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Abstract. Satellite-based aerosol retrievals provide global
spatially distributed estimates of atmospheric aerosol pa-
rameters that are commonly needed in applications such as
estimation of atmospherically corrected satellite data prod-
ucts, climate modelling and air quality monitoring. However,
a common feature of the conventional satellite aerosol re-
trievals is that they have reasonably low spatial resolution
and poor accuracy caused by uncertainty in auxiliary model
parameters, such as fixed aerosol model parameters, and
the approximate forward radiative transfer models utilized
to keep the computational complexity feasible. As a result,
the improvement and reprocessing of the operational satellite
data retrieval algorithms would become a tedious and compu-
tationally excessive problem. To overcome these problems,
we have developed a machine-learning-based post-process
correction approach to correct the existing operational satel-
lite aerosol data products. Our approach combines the exist-
ing satellite retrieval data and a post-processing step where
a machine learning algorithm is utilized to predict the ap-
proximation error in the conventional retrieval. With approx-
imation error, we refer to the discrepancy between the true
aerosol parameters and the ones retrieved using the satellite
data. Our hypothesis is that the prediction of the approxima-
tion error with a finite training dataset is a less complex and
easier task than the direct, fully learned machine-learning-
based prediction in which the aerosol parameters are directly
predicted given the satellite observations and measurement
geometry. Our approach does not require reprocessing of the
satellite retrieval products; it requires only a computation-

ally fast machine-learning-based post-processing step of the
existing retrieval product. Our approach is based on neural
networks trained based on collocated satellite data and ac-
curate ground-based Aerosol Robotic Network (AERONET)
aerosol data. Based on our post-processing approach, we
propose a post-process-corrected high-resolution Sentinel-3
Synergy aerosol product, which gives a spectral estimate of
the aerosol optical depth at five different wavelengths with a
high spatial resolution equivalent to the native resolution of
the Sentinel-3 Level-1 data (300 m at nadir). With aerosol
data from Sentinel-3A and 3B satellites, we demonstrate
that our approach produces high-resolution aerosol data with
clearly better accuracy than the operational Sentinel-3 Level-
2 Synergy aerosol product, and it also results in slightly
better accuracy than the conventional fully learned machine
learning approach. We also demonstrate better generalization
capabilities of the post-process correction approach over the
fully learned approach.

1 Introduction

Climate change is one of the biggest challenges our society
is facing today (IPCC, 2022). Despite the rapidly progress-
ing climate research, projections of the future climate still
contain large uncertainties, with anthropogenic aerosol forc-
ing being among the largest sources of these uncertainties
(Pachauri et al., 2014). If more accurate global information
about the atmospheric aerosol parameters such as the aerosol
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optical depth (AOD) and Ångström exponent (AE), and con-
sequently of their product aerosol index (AI), was available,
it would enable more accurate modelling of anthropogenic
aerosol forcing and could lead to a significant reduction of
the uncertainties in future climate projections. Another major
challenge for our societies is air quality. In 2017, 2 %–25 %
of all deaths worldwide were attributable to ambient particu-
late matter pollution (GBD 2017 Risk Factor Collaborators,
2018). To monitor air quality and pollution sources more ac-
curately, near-real-time spatially high-resolution estimates of
aerosols are needed (van Donkelaar et al., 2015).

Ground-based aerosol observations can be obtained from
the Aerosol Robotic Network (AERONET) which utilizes
ground-based direct Sun photometers (Giles et al., 2019;
Holben et al., 1998). AERONET stations produce accurate
information on aerosols because they directly observe the at-
tenuation of solar radiation without interference from land
surface reflections. However, AERONET has the limitation
that the network consists of a few hundred irregularly spaced
measurement stations, leading to a very limited and sparse
spatial coverage of aerosol information. The only way to get
wide spatial coverage information on aerosols is to use satel-
lite retrievals.

Aerosol satellite retrieval algorithms produce estimates of
the aerosol optical properties such as AOD given the satel-
lite observation data such as the top-of-atmosphere (TOA)
reflectances or radiances and the information on the obser-
vation geometry. Satellite retrieval algorithms have been de-
veloped for multiple satellite instruments and the available
satellite aerosol data records already span time series that
are over 40 years long (Sogacheva et al., 2020). Examples
of satellite aerosol data products include the Moderate Imag-
ing Spectroradiometer (MODIS) aerosol products (Salomon-
son et al., 1989; Levy et al., 2013) and Sentinel-3 Synergy
aerosol products.

A satellite aerosol retrieval requires solution of a non-
linear inverse problem, where the task is to find aerosol pa-
rameters that minimize a misfit (such as the least squares
residual) between the satellite observation data and a forward
model, which models the causal relationship from the un-
known aerosol parameters to the satellite observation data.
Atmospheric monitoring satellites cover the globe almost
daily with spatial high-resolution observation data, resulting
in a huge amount of daily data to be processed by the retrieval
algorithms. Due to the excessive amount of data, the oper-
ational aerosol retrieval algorithms employ physically and
computationally reduced approximations of radiative trans-
fer models as the forward models (e.g. lookup tables) and
relatively simple inverse problem approaches, which often
ignore some of the observation data to reach fast computa-
tion times (Dubovik et al., 2011). Further, the retrieval al-
gorithms typically produce spatially averaged aerosol prod-
ucts that have lower spatial resolution compared to the native
satellite Level-1 observation data. Because of these approx-

imations and reductions, the aerosol retrievals have limited
accuracy and suboptimal spatial resolution.

Machine-learning-based solutions have been recently pro-
posed for satellite aerosol retrievals in many studies.
Compared to conventional inverse problems approaches,
machine-learning-based solutions lead to much faster com-
putation time (once the model has been trained) and they
also offer a flexible framework for utilization of learning-
data-based prior information in the retrieval. Most of the
machine learning approaches to aerosol retrieval employ a
fully learned approach where the machine learning model
is trained to emulate the retrieval directly, that is, to pre-
dict the values of the unknown aerosol parameters given the
satellite observation data (top-of-atmosphere radiances or re-
flectances) and observation geometry as the inputs. In Ran-
dles et al. (2017), neural-network-based fully learned aerosol
retrievals are assimilated into NASA’s Modern-Era Retro-
spective analysis for Research and Applications, version 2
(MERRA-2) reanalysis model. In Di Noia et al. (2017), a
fully learned neural network model is used to retrieve the
initial AOD for an iterative retrieval algorithm. In Lary et al.
(2009), a fully learned approach with MODIS-retrieved AOD
and the surface type as additional inputs was used for the
AOD retrieval from MODIS data. The results of Lary et al.
(2009) were validated using the AERONET data (Holben
et al., 1998; Giles et al., 2019). The authors were able to re-
duce the bias of the MODIS AOD data from 0.03 to 0.01
with neural networks, while with support vector machines
even better improvement was reported – AOD bias was less
than 0.001 and the correlation coefficient with AERONET
was larger than 0.99. However, they performed validation
using all the available AERONET network stations both for
training and validation. The split between the training and
validation datasets was carried out using random sets of the
MODIS pixel values. With the random split of all pixels, the
data samples from the same AERONET station were present
both in training and evaluation datasets, leading potentially
to overfitting as the model learns, for example, the surface
properties at the locations of the AERONET stations and can
thus predict the aerosol properties very accurately at these
locations but may not generalize well to data from other
regions. In Albayrak et al. (2013), a neural-network-based
fully learned model was trained and evaluated for MODIS
AOD retrieval. In their model, MODIS reflectances, mea-
surement geometry information, MODIS AOD and its qual-
ity flag were used as the input to predict the AOD. They
found their model to produce more accurate AOD retrievals
than the operational MODIS Dark Target (DT) algorithm. In
Lanzaco et al. (2017), a slightly different type of machine-
learning-based approach was used to improve satellite AOD
retrievals. The authors used MODIS AOD retrievals and lo-
cal meteorology information as inputs to predict the AOD
in South America. This approach, which combines the con-
ventional AOD retrievals and local meteorology information,
was found to improve the AOD accuracy over the operational
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MODIS AOD. A problem in fully learned approaches is that
they rely only on the training data and do not employ physics-
based models in the retrievals. This may cause problems for
the model to generalize to cases in which the inputs are out-
side the input space spanned by the training dataset.

In Lipponen et al. (2021), we proposed a model-enforced
machine learning model for post-process correction of satel-
lite aerosol retrievals. The key idea in the model-enforced
approach is to exploit also the model and information of the
conventional retrieval algorithm and train a machine learn-
ing algorithm for correction of the approximation error in
the result of the conventional satellite retrieval algorithm.
Previously, the post-process correction approach has been
found to produce more stable and accurate results than a
fully learned approach in generation of surrogate simulation
models (Lipponen et al., 2013, 2018) and in medical imag-
ing; see, for example, Hamilton et al. (2019). The advantages
of the model-enforced post-process correction approach are
improved accuracy over the existing data products and the
possibility to correct the existing products by a simple post-
processing step without need for any reprocessing of the ex-
isting retrieval algorithms, which are usually managed and
operated by the algorithm development teams. In Lipponen
et al. (2021), the model-enforced approach was combined
with a random forest regression algorithm for post-process
correction of MODIS AOD and AE products using collo-
cated MODIS and AERONET aerosol data for training the
correction model for the approximation error in AOD and AE
in the MODIS DT over land product. The post-process cor-
rection was found to yield significantly improved accuracy
over the MODIS AOD and AE retrievals, and the correction
approach resulted in better accuracy retrievals than the fully
learned machine learning approach.

In this paper, we propose a post-process-corrected high-
resolution Sentinel-3 Synergy aerosol product. The product
is based on the high-resolution Sentinel-3 Level-2 Synergy
land product aerosol parameters with 300 m spatial reso-
lution and the model-enforced machine learning approach,
where a feed-forward neural network is trained for post-
process correction of the approximation error in the Sentinel-
3 Level-2 Synergy aerosol product. The training of the neu-
ral network is based on collocated Sentinel-3 Synergy and
AERONET data from five selected regions of interest. Given
the Sentinel-3 observation data and high-resolution aerosol
products as input, our model produces an estimate of the
AOD at five wavelengths utilizing the native 300 m resolu-
tion of the Sentinel-3 observation data.

The rest of this paper is organized as follows. In Sect. 2,
we describe the approximation error model for post-process
correction of the satellite aerosol retrieval. Section 3 explains
the preprocessing of the Sentinel-3 and AERONET data for
machine learning and the neural network model used for the
regression task. Section 4 gives the results, and Sect. 5 gives
the conclusions.

2 Post-process correction model of satellite aerosol
retrievals

Let y ∈ Rm denote an accurate satellite aerosol retrieval:

y = f (x), (1)

where vector y contains the output of the satellite retrieval
algorithm, f : Rn 7−→ Rm is an accurate retrieval algorithm,
and x ∈ Rn contains all the algorithm inputs including the
observation geometry and Level-1 satellite observation data
such as the top-of-atmosphere reflectances. Typically, the re-
trieval is carried out one image pixel at a time, and the aerosol
retrieval y can consist, for example, of AOD and AE for a
single image pixel, or as in the present study, AOD in a sin-
gle image pixel at five wavelengths.

In practice, due to uncertainties in the auxiliary parame-
ters, such as land surface reflectance, of the underlying for-
ward model utilized in the retrieval, extensive computational
dimension of the problem and processing time limitations, it
is not possible to construct an accurate retrieval algorithm f

but an approximate retrieval algorithm,

ỹ ≈ f̃ (x), (2)

has to be employed instead. The approximate retrieval f̃ is
typically based on physically simplified and computationally
reduced approximate forward models that are used due to
the huge amount of data and the need for computational effi-
ciency. The utilization of the approximate retrieval algorithm
leads to an approximation error,

e(x)= f (x)− f̃ (x), (3)

in the retrieval parameters.
The core idea in the model-enforced post-process correc-

tion model is to improve the accuracy of the approximate
retrieval (Eq. 2) by machine learning techniques (Lipponen
et al., 2021). With Eqs. (1)–(3), the accurate retrieval can be
written as

y = f (x)

= f̃ (x)+
[
f (x)− f̃ (x)

]
= f̃ (x)+ e(x). (4)

To obtain the corrected retrieval, Eq. (4) is used to combine
the conventional (physics-based) retrieval algorithm f̃ (x)

and a machine-learning-based model ê(x) to predict the real-
ization of the approximation error e(x) to obtain a corrected
retrieval:

y ≈ f̃ (x)+ ê(x). (5)

Note that this approach is different from a conventional fully
learned machine learning model in which the aim is to em-
ulate the accurate retrieval algorithm f (x) with a machine
learning model,

y ≈ f̂ (x), (6)
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that is trained to predict the retrieval y directly from the
satellite observation and geometry data x; see Fig. 1 for
a flowchart of fully learned and model-enforced regression
models.

The reason why the model-enforced approach (Eq. 5) can
be expected to perform better than the fully learned model
(Eq. 6) is that the approximation error e(x) is a simpler func-
tion for machine learning regression than the full physics-
based retrieval f (x), thus resulting in more accurate re-
sults than with a fully learned approach (Lipponen et al.,
2013, 2018). Also, while the fully learned approach utilizes
an ensemble of satellite observation data as learning data,
the model-enforced approach utilizes also the additional in-
formation in the approximate retrievals. Also, as the train-
ing of the post-process correction is based on existing satel-
lite data and retrievals, the implementation can be done in
a straightforward manner, for example, using black-box ma-
chine learning code packages and used for correction of past
satellite retrievals without recomputing the approximate re-
trieval products f̃ (x). In addition, the post-process correc-
tion model is also flexible with respect the choice of the sta-
tistical regression model, and the choice of the regression
model can be tailored to different retrieval problems sepa-
rately.

3 Methods

This section describes the construction of the learning and
test data for the machine learning retrieval of Sentinel-
3 aerosol product with the post-process correction model
(Eq. 5) and the fully learned model (Eq. 6). The selection
of the neural network models and training of the networks is
also described. For training and validation of the post-process
correction, we use the high-resolution Sentinel-3 Level-2
Synergy and AERONET aerosol data.

3.1 Sentinel-3 satellite datasets

Sentinel-3 is a European ocean and land mission. Currently,
two satellites related to this mission (Sentinel-3A and 3B) are
flying and collecting data. In this study, we use the Sentinel-3
Ocean and Land Color Instrument (OLCI) and Sea and Land
Surface Temperature Radiometer (SLSTR) data. OLCI is a
medium-resolution imaging spectroradiometer (spatial reso-
lution about 300 m at nadir) with 21 spectral bands from 400
to 1020 nm. SLSTR is an imaging radiometer with dual-view
capabilities. The pixel size of SLSTR is from 500 m to 1 km
and spectral coverage is from visible to thermal infrared in
nine standard bands (S1–S9). The swaths of these two instru-
ments overlap, allowing combined products to exploit data
from both instruments. The high-resolution Sentinel-3 Level-
2 Synergy land aerosol product (North and Heckel, 2010) is
this type of combined product, which we will post-process
correct by the model (Eq. 5).

We use both Level-1b and Level-2 data of the Sentinel-
3 satellite mission data products from both Sentinel-3A and
Sentinel-3B satellites. The Level-1b data include the infor-
mation about the measurement geometry and the satellite ob-
served reflectances. The Level-2 data include the Synergy re-
trieval data and the corresponding quality information. We
use the SLSTR Level-1b data from the product SL_1_RBT,
OLCI Level-1b data from the OL_1_ERR data product and
Sentinel-3 Level-2 data from the SY_2_SYN data product.
We use year 2019 data in our study. For more information on
the Sentinel-3 mission datasets, see https://sentinel.esa.int/
web/sentinel/missions/sentinel-3/data-products (last access:
27 August 2021). The Sentinel-3 data used in the models are
listed in Appendix A.

3.2 AERONET

AERONET is a global network of Sun photometers (Holben
et al., 1998). AERONET has a direct Sun data product that
has both the AOD and AE data that we will use for train-
ing and testing of the machine learning models. AERONET
is commonly used as an independent data source, and all
the data are publicly available at the AERONET website
(https://aeronet.gsfc.nasa.gov/, last access: 27 August 2021).
An extensive description of the AERONET sites, procedures
and data provided is available from this website. Ground-
based Sun photometers provide accurate measurements of
AOD, because they directly observe the attenuation of so-
lar radiation without interference from land surface reflec-
tions. The AOD-estimated uncertainty varies spectrally from
±0.01 to ±0.02, with the highest error in the ultraviolet
wavelengths (Giles et al., 2019; Eck et al., 1999). In this
study, we use AERONET, version 3, Level-2, direct Sun al-
gorithm data. The AERONET variables used in our studies
are listed in Appendix C.

3.3 Regions of interest

The training and testing of the post-process correction model
is based on Sentinel-3 and AERONET data for the year 2019
from five regions of interest shown in Fig. 2. The regions of
interest were selected so that different types of aerosol re-
gions based on aerosol source and type, AOD values and dif-
ferent types of surface reflectances are included and also that
the areas have good enough coverage of AERONET stations.

The data for the machine learning procedures consist of
collocations of Sentinel-3 pixels with aerosol information
and AERONET data. We use the same ±30 min temporal
thresholds for the collocation procedure as in Petrenko et al.
(2012) and a spatial collocation radius of 5 km. We also re-
quire that the aerosol data in the pixels we use are not flagged
as filled, climatology data, too-low values, high error, partly
cloudy or ambiguous clouds. Furthermore, we require that
the pixels we use do not contain any cosmetic Level-1 data.
Our selections lead to a total number of 5526 collocated
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Figure 1. Top: conventional satellite retrieval. Middle: fully learned machine-learning-based satellite retrieval approach. Bottom: model-
enforced post-process correction of satellite retrieval approach.

Figure 2. Regions of interest. Black dots indicate locations of AERONET stations.

Sentinel-3–AERONET overpasses for the machine learning
procedures.

The AERONET stations were divided to separate train-
ing, validation and testing sets for good generalization of the
machine learning procedures. More specifically, the stations
were randomly split into two sets for 2-fold cross validation.
To ensure as equal spatial distribution of AERONET stations

as possible in both sets, we carried out the random split sep-
arately for each region of interest. To study the effect of ran-
domness on the splits of AERONET stations, we tested our
approach with multiple random splits. We did not observe
significant differences in the results between different ran-
dom splits of the AERONET stations.
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3.4 Input and output data for the machine learning
models

The aerosol retrieval y ∈ R5 in both the post-process correc-
tion approach (Eq. 5) and the fully learned approach (Eq. 6)
consist of AODs for a single 300× 300 m2 (at nadir) image
pixel at wavelengths of 440, 500, 550, 675 and 870 nm. These
wavelengths are native wavelengths in the AERONET and
Sentinel-3 Level-2 Synergy aerosol products in the sense that
the AERONET produces AOD at 440, 500, 675 and 870 nm
and the Synergy product at 550 nm.

In the fully learned model (Eq. 6), the regression target
y ∈ R5 consist of the AERONET AODs at the selected five
wavelengths. The AERONET AOD at the Synergy 550 nm
channel was estimated as the mean of AOD 550 nm obtained
from Ångström law based on AERONET AOD at 500nm and
AE 440–870 nm. The input data for the fully learned model
contain Sentinel-3 satellite geometry and observation vari-
ables for a single image pixel. All the input and output vari-
ables were standardized by subtracting the training dataset
mean and dividing by the standard deviation. To retain the
spectral dependency of the AOD values at different wave-
lengths, all the AOD variables were standardized together us-
ing the mean and standard deviation of all AOD wavelengths.
In case some of the inputs contain a missing value, it is filled
with the average value of the training dataset. We also add
a binary (0/1) inputs for each input variable to indicate if
the data were filled. These selections and processing leads
to an input vector x ∈ R90. On average, the input data of the
fully learned and post-process correction models contained
about 8 % and 6 % of missing values, respectively. See the
Appendix B for the Sentinel-3 data file variable names of the
inputs and outputs.

In the post-process correction approach, the regression
target e ∈ R5 consist of the approximation error between
AERONET and Synergy spectral AOD. The Synergy aerosol
product contains AOD and AE at 550 nm, which are trans-
formed by the Ångström law to obtain the Synergy AOD
product at the wavelengths of 440, 500, 675 and 870 nm. The
input data of the post-correction model contain the same ge-
ometry and Level-1 data variables that are used in the fully
learned model plus the Sentinel-3 Level-2 Synergy aerosol
data. Furthermore, the inputs and outputs are standardized
and the missing values filled similarly to those for the fully
learned model. These selections lead to an input x ∈ R156.

3.5 Deep-learning-based regression models

A fully connected feed-forward neural network was selected
as the model for the supervised learning tasks of estimating
the regressors f̂ (x) in Eq. (6) and ê(x) in Eq. (5). In the neu-
ral network, the rectified linear unit (ReLu) was used as the
activation function for all the hidden layers and no activa-
tion function was employed for the output layer. The weight
coefficients of the neural net were estimated by minimiza-

Figure 3. Schematic figure of neural network architectures used.
(a) Correction network ê(x). (b) Regression network f̂ (x).

tion of the mean squared error (MSE) loss functional with
the ADAM optimizer. In the network training, batch size was
512, initial learning rate 5× 10−5, and the termination crite-
rion for the learning was set to maximum 10 000 epochs or
until validation loss started to increase with patience toler-
ance set to 10 epochs. For further information on deep learn-
ing and neural networks, see, e.g. Goodfellow et al. (2016).

The architecture of the feed-forward neural networks was
optimized by utilizing the asynchronous successive halving
algorithm (ASHA) (Li et al., 2020). In the ASHA optimiza-
tion, the maximum number of trial network architectures was
set to 2500 and the algorithm was allowed to use up to 500
epochs in a single trial. The space of feasible states for the
number of hidden layers in the ASHA optimization was set
to (2,3,4) and the number of nodes in the hidden layers was
allowed to be up to the number of elements in the input vector
x. The optimization of the network architectures by ASHA
led to the network structures shown in Fig. 3 for the fully
learned approach f̂ (x) and the post-process correction ap-
proach ê(x). These network architectures were utilized in the
final training of the models.
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3.6 Implementation

The neural network computations were implemented in
Python utilizing Pytorch and the ASHA optimization utiliz-
ing the Ray-tune package. The codes for the fully learned
model and post-process correction model will be made avail-
able. See the code and data availability section for informa-
tion on how to obtain the code to run the post-process cor-
rection and load a sample dataset.

4 Results

The accuracy of the post-process correction is tested using
AERONET data as the ground truth for the aerosol retrievals
and the results are compared to the high-resolution Sentinel-
3 Level-2 Synergy aerosol product and to the fully learned
retrieval model (Eq. 6).

Figure 4 shows scatter plots of the AOD retrievals with
the Sentinel-3 Level-2 Synergy product (left column), fully
learned machine learning (middle column) and post-process
correction model (right column) against the AERONET data
at all the test data stations at the four visible-to-near-infrared
wavelengths of 440, 500, 675 and 870 nm measured by the
AERONET. Each figure shows the coefficient of determi-
nation based correlation coefficient R2, root mean squared
error (RMSE) and median bias as the metrics to compare
the retrievals. The figures show also the ratio of samples
that are inside the Dark Target over land expected error
(EE) envelope of ±(0.05%+15%). As can be seen, the ma-
chine learning approaches clearly improve the accuracy of
the AODs compared to the high-resolution Sentinel-3 Level-
2 Synergy product. Between the two machine learning ap-
proaches, the post-process correction model has otherwise
better R2, RMSE and median bias error metrics than the
fully learned model with the exceptions of the bias being
the same as with the fully learned model at 500 and 675 nm.
The ratio of samples inside the Dark Target EE envelope is
very similar to that of the post-process correction and fully
learned models. A notable feature in the figures is that there
are significantly less samples and relatively more “outliers”
for large AOD values than for small AOD values. The accu-
racy of the machine learning estimates also improves for the
higher wavelengths, which do contain fewer high AOD val-
ues. These findings can be attributed to the fact that the learn-
ing data contain relatively few samples for large AOD (the
number of samples with AOD> 0.5 is less than 5 %). This
indicates that more high-AOD-value learning data would be
needed to improve the prediction of the high AOD values.

Figure 5 shows a comparison of AOD at the native
Sentinel-3 Level-2 Synergy wavelength of 550 nm, AE and
AI. Given the estimated AODs at the five wavelengths, the
AE was estimated as a separate post-processing step by uti-
lizing the standard approach (e.g. in AERONET) where AE
is estimated by a least squares fit to the linearization of the

Ångström law. In AERONET, the AE estimation is carried
out using an ordinary least squares type of method that re-
jects clear outliers from the data to improve the outlier tol-
erance of the AE estimation. The difference to AERONET
AE obtained using ordinary least squares fitting with no out-
lier treatment, however, is small. The AI is computed then
as product of the AOD and AE. AI has been considered as
a better proxy for cloud condensation nuclei (CCN) than
AOD (Gryspeerdt et al., 2017), since AI is more sensitive
than AOD to the accumulation mode aerosol concentration.
Figure 5 shows that the machine learning approaches lead
to clearly improved estimates of AOD 550 nm, AE and AI
compared to the Sentinel-3 Level-2 Synergy product. The
post-process correction approach produces the best RMSE,
R2 and EE metrics for the AOD estimates. From the AE esti-
mates, we observe that the high-resolution Sentinel-3 Level-
2 Synergy AE product is uninformative as it produces the
same constant value (approximately 1.1) for all of the test
data points with a wide range of AERONET AEs. For the
AE, the post-process correction approach has a smaller bias
and visibly better correlation (with a nearly 2 times larger R2

metric) but worse RMSE than the fully learned model. For
the AI, the post-process correction has better RMSE, bias
and R2 metrics compared to the fully learned model.

Figure 6 shows AERONET and Sentinel-3-based time
series of AOD at 550 nm over three AERONET stations,
Madrid, Paris and Rome_Tor_Vergata, for the year 2019. In
all stations, the overestimation of AOD by the Sentinel-3
Level-2 Synergy product is evident. The Sentinel-3 Level-
2 Synergy AOD has also a clear seasonal cycle with higher
AODs occurring in summer and lower AOD in winter.
Both the fully learned model and post-process-corrected
Sentinel-3 Synergy AOD are in very good agreement with
the AERONET AOD. Furthermore, the regressor and post-
process correction model AOD capture very well the events
of elevated AOD with a duration of several days.

In Fig. 7, monthly averages of AOD at 550 nm in western
Europe for January, April, July and October 2019 are shown
for the Sentinel-3 Level-2 Synergy, fully learned model and
post-process correction-model-based data. Again, the sig-
nificantly higher AOD of Sentinel-3 Level-2 Synergy com-
pared to the other two models is evident. The figure also
clearly shows that the amount of data varies quite signifi-
cantly throughout the year mainly due to clouds and snow,
and more data are available for April and July than for Jan-
uary and October. All datasets show some spatial variations
of AOD over Europe, and some cities and regions, such as
Paris, France and the Po Valley, Italy, clearly show up in
AOD maps.

Figure 8 shows monthly averages of AOD at 550 nm for
Madrid, Paris and Rome in July 2019. The filled circles in
the images indicate the monthly averages of the AERONET
stations present in the regions. The Sentinel-3 Level-2 Syn-
ergy data product clearly produces a much higher AOD val-
ues then the fully learned and post-process correction mod-
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Figure 4. Estimated AODs at the wavelengths employed in the AERONET. Top to bottom: 440, 500, 675 and 870 nm. Left: Sentinel-3
Level-2 Synergy AOD product. Middle: fully learned regressor model. Right: post-process correction.

Atmos. Meas. Tech., 15, 895–914, 2022 https://doi.org/10.5194/amt-15-895-2022



A. Lipponen et al.: Deep-learning-based correction of the Sentinel-3 aerosol parameters 903

Figure 5. Rows from top to bottom: AOD (550 nm), AE, and AI. (a, d, g) Sentinel-3 Level-2 Synergy product. (b, e, h) Fully learned
regressor model. (c, f, i) Post-process correction model.

els, and the overestimation with respect to AERONET is also
evident. The Sentinel-3 Level-2 Synergy AOD is also, due
to spatial median filtering of the data, much smoother than
that of the two other models. For the fully learned and post-
process correction models, the AOD values are very close

to the AERONET AODs at the AERONET sites, and some
high-resolution features are also clearly visible in the data.
For all three cities, both the fully learned and post-process
correction model show some neighbourhoods with elevated
AOD. The correction model AOD shows even more details
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Figure 6. AOD at 550 nm time series for three AERONET stations. The black lines and dots indicate AERONET measurements, red diamonds
indicate Sentinel-3 Level-2 Synergy, green circles indicate the fully learned regression model, and blue crosses indicate the corrected Sentinel-
3 Synergy retrievals.
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Figure 7. Monthly averages of AOD at 550 nm for January (first row), April (second row), July (third row) and October (fourth row) 2019.
Left column: Sentinel-3 Level-2 Synergy. Middle column: fully learned regressor model. Right column: corrected Sentinel-3 Synergy.
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Figure 8. July 2019 monthly averages of AOD at 550 nm for Madrid (a, b, c), Paris (d, e, f) and Rome (g, h, i). (a, d, g) Sentinel-3 Level-2
Synergy. (b, e, h) fully learned regressor model. (c, f, i) Corrected Sentinel-3 Synergy. Circles represent the monthly averages of AERONET
stations.

and less artefacts than the fully learned model AOD. For ex-
ample, in Rome, the road from the city centre to the airport
is clearly visible from the AOD data, while the regression
model does not show this road. The fully learned model also
has some more box-shaped spatial anomalies than the other
models.

To study the generalization capabilities of the models, we
carried out a test in which we evaluated the fully learned and
post-process correction models’ accuracy in the central Eu-
ropean region. The machine learning models were trained
using data from regions of interest outside central Europe
(eastern US, western US, southern Africa, India). The test
aimed to evaluate how the models generalize to data far
from the training data regions, possibly with different dom-
inant aerosol types and surface reflectances. Figure 9 shows

the results for this test for the AOD at 550 nm in the cen-
tral European region. The post-process correction results in
clearly more accurate AOD estimates than the fully learned
model. The result indicates that using the training data from
nearby regions improves the model performance, and the
post-process correction model performs better than the fully
learned model also in regions far from the training data re-
gions.

To evaluate the models’ performance in low and high
AOD conditions, we evaluated the results corresponding to
AERONET AOD at 550 nm smaller than 0.2 and larger than
0.5. The results are shown in Table 1. The post-process-
corrected model results in the best bias metric in both low and
high AOD conditions. In addition, the post-process-corrected
model results in the best R2 in low AOD and the best RMSE
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Figure 9. AOD (550 nm) for central Europe and the year 2019. Machine learning models are trained using data outside the central European
region. (a) Sentinel-3 Level-2 Synergy product. (b) Fully learned regressor model. (c) Post-process correction.

Table 1. Error metrics for the satellite data product AOD at 550 nm
corresponding to small (< 0.2) and large (> 0.5) AERONET AOD.
The bold font indicates the best performing model.

AOD 550 nm< 0.2 (N = 4708)

Metric Synergy Fully learned Post-process corrected

R2 0.113 0.270 0.310
RMSE 0.412 0.050 0.052
Bias 0.303 0.010 0.009

AOD 550 nm> 0.5 (N = 163)

Metric Synergy Fully learned Post-process corrected

R2 0.497 0.273 0.377
RMSE 0.433 0.313 0.279
Bias 0.379 −0.243 −0.222

in high AOD conditions. The fully learned model results
in about 4 % lower RMSE than the post-process-corrected
model in low AOD. The Synergy R2 is the best for the high
AOD cases but there are only 163 samples in the high AOD
cases so more data would be needed for a more reliable eval-
uation of the models in high AOD conditions.

5 Conclusions

We have developed a deep-learning-based post-process cor-
rection of the aerosol parameters in the high-resolution
Sentinel-3 Level-2 Synergy land product. Sentinel-3 Syn-
ergy also has an aerosol data product specifically designed
to retrieve the aerosol parameters. The aerosol data prod-
uct, however, has a spatial resolution of 4.5 km, whereas the
land product provides data with the Sentinel-3 instrument’s
full spatial imaging resolution of 300 m. The drawback in

the Synergy land product aerosol parameters is their rela-
tively poor accuracy. The aim of the post-process correc-
tion is to significantly improve the accuracy of the Sentinel-3
Level-2 Synergy land product aerosol parameters. The cor-
rection is carried out as a computationally lightweight post-
processing step, and therefore there is no need for rerunning
the actual Synergy retrieval algorithm to obtain the corrected
aerosol data. This is a major benefit of the post-process cor-
rection approach as rerunning of the original retrieval algo-
rithm is a time-consuming process and often cannot even be
carried out by the individual researchers. As a reference for
the machine-learning-based post-process correction of the
Sentinel-3 Level-2 Synergy data product, we also trained a
fully learned machine-learning-based regression model that
carries out the full aerosol retrieval using Sentinel-3 Level-1
data.

The results show that the fully learned and post-process
correction machine learning approaches produces a clear im-
provement in the aerosol parameter accuracy over the offi-
cial Synergy data product. The post-process correction ap-
proach leads generally to a more accurate aerosol param-
eters than the fully learned approach. While the improve-
ment of the post-process correction over the fully learned
approach is not very large in the absolute scale, relatively
the post-process-corrected product provides the best statis-
tical comparison. For example, in AOD at 550 nm, R2 im-
proves by about 9 %, RMSE is 8 % smaller, and bias de-
creases by 20 % in the post-process-corrected model when
compared to the fully learned model. In some applications,
such as data assimilation, these relative improvements may
be relevant for the accuracy of the data assimilation model.
The post-process correction approach combines information
both from the physics-based conventional retrieval algorithm
and machine learning correction, whereas the fully learned
model does not include any physics-based model informa-
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tion. The inclusion of the physics-based model information
may make the post-process correction approach more toler-
ant against samples outside the range of the training dataset
when compared to the fully learned approach. The results
show that the fully learned model results more often in high
errors than the post-process correction.

We also studied the generalization capabilities of the ma-
chine learning models. The results show that the post-process
correction model performs better than the fully learned
model also when trained using data from distant regions.
Ideally, in an operational setting, the machine learning mod-
els would be trained using global data, but, for example, in
AOD retrievals, regardless of the high number of AERONET
stations, there are always some regions with relatively poor
AERONET coverage. Therefore, based on our results, we
expect the post-process correction method to perform better
than the fully learned models in these regions.

The high spatial resolution, about 300 m at nadir, and the
high accuracy of the post-process-corrected Sentinel-3 Syn-
ergy aerosol parameters over the official Sentinel-3 Level-
2 Synergy data product may possibly enable usage of the
data for new applications. For example, for air quality ap-
plications, the high-resolution accurate aerosol data could be
a step towards street-level monitoring instead of the typi-
cal city or neighbourhood levels in conventional aerosol data
products. Improved accuracy high-spatial-resolution aerosol
parameter information may also significantly benefit atmo-
spheric correction in many land surface satellite applications.
The most impacted land surface applications are especially
those that retrieve information from very low signal-to-noise
ratio data such as the retrieval of vegetation solar-induced
fluorescence.

We acknowledge the difficulty in validating the high-
spatial-resolution satellite aerosol data products as accurate
high-resolution spatial coverage aerosol validation data do
not exist. There are, however, some ground-based and air-
craft measurement campaigns, such as the Distributed Re-
gional Aerosol Gridded Observations Network (DRAGON)
(e.g. Garay et al., 2017; Virtanen et al., 2018), KORea–
United States Air Quality (KORUS-AQ) (e.g. Choi et al.,
2021), the Atmospheric Radiation Measurement (ARM)
programme (e.g. Javadnia et al., 2017) and ObseRvations
of Aerosols above CLouds and their intEractionS (ORA-
CLES) (e.g. Redemann et al., 2021), that could provide help-
ful insight on high-resolution aerosol features. Using the
campaign data from these campaigns to validate the high-
resolution satellite aerosol retrievals is a potential topic for
future studies. Also, evaluation of the relative differences
between the post-process-corrected Synergy data and 1 km
MODIS Multi-Angle Implementation of Atmospheric Cor-
rection (MAIAC) (Lyapustin et al., 2018) data could reveal
useful insight on the spatially varying AOD features.

Appendix A: Sentinel-3 data used

This section describes the Sentinel-3 data used in the study.
We use both Level-1b and Level-2 data of the Sentinel-3
satellite mission data products, and we use data from both
Sentinel-3A and Sentinel-3B satellites. For more information
on the Sentinel-3 mission datasets, please see https://sentinel.
esa.int/web/sentinel/missions/sentinel-3 (last access: 27 Au-
gust 2021).

A1 Level-1b

A1.1 SLSTR

We use SLSTR Level-1b data from the SL_1_RBT data
product. The variable names and the corresponding file
names in the data products are listed in Table A1.

A1.2 OLCI

We use OLCI Level-1b data from the OL_1_ERR data prod-
uct. The variable names and the corresponding file names in
the data products are listed in Table A2.

A2 Level-2

Synergy

We use Sentinel-3 Level-2 data from the SY_2_SYN data
product. The variable names and the corresponding file
names in the data products are listed in Table A3.
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Table A1. Sentinel-3 SL_1_RBT files and variables used. Here, [X] denotes SLSTR band numbers 1–6.

Variable name Variable

File: geodetic_an.nc

latitude_an Latitude of detector field of view (FOV) centre on the Earth’s surface, nadir view
longitude_an Longitude of detector FOV centre on the Earth’s surface, nadir view

File: geodetic_ao.nc

latitude_ao Latitude of detector FOV centre on the Earth’s surface, oblique view
longitude_ao Longitude of detector FOV centre on the Earth’s surface, oblique view

File: geodetic_tx.nc

latitude_tx Latitude of detector FOV centre on the Earth’s surface
longitude_tx Longitude of detector FOV centre on the Earth’s surface

File: geometry_tn.nc

solar_zenith_tn Solar zenith angle, nadir view

File: geometry_to.nc

solar_zenith_to Solar zenith angle, oblique view

File: SXX_radiance_an.nc

S[X]_radiance_an TOA radiance for channel S[X] (A stripe grid, nadir view)

File: S[X]_quality_an.nc

S[X]_solar_irradiance_an Solar irradiance at top of atmosphere, channel S[X], nadir view

File: S[X]_radiance_ao.nc

S[X]_radiance_ao TOA radiance for channel S[X] (A stripe grid, oblique view)

File: S[X]_quality_ao.nc

S[X]_solar_irradiance_ao Solar irradiance at top of atmosphere, channel S[X], oblique view

Table A2. Sentinel-3 OL_1_ERR files and variables used. Here, [YY] denotes OLCI band numbers 1–21.

Variable name Variable

File: geo_coordinates.nc

latitude DEM-corrected latitude
longitude DEM-corrected longitude

File: qualityFlags.nc

quality_flags Classification and quality flags

File: instrument_data.nc

detector_index Detector index
solar_flux In-band solar irradiance, seasonally corrected

File: tie_geometries.nc

SZA Solar zenith angle

File: Oa[YY]_radiance.nc

Oa[YY]_radiance TOA radiance for OLCI acquisition band Oa[YY]
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Table A3. Sentinel-3 SY_2_SYN files and variables used.

Variable name Variable

File: time.nc

start_time Time of start measurement
stop_time Time of stop measurement

File: geolocation.nc

altitude DEM-corrected altitude
lat DEM-corrected latitude
lon DEM-corrected longitude

File: Syn_AMIN.nc

AMIN Aerosol model index number

File: Syn_Angstrom_exp550.nc

A550 Aerosol Ångström exponent at 550 nm

File: Syn_AOT550.nc

T550 Aerosol optical thickness
T550_err Aerosol optical thickness standard error

File: flags.nc

SYN_flags Synergy classification and aerosol retrieval flags
CLOUD_flags Synergy cloud flags
OLC_flags Selected quality and classification flags for OLCI SYN channels
SLN_flags Exception summary and confidence flags for SLSTR nadir-view SYN channels
SLO_flags Exception summary and confidence flags for SLSTR oblique-view SYN channels

File: Syn_Oa[XX]_reflectance.nc

SDR_Oa[YY] Surface directional reflectance associated with OLCI channel [XX]
SDR_Oa[YY]_ERR Surface directional reflectance error estimate associated with OLCI channel [XX]

File: Syn_S[YY]N_reflectance.nc

SDR_S[YY]N Surface directional reflectance associated with SLSTR channel [YY] acquired
in nadir view

SDR_S[YY]N_ERR Surface directional reflectance error estimate associated with SLSTR
channel [YY] acquired in nadir view

File: Syn_S[YY]O_reflectance.nc

SDR_S[YY]O Surface directional reflectance associated with SLSTR channel [YY] acquired
in oblique view

SDR_S[YY]O_ERR Surface directional reflectance error estimate associated with SLSTR
channel [YY] acquired in oblique view

File: tiepoints_olci.nc

OLC_TP_lat Latitude (WGS84)
OLC_TP_lon Longitude (WGS84)
OLC_VAA OLCI view azimuth angle
OLC_VZA OLCI view zenith angle
SAA Sun azimuth angle
SZA Sun zenith angle
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Table A3. Continued.

Variable name Variable

File: tiepoints_slstr_n.nc

SLN_TP_lat Latitude (WGS84)
SLN_TP_lon Longitude (WGS84)
SLN_VAA SLSTR nadir-view azimuth angle
SLN_VZA SLSTR nadir-view zenith angle

File: tiepoints_slstr_o.nc

SLO_TP_lat Latitude (WGS84)
SLO_TP_lon Longitude (WGS84)
SLO_VAA SLSTR oblique-view zenith angle
SLO_VZA SLSTR oblique-view zenith angle

File: tiepoints_meteo.nc

air_pressure Mean air pressure at sea level
ozone Total columnar ozone
water_vapour Total column water vapour

Appendix B: Input and output variables of the models

We divide the input and output variables into following five
groups.

– Geometry variables

– SYN_altitude

– SYN_O_VAA

– SYN_O_VZA

– SYN_O_SAA

– SYN_O_SZA

– SYN_SN_VAA

– SYN_SN_VZA

– SYN_SO_VAA

– SYN_SO_VZA

– SYN_O_scattering_angle

– SYN_SO_scattering_angle

– SYN_SN_scattering_angle

Here, all variables are based on the Sentinel-3 Synergy
data product. SYN_O, SYN_SN and SYN_SO corre-
spond to OLCI, SLSTR nadir view and SLSTR oblique
view, respectively.

– Satellite observation variables

– SL1_S1_reflectance_nadir

– SL1_S1_reflectance_oblique

– SL1_S2_reflectance_nadir

– SL1_S2_reflectance_oblique

– SL1_S3_reflectance_nadir

– SL1_S3_reflectance_oblique

– SL1_S4_reflectance_nadir

– SL1_S4_reflectance_oblique

– SL1_S5_reflectance_nadir

– SL1_S5_reflectance_oblique

– SL1_S6_reflectance_nadir

– SL1_S6_reflectance_oblique

– OL1_Oa01_reflectance

– OL1_Oa02_reflectance

– OL1_Oa03_reflectance

– OL1_Oa04_reflectance

– OL1_Oa05_reflectance

– OL1_Oa06_reflectance

– OL1_Oa07_reflectance

– OL1_Oa08_reflectance

– OL1_Oa09_reflectance

– OL1_Oa10_reflectance

– OL1_Oa11_reflectance

– OL1_Oa12_reflectance

– OL1_Oa13_reflectance

– OL1_Oa14_reflectance

– OL1_Oa15_reflectance

– OL1_Oa16_reflectance

– OL1_Oa17_reflectance

– OL1_Oa18_reflectance

– OL1_Oa19_reflectance

– OL1_Oa20_reflectance

– OL1_Oa21_reflectance

– SYN L2 variables

– SYN_AOD550

– SYN_AOD550err

– SYN_AE550

– SYN_AMIN

– SYN_SYN_no_slo

– SYN_SYN_no_sln

– SYN_SYN_no_olc

– SYN_SDR_Oa01

– SYN_SDR_Oa02

– SYN_SDR_Oa03

– SYN_SDR_Oa04
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– SYN_SDR_Oa05

– SYN_SDR_Oa06

– SYN_SDR_Oa07

– SYN_SDR_Oa08

– SYN_SDR_Oa09

– SYN_SDR_Oa10

– SYN_SDR_Oa11

– SYN_SDR_Oa12

– SYN_SDR_Oa16

– SYN_SDR_Oa17

– SYN_SDR_Oa18

– SYN_SDR_Oa21

– SYN_SDR_S1N

– SYN_SDR_S1O

– SYN_SDR_S2N

– SYN_SDR_S2O

– SYN_SDR_S3N

– SYN_SDR_S3O

– SYN_SDR_S5N

– SYN_SDR_S5O

– SYN_SDR_S6N

– SYN_SDR_S6O

– Regression output variables

– AERONET_AOD_550 nm_mean

– AERONET_AOD_440nm_mean

– AERONET_AOD_500nm_mean

– AERONET_AOD_675nm_mean

– AERONET_AOD_870nm_mean

– Correction output variables

– AOD550_approximationerror

– AOD440_approximationerror

– AOD500_approximationerror

– AOD675_approximationerror

– AOD870_approximationerror

Approximation error variables (ε) are computed using
Eq. (3).

Inputs and outputs

As the inputs for the regression model, we use the variables
from the following variable sets:

– geometry variables;

– satellite observation variables.

As the outputs for the regression model we use the variables
from the following variable sets:

– regression output variables.

As the inputs for the correction model we use the variables
from the following variable sets:

– geometry variables;

– satellite observation variables;

– SYN L2 variables.

As the outputs for the correction model we use the variables
from the following variable sets:

– correction output variables.

Appendix C: AERONET data used

The following variables of the AERONET data were used:

– AOD_440nm;

– AOD_500nm;

– AOD_675nm;

– AOD_870nm;

– 440-870_Angstrom_Exponent.

Code and data availability. Python code and trained models to
run the post-process correction are available at https://github.
com/TUT-ISI/S3POPCORN (last access: 11 February 2022;
Lipponen et al., 2021b, https://doi.org/10.5281/zenodo.6042568).
Post-process-corrected Sentinel-3 data of the regions of in-
terest for the year 2019 are available for download at https:
//a3s.fi/swift/v1/AUTH_ca5072b7b22e463b85a2739fd6cd5732/
POPCORNdata/readme.html (last access:11 February 2022;
Lipponen et al., 2021a, https://doi.org/10.23728/FMI-
B2SHARE.C81ADE576E1C49E4AEF9CA1CA8A7621A).

Video supplement. A video corresponding to Fig. 7 can be
found online at https://doi.org/10.5281/zenodo.5287243 (Lipponen,
2021).
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