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Abstract. Automated methods for the detection and tracking
of deep convective clouds in geostationary satellite imagery
have a vital role in both the forecasting of severe storms and
research into their behaviour. Studying the interactions and
feedbacks between multiple deep convective clouds (DCC),
however, poses a challenge for existing algorithms due to the
necessary compromise between false detection and missed
detection errors. We utilise an optical flow method to deter-
mine the motion of deep convective clouds in GOES-16 ABI
imagery in order to construct a semi-Lagrangian framework
for the motion of the cloud field, independently of the de-
tection and tracking of cloud objects. The semi-Lagrangian
framework allows severe storms to be simultaneously de-
tected and tracked in both spatial and temporal dimensions.
For the purpose of this framework we have developed a novel
Lagrangian convolution method and a number of novel im-
plementations of morphological image operations that ac-
count for the motion of observed objects. These novel meth-
ods allow the accurate extension of computer vision tech-
niques to the temporal domain for moving objects such as
DCCs. By combining this framework with existing methods
for detecting DCCs (including detection of growing cores
through cloud top cooling and detection of anvil clouds using
brightness temperature), we show that the novel framework
enables reductions in errors due to both false and missed de-
tections compared to any of the individual methods, reduc-
ing the need to compromise when compared with existing
frameworks. The novel framework enables the continuous
tracking of anvil clouds associated with detected deep con-
vection after convective activity has stopped, enabling the
study of the entire life cycle of DCCs and their associated
anvils. Furthermore, we expect this framework to be applica-
ble to a wide range of cases including the detection and track-

ing of low-level clouds and other atmospheric phenomena. In
addition, this framework may be used to combine observa-
tions from multiple sources, including satellite observations,
weather radar and reanalysis model data.

1 Introduction

Deep convective clouds (DCCs) are dynamical atmospheric
phenomena resulting from instability in the troposphere.
DCCs consist of a vertically growing core with a diame-
ter of 10 km and updraught velocities of around 10 m s−1

(Weisman, 2015), and a surrounding anvil cloud formed due
to horizontal divergence of cloud droplets lifted to the level
of neutral buoyancy (Houze, 2014). The life cycle of DCCs
can be separated into three sections: a growing phase, where
the core develops vertically, a mature phase in which the
anvil cloud develops horizontally while convection continues
within the core, and a dissipating phase in which the anvil
cloud dissipates after convective activity ceases within the
core (Wall et al., 2018). For isolated DCCs consisting of a
single core, the overall life cycle typically spans 1–3 h (Chen
and Houze, 1997). However, DCCs may also form with mul-
tiple cores feeding a single anvil cloud (Roca et al., 2017),
and in these cases may span areas several orders of magni-
tude larger (Houze, 2004), and exist for 10–20 h or longer
(Chen and Houze, 1997).

DCCs are strongly linked with extreme weather events, in-
cluding heavy precipitation, lightning and hail (Westra et al.,
2014; Houze, 2014; Williams et al., 1992; Bruning and Mac-
Gorman, 2013; Punge and Kunz, 2016; Matsudo and Salio,
2011). DCCs are also strongly linked to global climate cir-
culation and the global energy budget (Houze, 2004; Fritsch
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and Forbes, 2001; Johnson and Mapes, 2001). Furthermore,
the frequency and intensity of DCCs and their associated
precipitation is expected to increase with global warming,
a prediction that is supported by both global climate mod-
els (Allen and Ingram, 2002; Trenberth et al., 2003; Held
and Soden, 2006; Muller and O’Gorman, 2011; O’Gorman et
al., 2012; O’Gorman, 2015) and observational evidence (Tan
et al., 2015; Berg et al., 2013; Aumann et al., 2018; Houze
et al., 2019). Improving our understanding of the behaviour
of DCCs and their interactions with the wider environment
is vital for predicting the impacts of future climate change
(Westra et al., 2014).

Sequences of images from satellite instruments have been
used to detect and track the motion of deep convective clouds
and tropical storms since the earliest geostationary weather
satellites (Menzel, 2001). Whereas early detection and track-
ing was performed by hand, numerous algorithms have been
developed for the purpose of performing this task automati-
cally, and are widely used for both forecasting and research
purposes (e.g. Mecikalski et al., 2011; Senf et al., 2015; Senf
and Deneke, 2017; Feng et al., 2012, 2019; Zinner et al.,
2008). There is a continual effort both to improve existing
algorithms and develop new methods to support these activ-
ities. However, it is important to understand the differences
in observations of DCCs from satellite imagery to those of
other sources, particularly radar and lightning observations.

Visible and infra-red (IR) imagery from modern geosta-
tionary weather satellite instruments provide unique obser-
vations of DCCs and their surrounding environment. Fig-
ure 1 compares observations of DCCs throughout three dif-
ferent stages of their life cycle between satellite visible and
IR imagery, Doppler cloud radar and lightning flash obser-
vations. Composite colour images from a combination visi-
ble and near-IR channels aboard the Advanced Baseline Im-
ager (ABI) show (a) small, isolated cores during the growing
phase, (b) a large area of optically thick anvil during the ma-
ture phase, and (c) a large area of optically thin anvil cloud
during the dissipating phase. Brightness temperature imagery
from the ABI 10.8 µm channel displays (d) rapidly cooling
cores, (e) a large, cold anvil cloud, and (f) warmer bright-
ness temperatures caused by thermal radiation from the sur-
face penetrating the optically thin dissipating anvil. Light-
ning flash locations observed by the Geostationary Light-
ning Mapper (GLM) aboard GOES-16 shows (g) low fre-
quency during the growing phase, (h) high frequency during
the mature phase, and (i) no lightning activity in the dissi-
pating phase. Column mean radar reflectivity observed by
NEXRAD doppler cloud radar shows high radar reflectivity
in the convective cores during the (j) growing and (k) mature
phases, and no area of high radar reflectivity during the dissi-
pating phase. The outline of the region of brightness temper-
atures below 270 K observed by ABI is shown by the dashed
orange contour over the GLM flash locations and NEXRAD
radar reflectivity to indicate their observations relative to the
anvil cloud.

These instruments are capable of observing the entire ex-
tent of the anvil clouds associated with DCCs over their
entire life cycle, even after convective activity has ceased
(Fig. 1f). This is of particular importance due to the influ-
ence of anvil cloud radiative forcing on the climate, the re-
sponse to temperature change (Bony et al., 2016; Hartmann,
2016; Ceppi et al., 2017; Gasparini et al., 2019) and possible
feedbacks on subsequent convective activity (Varble, 2018).
The newest generation of geostationary imaging satellites of-
fers greater opportunities for the study of DCCs due to their
high spatial and temporal resolution, allowing the detection
and tracking of individual convective cores (Heikenfeld et al.,
2019) and also due to their high signal to noise ratio allowing
research quality observations (Iacovazzi and Wu, 2020).

The detection and tracking of DCCs from satellite imagery
remains challenging due to the inability to directly observe
the convection that drives DCCs using passive visible and
IR observations. This is unlike radar and lightning obser-
vations, which can directly observe deep convection due to
the strong correlations between core updraft intensity and
radar reflectivity and polarisation (Austin, 1987; Rosenfeld et
al., 1993; Zipser and Lutz, 1994), and lightning flash occur-
rence (Williams et al., 1989; Deierling and Petersen, 2008;
Wang et al., 2017). Instead, a proxy for convective activity
must be used to detect deep convection in visible and IR
satellite imagery. The approaches used for this can generally
be separated into two different methods. Firstly, the use of
thresholds on brightness temperature (BT) or other observed
fields, which are capable of detecting DCC anvil clouds (e.g.
Schmetz et al., 1997; Hong et al., 2005; Schröder et al., 2009;
Liang et al., 2017; Senf et al., 2018). Secondly, the detection
of rapidly growing cloud tops by observing changes in the
anvil cloud top radiative cooling, or by other similar approx-
imations of cloud growth (Zinner et al., 2008; Bedka et al.,
2010; Müller et al., 2019).

Developing a detection method using either approach is
made challenging by the dynamic nature of DCCs them-
selves. DCC cores typically have diameters of around 10 km,
and updraft velocities on the order of 10 m s−1 (Weisman,
2015), and exist for 1–3 h (Chen and Houze, 1997). Large,
mesoscale convective systems (consisting of multiple cores
joined by a single large anvil; Roca et al., 2017) may span
areas several orders of magnitude larger than isolated DCCs
(Houze, 2004), and typically exist up to 10–20 h or longer
(Chen and Houze, 1997). The life cycle of a DCC can be split
into three phases: an initiation or growing phase, a mature
phase and a dissipating phase after the cessation of convec-
tive activity (Wall et al., 2018). There exists a significant dif-
ference between the diurnal cycles of deep convection over
the land and over the ocean, with observed DCCs over land
clustered towards the end of the day (Taylor et al., 2017).

The difficulties of detecting DCCs using various proxy
approaches is demonstrated by the cross sections of an ob-
served DCC over time in Fig. 2. The observed brightness
temperature of the DCC anvil cloud shows wide variation
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Figure 1. Observations of a cluster of deep convective clouds over north-west Florida throughout three stages of their life cycle. This cluster
of DCCs occurred on the afternoon of 19 June 2018. The “growing” column were observed at 17:00 UTC, the “mature” column at 19:00 UTC,
and the dissipating column at 21:00 UTC. Note that, unless otherwise specified, this case study is used for all subsequent figures in this article.

of over time, with the anvil cloud warming due to dissipa-
tion after the end of convective activity. This wide variety of
observed temperatures leads to large differences in the cho-
sen threshold value between different algorithms (see dis-
cussion in Bennartz and Schroeder, 2012). This choice of
threshold value is further complicated due to the overlap in
observed brightness temperatures between DCC anvils and
non-convective clouds (Konduru et al., 2013). As a result,
any detection method using a brightness temperature thresh-

old must compromise between missed detection of DCCs, or
false detection of non-DCC clouds.

The cooling of the cloud top is only visible for a short
period during the initial phase of the DCC, before the anvil
cloud top reaches the tropopause temperature after approxi-
mately 30 min. As a result, any method that solely relies on
detecting the growth of the DCC will be unable to detect the
anvil cloud after this initial growth phase has ended. While
such algorithms provide an accurate detection of these early
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Figure 2. Cross sections of the DCC observed in Fig. 1 as they
develop over time. (a) The location of the cross section within the
observed DCC. The mean of values is taken in the north-south axis.
(b) ABI 10.8 µm brightness temperature, showing rapid cooling for
the first 30 min, followed by an expanding region of anvil cloud that
begins to thin and warm after 2–3 h. (c) Column mean radar re-
flectivity, showing the presence and location of the convective core.
Initiation occurred at 82.0◦W 28.5◦ N at a time of 17:00 UTC.

phases of DCC growth (Zinner et al., 2013), they are unable
to continue tracking the anvil cloud after convective activity
is no longer observed.

Fiolleau and Roca (2013) identified this need to compro-
mise on the accuracy of detecting DCCs as a problem caused
by the commonly used two-step framework for detecting and
tracking DCCs. In this framework, DCCs are first detected in
individual images, and then linked together over time in se-
quences of images. As a result, the detection method chosen
must be capable of detecting DCCs at each individual time
step in order to track their entire life cycle. Instead Fiolleau
and Roca (2013) implemented a single-step framework for
mesoscale convective systems that treats a sequence of im-
ages as a “3D” volume, and performs detection and tracking
simultaneously by applying a watershed method over both
spatial and temporal dimensions. Whereas this approach was
successful for large mesoscale systems where the advection
of the anvil is small compared to the overall anvil area, it
is less capable of tracking small rapidly moving convective
cores. To improve the tracking of small DCCs, we have de-
veloped a semi-Lagrangian framework for single-step detec-
tion and tracking, which accounts for the motion of DCCs
using optical flow.

By utilising the semi-Lagrangian framework, we are able
to combine the best elements of both growth-based and
threshold-based detection methods. We show that it is pos-
sible to detect growing DCCs to a high degree of accuracy
using methods similar to those of Zinner et al. (2008), and
then extend the detected DCC over the entire anvil cloud us-
ing the “3D” watershed method of Fiolleau and Roca (2013).
This framework reduces the compromise required between
the rate of missed DCCs and falsely detected DCCs, im-
proving the overall accuracy of our detection method com-
pared to existing approaches. Furthermore, this method al-
lows the anvil cloud to be detected and tracked even after the
region of cloud top cooling is no longer detected. Finally, the
“3D” method handles the merging and splitting of intersect-
ing DCCs by detecting all DCCs that intersect at any point
during their lifetime as a merged object.

2 Data

Three sources of data are used throughout this article. Pri-
marily, visible and IR imagery from ABI aboard the Geo-
stationary Operational Environmental Satellite (GOES)-16
weather satellite is used for the detection of DCCs. Secondar-
ily, observations from the NEXRAD weather radar network
and the geostationary lightning mapper (also aboard GOES-
16) are used to assess and validate the tracking and detection
method presented here.
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2.1 Advanced Baseline Imager

The Advanced Baseline Imager (ABI) is a visible and IR ra-
diometer aboard the Geostationary Operational Environmen-
tal Satellite (GOES)-16 series of weather satellites (Schmit
et al., 2016). GOES-16, also known as GOES-East, is situ-
ated in a geostationary orbit at 75.2◦W above the Equator,
providing a field of view (or “Earth-disc”) covering most of
the Western Hemisphere, including all of South America and
most of North America. ABI has 16 channels operating in a
range of spectral bands in the visible, near-IR and thermal-
IR. The majority of these channels have a resolution of 2 km
at the sub-satellite point, although this increases to approx-
imately 3 km across most of the continental United States
due to the satellite viewing angle. ABI operates in a flexible
scan mode, imaging the continental US (CONUS) once every
5 min, the full disc every 10 min (15 min prior to April 2019),
and two mesoscale regions of approximately 2500×2500 km
every minute. Additionally, it is capable of scanning the
full-disc every 5 min if no other scans are performed. This
combination of high spatial and temporal resolution makes
ABI suitable for detecting and tracking small and develop-
ing DCCs, as well as providing the spatial coverage to also
track large mesoscale convective systems (Heikenfeld et al.,
2019).

Compared to older geostationary instruments, ABI has
higher spatial and temporal resolution, more channels in both
the LW IR window spectrum and the LW IR water vapour
(WV) spectrum, and low noise (Table 1) (Iacovazzi and Wu,
2020). This, combined with many of the channels being de-
rived from those aboard the Visible Infrared Imaging Ra-
diometer Suite (VIIRS), make the data from ABI more suit-
able for research purposes than those from older instruments
(Heidinger et al., 2020). A number of artefacts are known to
occur in ABI imagery (Gunshor et al., 2020). Although the
majority of these artefacts are removed using the data quality
flag associated with the ABI data, we have found a number of
cases in which bad detector stripes (described in Sect. 3.2 of
Gunshor et al., 2020) are not flagged in the data, and so de-
tection and tracking of DCCs has not been performed during
the time periods when these artefacts occurred.

In this paper we have used the ABI level 2 multichannel
cloud and moisture imagery product (MCMIP), which pro-
vides calibrated reflectances and brightness temperatures for
all ABI channels on a common grid (Schmit and Gunshor,
2020), using the 5 min frequency imagery provided over the
CONUS region. The case study shown in the figures through-
out this paper is for a subset of the CONUS scan region cen-
tred at 83.7◦W, 29.2◦ N, over the time period of 18:00:00
to midnight UTC on the 19 June 2018. Validation was per-
formed on a subset of the CONUS scan region from 114–
76◦W and 24–45◦ N over the entirety of 2018. All data has
been sourced through the National Oceanic and Atmospheric
Administration Big Data Program.

Selection of ABI channels and channel combinations

In order to have equal performance during both daytime and
nighttime, a selection of longwave (LW) IR ABI channels
are used for the detection and tracking of DCCs (see Fig. 3).
These channels consist of the LW clean and dirty window
channels at 10.8 and 12.3 µm, respectively, and the upper and
lower troposphere water vapour channels at 6.2 and 7.3 µm,
respectively. Whereas the LW window IR brightness tem-
perature is commonly used for the detection of DCCs us-
ing threshold-based methods, we have decided not to use
it for this purpose in this method due to the wide range of
brightness temperatures observed within anvil clouds, and
the variance of anvil cloud temperature because of changes
in tropopause temperature due to meteorology and latitude.
However, the information contained within this field is used
for the optical flow calculation of the cloud motion field.

Two additional combinations of channels are used to de-
tect areas of DCC anvil. The water vapour difference (WVD)
combination (Fig. 3b) of the upper troposphere WV channel
minus the lower troposphere WV channel has been shown
to provide a high detection rate for DCCs (Müller et al.,
2018, 2019). In clear sky or low cloud conditions, WVD
shows the temperature difference between the upper and
lower troposphere of generally around −20 K. However, in
the presence of high, thick clouds the 6.2 µm has an addi-
tional contribution from stratospheric water vapour result-
ing in a warmer, and in extreme cases positive WVD value
(Schmetz et al., 1997). Because both the WV channels are
strongly absorbed by water vapour in the lower troposphere,
the WVD field is not affected by surface and low altitude
features and provides a clear distinction between thick, high
cloud and the background across a wide range of situations.
Müller et al. (2019) found that a threshold of −5 ◦C gave a
high detection rate of anvil clouds. Furthermore, as the WVD
values are relative to the lower stratosphere temperatures, this
field is much less affected by location and meteorology than
the LW IR channels. However, the WVD is still prone to the
false detection of non-convective clouds when using a thresh-
olding method as it cannot directly distinguish between thick,
high-altitude clouds that are associated with deep convection
and those that are not.

The split window difference (SWD), consisting of the
clean IR window channel minus the dirty IR window chan-
nel (Fig. 3c), aids in the detection and separation of opti-
cally thin anvil cloud (including cirrus outflow) from opti-
cally thick anvil due to the difference in ice particle emis-
sivity between these two channels (Heidinger and Pavolonis,
2009). As a result, this combination displays warm temper-
atures of around 10 K for thin, ice clouds, near 0 K for thick
clouds, and approximately 5 K for clear skies due to the con-
tribution of boundary layer water vapour. The SWD is, how-
ever, also sensitive to low level clouds and low level water
vapour concentrations, and so cannot be used alone to detect
DCCs. It remains important to consider the SWD field due
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Table 1. Comparison of data from ABI to those from older geostationary instruments.

Instrument ABI (GOES-16) SEVIRI (Meteosat-11) IMAGER (GOES-14)

Temporal resolution 5 min 15 min 30 min
Nadir spatial resolution 2 km 3 km 4 km
Number of IR LW window channels 3 2 1
Number of IR WV channels 3 2 1
Noise equivalent temperature 0.1 K at 300 K 0.25 K at 300 K 0.09 K at 300 K

to the difficulty in separating anvil clouds from cirrus when
using LW IR BT alone (Hong et al., 2005). By subtracting
the SWD from the WVD field, we can reduce the sensitivity
of our detection scheme to cirrus clouds, reducing the rate of
erroneous detection. Furthermore, adding the SWD field to
WVD field can enhance the appearance of cirrus, enabling
the detection of thin ice cloud associated with cirrus outflow
and dissipating anvils.

2.2 Geostationary Lightning Mapper

The Geostationary Lightning Mapper (GLM) is also
mounted on GOES-16 and detects lightning flashes using
an optical transient detector. The optical transient detector
utilises a single, narrow-band near-IR channel centred on
777 nm (Orville and Henderson, 1984) to detect momentary
changes in brightness associated with lightning events at a
frequency of 400 µs (Christian et al., 2003), providing a 70 %
minimum efficiency of detection (Goodman et al., 2013).
GLM has the same field of view as the ABI instrument, al-
beit with a lower spatial resolution of 8 km at the sub-satellite
point.

As lightning observations are strongly correlated with
DCCs, data from GLM is used to validate the detection of
DCCs using ABI. The level 2 GLM lightning cluster-filter
algorithm product provides a dataset of events, groups and
flashes processed from the GLM data (Peterson, 2019), and
filters artefacts from the level 1 GLM data (Peterson, 2020).
From this dataset we extract detected flashes as evidence of
DCC occurrence. These locations are then processed by map-
ping their frequency onto the ABI grid for validation of the
algorithm.

3 Method

We present here a novel method for detecting and tracking
both the growing cores and anvils clouds of DCCs, consisting
of the following steps:

1. Ingest of LW IR BT fields from geostationary satellite
imagery, including calculation of WVD and SWD fields
from IR water vapour and LW IR window channels.

2. Calculation of optical flow vectors to be used as an a
priori estimate of cloud motion for use in the semi-
Lagrangian framework.

3. Detection of growing DCC cores using cloud top cool-
ing rate.

4. Detection of thick and thin anvil clouds associated with
detected cores using a semi-Lagrangian “3D” water-
shedding method.

5. Grouping of cores into multicore systems, calculation
of statistics and validation using lightning observations.

3.1 Estimation of cloud motion vectors using optical
flow

The retrieval of atmospheric motion vectors (AMVs) has
been performed since the earliest geostationary satellite ob-
servations (Menzel, 2001). AMVs provide information about
the motion of clouds in the atmosphere, including DCCs
(Bedka and Mecikalski, 2005), and are routinely generated
for the majority of operational geostationary earth obser-
vation satellites, including GOES-16 (Daniels et al., 2008).
However, although AMVs may provide useful information
about the motion of DCCs, the non-geostrophic nature of
wind fields in these conditions may result in the AMVs being
calculated inaccurately or rejected by quality control checks
(Bedka and Mecikalski, 2005).

Optical flow algorithms are a family of algorithms used
to estimate the apparent motion of objects observed in a se-
ries of images (Aggarwal and Nandhakumar, 1988). A wide
range of optical flow algorithms exist, and these have been
successfully applied to many computer vision applications.
It should be noted that optical flow does not necessarily rep-
resent the physical motion of an object, and is instead an es-
timation of the relative motion between an object and the ob-
server and additionally any change in the apparent object (in-
cluding growing, shrinking or other warping of the object).

Optical flow algorithms have been previously shown to
be accurate for the prediction of AMVs using geostation-
ary satellite images (Wu et al., 2016), as long as the ob-
servations are sufficiently frequent such that the motion of
unique features between images is less that the length scale
at which neighbouring features can be resolved (Bresky and
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Figure 3. ABI channels and channel differences used with the de-
tection and tracking algorithm. (a) The 10.8 µm brightness temper-
ature, or clean longwave window channel, which can differentiate
clouds at all altitudes by their brightness temperature. (b) The water
vapour difference (WVD) combination of the 6.2 µm upper tropo-
sphere water vapour channel minus the 7.3 µm lower troposphere
water vapour channel, which is strongly negative for clear sky and
low cloud, but approaches positive values for thick, high clouds.
(c) The split window difference (SWD) combination of the 10.8 µm
clean longwave window channel minus the 12.3 µm dirty longwave
window channel, which is near zero for thick clouds, around 5 K for
clear skies and approximately 10 K for thin, ice clouds.

Daniels, 2006). Heikenfeld et al. (2019) found that at imag-
ing frequencies of less than 5 min the motion of DCC cores
was less than the spacing between neighbouring cores in the
majority of cases, indicating that the frequency of the ABI
CONUS scan region is suitable for calculating optical flow
vectors of DCCs. The use of optical flow has several advan-
tages over traditional AMVs for the retrieval of DCC motion
vectors: optical flow can be calculated quickly using only

two subsequent images and no a priori information, aiding in
near real-time applications, and also have no requirement for
geostrophic balance. Optical flow algorithms are routinely
used in the nowcasting of convective precipitation, and can
be used to provide accurate predictions of DCC with 1 hour
of lead time using either radar or satellite observations (e.g.
Bowler et al., 2004; Bechini and Chandrasekar, 2017; Woo
and Wong, 2017).

It should be noted that we are using optical flow to esti-
mate the apparent motion of the cloud field between subse-
quent images, with the aim of using these vectors to map the
locations of DCCs from one step to the next, instead of calcu-
lating actual AMVs corresponding to winds. This approach
avoids a number of challenges with the use of optical flow
for calculating AMVs including the estimation of the height
of estimated flow vectors and the detection of diverging or
converging motion vector fields in situations of growing and
dissipating clouds, respectively. In the latter case, we in fact
aim to include the divergence and convergence within the op-
tical flow vector field to map both the location and shape of
observed clouds between time steps.

We use the Farnebäck algorithm (Farnebäck, 2003) to esti-
mate optical flow vectors of observed DCCs. The Farnebäck
algorithm calculates a “dense” field of optical flow vectors, in
which a flow vector is calculated for every pixel in the origin
image which maps to its predicted location in the destina-
tion image. This calculation is performed by finding the min-
imum cross-correlation over increasingly smaller subsets of
the image. This iterative approach allows flow vectors to be
calculated to sub-pixel accuracy. In this framework, we have
used the implementation of the Farnebäck algorithm from
the OpenCV image processing package (Bradski, 2000). Al-
though other optical flow algorithms may provide better ac-
curacy in different circumstances (Baker et al., 2011), we
have found that the ability of the Farnebäck algorithm to ac-
cept a range of parameters is important for detecting the mo-
tion of clouds across a wide range of scales. The choice of
parameters used is a compromise between the ability to ro-
bustly detect flow vectors in areas of the image with low con-
trast between features (e.g. in the centre of anvil clouds), ver-
sus the fidelity of the motion vectors detected for small, high
contrast features such as developing cores. Table 2 shows the
parameters chosen for the Farnebäck algorithm for ABI im-
agery in the CONUS scan region, which has a temporal res-
olution of 5 min and the spatial resolution of 2 km. The val-
ues used for the window size parameter is scale-dependent,
proportional to the time between subsequent images and in-
versely proportional the spatial resolution.

An example of the motion vectors calculated by the
Farnebäck algorithm when applied to the 10.8 µm brightness
temperature field is shown in Fig. 4. By comparing the pre-
dicting flow vectors to the future evolution of the cloud field
(dashed line), we can see that the algorithm correctly esti-
mates the future evolution of the anvil cloud. Optical flow,
and similar motion vector techniques, have been successfully
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Table 2. The values of parameters used in the Farnebäck algorithm
for detection of optical flow vectors in this application.

Parameter Value

Window size 16
Levels 5
Pyramid scale 0.5
Iterations 3
Polynomial order 5
Polynomial sigma 1.1
Window type Gaussian

applied to both the detection of developing deep convection
(Zinner et al., 2008; Zhang et al., 2014) and tracking detected
deep convective features (Senf et al., 2018) separately.

We estimate the uncertainty of the optical flow vectors
by comparing the residual error in the location of features
in subsequent images after the detected motion from optical
flow is accounted for (see Fig. 4d). We restrict the estimation
of uncertainty to regions of clouds with brightness temper-
atures less than 270 K as these are the situations in which
we see enough contrast with the background to detect optical
flow motion vectors. We find that in the majority of cases the
relative uncertainty in the magnitude of the location offset
versus the magnitude of the estimated optical flow vector is
less than 10 %, with mean and median relative uncertainties
of 15.0 % and 8.4 %, respectively.

Two potential sources of uncertainty are the assumptions
made by the Farnebäck algorithm that the feature being
tracked remains the same size and intensity in subsequent
images. For optical flow tracking using brightness tempera-
ture images of growing DCCs, neither of these assumptions
are true. However, we have taken steps to reduce the impact
of both these sources of uncertainty on the tracking algo-
rithm. For the first of these assumptions, we find that in the
case of small, fast moving DCCs – where the accuracy of
the optical flow vectors is most important – the changes in
size of the DCC is small compared to the overall motion, and
so the uncertainty introduced is small. Comparably, for large
DCCs where the changes in size may be large compared to
the motion, the uncertainty introduces has less impact on the
tracking algorithm. In the worst case scenario the estimated
optical flow field will be zero, in which case the “3D” de-
tection and tracking algorithm works in the same manner as
that of Fiolleau and Roca (2013), which is suitable for use on
these larger DCCs. To reduce uncertainty caused by the sec-
ond assumption we normalise the range of brightness tem-
peratures between subsequent images when estimating opti-
cal flow to reduce the change in brightness temperature ob-
served for growing DCCs.

3.2 A semi-Lagrangian framework for morphological
image processing

Morphological image operations analyse images using their
geometrical and structural properties. The core to many mor-
phological algorithms, from simple filters to complex neural
networks (Kalchbrenner et al., 2014), is the kernel or con-
volution method. A convolution method performs operations
on the pixels of an image by applying a convolution stencil
to the pixel and its neighbours. In a conventional convolu-
tion scheme, such as that used in the methods of Fiolleau
and Roca (2013), the convolution stencil acts on adjacent
pixels in both time and space (see Fig. 5a). In this Eulerian
framework, different locations in time are considered in the
same manner as those in the spatial dimensions. However,
we know from previous analysis of DCCs that the motion of
convective cores between images can be similar to the spac-
ing of cores and their size (Heikenfeld et al., 2019). As a re-
sult, it is important to include the effects of advection when
comparing images across time steps.

To perform morphological operations which take this ad-
vection into account , we have developed a novel Lagrangian
convolution method. For spatial operations, the Lagrangian
stencil operates identically to that of a classical convolution
method. However, when sampling points at prior or subse-
quent time steps, the locations of the stencil are offset by
the relevant optical flow vectors (Fig. 5b). Values at the off-
set stencil locations are interpolated, providing a Lagrangian
reference frame for changes in the observations over time.
When applying the convolution stencil to every pixel in
a sequence of images, this provides a semi-Lagrangian
framework for morphological operations, combining the La-
grangian reference frame for evaluating changes over time
while maintaining the regular grid of the images.

We have developed new implementations of several exist-
ing image processing operations within the Lagrangian con-
volution framework, including:

– Sobel edge detection (Sobel and Feldman, 2014)

– Watershed segmentation using the connected-
components method (Bieniek and Moga, 2000)

– Labelling of connected components (Hoshen and
Kopelman, 1976)

These operations are used in this method to detect the full
extent of the anvil cloud associated with the DCC, to perform
detection continuously across multiple time periods while ac-
counting for the motion of the DCC, and to identify individ-
ual DCCs and DCC clusters across multiple time periods.

The Sobel method detects edges in an image using the
magnitude of the local gradient at each pixel. Edge detection
enables the segmentation of an image into separate regions
without predefined thresholds (such as in brightness temper-
ature) to separate them.
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Figure 4. Cloud motion field for the DCC observed in Fig. 1 calculated using optical flow over a 30 min period. (a) The initial image and
(b) the final image. (c) The calculated optical flow vector field, with the detected motion displayed by the red arrows and the velocity of the
vectors by the background. Optical flow vectors are estimated across the entire domain, but are here only visible for the region of high anvil
cloud. (d) The relative uncertainty distribution of calculated optical flow vectors.

Figure 5. A comparison of convolution stencils with square con-
nectivity in Eulerian (a) and Lagrangian (b) frameworks. In the La-
grangian framework, the points at prior and subsequent time steps
are offset by the calculated optical flow field.

Watershed algorithms are a method of image segmenta-
tion that equate an image to a topographical map, with ele-
vation according to the value of the pixel. Each pixel is then
descended towards its local minima until it reaches a pre-
defined marker region. The method takes its name from the
geographical feature of the same name, which refers to the
separation between adjacent drainage basins. Although this

physical interpretation of the algorithm applies to two dimen-
sional images, the method can be applied to arrays with any
number of dimensions, such as the method used by Fiolleau
and Roca (2013) which applied watershedding to a three di-
mensional field.

Labelling algorithms assign unique identifiers to each seg-
mented region provided by either the edge detection or wa-
tershed algorithms.

3.3 Detection of growing deep convection

Growing deep convective cores are detected in a similar man-
ner to that used by Zinner et al. (2008). We have found that
the WVD field provides the best observations for detecting
growing deep convective cores as the field isolates growth
in the mid-troposphere, removing spurious observations of
growth due to boundary layer convection and cloud forma-
tion. The growth is calculated using the finite difference of
the WVD field in the Lagrangian perspective.

We classify a region of growing deep convection as a re-
gion of continuous warming of the WVD field of at least
0.5 K min−1 over a 15 min period, covering an area of at least
3 by 3 pixels (approximately 9×9 km) at each time step. This
threshold for cloud top growth is based on previous studies
which have found a cooling of 8 K over a 15 min period to
be a good predictor of intense convection (Roberts and Rut-
ledge, 2003; Hartung et al., 2013). The region of growing
cloud is then expanded through the use of a watershed opera-
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tion to fill surrounding areas of the cloud field with a detected
growth rate greater than 0.25 K min−1 to detect weaker areas
of updraft within the growing cores. Finally, each region of
detected growth is labelled, and each label checked to ensure
that the growth region ends with a WVD field with a value
of greater than−5, indicating the formation of an anvil cloud
(Müller et al., 2018).

Figure 6 shows a comparison between the detected core
cooling rates in ABI imagery and the corresponding column
radar reflectivity measured by NEXRAD. During the early
development of the core, the detected cooling rate (Fig. 6a)
shows growth in the same locations as the NEXRAD radar
reflectivity (Fig. 6c). However, during the mature stage of
the DCC, discrepancies develop between the observed cool-
ing rate (Fig. 6b) and the radar reflectivity (Fig. 6d) due to
the development of the anvil cloud blocking satellite obser-
vations of the core underneath.

3.4 Detection of anvil clouds

The region of anvil cloud associated with the growing con-
vective clouds detected in the previous section is detected
and tracked using an edge-based watershed segmentation ap-
proach. The edge-based approach to cloud detection avoids
the use of a fixed threshold for anvil temperature, and so
can detect a more accurate extent of the anvil cloud (Dim
and Takamura, 2013). We define an upper threshold for the
WVD field of −5 K, as used by Müller et al. (2018), and a
lower threshold of −15 K, which we define as definite non-
anvil cloud. Because the presence of thin cirrus outflow from
the anvil clouds can make it difficult to determine the ex-
tent of the anvil cloud, we use the SWD field as described
in Sect. 2.1 to either remove or include the region of cir-
rus outflow in the detected anvil region. To detect the thick
anvil cloud, we subtract the SWD field (Fig. 7a). In this case,
the upper and lower thresholds remain the same as the SWD
field is approximately 0 K for thick, high clouds, and so has
no effect on the temperature of these features. For detect-
ing the thin anvil region, we add the SWD field and increase
the value of both thresholds by 5 to 0 and −10 K respec-
tively (Fig. 7c). This change is made to account for the effect
of low level water vapour on the SWD field which gives a
background value of approximately 5 K. Between these two
thresholds, we have a region in which we are uncertain of the
extent of the anvil cloud. By applying a Sobel filter to de-
tect the local gradient magnitude of the combined WVD and
SWD field (Sobel and Feldman, 2014), we detect the outer
extent of the anvil cloud within this region where we see the
greatest magnitude in the detected edges (see Fig. 7b, d).

When applied to the detected edges of the anvil clouds us-
ing the Sobel filter, with the growth regions detected previ-
ously as markers, the watershed method allows us to detect
those anvil regions associated with detected regions of grow-
ing DCCs, while avoiding the detection of non-convective
regions of high, cold cloud. Furthermore, due to the applica-

tion of the watershed algorithm to both the spatial and tempo-
ral dimensions of the sequence of images through the semi-
Lagrangian framework, we are able to detect the associated
anvil clouds after the growth of the DCC is no longer ob-
served (see Fig. 8).

Figure 8 shows an example of the results of detecting and
tracking DCC cores and their associated anvils. Detection of
the cores (outlined in red) and the initial development of the
associated anvils (outlined in orange and blue for the thick
and thin anvil regions, respectively) can be seen in Fig. 8a.
In Fig. 8b we see the development of the mature anvil, which
primarily consists of thick anvil, and secondary core detec-
tions as new convection develops at the edge of the DCC.
In Fig. 8c, we see the detected anvil cloud beginning to dis-
sipate, and a larger proportion of the anvil cloud detected as
thin anvil. At this point in the lifetime of the tracked DCC we
no longer observe any growing core; however the “3D” ap-
proach allows the continued tracking of the anvil cloud until
it dissipates.

4 Evaluation

The effectiveness of the semi-Lagrangian framework for the
detection of DCCs is evaluated by analysing the proximity of
detected anvil cloud regions to lightning flash detection from
GLM. Lightning observations are frequently used to validate
detection methods for deep convection (e.g., Zinner et al.,
2013; Müller et al., 2019) due to the strong correlation be-
tween deep convective updraughts and lightning activity. Al-
though GLM is not capable of detecting all lightning events
(approximately 70 % of lightning events are detected) (Peter-
son, 2020), the high frequency of lightning flashes per DCC
mean that these observations provide a suitable ground truth
for validation. It should be noted that lightning observations
are only suitable for validating the detection of the thick anvil
region, as lightning does not occur in the cirrus outflow. As
a result, validation of the detection of the thin anvil region
would require the use of other data such as cloud profiling
radar or lidar observations, and is not considered further in
this paper.

Here we apply the same validation method as used by
Müller et al. (2019) to evaluate the semi-Lagrangian frame-
work for the detection of DCCs. We classify detection events
into three categories:

– Correct detection (CD), when the algorithm detects a
DCC that is collocated with one or more lightning ob-
servations.

– False detection (FD), when the algorithm detects a DCC
but no lightning flash is observed.

– Missed detection (ND), when the algorithm does not de-
tect a DCC but a lightning flash is observed.
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Figure 6. Detection of growing deep convective cloud regions for the DCC cluster in Fig. 1. 15 min average cooling rate in the GOES-16
ABI water vapour difference field is used to detect growing cores. This is effective in the growing phases of convection (a), but becomes
less effective during the mature phase (b). Comparison with NEXRAD column mean radar reflectivity remapped to the ABI grid (c, d). An
average cooling rate of greater than 0.5 K min−1 is indicative of a growing convective core.

Using these three categories of events we can define two
measures of accuracy for the detection of DCCs. The proba-
bility of detection (POD) is defined as the number of correct
detections divided by the total number of correct and missed
detections. This provides a measure of how likely the algo-
rithm is to detect a DCC that exists in the ground truth. The
false alarm rate (FAR) is defined as the number of false detec-
tions divided by the total number of correct and false detec-
tions. This provides a measure of how likely a DCC detected
by the algorithm is not present in the ground truth.

When evaluating whether detected DCC regions and light-
ning observations were collocated Müller et al. (2019) con-
sidered events within 32 km and 15 min to be collocated.
This margin of uncertainty was separated into two sections,
half from the physical separation between observed lightning
strikes, and the remaining half from uncertainty in the collo-
cation and geolocation of the satellite and lightning obser-
vations. For a typical ABI pixel length over the continental
USA of 3 km, this margin of error translates into 10 pixels in
the ABI view. The distance between a GLM lightning flash
and detected cloud region is defined as the distance between
the flash and the nearest ABI pixel within that region, with
GLM flashes that fall within a detected DCC given a distance
of 0 pixels. When considering that the resolution of GLM is

a factor of four less than that of ABI, we consider that the
same justification for the margin of error used by Müller et
al. (2019) is also applicable to collocated observations from
ABI and GLM.

Validation was performed using GOES-16 ABI data from
the CONUS scan region for the entirety of 2018, which were
processed using the method described in this article. In total
validation was performed for 290 d of ABI data, the remain-
ing 75 d being excluded due to missing observations from
either the ABI or GLM instruments aboard GOES-16, or
artefacts present in the ABI data. Detection and tracking of
DCCs was performed on a subset of the CONUS scan region
for each 25 h period consisting of the array locations of 500–
1750 in the x dimension and 250–1000 in the y dimension,
corresponding to a bounding box of 113.6 to 76.2◦W and
24.5 to 44.2◦ N respectively. By performing validation over
both a large region, including a range of both land and ocean
domains, and a full year time period, we aim to avoid any
bias in the validation associated with the variability of the
accuracy of the method with location and season.

Results of the validation of the detected anvil region, as
well as those for the detection of growing deep convec-
tion and the WVD filter are shown in Table 3. The regions
of growing DCCs detected using the method described in
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Figure 7. Detection of anvil cloud extent for the mature DCC cluster in Fig. 1 using the edge gradient method. (a) The combined field of the
WVD minus the SWD, to isolate the thick anvil between the upper and lower thresholds of −5 and −15 K, respectively. (b) The detected
edge gradient magnitude of the field between these thresholds, which is used to detect the outer extent of the thick anvil cloud. (c) The
combined field of WVD plus the SWD, to enhance the thin anvil, and (d) the calculated edge magnitude of this field.

Table 3. Probability of detection (POD) and false alarm rates (FAR)
for three different detection methods validated against observed
GLM flashes (n= 47096707). Growth based refers to the detec-
tion of growing DCCs using the method described in Sect. 3.3.
WVD threshold uses the threshold method developed by Müller et
al. (2018). Semi-Lagrangian refers to the detection of anvil clouds
connected to growing cores using the edge-based watershedding
method described in Sect. 3.4.

Detection method n POD FAR

Growth based 70 527 0.23 0.27
WVD threshold 312 591 0.99 0.73
Semi-Lagrangian 14 479 0.93 0.35

Sect. 3.3 show low scores for both the FAR and POD metrics.
While the detection of growing DCCs shows a low FAR of
0.27, the short time frame in which growth can be observed
leads to a high rate of missed detections of lightning flashes,
which results in a POD of 0.23.

For comparison, we also evaluate the accuracy of detecting
anvils only by a fixed threshold of the WVD without detect-
ing growing cores, as used by Müller et al. (2018). Compared
to the detection of growing DCC regions, the WVD threshold
shows a much higher POD of 0.99, but also has a high FAR
of 0.73, repeating the findings of Müller et al. (2019), which
showed that although the WVD threshold method is capable

of detecting the majority of DCCs, it is incapable of distin-
guishing between anvil clouds and other thick, high altitude
clouds. Furthermore, the WVD threshold detection detects a
much larger number of clouds (n= 312591) compared to ei-
ther of the other detection methods, further indicating that a
large number of non-convective clouds are detected using the
threshold method on its own.

Finally, the anvil regions detected using a combination of
the detected growth regions and the WVD field using the
semi-Lagrangian framework described in Sect. 3.4 is val-
idated. The novel method has a high POD of 0.93 simi-
lar to that of the WVD threshold, while also maintaining
much of the low FAR of the detection of growing DCCs
(FAR= 0.35). This result highlights the capability of the
semi-Lagrangian detection framework to use growth-based
detection methods to substantially reduce the compromise
between POD and FAR error rates by combining multiple
methods for the detection of DCCs.

5 Conclusions

Algorithms for the detection and tracking of deep convec-
tive clouds perform a vital role in both forecasting and re-
search applications. Sequences from geostationary satellites
provide unique observations of DCC anvil clouds over their
entire life cycle. However, the traditional framework used by
such algorithms requires a compromise between the rates of

Atmos. Meas. Tech., 16, 1043–1059, 2023 https://doi.org/10.5194/amt-16-1043-2023



W. K. Jones et al.: A semi-Lagrangian method for detecting and tracking deep convective clouds 1055

Figure 8. Detected regions of thin anvil cloud (blue), thick anvil
cloud (orange), and developing cores (red) overlaid on the GOES-
16 ABI 10.8 µm brightness temperature field for the DCC cluster
from Fig. 1. The three stages of the DCC life cycle are shown;
the growth phase (a), the mature phase (b), and the dissipating
phase (c). Note that the anvil region continues to be detected in
panel (c) after growing cores are no longer detected.

false and missed detections due to the overlap in signature
from convective and non-convective clouds (Konduru et al.,
2013). Whereas novel methods have approached this prob-
lem for the detection of large, mesoscale convective systems
(Fiolleau and Roca, 2013), such approaches do not take ad-
vantage of the capability of the latest generation of geosta-
tionary imaging satellites to detect individual deep convec-
tive cores.

By developing and implementing a novel semi-Lagrangian
framework for the detection and tracking of DCCs we are
able to combine the detection of growing DCC cores (Zinner
et al., 2008) and DCC anvils (Müller et al., 2018) to detect

and track DCCs over their entire life cycles. The novel meth-
ods developed here for the semi-Lagrangian computer vision
framework, along with implementations of multiple image
processing operations commonly used for object detection,
allow the accurate detection and tracking of moving objects
utilising both spatial and temporal information. These meth-
ods may have impacts on applications of computer vision be-
yond the detection and tracking of DCCs. Furthermore, the
novel framework is able to achieve higher levels of accuracy
without compromising on the number of DCCs detected, as
with previous algorithms (Müller et al., 2019).

By using this novel methodology, we are able to detect
and track both small isolated DCCs and large mesoscale con-
vective systems with a high degree of accuracy, high spatial
and temporal resolutions and across large domains such as
the continental USA. The data provided about the behaviour
of DCCs over their entire lifetime will allow new research
into vital topics such as the response of deep convection and
climate change, and the interactions and feedbacks between
DCCs and large scale atmospheric thermodynamics (Varble,
2018).

Code and data availability. The methods described in this pa-
per are made available through a python module released un-
der the BSD 3-clause licence. The python module can be ac-
cessed through the following github repository: https://github.
com/w-k-jones/tobac-flow (last access: 28 October 2022; Jones,
2022c). The version of the code used to for this paper, in-
cluding both the generation of figures and the validation of the
method can be accessed through the following release: https://
github.com/w-k-jones/tobac-flow/releases/tag/v1.0 (Jones, 2022b,
https://doi.org/10.5281/zenodo.5889171). The figures produced for
this article can be reproduced through the jupyter notebook included
in the repository: https://github.com/w-k-jones/tobac-flow/blob/
master/examples/TrackingPaperPlots.ipynb (last access: 28 Octo-
ber 2022; Jones, 2022d).

All ABI, GLM and NEXRAD data used in this paper are openly
available through the NOAA big data program. The results of the
validation described in Sect. 4 can be obtained from the following
data record: https://zenodo.org/record/5885722 (Jones, 2022a).
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