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Abstract. The 2017 National Academy of Sciences Decadal
Survey highlighted several high-priority objectives to be
pursued in the decadal timeframe, and the next-generation
Cloud, Convection and Precipitation (CCP) observing sys-
tem is thereby contemplated. In this study, we develop a
suite of hybrid Bayesian algorithms to evaluate two CCP
remote sensor candidates including a W-band cloud radar
and a (sub)millimeter-wave radiometer with channels in
the 118–880 GHz frequency range for capability in con-
straining ice cloud microphysical quantities. The algorithms
address active-only, passive-only, and synergistic active–
passive retrievals. The hybrid Bayesian algorithms combine
the Bayesian Monte Carlo integration and optimization pro-
cess to retrieve quantities with uncertainty estimates. The
radar-only retrievals employ the optimal estimation method-
ology, while the radiometer-involved retrievals employ en-
semble approaches to maximize the posterior probability
density function. A priori information is obtained from the
Tropical Composition, Cloud and Climate Coupling (TC4) in
situ data and CloudSat radar observations. End-to-end simu-
lation experiments are conducted to evaluate the retrieval ac-
curacies by comparing the retrieved parameters with known
values. The experiment results suggest that the radiometer
measurements possess high sensitivity to ice cloud particles
with large water content. The radar-only retrievals demon-
strate capability in reproducing ice water content profiles, but
the performance in retrieving number concentration is poor.
The synergistic observations enable improved pixel-level re-
trieval accuracies, and the improvements in ice water path
retrievals are significant. The proposed retrieval algorithms
could serve as alternative methods for exploring the synergis-
tic active and passive concept, and the algorithm framework

could be extended to the inclusion of other remote sensors to
further assess the CCP observing system in future studies.

1 Introduction

The 2017 National Academy of Sciences Decadal Sur-
vey (National Academies of Sciences, Engineering, and
Medicine, 2018) identified five designated foundational ob-
servations to be pursued during the 2017–2027 time frame,
including aerosols (A), clouds, convection, and precipitation
(CCP) as designated observables (DOs). In the preformu-
lation study, the A and CCP DOs were merged to exploit
synergies in the measurement systems. The objective of the
preformulation study was to identify measurables that can
achieve the science objectives of the DOs. As such, the study
identified observing system architectures that maximize sci-
ence benefits while limiting cost and risk. To narrow in on
a set of viable architectures, the ACCP study relied on a
suite of observing system simulation experiments (OSSEs)
aimed at addressing pixel-level retrieval uncertainties and
sampling trade-offs for various geophysical variables that
were deemed important for achieving science goals.

The properties of ice clouds are among the critical geo-
physical variables in the CCP science objectives. Ice clouds
play a significant role in modulating the energy budget of
the earth system by absorbing upwelling long-wave radiation
emitted from the lower troposphere and reflecting incoming
solar short-wave radiation (Liou, 1986). Studies suggest that
ice clouds are a net heat source to the climate system (Acker-
man et al., 1988; Berry and Mace, 2014) while contributing
positive feedback to the climate system (Zelinka and Hart-
mann, 2011).
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The radiative effects of ice clouds depend on the ver-
tically integrated quantities and the vertical distribution of
ice particle characteristics (Hartmann and Berry, 2017). The
microwave radar and (sub)millimeter-wave radiometry are
two critical techniques for ice cloud remote sensing and
they are strongly complementary when combined (Buehler
et al., 2012). The microwave radar reflectivity constrains ice
cloud microphysical quantities in a vertically resolved sense
while the (sub)millimeter-wave radiometer constrains inte-
grated mass and particle size. Further, the nadir-looking mi-
crowave cloud radar provides high-resolution vertical pro-
files of ice clouds but is limited to the along-track measure-
ments, whereas the scanning (sub)millimeter-wave radiome-
ter has a wide swath but provides limited information about
cloud vertical structure. Combing the strength of both ob-
serving sensors enhances our capability to better acquire ice
cloud spatial distributions and assess their role in radiative
heating.

Several retrieval algorithms have been developed specif-
ically for ice cloud radiometry studies. All applicable al-
gorithms that could be generally classified as statistical ap-
proaches and optimization approaches are under the frame-
work of Bayes’ theorem. The statistical approaches, includ-
ing the Bayesian Monte Carlo integration (MCI) (Evans
et al., 2002, 2005) and the neural network (Jiménez et al.,
2007; Brath et al., 2018), build an a priori database by
randomly generating atmospheric/cloud cases according to
the a priori probability density function (PDF) and simu-
lating instrument-specific measurements. To solve the spar-
sity of database cases in the measurement space, opti-
mization algorithms were developed to maximize the pos-
terior PDF. Evans et al. (2012) applied the optimal es-
timation method (OEM) and Markov chain Monte Carlo
(MCMC) method to retrieve ice cloud profiles from the Com-
pact Scanning Submillimeter Imaging Radiometer (CoS-
SIR) (Evans et al., 2005) observations during the Tropi-
cal Composition, Cloud and Climate Coupling (TC4) (Toon
et al., 2010) experiment. Liu et al. (2018) proposed an en-
semble methodology that does not use the gradient infor-
mation but always relies on estimating posterior PDF to
minimize the cost function. For the combined radar and
radiometer retrievals, McFarlane et al. (2002) explored the
synergistic concepts by retrieving liquid water content and
effective radius profiles from millimeter-wavelength radar
reflectivity and dual-channel microwave brightness temper-
atures (BTs) using the Bayesian MCI algorithm. Although
McFarlane et al. (2002) worked on the liquid cloud, the basic
methodologies are applicable to the ice cloud remote sensing.
Pfreundschuh et al. (2020) developed OEM algorithms for
the upcoming Ice Cloud Imager radiometer (Kangas et al.,
2014) and a conceptual W-band cloud radar to investigate
synergies between the active and passive observations.

The objective of this paper is to develop candidate re-
trieval algorithms for synergistic radar and radiometer obser-
vations in order to quantitatively assess the capability of the

next-generation ACCP observing system in constraining ice
cloud geophysical variables. The algorithms for active-only,
passive-only, and synergistic retrievals are developed under a
hybrid Bayesian framework that combines the Bayesian MCI
and optimization process to retrieve ice cloud quantities with
uncertainty estimates. This paper is structured as follows: in
Sect. 2 we provide an overview of the candidate ACCP re-
mote sensors and present the simulated active and passive
observations on the reference cloud scenes using the radia-
tive transfer model. Section 3 describes the hybrid Bayesian
algorithms for the radar-only, radiometer-only, and synergis-
tic retrievals in detail, followed by Sect. 4, which describes
the retrieval database using the statistics from in situ data and
CloudSat radar observations. Section 5 presents the retrieval
simulation experiments and a quantitative evaluation of the
retrieval results. Finally, Sect. 6 presents the summary and
conclusions.

2 Simulated observations

2.1 Remote sensors

The remote sensors we evaluate in this study include a
W-Band (94.05 GHz) radar and a (sub)millimeter-wave ra-
diometer both of which are candidates in the ACCP ob-
serving system. The W-band radar is nadir-looking and it is
similar to the Cloud Profiling Radar (CPR) in the Cloud-
Sat satellite (Stephens et al., 2008). The radar’s horizon-
tal resolutions are 1 and 0.8 km in along-track and cross-
track directions, respectively. The reflectivity measurement
accuracy is 1.5 dBz, and the minimum detectable reflectiv-
ity is −25 dBz when working in high-sensitivity mode. The
passive (sub)millimeter-wave radiometer is conical-scanning
and it has 16 horizontally polarized channels at the frequen-
cies of 118±1.1, 118±1.5, 118±2, 118±5, 183±1, 183±2,
183± 3, 183± 6, 240, 310, 380± 0.75, 380± 1.5, 380± 3,
380± 6, 660, and 880 GHz. The 183 and 380 GHz channels
are centered around water vapor absorption lines, and the
other channels are centered around the O2-line or within the
window region. The desired radiometric resolution and the
spectral feature for different channels of this candidate ra-
diometer are summarized in Table 1 based on the information
disclosed on https://aos.gsfc.nasa.gov (last access: 18 Febru-
ary 2022). The noise characteristic for the 310 GHz channel
is not specified, and it is assumed to be 1.5 K in this study.
The radiometer has a 45◦ off-nadir angle and a 750 km swath
width. The assumptions used in this study align with the as-
sumed instruments that were used in the ACCP study. Spe-
cific instruments have yet to be chosen and therefore addi-
tional details regarding the actual flight instruments are not
known. Figure 1 shows the simulated clear-sky BT spectrum
for a tropical atmospheric profile. All channels of the ACCP
candidate (sub)millimeter-wave radiometer are positioned on
the spectrum, and detailed views of the double sidebands
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Table 1. Channel characteristics of the ACCP candidate
(sub)millimeter-wave radiometer based on the information dis-
closed on https://aos.gsfc.nasa.gov (last access: 18 February 2022).

Frequency Desired radiometric Feature
(GHz) resolution (K)

118.75± 5 0.5 O2 line
±2
±1.5
±1.1

183.31± 6 1 H2O line
±3
±2
±1

240 1 Window

310 1.5∗ Window

380.2± 6 1.5 H2O line
±3
±1.5
±0.75

660 1.5 Window

880 1.5 Window

∗ The noise quantity for the 310 GHz channel is not specified,
and it is assumed to be 1.5 K in this study.

located on either side of the central frequency are also dis-
played.

This study focuses on developing synergistic retrieval al-
gorithms for situations where the active and passive obser-
vations are coincident. Based on this purpose, although the
radar and radiometer instruments have different horizontal
resolution and scanning modes, both sensors are assumed to
have the same nadir-looking pencil beam and the capacity
of high horizontal resolution to achieve the same fields of
view in the simulation experiments below. The influence of
the footprint and viewing geometry will be addressed in fu-
ture work once more characteristics are known.

2.2 Reference cloud scenes

The reference cloud scenes are obtained from the numeri-
cal Environment and Climate Change Canada (ECCC) model
(Chen et al., 2020) simulating tropical atmospheric condi-
tions. The ECCC model outputs were made available to the
ACCP Science Impacts Team (Pavlos Kollias, personal com-
munication, 2019) and were originally created for use by the
EarthCARE Algorithm Team (Illingworth et al., 2015). The
intent to choose the ECCC atmosphere/cloud profiles is to
assure the independence between the ice cloud microphysics
for reference and that in the retrieval database, but also to
keep these two datasets consistent in a geographic context.
As will be discussed in Sect. 4, the a priori database is created

using in situ statistics from the NASA TC4 campaign that oc-
curred in the Tropical Eastern Pacific. The ECCC model out-
puts water content and number concentration (NC) profiles
for several types of hydrometer including cloud ice, snow,
liquid cloud, and rain. In this study, however, we only use the
frozen particle outputs, and we do not differentiate between
cloud ice and snow but add the water content and NC of these
two hydrometer species to parameterize the frozen particles.
The reason for these simplifications is still to be consistent
with the a priori database that will be discussed in Sect. 4.
Currently, the retrieval database we create does not con-
tain liquid hydrometeors, and we do not distinguish between
cloud ice and snow when analyzing the TC4 in situ data to
capture the a priori statistics. All ECCC model outputs are
interpolated according to the CloudSat CPR range gate spac-
ing that has 250 m vertical resolutions to mimic realistic re-
mote sensing situations. A total of 1280 atmosphere/cloud
profiles with 0.25 km horizontal resolution along a latitudi-
nal transect between −2.5 and 9◦ latitude are selected as the
reference cloud profiles for assessing the retrieval accuracies
of the remote sensors studied.

2.3 Radiative transfer model

We develop the one-dimensional forward model for both ac-
tive and passive simulations based on the Atmospheric Ra-
diative Transfer Simulator (ARTS) (Buehler et al., 2018).
The ARTS forward model used in this study employs the
built-in two-moment modified gamma distribution (Petty and
Huang, 2011) scheme, which requires both ice water con-
tent (IWC) and NC to characterize the frozen particle size
distribution (PSD). The frozen particles are assumed to be
randomly orientated, and their scattering properties are rep-
resented by the “EvansSnowAggregate” particle habit in the
ARTS Single Scattering Database (SSD) (Eriksson et al.,
2018). The ARTS model uses a single-scattering radar solver
to compute the radar reflectivity, and it uses the DIScrete Or-
dinates Radiative Transfer (DISORT) (Stamnes et al., 2000)
solver to compute the BT. The gas absorptions are computed
using the HITRAN database (Rothman et al., 2013), and the
surface emissivity is calculated using the Tool to Estimate
Sea-Surface Emissivity from Microwaves to sub-Millimeter
Wave (TESSEM) (Prigent et al., 2017) emissivity model. It
should be noted that the ARTS forward models used in simu-
lating observations of the reference cloud scenes are identical
to the models used in the optimization retrieval algorithms,
which means the systematic biases from different particle
habits or PSD schemes are not investigated in this study.

2.4 Simulated observations

Figure 2 shows the vertical distribution of IWC and NC for
the selected reference cloud scenes along a latitudinal tran-
sect and the corresponding simulated W-band radar reflec-
tivity observations. Compared to the NC, the radar reflectiv-
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Figure 1. Simulated clear-sky brightness temperature spectrum in a tropical atmospheric scenario. All ACCP radiometer channel positions
and a detailed view of the double sidebands located on either side of a central frequency are present.

ity simulations show a stronger tendency to follow the vari-
ations of IWC. Figure 3 shows the ice water path (IWP) and
the corresponding BT simulations for different channels of
the ACCP candidate radiometer. The correlations between
the IWP changes and BT depressions are evident. The chan-
nels with higher central frequencies are more sensitive to the
change of the water path, especially when the IWP is around
102 g m−2. For the double sidebands with the same center
frequency, the large frequency-offset channels show higher
BT values in clear-sky conditions, and they have larger BT
depressions when encountering thick ice cloud layers. Fig-
ure 4 shows the scatterplot of the BT difference between sim-
ulations in the clear-sky and cloudy conditions versus IWP
for different channels. The 118 GHz channels demonstrate
sensitivity only when the IWP is over 103 g m−2. This is not
surprising since the 118 GHz channels are primely designed
for sensing temperature profiles. For the 183 and 380 GHz
channels, the biggest BT differences are up to 50 and 80 K,
respectively. Also, the 380 GHz channels simulations show
more deviations for the same IWP values, implying that the
high-frequency channels are more sensitive to the IWC verti-
cal distributions. The BT sensitivity of the 660 and 880GHz
window channels are noticeable even when the IWP is be-
low 102 g m−2, and the difference in values could be up to
110 K under our reference cloud scenes. These two channels
make the candidate radiometer capable of sensing thin cir-
rus clouds that are usually composed of smaller particles.

However, both 660 and 880 GHz show signs of saturation
for IWP in excess of 103 g m−2 explaining why the full suite
of channels is necessary to capture the full dynamic range of
ice clouds in the upper troposphere.

3 Hybrid Bayesian algorithms

We developed different hybrid Bayesian algorithms for the
radar-only, radiometer-only, and synergistic retrievals. All
hybrid algorithms combine Bayesian MCI with optimization
processes to retrieve quantities and uncertainty estimates.
Bayesian MCI introduces prior information by generating an
ensemble of atmospheric cases that are distributed according
to the a priori PDF, and it is highly efficient since the retrieval
database is precalculated and additional forward model cal-
culations are not required. By assuming the uncertainties for
different measurement variables to be independent, the con-
ditional PDF can be written as (Evans et al., 2002):

Pcond(x|yobs)∝ exp
(
−

1
2
χ2
)
;

χ2
=

M∑
j=1

(
ysim,j − yobs,j

)2
σ 2
j

, (1)

where Pcond is the conditional probability of the measure-
ment vector yobs given a particular atmospheric state x, ysim
is the simulated observation vector, and σj is the uncertainty
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Figure 2. Vertical distribution of water content (WC) and number
concentration (NC) for ice and snow particles along the selected
latitudinal transact and the corresponding W-band radar reflectivity
simulations. The radar simulations are computed using the Atmo-
spheric Radiative Transfer Simulator (ARTS) forward model.

of observation and forward model for the j th channel. The
retrieved quantities and uncertainties are calculated by MCI
over the state vectors to find the mean vector and the associ-
ated standard deviation (Evans et al., 2002):
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∑
ixi exp
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2χ
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i

)
∑
i exp

(
−

1
2χ

2
i

) ;

σx̄ =

√√√√√∑
i(xi − x̄)
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1
2χ

2
i

) . (2)

The biggest challenge for the Bayesian MCI is the sparsity
in the measurement space for a retrieval database with a finite
number of random samples. If we increase the length of the
observation vector or decrease the measurement uncertain-
ties, the number of database cases matching the observation
vector becomes smaller and the Bayesian MCI fails. When
this happens, the optimization process is begun to maximize
the posterior PDF.

3.1 Radar-only retrievals

The robust and efficient OEM method is employed as the
optimization algorithm for radar-only retrievals. The funda-
mental assumptions of the OEM algorithm are that the for-
ward model is moderately nonlinear and that both the prior
PDF and conditional PDF are Gaussians. OEM maximizes
the posterior PDF by minimizing the following cost function

(Rodgers, 2000):

J = (ysim− yobs)
T S−1

y (ysim− yobs)

+ (x− xa)
T S−1

a (x− xa) , (3)

where Sy and Sa are the covariance matrices for the mea-
surement and prior uncertainties, respectively. In this study,
the Levenberg–Marquardt minimization method (Rodgers,
2000) is implemented, and the required Jacobian matrix is
calculated via the finite difference method with perturbations
of ice cloud parameters in each pixel. The posterior error co-
variance matrix specified below is used to characterize the
retrieval uncertainties (Rodgers, 2000):

S =
(
S−1
a +K

T S−1
y K

)−1
, (4)

where K is the Jacobian matrix of the retrieved quantities to
linearize the forward model in each iteration. The covariance
matrix S is also derived based on the local Gaussian approxi-
mation and the forward model linearization assumption. The
relative change of the cost function J is considered as the cri-
terion for testing convergence. The OEM optimization termi-
nates if the relative change of J is below a specified threshold
or the algorithm is over a certain number of iterations.

3.2 Radiometer-involved retrievals

The radiometer-involved retrievals that include the synergis-
tic and radiometer-only retrievals do not apply the OEM al-
gorithm in this study. The OEM algorithms involving BT
measurements were developed in the following two stud-
ies. The first study, by Evans et al. (2012), computes the Ja-
cobian matrix based on the adjoint modeling technique in
the spherical harmonics discrete ordinate method for plane-
parallel data assimilation (SHDOMPPDA) (Evans, 2007) ra-
diative transfer model to make the evaluation of the gra-
dient of cost function computationally feasible. The sec-
ond one was developed by the ARTS community (Pfre-
undschuh et al., 2020), and it calculates the BT sensitiv-
ity to the scaling parameters in a normalized PSD formal-
ism proposed by Delanoë et al. (2005). As pointed out by
Pfreundschuh et al. (2020), the ARTS OEM method does not
always satisfy the OEM fundamental assumption requiring a
nearly linear forward model, and the assumed Gaussian a pri-
ori PDF does not describe the reality very well. Also, the cur-
rent ARTS OEM implementation is computationally expen-
sive. Based on the considerations above, we develop alterna-
tive retrieval algorithms employing the ensemble approaches
to handle the radiometer-involved retrievals and defer the
OEM analysis to future work. The ensemble approaches are
discussed in detail in the following two subsections.

3.2.1 Synergistic radar and radiometer retrievals

The synergistic radar and radiometer retrievals are done by
extending the radar OEM algorithm to add the radiometer ob-

https://doi.org/10.5194/amt-15-927-2022 Atmos. Meas. Tech., 15, 927–944, 2022



932 Y. Liu and G. G. Mace: Synergistic radar and radiometer retrievals of ice clouds

Figure 3. Integrated ice cloud water content of the selected latitudinal transect and the corresponding brightness temperature simulations for
the candidate ACCP radiometer’s channels.

Figure 4. Scatterplot of the brightness temperature difference between simulations in the clear-sky and cloudy conditions as a function of ice
water path for all ACCP radiometer channels.

servations. The radar OEM algorithm provides the retrieved
values as well as the associated uncertainty estimations for-
mulated in Eq. (4). Following this step, the Cholesky decom-
position is implemented on the covariance matrix to generate
an ensemble of correlated random noise (Evans et al., 2012).
This is done by decomposing the covariance matrix into a
lower triangular form and then multiplying it by a vector of
standard Gaussian deviates. The correlated random noise is
added to the radar retrieved quantities to statistically explore
the state space around the OEM radar retrieval results. The
corresponding BT simulations for the generated ice cloud
profiles are subsequently computed using the ARTS radiative
transfer model. After that, the ensemble cases are weighted
according to their χ2 values that measure the disagreements

between the BT simulations and the input BT observation
through Eq. (1), and the retrieval results and uncertainties are
computed by MCI over the weighted ensemble cases to find
the mean value and standard deviation, as shown in Eq. (2).

In this study, an ensemble of 500 cases is generated using
the Cholesky decomposition to statistically investigate the
additional benefits from the BT information. The Bayesian
MCI step requires a minimum number of cases (25 in the
retrievals below) matching the BT observation within a spec-
ified χ2 threshold. The χ2 threshold is set to M + 4

√
M ,

where M is the number of radiometer channels (Evans et al.,
2005). If this criterion fails, we inflate the radiometer stan-
dard deviations in steps of a factor of

√
2 until reaching the

minimum number of cases.
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3.2.2 Radiometer-only retrievals

We employ the ensemble probability estimation (EnPE) al-
gorithm as the optimization procedure for the radiometer-
only retrievals. The EnPE algorithm was first proposed by
Liu et al. (2018), and we continue to develop it as an opti-
mization methodology. The EnPE algorithm has advantages
in the following aspects. First, the algorithm does not rely
on gradient information to move forward. Since the Jacobian
calculations for BT observations are either complex to imple-
ment in the radiative transfer model or computationally ex-
pensive, the EnPE algorithm’s characteristic of non-Jacobian
dependence makes it suitable for ice cloud profile retrievals
that have high-dimensional state vectors using advanced ra-
diative transfer models. Second, the EnPE algorithm is under
the Bayesian MCI framework that not only provides the theo-
retical basis but also offers a straightforward way to estimate
the retrieval uncertainties associated with the retrieved quan-
tities.

We describe the EnPE algorithm in detail here to incor-
porate improvements in many aspects and to make the algo-
rithm more understandable. The EnPE algorithm stochasti-
cally explores the state space by sampling an explicit PDF es-
timated from promising weighted cases obtained so far from
the perspective of Bayesian MCI. As the flowchart in Fig. 5
shows, the algorithm consists of two modules: the PDF es-
timation module numerically estimates the unknown contin-
uous posterior PDF using the discrete cases with posterior
values in the last ensemble, and the PDF sampling module
synthesizes new cases according to the accumulated PDF us-
ing the resampling approach and the covariance matrix.

Starting from the situation where too few a priori database
cases match the observations, the PDF estimation module ar-
tificially inflates the measurement uncertainties so that there
are enough matches between the observation vector and the
BT simulations from the a priori profiles, and the conditional
PDF is computed by:

Pcond,j = exp
(
−

1
2σ 2

s
χ2
i

)
, (5)

where σ 2
s is the inflation factor ensuring a minimum number

of cases in one ensemble are within a specified χ2 thresh-
old. The estimation module then computes the prior PDF to
carry along prior information during the iteration to avoid
overfitting. The prior PDF is neglected in the first iteration
since it is implicitly described by the distribution of the re-
trieval database cases. We update the prior PDF calculation
method in this study to use more accurate prior statistics, and
this new approach is discussed later in this subsection. Af-
ter computing the conditional PDF and the prior PDF, the
atmospheric/cloud samples in each ensemble are weighted
according to the posterior PDF:

Ppost,j =
Pprior,i ·Pcond,i∑
iPprior,i ·Pcond,i

. (6)

Following this step, the PDF sampling module reselects
the samples according to their posterior value to multi-
ply cases with high weights and eliminate cases with low
weights. The weights of the selected state vectors become
equivalent again. The sampling module then generates corre-
lated random noise using the two-point correlation statistics
in the covariance matrix. The covariance matrix of the re-
trieved quantities is computed using the posterior PDF based
on Bayesian MCI:

Cov(m,n)=
∑

i

(
xi,m− x̄i,m

)(
xi,n− x̄i,n

)
·Ppost,i . (7)

Liu et al. (2018) conducted the correlated noise genera-
tion step by sampling a set of Gaussian distributions in the
eigenspace, but a simpler approach is to use the concept of
the covariance matrix decomposition. This step is essentially
consistent with the Cholesky decomposition applied in the
synergistic retrieval in Sect. 3.2.1. However, since the covari-
ance matrix here is not always positive definite, we use the
empirical orthogonal functions (EOFs) to generate correlated
random variables. The eigenvalues and eigenvectors of the
covariance matrix in Eq. (7) are calculated, and the EOFs in-
cluding 99.9 % of the variance are used. The correlated Gaus-
sian distributed elements are calculated by multiplying the
standard Gaussian deviates by the square root of the eigen-
value matrix to scale the data based on the variance magni-
tude, and then multiplying them by the eigenvector matrix to
rotate back to the original axes:

6 = E
√
3D, (8)

where 6 is the random correlated variables, D is the stan-
dard Gaussian derivatives,

√
3 is the diagonal scaling matrix

composed of the square root of eigenvalues, and E is the ro-
tation matrix composed of eigenvectors in each column. Fi-
nally, the PDF sampling module builds a new ensemble by
adding the correlated random variables to the selected state
vectors from the resampling step to further explore the state
space.

Once a new ensemble is synthesized and the correspond-
ing BT simulations are computed, the algorithm evaluates the
new state samples based on the prior PDF and conditional
PDF, and the optimization cycle starts again. As the iteration
proceeds, the ensemble evolves and gradually becomes con-
centrated in the most likely area, compensating for the sparse
distribution of the original retrieval database. The cases in the
last ensemble are used to calculate the mean parameter val-
ues (retrieved values) and standard deviations (retrieved un-
certainties) by Bayesian MCI. The EnPE iteration stops when
a required number of cases (25 in this study) within the χ2

threshold are found in one ensemble, or the number of itera-
tions is over a limit. If there are not enough cases satisfying
the χ2 criterion in the case ensemble, we again inflate the
BT measurement standard deviations until covering enough
cases. In the retrievals below, the EnPE algorithm generates
300 new cases in each iteration, and only a maximum of two
iterations are permitted due to the computation limitation.
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Figure 5. Flowchart of the ensemble probability estimation (EnPE) algorithm applied in the radiometer-only retrievals.

We upgrade the precalculated retrieval database with the
random cases distributed according to the a priori PDF. In
Liu et al. (2018), the prior database is built by relying only
on the numerical Global Environmental Multiscale (GEM)
(Côté et al., 1998) model outputs. The disadvantages of this
method are twofold. First, the random cases cannot well rep-
resent the ice cloud distributions because there are many
microphysical simplifications in such a numerical model

that result in much less microphysical variability than ex-
ists in nature. Second, the reference cloud scenes come
from the same GEM model, and the interference attributable
to the close relations between these two datasets becomes
inevitable since the datasets share the same GEM simu-
lation parameters and initial conditions. In this study, we
build the retrieval database using the in situ microphysical
data and spaceborne radar observations. The remote sens-
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ing data are combined with the in situ microphysical PDF
using the Bayesian MCI algorithm to create vertical pro-
files of ice cloud microphysics. After that, the cumulative
distribution functions (CDFs) and EOF procedures are ap-
plied to capture the single-point and two-point statistics and
to create a required number of synthetic microphysical and
thermodynamic profiles that are statistically consistent with
the Bayesian retrieval results. A comprehensive discussion
on creating synthetic ice cloud profiles can be found in
Liu and Mace (2020). Consequently, the random cases in the
updated retrieval database represent our prior knowledge of
the atmospheric and cirrus clouds better, and they are also
completely independent of the reference cloud scenes for
testing purposes. Further, since the random ice cloud pro-
files are generated by statistically generalizing a relatively
small number of cloud profiles that represent the prior infor-
mation, a new method is applied to deal with the regulariza-
tion term (Pprior in Eq. 6) constraining the synthesized pro-
files to follow the prior knowledge. Compared to the method
in Liu et al. (2018), this new approach captures more accu-
rate a priori statistics, and it is applicable even when the a
priori PDF is highly non-Gaussian.

The method to calculate the prior PDF is consistent with
the control vector transformation concept applied by Evans
et al. (2012). The CDFs are used to capture the one-point
statistics of the Bayesian retrievals that combine the remote
sensing data and in situ microphysics by sorting different ice
cloud parameters at different layers from smallest to largest
in value and calculating the sum of the assigned equal prob-
abilities up to each datum. The original ice cloud parame-
ters are then represented by their percentile ranks, and the
correlations are also preserved in the rank matrix. Following
that, the percentile rank matrix is transformed into a Gaus-
sian derivate matrix using the standard normal cumulative
distribution function:

ξi =8
−1 (R(xi)) , (9)

where 8(ξi) is the standard normal cumulative distribution
function, and R(xi) is the percentile ranks for different pa-
rameters at different layers. For a new ensemble, the ice
cloud profiles are transferred into Gaussian derivative matri-
ces to calculate the ξ values, and the associated a priori PDF
quantitating the strength of the prior constraints are directly
determined by the Gaussian derivatives ξ :

Pprior,i = exp
(
−

1
2
ξ2
i

)
. (10)

In this way, more realistic ice cloud statistics in arbitrary
functional forms are added to the EnPE algorithm as regular-
izations to make the algorithm more applicable.

3.3 Measurement space and state space

We conduct simulation experiments to assess the synergistic
radar and radiometer capability in retrieving ice cloud param-

eters. The measurement space in the retrieval experiments
consists of the noisy radar reflectivity simulations at verti-
cal grid points and the noisy BT simulations of different ra-
diometer channels. Independent Gaussian noise with 1.5 dBz
standard deviation characterizing the radar measurement ac-
curacy is added to the simulated radar reflectivity observa-
tions, and 4 dBz reflectivity uncertainty that accounts for es-
timations of the forward model uncertainty due to unknown
ice hydrometeor bulk density is assumed during the radar re-
trieval process. The 4 dBz error estimation is based on the
study of Mace and Benson (2017). The grid points with the
radar reflectivity below the minimum detectable sensitivity
(−25 dBz) are ignored in the retrieval. We add independent
Gaussian noise with standard deviation listed in Table 1 to
the simulated BT observations, and we use the same noise
characteristics in the radiometer retrievals.

The state space in all three retrievals consists of the IWC
and NC profiles using the same vertical grids as the refer-
ence cloud scenes. The vertical resolution is 250 m. Other at-
mospheric parameters such as water vapor, temperature, and
pressure profiles are set to the true values during the retrieval.
For the radar-only and synergistic retrievals, the ice cloud pa-
rameters are transformed into lognormal distributions, which
means the state variables are ln(IWC) and ln(NC). For the
radiometer-only retrievals, the state variables are IWC and
NC because we test that the EnPE algorithm works better in
non-log scales.

4 Retrieval database

The key element in implementing the Bayesian MCI is to
build the retrieval database, which generally consists of two
steps: creating random atmosphere and ice cloud properties
that are distributed according to the prior PDF and comput-
ing the simulated radar reflectivity or BT using the forward
model. In this study, we separately develop two retrieval
databases for radar and radiometer retrievals using the a pri-
ori statistics from TC4 in situ measurements and CloudSat
CPR observations.

4.1 Radar retrieval database

The realistic ice cloud microphysical probability distribu-
tions used for building the radar retrieval database is ob-
tained from the in situ data from instruments flown in the
TC4 campaign. The in situ ice PSD are obtained from the
two-dimensional stereo (2D-S) probe and the precipitation
imaging probe (PIP), and the associated temperature is mea-
sured by the Meteorological Measurement System on the
DC8 aircraft platform. The bimodal PSD scheme which ap-
proximates both small and large particle distribution modes
by gamma functions is used to fit the in situ data, and the
ice cloud parameters, including IWC, NC, and particle size,
are derived. More details on the TC4 in situ analysis can be
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found in Liu and Mace (2020). A multi-variant Gaussian dis-
tribution in temperature, ln(IWC), and ln(NC) is used to cap-
ture the in situ statistics, using the prior idea that the mi-
crophysical parameters are approximately lognormally dis-
tributed. Using a multi-variant Gaussian function shows sev-
eral advantages in generalizing the in situ statistics: First, it
specifies the microphysical PDF using a few parameters; sec-
ond, it facilitates the radar OEM algorithm, which explicitly
requires a normally distributed prior PDF; third, it reasonably
covers the space where the in situ probes fail to detect, which
is important since the random cases need to completely cover
the possible parameter range. The parameters for the TC4
multi-variant Gaussian function are summarized in Table 2.
An ensemble of random cases (30 000 cases in this study)
is sampled from the Gaussian function, and the ARTS radar
forward model is used to simulate the reflectivity for each
random case.

The radar retrieval database is used to generate the initial
state vector for the radar-only OEM retrieval algorithm based
on the Bayesian MCI. This step helps the OEM algorithm to
better satisfy the fundamental requirement for a moderately
nonlinear forward model. The initial state vector generation
step proceeds from top down, and the generated radar attenu-
ation is used to correct the radar reflectivity below. The a pri-
ori Gaussian PDF listed in Table 2 is also used in the OEM
algorithm as the regularization. We should note that the a
priori Gaussian PDF contains single-layer constraints, but it
does not describe the vertical correlations between ice cloud
microphysics at different layers.

Figure 6 shows the two-dimensional histogram for the
microphysical quantities and reflectivity simulations in the
radar retrieval database. A fairly strong correlation between
IWC and NC over the whole range is observed in the left
panel. The middle panel and the right panel indicate that the
radar reflectivity simulations have a strong correlation with
IWC in the whole range, but its correlation with NC is much
weaker.

4.2 Radiometer retrieval database

Apart from using the TC4 in situ microphysical statistics,
we also use the CloudSat observations to acquire the crit-
ical coherent vertical correlations to synthesize the ran-
dom ice cloud profiles for creating the radiometer retrieval
database. The data we use include CloudSat radar reflec-
tivity, CALIPSO lidar cloud fraction, and the correspond-
ing ECMWF profiles of temperature and relative humidity.
As mentioned in Sect. 3.2.2, the active remote sensing pro-
files are first combined with the TC4 cloud microphysical
probability distributions using the Bayesian MCI algorithm,
and then the CDFs/EOFs procedures are applied to create
a required number of synthetic microphysical and thermo-
dynamic profiles (100 000 profiles in this study) using the
one-point and two-point statistics that are captured from

the Bayesian retrieval results. More details can be found in
Liu and Mace (2020).

Figure 7 shows the profiles of IWC, NC, temperature,
and relative humidity for seven percentiles in the cumula-
tive distributions. Layers that are identified as clear are added
with random Gaussian noise to prevent discontinuity in the
CDFs. The mean values for the added IWC and NC noise
are 10−6 g m−3 and 10 m−3, respectively. The left two pan-
els show that the a priori IWC profiles cover the range from
clear condition to about 10 g m−3, and the NC profiles cover
the range up to about 106 m−3. The 75 % curve implies that
a large majority of atmospheric conditions are outside the
9–14 km range. The right two panels show that the a priori
temperature profiles have a small range of temperature cover-
age under the tropical atmospheric conditions applied in this
study, and the relative humidity profiles have a large possible
range, almost coving the entire possible values from 0 to 1.

The precalculated retrieval database provides a good op-
portunity for estimating the degrees of freedom (DoF) for the
ACCP (sub)millimeter-wave radiometer. The DoF describes
the number of independent pieces of information in the ra-
diometer measurement since some channels provide redun-
dant information. The DoF is usually calculated as the trace
of the averaging kernel matrix based on the Jacobian ma-
trix (Rodgers, 2000), but a more general method described in
Eriksson et al. (2020) is employed since the Jacobian matrix
for BT is not estimated here. This method calculates the DoF
in the measurement space based on the EOF approach. The
covariance matrix of a set of simulated BT is decomposed
using EOF:

Sy = E3E
T , (11)

where E is the matrix with eigenvectors in each column,
and 3 is the diagonal matrix containing the corresponding
eigenvalues. The Gaussian measurement noise in eigenspace
is transformed back using the same eigen coordinate axes:

S3 = ESεE
T , (12)

where Sε is the diagonal matrix that contains the square of
measurement noise for different channels. The DoF is de-
fined as the number of diagonal elements in Sy that are larger
than the corresponding value in S3 in the same place.

Figure 8 shows the DoF of the ACCP radiometer as the
function of the IWP and integrated water vapor (IWV) using
the measurement noise characteristics listed in Table 1. The
DoF is computed only when the number of random cases in
a certain IWV–IWP bin is larger than 10 to avoid noise in-
terference. It can be seen that the DoF increases with IWP,
but it decreases as the IWV becomes large. For the wet at-
mospheres with IWV larger than 42 kg m−2, the DoF is gen-
erally smaller than 6 when IWP is below 100 g m−2, and it is
between 7 and 9 in the 100–500 g m−2 IWP range. The DoF
reaches 12 as the IWP goes beyond 500 g m−2. For the dry
atmospheres with IWV smaller than 42 kg m−2, the DoF is

Atmos. Meas. Tech., 15, 927–944, 2022 https://doi.org/10.5194/amt-15-927-2022



Y. Liu and G. G. Mace: Synergistic radar and radiometer retrievals of ice clouds 937

Table 2. Ice particle microphysical statistics defining the a priori Gaussian probability distribution derived from the TC4 in situ data.

ln(IWC) (g m−3) ln(NC) (m−3) Temperature (K)

Mean −6.04 9.88 231.07

SD 2.45 1.81 12.41

Correlation ρln(iwc)−ln(nc) = 0.69 ρln(iwc)−tp = 0.17 ρln(nc)−tp =−0.10

Figure 6. Two-dimensional histogram for the microphysical quantities and the W-band radar reflectivity simulations derived from the random
cases in the precalculated radar retrieval database.

high even at low IWP conditions, generally between 6 and
11 when IWP is smaller than 100 g m−2, and the DoF is
mostly 12 when the IWP is over 100 g m−2. We should note
that the DoFs here are estimated based on the atmospheric
profiles that only contain ice cloud hydrometer species. The
DoF estimations using more sophisticated atmospheric and
cloud conditions that include multiply types of hydrometer
are likely to be different.

5 Results and discussion

In this section we present the analytical results for the
radiometer-only, radar-only, and synergistic retrievals to as-
sess the capability of the objective ACCP remote sensors in
retrieving ice cloud parameters. The retrieval experiments are
performed by inputting the simulated noisy radar reflectivity
and BT observations into the hybrid Bayesian algorithms and
then comparing the retrieved parameters with the true values
to determine the retrieval accuracy.

Figure 9 shows a side-by-side comparison between the
true values and the retrieval results for IWC and NC profiles
along the ECCC model transect. The results for the radar-
only, radiometer-only, and combined retrievals are presented
sequentially. The passive-only retrieval results suggest that
there is very little if any information regarding the vertical
distribution of ice cloud microphysics in the radiometer mea-
surements when considered without the radar measurements.
For the active-only retrievals, the retrieved IWC profiles re-
alistically reproduce the vertical structure of the reference
cloud scenes. The retrieved values also correspond to the true
values in general, even though sometimes the retrievals tend

to underestimate the IWC values, especially near the top of
the cloud ranging from 10 to 15 km in height. By contrast, the
active-only retrievals for NC profiles perform much worse.
The true NC values cover the range from 10 to over 106 m−3,
but the radar retrievals do not match this variability, usually
concentrating in the 103–105 m−3 range. The retrieval results
again illustrate that the radar measurements are much more
sensitive to the IWC variation compared to the NC variation.
For the synergistic retrievals, obvious perturbations can be
observed for both IWC and NC profiles and the results be-
come less smooth compared to the radar-only retrievals. The
added radiometer observations tend to correct the IWC un-
derestimation discussed above by constraining the vertically
integrated condensed mass.

Figure 10 shows the retrieved IWP values for the passive-
only, active-only, and combined retrievals based on the hy-
brid Bayesian algorithms along the latitudinal transect. For
the passive-only retrievals, the retrieval errors are compara-
ble to the active-involved retrievals over the entire range. The
active-only retrievals show the tendency to overestimate the
IWP for thin clouds but underestimate the thick cloud IWP.
The combined retrievals are based on the radar OEM results,
and substantial improvements in IWP retrieval accuracy can
be seen after adding the ACCP BT measurements.

Figure 11 shows the scatterplots of the retrieved parame-
ters against the true values that are colored by density to fur-
ther visualize the retrieval performance. The statistical IWC
analysis below only applies to the grid points with the refer-
ence IWC larger than 10−5 g m−3. Similarly, the bottom lim-
itations for NC and IWP analysis are 100 m−3 and 10 g m−2,
respectively. The scatterplots for IWC, NC, and IWP are
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Figure 7. Profiles of ice water content (IWC), number concentration (NC), temperature, and relative humidity for seven percentiles in the
cumulative distributions for the random atmospheric/cloud profiles in the precalculated radiometer retrieval database.

Figure 8. The degrees of freedom (DoF) for the ACCP radiometer
candidate as a function of the ice water path (IWP) and integrated
water vapor (IWV). The DoF is estimated using the radiometer re-
trieval database that has 100 000 random ice cloud profiles. Liquid
hydrometer species are not included in the retrieval database.

shown in different columns, and the plots for passive-only,
active-only, and combined retrievals are shown in different
rows. This figure can be directly compared with Figs. 7,
8, and 13 in Pfreundschuh et al. (2020), and a similar phe-
nomenon can be observed here. Starting from the IWC re-
trievals in the first column, the passive-only retrievals show
the largest deviations from the diagonal line, which is not sur-
prising since the BT measurements have low sensitivity to the
vertical distribution of the ice cloud microphysics. The radar-
only retrievals provide much more accurate results. The scat-
ter of points lies along the diagonal and the associated devi-
ations are small. The radar-only retrievals are observed to
bias high for the tenuous clouds and bias low when IWC
values are high. The prior constraint is possibly the reason
for causing both low-end and high-end biases since the parti-
cles with extreme values possess small prior probability val-
ues. Another possibility is that we do not differentiate the

cloud ice and snow in the forward model. The combined re-
trievals correct the high-end offset, and the scatter plots lie
more along the diagonal. The rim of the scatter plots becomes
less smooth, which is inevitable because the BT measure-
ments are added through an ensemble approach by generat-
ing random cases over a large possible range to statistically
explore the state space. However, its systematic deviations
are reduced compared to the radar-only retrievals, which is
consistent with the analysis in Pfreundschuh et al. (2020). It
is also seen that the retrieval accuracies when IWC is larger
than 10−2 g m−3 are improved after adding BT observations.
The combined retrievals, together with the radiometer-only
retrievals shown in the top panel, suggest that the radiome-
ter measurements possess high sensitivity for large particles
with IWC over 10−2 g m−3. For the NC retrievals in the sec-
ond column, the passive-only retrievals again show very lit-
tle capability. The NC results from the radar-only retrievals
do not follow the true values well. The retrieved values are
always located in the range of 104–105 m−3 although the
true values vary in a much wider range. The combined re-
trievals improve the NC accuracies only when NC is over
104 m−3, but the overall performance is still poor. Again, the
combined retrievals and radiometer-only retrievals together
suggest that the radiometer measurements are sensitive for
particles with NC larger than 10−4 m−3. The IWP retrievals
show very good performance overall. All retrieved values in
different panels follow the true values with small associated
deviations. The IWP results from passive-only retrievals tend
to overestimate the true values when IWP is small and un-
derestimate the true values when IWP is large. The under-
estimation performance could probably be corrected if more
random atmospheric/cloud profiles covering the large IWP
range are included in the precalculated radiometer retrieval
database. The active-only retrievals show a similar tendency,
and significant improvements could be seen for the results
from the combined retrievals.
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Figure 9. Comparison between the true values and the retrieval results for ice water content and number concentration profiles along the
selected latitude transect. The results for radar-only, radiometer-only, and combined retrievals are presented sequentially.

Figure 10. Direct comparison between the retrieved ice water
path (IWP) and the true values along the latitudinal transect. The
passive-only, radar-only, and combined retrievals are all displayed.

Figure 12 displays the PDF of the logarithmic errors for
different parameters under different retrieval methods. The
logarithmic error is defined as:

Elog10 = log10

(
xret

xtrue

)
. (13)

The negative/positive values of Elog10 indicate that the re-
trieved values are smaller/larger than the true values, and 0 B
error shows that the retrieved value and true value are identi-
cal; 1 B error is a factor of 10. For the IWC retrievals in the
left panel, the radiometer-only retrievals show the strongest
deviation with the logarithmic errors spreading from −4 to
+2 B. Compared to the radar-only retrievals, the PDF of the
synergistic retrievals has a smaller offset and smaller vari-
ance, even though the improvements are not substantial. The
logarithmic errors of the NC retrievals in the middle panel
spread from −2.5 to 2.5 B, indicating poor NC constraints
from the radar and radiometer observations. As for the IWP
retrieval displayed in the right panel, the passive-only and
active-only retrievals show comparable retrieval errors, and
significant improvements using the synergistic observations
are evident.

Figure 13 shows the quantitative values measuring log-
arithmic error distribution to compare the retrieval accu-
racy under different retrievals. Panels Fig. 13a and b show
the mean values of the logarithmic errors and the associ-
ated IQR. The IQR is defined as the difference between
the 75th and 25th percentile. The mean and IQR values
were also presented in Fig. 11 in Pfreundschuh et al. (2020).
However, since substantial differences in underlying assump-
tions exist in these two studies, the quantitative values pre-
sented here could not be directly compared with those in
Pfreundschuh et al. (2020). The differences are primarily re-
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Figure 11. The scatterplots of the retrieved parameters against the true values that are colored by density. The scatterplots for ice water content
(IWC), number concentration (NC), and ice water path (IWP) are shown in different columns, and the plots for passive-only, active-only, and
combined retrievals are shown in different rows.

Figure 12. The probability density function (PDF) of the logarithmic errors for different ice cloud parameters under different retrieval
methods.

flected in the following aspects. The PSD schemes used in
these two studies are not identical, and the a priori PDF con-
straining the optimization is significantly different. Further,
as mentioned in Sect. 2.3, we do not investigate the system-
atic biases coming from various particle habits, which re-
sults in much smaller absolute mean and IQR values com-
pared with the results in Pfreundschuh et al. (2020). Never-
theless, the results could still be compared qualitatively to

see whether similar tendencies exist. For the IWC retrievals,
the radiometer-only retrievals show the largest retrieval er-
rors. Compared to the radar-only retrievals, the combined re-
trievals correct the systematic biases, but the improvements
in decreasing the IQR spreads are not evident. For the NC re-
trievals, the radar-only and radiometer-only results are both
unsatisfactory and their IQR values are similar. For the IWP
retrievals, the radiometer-only and radar-only show com-
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parable capabilities, and the improvements from the com-
bined retrievals are obvious since both biases and IQR de-
viations decrease. The tendencies observed in IWC and IWP
retrievals here are generally consistent with the findings in
Pfreundschuh et al. (2020). Panel Fig. 13c shows the root
mean square deviation (RMSD) for different parameters to
measure the deviations against zero. Not surprisingly, the
radiometer-only retrievals have the highest number for both
IWC and NC. The radar-only retrievals have a small RMSD
value for IWC and a large RMSD value for NC, and the com-
bined retrievals decrease the number on this basis. Since the
RMSD is easily skewed by a few poor retrievals, the robust
median of the absolute logarithmic errors that separate the
higher half from the lower half in all the absolute logarith-
mic errors is displayed in panel d. Overall, 50 % of the re-
trievals have an error less than the median error, and 50 %
have a larger error. The median fractional error is used to
quantitatively assess the relative improvements after adding
BT measurements into the radar-only retrievals. The median
bias for IWC retrievals decreases from 0.34 to 0.28, indi-
cating an 18 % improvement, and the bias for NC decreases
from 0.73 to 0.62, indicating a 12 % improvement obtained
from the BT information. The biggest improvement exists in
IWP retrievals, which decreases the median bias from 0.19
to 0.11, and the relative improvements reach 42 %.

6 Summary and conclusions

In this study, we develop a suite of hybrid Bayesian retrieval
algorithms to assess a candidate observing system represen-
tative of what is being considered for the decadal survey
clouds-convection-precipitation designated observable mis-
sion to be flown later this decade. We specifically evaluate
the capability of an observing system consisting of a W-band
radar and a (sub)millimeter-wave radiometer in constraining
the ice cloud microphysics. Our purpose is to demonstrate
the value of single-instrument and synergistic retrievals of ice
cloud microphysical parameters. Several new algorithms are
proposed here, which could serve as alternative solutions for
exploring the synergistic active and passive retrieval concepts
for the actual instruments once they are known. The geo-
physical variables we investigate include the IWC, NC, and
IWP. The hybrid Bayesian algorithms combine the Bayesian
MCI and optimization processes to compute retrieval quan-
tities and associated uncertainties. The radar-only retrievals
employ the OEM optimization algorithm that uses gradient
information to minimize the cost function. The OEM is ini-
tialized by a state vector that is constructed by implement-
ing Bayesian MCI to the radar reflectivity at different grid
points using the precalculated radar database. The necessary
Jacobian matrix is calculated by perturbing the ice cloud mi-
crophysical quantities on different layers. The radiometer-
involved retrievals employ ensemble strategies to optimize
the ill-posted problem. The synergistic radar and radiome-

ter retrievals are done by generating random cases from the
radar OEM results based on the Cholesky decomposition
technique. The BT simulations are then computed, and the
Bayesian MCI is implemented to derive the final retrieval
results. For the radiometer-only retrievals, the EnPE algo-
rithm is applied to statistically estimate the posterior PDF
using the promising weighted cases. The estimation module
and the sampling module proceed iteratively to stochastically
explore the state space. In addition, a new approach to im-
plement prior constraints that enable the a priori PDF to be
highly non-Gaussian is proposed in order to make the ensem-
ble algorithm more applicable.

We conducted simulation experiments to evaluate the ac-
curacy of retrieving ice cloud quantities for different remote
sensors. The simulated noisy radar reflectivity and BT ob-
servations are input to the hybrid Bayesian algorithms, and
the retrieved parameters are compared with the known val-
ues to determine the retrieval accuracies. A tropical tran-
sect of cloud profiles that are simulated using the ECCC
model is selected as the reference cloud scenes. This choice
ensures the independence between the atmospheric/cloud
profiles for testing and the vertical profiles in the a priori
database. The simulation experiments assume that both sen-
sors have the same nadir-looking viewing angle. The influ-
ence of different footprints and viewing geometries between
the active and passive remote sensors are neglected in this
initial study but will be evaluated once the specific param-
eters of the observing system are known. Since we do not
consider the forward model uncertainties from various parti-
cle habits, the retrieval errors are much smaller than the re-
sults in Pfreundschuh et al. (2020). Nevertheless, consistent
results can still be qualitatively observed here. The main con-
clusions from the results presented here can be summarized
as:

1. The radiometer measurements do not have direct infor-
mation about the IWC and NC vertical distribution. However,
the BT measurements possess high sensitivity for large ice
cloud particles with IWC values larger than 10−2 g m−3 and
NC values larger than 104 m−3.

2. The radar-only retrieval demonstrates capability in re-
trieving IWC profiles, but it literally does not exhibit ca-
pabilities in retrieving NC vertical distribution. The radar-
only retrievals for IWP have comparable accuracies to the
radiometer-only retrievals.

3. The synergistic retrievals have evident improvements in
retrieval accuracies compared with the radar-only retrievals.
When using the median of the absolute fractional error as the
quantitative parameter to evaluate the retrieval accuracies,
the relative improvements after adding BT measurements for
IWC, NC, and IWP are 18 % and 12 %, and 42 %, respec-
tively.

This paper provides an end-to-end idealized simulation ex-
periment that sacrifices precise reality in order to demon-
strate nuances in the various algorithms, and several disad-
vantages are worth mentioning. First, there are many sim-
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Figure 13. The quantitative statistics of the logarithmic errors for the retrieved ice cloud quantities. Panels (a) and (b) show the mean values
and the interquartile range (IQR), and (c) shows the root mean square deviation (RMSD) of the logarithmic errors. Panel (d) shows the
median values of the absolute logarithmic errors that separate the higher half from the lower half in all the retrieval error estimations.

plifications on the reference cloud scenes and the radiative
transfer model. We only use the frozen particles in the ref-
erence cloud scenes, and the liquid clouds are ignored. The
impacts from water vapor uncertainties are also neglected.
Further, only one particle habit is applied and the forward
model uncertainties from particle habits and PSD are not
considered. These simplifications facilitate the quantitative
evaluation of the proposed retrieval algorithms without com-
plication from parameters not yet known so that the relative
benefit of the observing system is considered as separate in-
struments or as a synergistic set. In all cases the value of
synergy is demonstrated although more realistic observing
systems must be considered in future work. Second, the sta-
tistical characteristics are only derived based on selected at-
mospheric/cloud profiles along a single latitudinal transect.
Since this subset with a finite number of profiles can hardly
represent the realistic spatial distribution of ice cloud micro-
physics that will be encountered globally, the statistics we
derive may differ from the characteristics of the entire pos-
sible atmospheric conditions. Third, apart from the W-band
radar and the (sub)millimeter-wave radiometer, the eventual

observing system will likely include other remote sensors
that would be useful for improving retrieval accuracies for ice
cloud remote sensing. For instance, the eventual radar sys-
tem will likely be dual-frequency and add Ku- or Ka-band
to the measurements. Also, highly accurate Doppler veloc-
ity measurements will likely be observed that may allow for
constraints on the ice crystal bulk density that could signifi-
cantly mitigate forward model uncertainties. These problems
will be investigated in future work.
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