and smaller differences in spring and summer. In addition,
the two different models both show that the average power
density values are largest in spring and smallest in summer.
Although the average power density values increased with
height over the whole experiment, the gradient of the in-
crease in average power density values with height is largest
in autumn and winter, and smallest in spring and summer.
Figure 9c shows that relative to the power-law model, the av-
erage power density of the logarithmic model extrapolated at
70–100 m is smaller in the winter of 2018 and in July and Au-
gust of 2020, while it is larger in other study periods. Gener-
ally speaking, the difference between the estimated average
power density values is very small. However, the data and
methods used in the estimation of the two models are differ-
ent. The result of this estimation gives us important guidance
for studying two Weibull parameters, namely, the scale fac-
tor c and the shape factor k, and the surface roughness length
parameter.

4 Discussion

4.1 Applicability of Weibull and Rayleigh models

There are various statistical distribution functions for de-
scribing and analyzing wind data, including normal, lognor-
mal, Rayleigh, and Weibull probability distributions (Fag-
benle et al., 2011; Ozerdem and Turkeli, 2003). It has been
found that the Weibull and Rayleigh distributions are the
most accurate and adequate in wind analysis as well as in
interpreting the actual wind speed data and in predicting the
characteristics of the prevailing wind profile. A kernel distri-
bution is a nonparametric representation of the PDF of a ran-
dom variable. A kernel distribution is defined by a smoothing
function and a bandwidth value, which control the smooth-
ness of the resulting density curve (Kafadar et al., 1999). In
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Figure 9. The logarithmic model (a), power-law model (b), and their residuals (c) estimate the average wind energy density at six specific
heights (75, 80, 85, 90, 95, and 100 m) of the wind measurement tower in each month, for every season, and over the whole period.

fact, some scholars have used the probability density distri-
bution of wind speed to compare the advantages and disad-
vantages of the Weibull distribution and the Rayleigh dis-
tribution (Celik, 2004; Pishgar-Komleh et al., 2015). In our
present work, the kernel function exhibits the feature of the
smooth function, and is also closer to the actual frequency
distribution (Fig. 4), which can be used to fit the original
wind speed data. Therefore, the kernel function is employed
as a medium for comparing the pros and cons of the Weibull
and Rayleigh functions in the desert steppe area.

Celik (2003) employed the Weibull function to analyze
wind power density in six different regions around the world,
and the average percentage errors obtained were relatively
low. The reason may be that the scale factor c representing
the average wind and the shape factor k are relatively small,
the original wind speed is relatively stable and fluctuates lit-
tle, and also the Weibull function has strong applicability.
Celik (2004, 2011) used the Weibull function and Rayleigh
function to calculate wind power density in Turkey, showing
the average annual relative errors of< 8 % and 37 %, respec-
tively. Pishgar-Komleh et al. (2015), on the other hand, re-
ported annual average errors of 55.00 % for both the Weibull
function and the Rayleigh function. These values vary largely

from our present results, due to the different applicability of
the two specific distribution functions in different regions.
Therefore, when developing new wind farms, it is extremely
important and necessary to compare the applicability of var-
ious wind speed distribution functions in the local area. In
general, we found that the Weibull distribution is applicable
for depicting the wind speed distribution at the Ningyuan-
bailiutu site in northern China.

In addition, although the mean wind power density calcu-
lated in this study is in good agreement with the actual grid-
connected average power density (Fig. 5a), there is a signifi-
cant difference in these two values. This is because the wind
turbines are not always connected to the grid, due to failures,
or to other wind turbines outside the range of the wind mea-
surement tower. As a result, the wind measured by a single
wind tower will underestimate the wind speed of other wind
turbines. The limitation of this study is that data from only a
single wind tower were derived. For future wind energy den-
sity estimations, it is worth collecting data from more wind
towers to obtain a more realistic wind resource distribution
in the study area.
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4.2 The complexity of Weibull parameters and surface
roughness

Figures 6, 7, 8, and Table 2 show the spatiotemporal variabil-
ity of scale factor c, shape factor k, and surface roughness z0,
which can be attributed to the following three aspects: (a) the
type of surface land and meteorological conditions (Golbazi
and Archer, 2019); (b) the uncertainty of Weibull parameters
calculated using maximum likelihood method (Mohammadi
et al., 2016) and uncertainty of the roughness length calcu-
lated using statistical mathematical methods (Kim and Lim,
2017); (c) the limitations of extrapolating high-level Weibull
parameters (Justus and Mikhail, 1976). The shape factor k
varies with height and exhibits not only the form of the re-
ciprocal of the logarithmic function but also the form of the
quadratic function. From the RMSE in Table 2, it can be
seen that the quadratic function is the most suitable for this
study area. Therefore, to use the Weibull function to evaluate
the high-level wind speed distribution in a specific research
area in the future, we should consider high-density observa-
tions with more fitting methods so as to obtain the best func-
tional form of the Weibull parameter varying with height.
Table 3 reviews scale factor c, shape factor k, surface rough-
ness z0, and yearly mean absolute percentage error over dif-
ferent topographies, showing obvious regional differences,
due to various climate and topography contexts with different
methods. For example, Pishgar-Komleh et al. (2015) used a
constant surface roughness value of 0.14 to extrapolate wind
speed, ignoring the dynamic changes in surface roughness
throughout the year. The calculated annual mean absolute
percentage error is much higher than the value calculated by
the dynamic surface roughness in this study. Therefore, we
should take dynamic roughness into account based on a re-
liable and accurate topographic map, rather than assuming
surface roughness as a constant.

The differences and uncertainties between the logarithmic
and power-law models can also be seen in Fig. 9. Its uncer-
tainty is manifested in the absence of verification of actual
high-level wind speeds. The reason for the difference is that
the shape factor k in the winter of 2018 and in July and Au-
gust of 2020 shows a decreasing trend with height, and the
average wind energy density is inversely proportional to the
shape factor k, according to formula (10). Therefore, the lim-
itation of this paper is that the extrapolated results need to be
further confirmed by future encrypted observations of high-
level wind speed data. In addition, the encouraging news is
that this gives us two reliable options for future extrapolation
of high-level wind energy density: In the case of non-Weibull
winds, only the logarithmic model can be considered, and in
the case of Weibull winds, both the logarithmic model and
the power-law model are good choices.

5 Conclusions

The present work investigated the scale factor c and the shape
factor k that affect the Weibull distribution of wind speed,
by directly estimating the energy potential of the wind speed
resource at four different heights, and the surface roughness
length parameter that directly affects the shape and law of the
wind profile. The main conclusions are:

The 2-year mean absolute percentage error values in calcu-
lating the mean power density using the kernel, Weibull, and
Rayleigh functions are 1.17 %, 1.05 %, and 4.20 %, respec-
tively. The Weibull wind speed distribution model is the most
suitable wind speed distribution model for the Ningyuan-
bailiutu site. The scale factor c increases with an increase
in height, showing an obvious form of power function. The
shape factor k increases or decreases with height and has
two different forms, which are the reciprocal of the quadratic
function and the logarithmic function. For further determina-
tion of the changes in form factor with height, it will be nec-
essary in future to set up intensive observations for heights
above 70 m and below 100 m.

When estimating the surface roughness length, the median
value is selected as the representative value of the surface
roughness length. This is based not only on recognition of
actual previous research, but also on confirmation of actual
grassland vegetation types. Although the statistically calcu-
lated z0 does not have a proper physical explanation, it gives
the most accurate wind speed estimate at the required height.
The estimated roughness length varies with the seasons of
the grassland vegetation at the site. The estimated roughness
lengths of the wilting period, growing season, and lush pe-
riod are about 0.12, 0.13, and 0.15 m, respectively. The esti-
mated surface roughness length will be affected by the wind-
ward and leeward sides. When the wind flows across the hill-
side, there will be a pressure difference, which will increase
the friction loss and increase the estimated effective rough-
ness length. The prevailing wind direction at this site is 240◦,
which happens to be the direction of the windward side of
the site. The estimated roughness length is about 0.23 m. Fi-
nally, the power-law model and the logarithmic model were
employed to estimate the average power density values at 75,
80, 8, 90, 95, and 100 m. The two models show greater differ-
ences in autumn and winter, and smaller differences in spring
and summer. The gradient of the increase in average power
density values with height is largest in autumn and winter,
and smallest in spring and summer.

In general, against a carbon-neutral background, the de-
termination of the potential for economical and clean wind
energy resources is an important scientific issue in the de-
velopment of renewable energy worldwide. Our research has
determined the possible relationship between Weibull natural
wind mesoscale parameter c and shape factor k with height
under the conditions of a desert steppe terrain in northern
China; this has great potential in wind power generation, but
there is a lack of comprehensive investigations into key pa-
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Table 3. Review of scale factor c, shape factor k, surface roughness z0, and yearly mean absolute percentage error (MAPE) over different
topographies.

Topography and climate context Location Period c k z0 Yearly MAPE Reference
(m s−1) (m) (%)

(1) A plain area mostly, with slopes rising Cardiff, Wales 1991 3.25 1.79 – 3.60 (Weibull) Celik (2003)

50–100 m. (51.30◦ N, 3.13◦W) 1994 3.16 1.76 2.72 (Weibull)

(2) Temperate oceanic context. 1995 2.84 1.75 1.97 (Weibull)

1996 2.71 1.64 2.25 (Weibull)

(1) Lowland of undulating hills, including the Canberra, Australia – 2.33 1.24 4.11 (Weibull)
floodplains mostly below 600 m. Forested (35.18◦ S, 149.08◦ E)
mountain slopes rising to 1200 m. Upland of
steep ridges, mountain peaks.
(2) Subtropical monsoon humid context.

(1) Mean altitude with 1560 m above sea Davos, Switzerland 2.53 1.30 4.73 (Weibull)
level. (46.48◦ N, 9.50◦ E)
(2) Temperate oceanic context.

(1) Altitude with 50 m above sea level. Athens, Australia 2.79 1.40 1.57 (Weibull)
(2) Subtropical Mediterranean context. (38.00◦ N, 23.44◦ E)

(1) Altitude with 850 m above sea level. Ankara, Turkey 2.65 1.60 1.35 (Weibull)
(2) High Anatolian Plateau. (39.55◦ N, 32.50◦ E)
(3) Temperate continental context.

(1) Mediterranean Sea coast. Iskenderun, Turkey 1996 2.62 1.43 4.90 (Weibull) Celik (2004)
(2) Subtropical Mediterranean context. (36.35◦ N, 36.10◦ E) 36.50 (Rayleigh)

(1) At 10 m height. Canakkale, Turkey) 2000–2005 7.20 1.80 7.30 (Weibull) Celik (2011)
(2) Subtropical Mediterranean context. (40.14◦ N, 26.42◦ E 13.00 (Rayleigh)

(1) Approximately 100 km east of Tehran Firouzkooh, Iran 2001–2010 6.47 2.61 ∼ 0.14 55.00 (Weibull) Pishgar-Komleh
city (at 10 m height). (35.72◦ N, 52.40◦ E) 55.00 (Rayleigh) et al. (2015)
(2) Continental semi-arid context.

(1) Typical desert grassland (at 70 m height). Inner Mongolia, China Sep 2018– 9.49 2.13 ∼ 0.13 1.05 (Weibull) This study
(2) Middle temperate zone and semi-arid (42.07◦ N, 110.48◦ E) Aug 2020 4.20 (Rayleigh)
continental context.

rameters for estimating wind power density from tower data.
In the present study, we gained an enhanced understanding of
the seasonal changes in the surface roughness of the desert
grassland and the changes in the incoming wind direction.
Our findings also have important implications for the assess-
ment of wind energy resources for the establishment of new
wind farms in areas experiencing varied desert steppe terrains
throughout the world.
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