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Abstract. The Atmospheric Carbon Observations from
Space (ACOS) retrieval algorithm has been delivering op-
erational column-averaged carbon dioxide dry-air mole frac-
tion (XCO2 ) data for the Orbiting Carbon Observatory (OCO)
missions since 2014. The ACOS Level 2 Full Physics
(L2FP) algorithm retrieves a number of parameters, includ-
ing aerosol and surface properties, in addition to atmospheric
CO2. Past analysis has shown that while the ACOS re-
trieval meets mission precision requirements of 0.1 %–0.5 %
in XCO2 , residual biases and some sources of error remain
unaccounted for (Wunch et al., 2017; Worden et al., 2017;
Torres et al., 2019). Forward model and other errors can
lead to systematic biases in the retrieved XCO2 , which are
often correlated with these additional retrieved parameters.
The characterization of such biases is particularly essential
to urban- and local-scale emissions studies, where it is criti-
cal to accurately distinguish source signals relative to back-
ground concentrations (Nassar et al., 2017; Kiel et al., 2021).
In this study we explore algorithm-induced biases through
the use of simulated OCO-3 snapshot area mapping (SAM)
mode observations, which offer a unique window into these
biases with their wide range of viewing geometries over a
given scene. We focus on a small percentage of SAMs in
the OCO-3 vEarly product which contains artificially strong
across-swath XCO2 biases spanning several parts per million,
related to observation geometry. We investigate the causes of
swath bias by using the timing and geometry of real OCO-3
SAMs to retrieve XCO2 from custom simulated Level 1b radi-
ance spectra. By building relatively simple scenes and testing
a variety of parameters, we find that aerosol is the primary

driver of swath bias, with a complex combination of viewing
geometry and aerosol optical properties contributing to the
strength and pattern of the bias. Finally, we seek to under-
stand successful mitigation of swath bias in the new OCO-3
version 10 data product. Results of this study may be use-
ful in uncovering other remaining sources of XCO2 bias and
may help minimize similar retrieval biases for both present
missions (GOSAT, GOSAT-2, OCO-2, OCO-3, TanSat) and
future missions (e.g., MicroCarb, GeoCarb, GOSAT-GW,
CO2M).

1 Introduction

With the human-induced warming of Earth’s climate sys-
tem well underway, the study of anthropogenic greenhouse
gas emissions – and in particular, carbon dioxide (CO2) –
plays a major role in the development of both local and in-
ternational climate policy. A robust understanding of Earth’s
carbon cycle, including both natural and anthropogenic con-
tributions, is essential, and involves a myriad of challenges.
Since the launch of the SCanning Imaging Absorption spec-
troMeter for Atmospheric CHartographY (SCIAMACHY;
Bovensmann et al., 1999) in 2002 aboard the European Space
Agency’s Envisat, space-based instruments have been ad-
dressing the particular challenge of scale: in decades prior,
the global carbon cycle was studied using a handful of highly
localized ground measurements scattered across, mostly, the
Northern Hemisphere land surface; SCIAMACHY and its
successors have changed this limitation profoundly (Buch-
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witz et al., 2007; Schneising et al., 2008). The Green-
house gases Observing SATellite (GOSAT; Kuze et al., 2009;
Yokota et al., 2009), launched in 2009, as well as the Orbit-
ing Carbon Observatory missions (OCO-2 and OCO-3), both
launched in the 2010s, have improved upon SCIAMACHY’s
ability to measure CO2 over a large fraction of Earth’s sur-
face, with more continuous spatial coverage than ground-
based networks can provide. With their increasingly fine spa-
tial resolution, precision, and accuracy, space-based observa-
tions from the OCO missions can now resolve carbon sources
around the globe on scales as fine as those of individual
power plant plumes (Nassar et al., 2017; Reuter et al., 2019).

OCO-3, a three-band grating spectrometer that measures
reflected sunlight in the near infrared, was launched in 2019
and is mounted on board the International Space Station
(ISS). It observes Earth’s atmosphere in eight across-swath
footprints, measuring roughly 1.6 by 2.2 km2 on the ground.
Just like its precursor OCO-2, it targets column-averaged
carbon dioxide (XCO2 ) with spectral measurements of re-
flected sunlight in three bands: the oxygen A-band (O2 A-
band) at 0.76 µm, a weakly absorbing (“weak”) CO2 band
at 1.61 µm, and a more strongly absorbing (“strong”) CO2
band at 2.06 µm (Taylor et al., 2020). Best estimates of XCO2

are calculated via an optimal estimation method (Rodgers,
2000), using the Atmospheric Carbon Observations from
Space (ACOS) Level 2 Full Physics (L2FP) retrieval algo-
rithm, which has been shown to achieve OCO-2 mission
precision requirements of 0.1 %–0.5 % (Wunch et al., 2017;
O’Dell et al., 2018). Operational data include a binary qual-
ity flag that uses several variables potentially indicative of
compromised data fidelity – including aerosol optical depths
(AODs), retrieved surface albedo, surface roughness, and dif-
ferences from model estimates – to filter out “lesser quality”
soundings (Osterman et al., 2020). An empirical bias cor-
rection is also included with operational datasets, which in-
cludes a footprint bias correction, a parametric bias correc-
tion, and a global scaling factor – all of which act to mitigate
systematic biases within the ACOS retrieved XCO2 (O’Dell
et al., 2018).

Of particular use in the analysis of fine-scale carbon emis-
sion estimates are the OCO-2 and 3’s target and OCO-3’s
snapshot area mapping (SAM) mode measurements. In tar-
get and SAM modes, the instrument points at a specific off-
nadir location and scans multiple times during an overpass, in
an effort to produce a data-dense, spatially coherent map of
XCO2 . Details of these observation modes will be discussed
in the next section. These measurements are the first of their
kind to target urban- and local-scale emissions, such as those
from megacities or individual power plants. Figure 1 pro-
vides an example of a visible XCO2 enhancement (or, rather,
two areas of enhanced XCO2 ) over a power plant site, as
seen by OCO-3. In this case, the enhancement extends to
the northeast across four OCO-3 swaths, which we define as
individual along-track scans. Each swath is eight footprints
wide – these are visualized in the right-hand panel as white

rectangles. Point source signals are difficult to quantify, be-
cause the instrument noise is a similar order of magnitude to
the XCO2 enhancement; the XCO2 enhancement is also often
2 orders of magnitude smaller than the background concen-
tration. Nitrogen dioxide (NO2), co-emitted with CO2 in fos-
sil fuel combustion, is a helpful validation source for fossil
signals due to NO2’s short lifetime and high concentration
relative to background values. Indeed, co-located NO2 ob-
servations have been shown to be helpful in plume identifica-
tion when using OCO-2 data (Reuter et al., 2019). We show
observations from the Tropospheric Monitoring Instrument
(TROPOMI) NO2 product (Veefkind et al., 2012; Van Gef-
fen et al., 2019) in the right-hand panel of Fig. 1. Because the
OCO-3 XCO2 and TROPOMI NO2 observations compare so
well, we believe the XCO2 enhancement to be a real feature
of the atmospheric state in this scene.

A clear distinction between XCO2 enhancement and back-
ground is critical and can be easily complicated by retrieval
biases stemming from a variety of factors. Through small-
area analysis of OCO-2 target data, it is well known that esti-
mates of XCO2 from the ACOS L2FP retrieval algorithm have
errors dependent on aerosol and clouds within the field of
view, variations in the surface reflectances and bi-directional
reflectance distribution functions (BRDF), and viewing and
solar geometries (Wunch et al., 2017; Worden et al., 2017;
Torres et al., 2019). Target and SAM mode measurements are
especially helpful for evaluating geometry-related effects, as
they take a large number of measurements (typically several
thousand soundings) over less than a 2 min time period: they
sample a near-constant atmospheric state, leaving the chang-
ing geometry as the primary independent variable. Thus, in
both targets and SAMs, we expect any spatially coherent bi-
ases to be primarily due to the retrieval’s imperfect treatment
of the effects of changing solar and observation geometry or
changes in surface albedo within the scene.

SAM measurements are novel in their spatial coverage,
specific to OCO-3, and are a valuable resource in studying
geometry-related effects. In fact, the OCO-3 vEarly dataset
– the first publicly released OCO-3 L2FP product – provides
a striking operational example of geometry-dependent biases
in a small fraction of SAM cases. In these SAMs, we observe
a highly unphysical XCO2 gradient of several parts per mil-
lion (ppm) in the across-swath direction, often with a step-
wise increase from swath to swath: Fig. 2 provides two exam-
ples. We refer to this phenomenon as swath bias. Swath bias
was found in multiple SAMs each month throughout vEarly
data processing and appeared to occur more frequently over
sites with high surface albedo and scenes with high AODs.
The swath bias is also regularly seen over urban sites, and the
XCO2 gradient in these cases often meets or exceeds the aver-
age 1–5 ppm enhancement we expect from fossil fuel signals.
This can make the differentiation between bias and real sig-
nal quite challenging and renders these SAM data less usable
for emissions studies; thus, the magnitude, prevalence, and
importance of OCO-3 swath bias SAMs make them an in-
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Figure 1. OCO-3 vEarly SAM showing observed XCO2 enhancements compared to coincident TROPOMI NO2 data over the Bełchatów
power station in Poland. We have identified individual swaths using brackets; the along-swath and across-swath dimensions, which we will
refer to repeatedly in this work, are designated by the colored arrows.

Figure 2. Two examples of swath bias from the raw (no filtering or bias correction) OCO-3 vEarly XCO2 data product, over (a) Riyadh,
Saudi Arabia, and (b) Los Angeles, USA.

triguing source of study. Future missions with similar GHG-
monitoring strategies, such as MicroCarb (Pasternak et al.,
2017; Bertaux et al., 2020), GeoCarb (Moore et al., 2018;
Nivitanont et al., 2019), GOSAT-GW (Kasahara et al., 2020),
and CO2M (Ciais et al., 2017; Janssens-Maenhout et al.,
2020), may benefit from an improved understanding of these
types of biases.

In Sect. 2, we review the similarities and differences be-
tween OCO-3 target and SAM mode measurements. Sec-
tion 3 focuses on the swath bias (shorthand “SB”) in the
OCO-3 vEarly dataset, where we have created a set of cri-
teria to identify an SB pattern in any given vEarly SAM.
We identify SB in approximately 12 % of vEarly SAMs and
identify potential systematic behavioral differences between

those 12 % of L2FP retrievals and the rest of the dataset. Op-
tical path length, AOD, and surface albedo arise as particular
variables of interest.

Simulation-based studies, such as O’Dell et al. (2012), are
useful for identifying major sources of error in retrievals,
such as those due to aerosol, clouds, or surface effects. They
can also help to identify cause and effect rather than pure cor-
relation. We therefore pursue a simulation-based approach
to help identify the root causes of swath bias relative to the
hypotheses we form in Sect. 2. We employ the L1b simu-
lator (O’Brien et al., 2009) and the ACOS L2FP retrieval
algorithm (O’Dell et al., 2012, 2018) to test those behav-
iors. In Sect. 4, we describe our simulations of OCO-3 SAM
mode data, starting from time and geometry information col-
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lected on orbit. Semi-realistic scenes are built using informa-
tion from the National Centers for Environmental Prediction
(NCEP; Kalnay et al., 1996) model (meteorology and trace
gases), CarbonTracker’s CT2019B (CO2; Jacobson et al.,
2020), Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP, vertical aerosol number concentrations; Winker
et al., 2007), and Moderate Resolution Imaging Spectrora-
diometer (MODIS, surface albedo, and BRDF parameters;
Schaaf and Wang, 2015). We keep surface and aerosol setups
relatively simple to isolate the effects of changing viewing
geometry. We provide a brief overview of the ACOS retrieval
algorithm in Sect. 5. Section 6 discusses the results of our full
simulation experiments, from the generation of L1b spectra
to the final retrieved L2FP XCO2 concentration. We initially
attempt to replicate the observed SB in a few notable SAMs
and then focus on a set of three cases over one site. We ma-
nipulate different scene inputs – aerosol optical depth, type,
and height, plus surface albedo – to evaluate their effect on
the resulting simulated XCO2 patterns.

Finally, in Sect. 7 we seek to explain why the SB is sig-
nificantly mitigated in the OCO-3 version 10 data product
compared to vEarly. Ultimately, we hope that an improved
understanding of the SB, summarized in Sect. 8, can prevent
similar biases in future CO2 monitoring missions.

2 OCO target and SAM mode measurements

Both OCO-2 (Crisp et al., 2017; Eldering et al., 2017) and
OCO-3 (Basilio et al., 2019; Eldering et al., 2019; Taylor
et al., 2020) are well-documented missions in the literature;
finer details on instrumentation and global datasets will be
left to other publications. Of specific importance to this work
are the aforementioned OCO-3 SAM mode measurements,
a successor to OCO-2’s target mode. Target mode was de-
veloped for OCO-2 to scan a small area continuously in
an overlapping pattern as the satellite passes overhead. On
OCO-2, this continuous scanning is achieved by changing
the orientation, and thus viewing angle, of the satellite it-
self, through a series of complex maneuvers in orbit. The
pointing method of OCO-3, however, is mechanistically dif-
ferent, due to its fixed-mount position on board the Interna-
tional Space Station (ISS). Rather than adjust the physical
orientation of the instrument itself, OCO-3 is outfitted with
a 2-D pointing mirror assembly (PMA), which provides the
ability to scan larger areas during a single overpass. This
broader scan defines OCO-3’s SAM mode. A typical SAM
spans a ground area of about 80× 80 km (1600 km2), and
each of the approximately five scans, or swaths, are adjacent
to one another, rather than overlapping, to create a larger spa-
tial “map” of XCO2 than OCO-2 target mode. OCO-3 has
recorded more than 7000 SAMs between August 2019 and
June 2022. The OCO-3 SAM site list includes volcanoes,
cities, power plants, and occasionally other scientific points
of interest, such as flight campaigns or ground-based tow-

ers. Figure 3 gives a side-by-side example of an OCO-2 tar-
get versus an OCO-3 SAM over Los Angeles, taken 2 years
apart; Fig. 4 illustrates the diversity of OCO-3 SAM and tar-
get sites observed from launch to July 2022.

OCO-2 target mode is primarily used for validation pur-
poses, with many targets located at Total Column Carbon Ob-
serving Network (TCCON; Wunch et al., 2011) sites, but it
also includes targets over certain megacities and some point
sources, such as volcanoes and large power plants. OCO-3’s
target mode is utilized similarly but has a larger spatial cov-
erage, which can also be used to study the carbon cycle on
local scales (Kiel et al., 2021; Rißmann et al., 2022). Studies
using OCO-2 target data have shown the instrument’s abil-
ity to detect anthropogenic XCO2 enhancements on subcon-
tinental scales (Hakkarainen et al., 2016), from megacities
(Schwandner et al., 2017) and from industrial sources such
as iron and steel plants (Wang et al., 2018). Nassar et al.
(2017) even used OCO-2 nadir and glint observations fitted
to a Gaussian plume model to quantify CO2 emissions from
seven coal power plants, agreeing to within 1 % to 17 % of
Environmental Protection Agency (EPA) estimates for sites
in the US. In a follow-up study, Nassar et al. (2021) showed
that averaging multiple overpasses of the same site can im-
prove annual emission estimates by both reducing random er-
rors and addressing temporal variations. Reuter et al. (2019)
similarly showed the value of combining OCO-2 observa-
tions of power plant plumes with NO2 observations from
the Sentinel-5 Precursor over six sites, comparing their es-
timates of cross-sectional fluxes to existing emission inven-
tories successfully within their uncertainties. Such success-
ful implementation of nadir and glint mode data has moti-
vated the use of target and SAM data for similar studies: Kiel
et al. (2021) utilized OCO-3 SAM and target measurements
to evaluate XCO2 concentrations over Los Angeles and found
good agreement with coincident TCCON XCO2 measure-
ments, TROPOMI NO2 estimates, and model emission es-
timates. In any emissions study, separating the enhancement
from the background is key – Nassar et al. (2017) found that
the background XCO2 concentration was one of the main un-
certainties in their work. Kiel et al. (2021) found that OCO-3
SAM mode measurements are able to sample both urban en-
hancements and background concentrations within the same
overpass, so if we maintain a high fidelity of target and with
OCO-3 SAM data, a single target or SAM can provide ac-
curate information on both the enhancement and the back-
ground.

The presence of instrument and retrieval biases reduces
the information content, however, especially on small spatial
scales and for enhancements as small as those seen from in-
dividual point sources. OCO-2 and OCO-3 both suffer from
aerosol-related biases: relying on reflected sunlight, they can-
not fully distinguish between photons reflected by Earth’s
surface and those reflected by intermediate scatterers along
the light path. The resultant changes in path length from in-
termediate scattering by aerosols can lead to erroneous XCO2
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Figure 3. Visual comparison of target and SAM mode observations over the LA basin. The left panel and insets were generated by overlaying
OCO-3 data on RGB images from NASA Worldview (Cronk et al., 2023).

Figure 4. Map of all OCO-3 SAMs and targets recorded through July 2022, categorized by site type.

values (see e.g., Aben et al., 2007; Butz et al., 2009; O’Dell
et al., 2012). In Target and SAM modes, especially, the mis-
attribution of path length can be exacerbated by the quickly
changing viewing geometry. In addition to aerosols, Wunch
et al. (2017) and Worden et al. (2017) both evaluated OCO-
2 data on regional scales to find that residual biases of up
to 1.5 ppm remained compared to colocated TCCON sites
and that some residual noise in OCO-2 data may be due to
variations in surface properties or solar zenith angle. It was
this type of small-area analysis that led to the earliest con-
ception of a simulation-based investigation of geometry and
aerosol-dependent biases, which we utilize in this study. The
SB effect in vEarly, discussed in the previous section, may

be related to any of these factors: aerosol, viewing and so-
lar geometry, or even surface properties. While we focus our
study on a robust evaluation of OCO-3 SAMs, we have also
observed SB in some OCO-3 targets after separating their
overlapping scans. Given that the same principle of chang-
ing geometry over a constant atmospheric scene applies, we
argue that the causes of SB in OCO-3 SAMs are also appli-
cable to OCO-3 targets.

3 Swath bias in vEarly

In the early processing of OCO-3 SAM data, multiple SB
cases were identified with each proceeding month. Initially,
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case identification was done by eye, inspecting plots of the
data as it was processed. The magnitude and spatial coher-
ence of the observed XCO2 biases made them the subject of
curiosity and concern. The vEarly dataset includes nearly
6000 SAMs, spanning a wide variation of surface types,
aerosol scenes, and solar and viewing geometries. To quanti-
tatively identify what fraction of this collection suffers from
SB, we develop an SB “flag” using the following criteria:

1. the SAM must include at least 500 soundings,

2. the SAM must include at least four swaths with at least
100 soundings apiece (SAMs typically include four to
six swaths), and

3. the ratio of the standard deviation of the in-swath XCO2

medians to the mean of the in-swath standard deviations
is greater than 0.75.

Mathematically:

sb_ratio=
SD (swath XCO2 medians)

mean (swath XCO2 SD)

=
sd_median
mean_sd

> 0.75. (1)

In the rest of this study, we will refer to the quantity in the
numerator as sd_median and the denominator as mean_sd.

Essentially, the sb_ratio is a form of the “coefficient of
variation”, which quantifies the variability in across-swath
XCO2 in relation to the mean of the population variability.
The sb_ratio requires that for cases free of SB (sb_flag= 0),
the noise across swaths must represent less than 75 % of the
noise within the scene. If the noise across swaths represents
more than 75 % of the noise within the scene, we consider
the scene the subject of an SB effect, and it is assigned an
sb_flag of 1. This simple flag provides a computationally ef-
ficient means of evaluating all 5940 vEarly SAMs for the
presence of SB. We acknowledge that this interpretation of
sb_ratio assumes that any sufficient across-swath XCO2 vari-
ability is due specifically to SB, meaning that real XCO2 sig-
nals or other biases are negligible; this leaves room for error
in our interpretation of the sb_flag, which we explore later in
the version 10 data product in Sect. 7.

The filtering process for the OCO missions in general in-
volves two stages: preprocessing, which eliminates sound-
ings prior to the L2FP retrieval (also called “sounding se-
lection”), and postprocessing, applied to the retrievals them-
selves. The first involves the A-band preprocessor (ABP),
which is used to retrieve surface pressure and is sensitive to
clouds and aerosols (Taylor et al., 2016). Retrieved surface
pressures whose difference from prior estimates (dP_abp)
are anomalously large are assumed to be contaminated by
clouds or aerosols and are considered lower quality. A sec-
ondary preprocessing cloud filter is also applied, which relies
on the ratio between strong and weak band-retrieved CO2
in the IMAP-DOAS preprocessor (IDP, Taylor et al., 2016).

Only sounding which passes both ABP and IDP is processed
through L2FP. In postprocessing, OCO-2 and OCO-3 Lite
products include a quality flag to be applied by the user,
which we describe briefly in Sect. 1, with further details of
vEarly quality flag construction in Osterman et al. (2020).

For our vEarly analysis, we apply a simple postprocessing
quality filter to individual soundings prior to calculating the
sb_ratio. A review of the operational quality flag in vEarly
shows that an increasingly unrealistic fraction of SAMs are
flagged as “bad” (quality flag of 1) due to progressive calibra-
tion errors over the vEarly record. In the sounding selection
process, a |dP_abp|< 30 filter is used to eliminate cloudy
soundings before pushing “clear” soundings through to L2FP
(Taylor et al., 2016). We choose in this study to use an addi-
tional postprocessing simple filter of |dP_abp|< 16 hPa to
define “good” quality soundings. A similar range of dP_abp
is typically used in the development of the operational quality
flags (Taylor et al., 2020). This alone acts as a fairly relaxed
filter, but it is critical for our investigation to retain enough
soundings to see the swath bias. For the rest of this study, we
will refer to this as the dP_abp quality filter.

The collection of 5940 vEarly SAMs, spanning from Au-
gust 2019 to June 2021, includes 2940 cases with 500 or
more soundings (N > 500) after the dP_abp filter is applied.
Based on Eq. (1), 352 of those cases are flagged as having
SB – about 12 %. This is a fairly significant fraction of the
full dataset, not to mention that 256 of the 352 SB SAMs
are urban/fossil sites, where accuracy over small areas is par-
ticularly important for fine-scale emission estimates; iden-
tification of bias and uncertainty is therefore essential. In
fact, we find that SAMs over urban/fossil sites experience
SB in nearly 14 % of N > 500 cases, whereas only 9 % of
non-fossil N > 500 SAMs experience SB.

There are a number of retrieved parameters which can help
diagnose correlating factors of the SB within vEarly. We pro-
vide histograms of several of these parameters in Fig. 5. The
N > 500 SAM collection is shown in blue, and the percent-
age of N > 500 SAMs with SB is shown in orange. A few
trends are of interest here. A larger fraction of SAMs have
SB in the morning hours, with a minimum around local noon.
We also see a consistently larger percentage of SB SAMs
at higher solar zenith angles. These two observations com-
bined can be interpreted as a higher frequency of SB cases
when scattering effects are stronger, e.g., longer slant paths
through the observed atmospheric column. A longer path
length means higher aerosol optical depths, and in particu-
lar, we suspect aerosol optical depths to be of importance,
based on both Fig. 5c and the historical difficulty of charac-
terizing and accounting for aerosol effects within the ACOS
algorithm (Worden et al., 2017; Wunch et al., 2017; Nelson
and O’Dell, 2019). This hypothesis aligns with the fact that
so many of our SB cases are at urban/fossil sites, which tend
to be polluted.

Trends in the mean retrieved albedo also show higher frac-
tions of SAMs at higher albedos, particularly in the O2 A-
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Figure 5. Histograms showing the distribution of various retrieval parameters across 2940 vEarly SAMs with 500 soundings or more. The
orange line indicates the percentage of SAMs in each bin which have been flagged as having SB. This percentage was only calculated for
bins containing at least 10 SAMs.

band. This analysis confirms our early subjective observa-
tions, which pointed us toward scenes with brighter surfaces
and higher AODs.

4 Simulation setup

Motivated by the results in the previous section, we turn to
realistic simulations to systematically evaluate the sensitiv-
ity of algorithm-induced swath bias to parameters such as
AOD and surface albedo. We begin with the actual instru-
ment time and geometry information, determine realistic at-
mospheric profiles based on various model inputs, and finally
calculate the top-of-atmosphere radiance spectra. These sim-
ulations are variants of the simulation system described in
O’Brien et al. (2009).

4.1 Generating atmospheres

The first step in the simulation process is to create a sim-
ulated atmosphere. We use the real OCO-3 geometry data
from the SAM of interest to obtain location information such
as date and time, latitude and longitude, and ISS, PMA, in-
strument, and solar geometry.

NOAA’s CarbonTracker version 2019B (CT2019B) is
used for atmospheric carbon data (Jacobson et al., 2020).
Native CT2019B CO2 mole fractions are provided globally
at 3-hourly, 3◦ longitude by 2◦ latitude resolution, with 35
vertical layers. Data are available through the end of 2018;
in this study, we simulate three SAMs taken in 2020, using
CT2019B data from the relevant day in 2018. Any mean off-
set in our simulated XCO2 values compared to the observed
OCO-3 data can thus be attributed to the annual growth rate

since 2018 – around 2.4 ppm yr−1 (Tans and Keeling, 2022).
We have not accounted for this offset in our simulations,
as our investigation hinges on changes in small-scale spatial
patterns rather than global mean increases.

We use NOAA’s National Centers for Environmental Pre-
diction (NCEP) reanalysis for meteorological data. NCEP
near-real-time data are available at 6-hourly global coverage
on a 2.5× 2.5◦ grid and 17 pressure levels (NCEP/NCAR
Reanalysis 1; Kalnay et al., 1996; NOAA/NCEP, 2022).
We apply a hypsometric surface pressure adjustment, and we
use the specified month and day from 2018, as with Carbon-
Tracker. The resampled CT2019B and NCEP reanalysis data
are then combined with MODIS surface reflectances to build
our final meteorology and scene datasets. The MCD43A1
MODIS BRDF/Albedo product used here is available glob-
ally at 500 m resolution daily (Schaaf and Wang, 2015).

Our next step is to build a simple yet semi-realistic aerosol
and surface scene. For a given SAM, we only include one
aerosol type at a time and always exclude water and ice
clouds. We keep the specified vertical aerosol profile uni-
form across the scene. Simulated aerosol types are prescribed
in the L1b simulator framework. A full list of the aerosol
types available in the simulator can be found in O’Brien et al.
(2009), but in this study, we only utilize two: a coarse “dust”
type and a fine “clean continental” type. Aerosol effective ra-
dius, single scattering albedo, and other optical properties are
derived from Dubovik et al. (2002). These aerosol types are
different than those used in the ACOS L2FP retrieval (dis-
cussed in Sect. 5). To construct our profiles, we begin with
an existing aerosol profile from a resampled Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) 05kmALay
monthly field (Winker et al., 2007). The parameters for the

https://doi.org/10.5194/amt-16-109-2023 Atmos. Meas. Tech., 16, 109–133, 2023



116 E. Bell et al.: Exploring bias in OCO-3 snapshot area mapping mode

selection of this initial profile are loose, because once it is
chosen, we can change the aerosol type, adjust the layer up
or down to any native CALIOP vertical pressure level, and
then scale the number densities to achieve our specified op-
tical depth. Previous studies have shown radiances to be rel-
atively insensitive to the geometric thickness of the aerosol
layer (Butz et al., 2009; Frankenberg et al., 2012), so we do
not control for this; it is determined by only the pressure layer
thickness at the specified height. The mechanism used to ad-
just the vertical height of the aerosol layer puts the top of the
layer at the native CALIOP pressure level closest to speci-
fied pressure: for example, if a pressure of 800 hPa is input,
the top of the aerosol layer may actually sit at 793 hPa. The
exact value varies slightly based on the date and surface pres-
sure, so for simplicity, we will refer to the approximate input
heights, e.g., 750, 800, or 900 hPa. We apply our single pro-
file, along with its associated surface elevation and surface
reflectivity, to every sounding in the SAM.

4.2 Generating L1b radiances

Simulated radiances are generated by a forward model that
has been used previously for simulation studies of GOSAT,
OCO-2, and OCO-3, such as in Eldering et al. (2019). The ra-
diative transfer module uses the specified aerosol, physical,
and surface properties as inputs, along with geometry infor-
mation. In this study, we calculate the gas absorption optical
depths using the absorption coefficient (ABSCO) lookup ta-
ble v5.1 (Payne et al., 2020). Options for surface treatment
include a specified Lambertian albedo, a MODIS-derived
Lambertian albedo, and a MODIS-derived BRDF albedo. We
use the first when testing specific surface albedos in the three
bands, and we use the last when testing aerosol properties
with realistic albedos. We do not account for changes in sur-
face topography, i.e., a fixed elevation is used for all sound-
ings within a scene. Rayleigh scattering is calculated, as well
as the solar spectrum, derived from a solar model described
in Bösch et al. (2006). The solar spectrum is Doppler shifted
to account for the reference frame of the instrument; then,
we obtain a “measured” spectrum via an instrument model,
which convolves the instrument line shape (ILS) function
with the simulated Doppler-shifted spectrum. We do not add
instrument noise in this work for clarity, but doing so would
add a component of random error to the radiances and hence
to the retrieved XCO2 (Connor et al., 2016).

5 ACOS L2FP retrieval algorithm

The ACOS algorithm is well documented (O’Dell et al.,
2012, 2018); here we provide a brief summary. For the
simulated data, as with operational OCO data, predominant
cloud screening is performed by the O2 A-band preprocessor
(ABP), documented in Taylor et al. (2016). The A-band pro-
vides a means of accurate surface pressure retrieval and uses

the difference between retrieved and prior surface pressure
(dP) to determine the presence of clouds.

After filtering by the ABP, the selected soundings are run
through the L2FP retrieval. The retrieval utilizes an opti-
mal estimation approach, iteratively minimizing a cost func-
tion to produce the most likely observed radiances, and ulti-
mately, an estimate of XCO2 . The L2FP state vector also in-
cludes a posterior CO2 profile, aerosol optical depths, surface
albedos, and surface pressure, among several other variables.
Spectra generated by the retrieval utilize a radiative transfer
model similar to the L1b simulator, which is described in the
previous section. A full description of the ACOS retrieval
algorithm is available in O’Dell et al. (2012). The OCO-3
vEarly dataset was produced using version 10 of the ACOS
algorithm.

The L2FP algorithm used in our simulation study is v8
(O’Dell et al., 2018) but with the use of the newer AB-
SCO v5.1.0 (Payne et al., 2020) in order to match the sim-
ulator spectroscopy. Recall that ACOS v9 did not include
any changes to the L2FP retrieval itself and was a reprocess-
ing of the L2 Lite files only, mainly to account for correc-
tions in the OCO-2 pointing (Kiel et al., 2019). At the start
of this work, the ACOS v10 L2FP was still in development.
The retrieval state vector includes five aerosol types (O’Dell
et al., 2018): always retrieved are water cloud, ice cloud, and
a stratospheric aerosol; the remaining two aerosols are fixed
types from the Modern-Era Retrospective Analysis for Re-
search and Applications 2 (MERRA2, Gelaro et al., 2017)
and vary based on the time and location of the SAM. Prior
meteorology comes from GEOS-5 FP-IT (Rienecker et al.,
2008) and is used for temperature profiles, water vapor pro-
files, and surface pressure.

6 Simulation experiments

Here we discuss the case selection and results of our simu-
lated SB experiments. In this introduction, we test two SB
SAMs from vEarly to see whether we can recreate the ob-
servational SB using simulated data. We then focus on three
SAMs over a single representative target location and use
their geometry as templates to test the SB in a more complete
scene state space: we manipulate each SAM to include vari-
ous aerosol types, heights, and optical depths with a constant
surface elevation and reflectivity. Finally, we hold aerosols
constant while testing changes to surface albedo in all three
bands.

To begin our investigation we choose two desert scenes
where the vEarly operational retrieval indicates an SB. The
first, over Australia, is a target for comparison with Ecosys-
tem Spaceborne Thermal Radiometer Experiment on Space
Station (ECOSTRESS, also on board the ISS) observations;
the second is an urban site near Tabriz, Iran. Maps of sev-
eral vEarly retrieved parameters for both SAMs are shown
in Figs. 6 and 7, with no filtering, in order to maximize
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Figure 6. Maps of several retrieved and geometry-related parameters for a vEarly SAM over an Australian ECOSTRESS site on 23 February
2020.

Figure 7. Maps of several retrieved and geometry-related parameters for a vEarly SAM over Tabriz, Iran, on 7 July 2020.

comparison to simulations. In both figures, SB patterns in
XCO2 – panel (b) – are primarily correlated to changes in the
viewing geometry, which we represent in the two left panels.
Panel (a) shows the sensor zenith angle, and panel (b) shows
the PMA elevation angle, a measurement of the geometry
of the pointing mechanism, where positive angles indicate
forward-looking observations, and negative angles indicate
backward-looking observations.

In panels (c), (e), and (f), we show a few other retrieved pa-
rameters which the retrieval might adjust when attempting to

characterize geometry-driven aerosol effects. Panel (c) shows
the total retrieved AOD (labeled aod_total), and panel (f)
shows co2_grad_del, the difference between retrieved and
prior CO2 concentration in the upper and lower portions of
the retrieved column (the exact calculation can be found in
Osterman et al., 2020). The SAM over Iran in Fig. 7 may
show a hint of SB in these two parameters, but they appear
quite smooth in Fig. 6. This may be related to higher AODs
over the Iran SAM (maximum AOD near 0.35 versus max-
imum near 0.25 in the Australian SAM, per MODIS esti-
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mates) driving stronger geometry-related aerosol scattering
effects. Real AOD variations or interactions with heteroge-
neous surface albedo may dominate the visible signal, rather
than geometry effects. In panel (d) of these figures, we show
dP values, which appear to reflect some SB in Fig. 6 but in
Fig. 7 are dominated by local topography patterns. In these
three retrieved parameters – aod_total, dP, and co2_grad_del
– we expect that in simulations where geometry is the pri-
mary variable, its effects will be visible.

Our first simulations are thus a simple test of this hypoth-
esis. For each date, we apply a constant aerosol profile and
type across each scene, set a constant surface elevation and
reflectivity, and choose realistic AODs based on local Multi-
Angle Implementation of Atmospheric Correction (MAIAC)
data, which use MODIS data to derive improved aerosol es-
timates (Lyapustin et al., 2011; MODIS Land Science Team,
2019, MAIAC data accessed via NASA Worldview). Fig-
ures 8 and 9 show the results of these initial simulations –
note that the color bar ranges are different than in Figs. 6 and
7.

We find that simulated spectra derived from simple aerosol
scenes are successfully able to generate SB patterns quali-
tatively similar to those in the operational vEarly data. The
general orientation of the observed SB is replicated in both
simulated SAMs, but the magnitude of the SB tends to be
smaller relative to the observed data. In the absence of more
complex aerosol and surface scenes, we do see geometry-
driven swath bias in aod_total, co2_grad_del, and dP, al-
though the range of values can be quite different than in the
observations – for example, the range of aod_total in Fig. 9 is
much larger than in Fig. 7. This may indicate that the aerosol
profile constructed for the simulation does not match that ob-
served by the satellite.

We proceed with a series of simulations to evaluate this
possibility, testing SB response to various aerosol and sur-
face scenes. Note that because we do not add noise to our
simulations, and eliminate many other sources of variabil-
ity, the denominator of Eq. (1) will be small in simulated
data compared to the observed data, so the sb_ratio will typ-
ically be much larger. We set the sb_ratio= 0.75 threshold
for the SB flag using observed data, but it would be larger
for simulations – in order to avoid using two different scales
of sb_ratio, we will simply use sd_median as a measure of
relative SB strength when discussing simulations. We use
the terms sd_median and SB strength interchangeably to de-
scribe the same simulated quantity.

6.1 Case selections for controlled testing

From the initial simulation tests over Australia and Iran, we
single out the Australian non-fossil site as a target for fur-
ther simulation work. This is a desert site and should lack
influence from local fossil fuel emissions due to its remote
location. OCO-3 has taken several SAMs over this site at
the time of analysis, at varying times of day and with vary-

Table 1. Key metadata and statistics for three Australian
ECOSTRESS site SAMs chosen for simulation work.

Date 23 February 2020 4 April 2020 8 May 2020

Orbit no. 4573 5204 5731
No. soundings 2104 (2077) 2465 (2461) 2337 (2337)
Local time 16:09 10:10 11:08
Min/max SZA 55.3/57.0◦ 45.6/47.4◦ 44.2/44.9◦

MAIAC AOD 0.15 0.08 0.12
sb_flag 1 (1) 0 (1) 0 (0)
sb_ratio 0.98 (1.05) 0.55 (0.76) 0.28 (0.28)
sd_median 0.86 (0.76) 0.37 (0.39) 0.25 (0.21)
mean_sd 0.88 (0.73) 0.68 (0.51) 0.88 (0.75)

sb_flag, sb_ratio, sd_median, and mean_sd are all defined as in Eq. (1). These are
calculated for raw vEarly soundings with no filtering applied. Values in parentheses
are calculated after vEarly bias correction and dP_abp filtering are applied. MAIAC
AOD is a rough estimate derived from data available on NASA Worldview.

ing SB signals present according to our criteria. We choose
three, which are pictured in Fig. 10. Metadata and key statis-
tics are provided in Table 1. By examining three SAMs from
the same site, we are able to investigate the differences in at-
mospheric state and/or observation geometries that drive the
operational SB, in addition to using their different geome-
tries as templates for a broader array of synthetic scenes, as
mentioned previously.

The strongest example of SB is present on 23 February
2020, which served as our first SAM SB test in the previous
section. The sb_ratio (see Eq. 1) in this SAM is 0.98 – well
over our required threshold of 0.75 for the sb_flag. We also
examine a “borderline” SB case from 4 April 2020, where
the raw data have a sb_ratio of 0.55, but after bias correc-
tion our sb_flag is triggered by a sb_ratio of 0.76, and some
small across-swath gradient of approximately 1 ppm magni-
tude appears to be present (Fig. 10b). The third SAM is from
8 May 2020 and has a very low sb_ratio of 0.28 (Fig. 10c).
The MAIAC AODs listed in Table 1 will be used in simu-
lations unless otherwise stated. Figure 11 provides context
for the observation and solar geometries for each of these
dates. We include scattering angle, which is the angle be-
tween incoming solar photons and outgoing photons which
reach the OCO-3 sensor. Pure forward scattering occurs at
0◦ and pure backscattering occurs at 180◦. The 4 April case
has the largest range of scattering angles, approaching 170◦

in the final two swaths. The 23 February date has the highest
solar zenith angle, at 16:09 local time, and has the smallest
scattering angles.

Figure 12 shows the reference aerosol profiles used on
each of these three dates. AODs used in this figure match
those listed in Table 1, and the tops of the aerosol layers
have been adjusted to a height near 800 hPa. In our simu-
lation tests, we will test sensitivity to aerosols by changing
the aerosol types (Sect. 6.2), shifting these layers to different
vertical levels (Sect. 6.3), and scaling the number densities to
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Figure 8. Maps of several retrieved parameters from our first simulation of the 23 February 2020 SAM over Australia.

Figure 9. Maps of several retrieved parameters from our first simulation of the 7 July 2020 SAM over Tabriz, Iran.
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Figure 10. Three OCO-3 vEarly SAMs, shown with no filtering or bias correction, all over the same ecostress_au_asm observation site.
These three SAMs were chosen for simulation tests due to their varying degrees of apparent SB, as well as different observation and solar
geometries.

Figure 11. Geometry data for the three simulated Australian desert SAMs.

adjust the AOD (Sect. 6.4). We will further test sensitivity to
surface albedo (Sect. 6.5).

6.2 Aerosol type testing

For each of the three SAMs, we test two different aerosol
types: one coarse mode, a dust type, and one fine mode, a
clean continental type, both of which are realistic given the
remote desert setting. The aerosol layers are at a height near
800 hPa, and each date uses the same optical depth (listed in
Table 1) for both aerosol types, so only the number densities
change.

The results of these tests are shown in Fig. 13 and listed in
Table 2. We find in the February case that the clean continen-
tal aerosol type produces a much stronger SB than the dust
mode, with sd_medians of 1.16 and 0.23 ppm, respectively.
The 8 May SAM shows a similar result, with stronger SB us-
ing the clean continental type aerosol, although the increase
in SB is much smaller. The February and May cases have
similar AODs – 0.15 and 0.12 – so the smaller SB response
on 8 May may be attributed to its smaller mean and range of
SZA.

Figure 12. Profiles illustrating aerosol layer shape used for the three
simulated SAMs. This example shows dust layers whose tops are
placed at the native CALIOP pressure level closest to 800 hPa.

The response is opposite for the 4 April case: the dust
type aerosol produces a stronger SB. This may be related
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Figure 13. Simulated XCO2 using two different aerosol types for all
three SAM dates over the Australian ECOSTRESS site.

Table 2. sd_medians (ppm; from Eq. 1) for simulated XCO2 in the
ECOSTRESS AU SAM site using different aerosol types.

Date Dust type Clean continental Operational
aerosol type aerosol

23 February 0.60 2.35 0.86
4 April 1.33 0.48 0.37
8 May 0.28 0.49 0.25

Simulations included in this table use realistic AODs for each date based on
MAIAC estimates and an aerosol layer lofted to near 800 hPa.

to the high scattering angle in the final two swaths – nearly
170◦, per Fig. 11. However, an investigation into the scatter-
ing phase functions for these two aerosol types revealed no
correlation relative to the SB strength, for any of the three
dates.

However, in terms of SB orientation, the 8 May case illus-
trates particularly well the fact that different aerosols produce
different geometry-dependent responses: the location of the
highest and lowest XCO2 values occurs in different swaths
depending on the aerosol type. This makes sense given the
unique optical properties of each aerosol type but would re-
quire further study to predict with quantitative skill. We con-
clude that the physics of SB, in terms of both magnitude and
direction, are highly dependent on the aerosol type and are
complex enough to warrant further study.

Figure 14. Simulated XCO2 using a dust type aerosol at three differ-
ent heights, with an AOD of 0.15, over the Australian ECOSTRESS
SAM site on 23 February 2020.

6.3 Aerosol height testing

Using dust type aerosols, we test a simple profile at three
heights for each SAM. We take the base profile for each date,
as shown in Fig. 12, and simply loft the aerosol layer to the
desired pressure level: either 900 hPa (near surface), 800 hPa
(mid-level), or 750 hPa (higher level). These are chosen ar-
bitrarily to represent a typical range of tropospheric aerosol
heights, spanning roughly a few vertical kilometers.

We also include a clear-sky, no-aerosol run as a baseline
for retrieval behavior. Figure 14 shows the results of this ex-
periment using a dust type aerosol with an AOD of 0.15 in
the 23 February 2020 case. Table 3 shows that there is a posi-
tive correlation between aerosol height and sd_median – i.e.,
as the aerosol layer is lofted, the strength of the SB increases.

As indicated by Table 3, the 4 April and 8 May cases re-
spond similarly to changes in aerosol layer height. The SB is
always stronger in simulations with aerosol than in simula-
tions without; it increases in strength as we move the aerosol
layers higher in the column. The relative increase between
the 900 and 750 hPa aerosol layer varies between cases – the
4 April case has the strongest change in SB, which again
could be related to its broad range of scattering angles and
high scattering angles near the end of the scan. The range of
sd_medians on 8 May is notably smaller than that of either
23 February or 4 April, similar to its response to different
aerosol types. This could again be due to 8 May having the
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Table 3. sd_medians (ppm) for simulated XCO2 in the ECOSTRESS AU SAM site using different aerosol heights.

Date No. Aerosol near Aerosol near Aerosol near Operational
aerosol 900 hPa 800 hPa 750 hPa

23 February 0.12 0.18 0.60 1.16 0.86
4 April 0.22 0.47 1.33 1.81 0.37
8 May 0.18 0.21 0.28 0.39 0.25

Simulations included in this table use realistic AODs for each date based on MAIAC estimates. All use a dust type
aerosol.

Table 4. sd_medians (ppm) for three different AODs in each simu-
lated SAM.

Date AOD= 0.0 AOD= 0.10 AOD= 0.20 AOD= 0.35

23 February 0.12 0.43 0.74 0.97
4 April 0.22 1.67 2.94 3.60
8 May 0.18 0.27 0.41 0.70

Simulations included in this table use realistic AODs for each date based on
MAIAC estimates. All use a dust type aerosol.

lowest range of SZAs relative to the other two dates, per Ta-
ble 1 and Fig. 11.

The correlation between SB strength and aerosol layer
height is consistent for both large and small aerosol types,
as revealed by additional testing using the clean continen-
tal aerosol type. Operationally, this makes SB more likely to
be detectable beyond scene-typical noise, both by eye and
by our SB flag, if there is aerosol higher in the atmospheric
column. In addition to differences in viewing geometry, this
could be one reason that SB appears in some cases and not
others in real measurements.

6.4 Aerosol optical depth testing

In this section we test three aerosol optical depths for each
SAM: one low (0.1), one moderate (0.2), and one high (0.35).
These are chosen to represent a realistic range typically seen
over the Australian ECOSTRESS site according to MAIAC.
We use a single layer of dust aerosol at a height near 800 hPa.
Results are shown in Fig. 15. Per Table 4, we find that SB
strength increases with increasing AOD in all three Aus-
tralian SAMs, with 4 April as the exceptionally strong SB
case once again – the XCO2 values change much more signifi-
cantly in the final two swaths with high scattering angles than
in the others. As in the aerosol height tests, the SB is always
stronger in the presence of aerosols than in the AOD= 0.0
test case. We are therefore more likely to see SB over high-
AOD scenes.

6.5 Surface albedo testing

Per discussion in Sect. 3, a larger fraction of scenes with high
retrieved surface albedo, in any of the three spectral bands,
is flagged as having SB. In this section, we assign a range of

surface albedos to our simulated SAMs to strategically test
the SB response.

We test surface albedos ranging from 0.1 to 0.6 in each
of the three bands, which covers a realistic range of albe-
dos over land. When varying one band, we hold albedo con-
stant in the other two bands at a realistic value for this site:
O2 A-band (O2A) at 0.25, strong CO2 (SCO2) band at 0.25,
and weak CO2 (WCO2) band at 0.30. The functionality of
the simulator requires that when prescribing a specific sur-
face albedo, we model the scene using a Lambertian surface.
(This is different from the previous sections, where the sim-
ulator always utilizes a BRDF surface.) The ACOS retrieval,
however, uses a BRDF surface model.

These simulations use the same vertical aerosol distribu-
tions as shown in the previous sections; the AOD on each
date is the realistic MAIAC value listed in Table 1, and each
layer is near 800 hPa. All three dates use the dust aerosol
type.

The top row of Fig. 16 shows the results of the albedo tests
for all three simulated SAM dates, with no filtering applied to
the simulated retrievals. On each date, we compare the same
number of soundings across all six albedos. The SB is high-
est at lower albedos, particularly for the February and April
SAMs; this is the opposite trend we expect based on our anal-
ysis in Sect. 3. However, over low O2A albedos, our dP_abp
filter removes some soundings that contribute to swath bias,
as shown in the bottom row of Fig. 16. The dP_abp filter
does not, however, remove any soundings when the WCO2
and SCO2 albedos are low. This makes some sense, as the
O2 A-band is most skilled at seeing aerosols and would best
pick up on them with a high contrast between a dark, low-
reflective surface and a bright, high-reflective aerosol.

From this exercise, we surmise that the trend toward SB at
higher albedos observed in Sect. 3, Fig. 5, is not because SB
is more likely to occur over bright scenes. In fact, stronger
SB tends to occur at lower albedos. The retrieval, however,
is more skilled at differentiating aerosols over dark surfaces,
whereas it has trouble identifying aerosols over bright sur-
faces. This makes our quality filtering more effective at re-
moving aerosol-related effects – including those of SB – over
dark surfaces so that SB is more likely to slip past our filters
when the surface is bright. This conclusion reinforces the fact
that the presence of SB is intimately linked to the presence,
and our retrieval’s treatment, of aerosols.

Atmos. Meas. Tech., 16, 109–133, 2023 https://doi.org/10.5194/amt-16-109-2023



E. Bell et al.: Exploring bias in OCO-3 snapshot area mapping mode 123

Figure 15. Retrieved XCO2 using a simulated dust type aerosol near 800 hPa and two different optical depths for all three simulated SAMs.

Figure 16. SB strength (sd_median) depending on surface albedo in each of the three OCO-3 bands. Panels (a)–(c) include no quality filtering,
and the number of soundings per day is the same for each albedo run. Panels (d) and (e) show how dP_abp filtering affects sd_medians in
the O2 A-band (it has no effect in the other two bands).
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6.6 Simulation summary

In our simulation work, we show that the large changes in
XCO2 between swaths are primarily correlated to the chang-
ing viewing geometry and that by eliminating other sources
of variability within a SAM, we can simulate the purely
geometry-driven response within the retrieval. We choose
three SAMs over the same Australian desert site which rep-
resent a range of SB signals, solar zenith angles, and scat-
tering angles. For each SAM, we test an aerosol-free scene
and four parameters: aerosol type, aerosol height, aerosol
optical depth, and surface albedo. Aerosol-free scenes suf-
fer from little to no SB, but we find that SB increases with
both aerosol height and optical depth and that the aerosol
type changes the SB strength in different ways depending on
some complex interplay of aerosol optical properties and ge-
ometry. Lower surface albedos tend to induce a stronger SB,
again depending on the observation and viewing geometry –
but quality filtering using the O2 A-band is skilled at iden-
tifying aerosols over dark surfaces and effectively removes
erroneous measurements, leaving more SB at higher albedos
where it is harder to distinguish aerosols from the bright sur-
face beneath.

Figure 17 shows sd_median versus each of our indepen-
dent parameters on the same scale. We attempt to represent
some realistic range of values of each parameter, in order to
be able to compare their effects. All four parameters have the
potential to induce quite a large SB in our simulated SAMs,
with high AODs inducing the highest sd_medians of more
than 3 ppm. We only tested AODs as high as 0.35, although
higher AODs are sometimes observed – but typically, those
are eliminated by quality filtering. Low O2A albedos pro-
duced the second strongest SB in our simulations but simi-
larly are often mitigated by our dP_abp filter. We acknowl-
edge that none of the sd_medians shown here are as high
as are sometimes observed in other SAMs – occasionally
exceeding 10 ppm, such as in the Tabriz example shown in
Fig. 7 – but we hypothesize that testing an even broader range
of aerosol types, optical depths, or observation angles would
produce such results. Biases or real variations in XCO2 de-
rived from additional complexity in real scenes can also en-
hance this signal – varying surface albedo or topography, for
instance.

These simulation studies reveal that SB is primarily and
intimately connected to the presence of aerosols and the in-
terplay of their optical properties with the solar and instru-
ment viewing geometries. We now have a better understand-
ing of the types of scenes that are likely to suffer from SB
– those with high aerosol depths, or aerosols that are lofted
higher in the atmospheric column, and in geometries with
broader ranges of observation and solar zenith angles. Future
work may involve a more detailed study of how the physics
of aerosol optical properties with viewing and solar geome-
tries combine to produce an SB response.

7 Swath bias in OCO-3 version 10

Our analysis thus far has focused on vEarly, but the recent
OCO-3 version 10 (v10) dataset includes a number of up-
dates which has the potential to mitigate SB effects. This sec-
tion provides a brief summary of those changes, and explores
their effect on SB in the v10 SAM collection.

Key v10 updates relevant to our study can be summarized
as follows:

– A geolocation error of up to 20 km in vEarly was re-
duced, with more current values ranging from a few
hundred meters to about 2 km.

– Improved calibration algorithms account for lamp ag-
ing.

– A longer empirical orthogonal function (EOF) training
dataset for v10 captures changes in spectral shape due
to ice buildup on focal plane arrays.

– Sounding selection criteria for v10 L2FP processing
were updated to include the IDP CO2 and H2O ratios,
which significantly reduces the number of soundings
processed in certain v10 SAMs relative to vEarly.

– Operational L2FP postprocessing quality flags in vEarly
eliminated a progressively larger fraction of “good”
soundings. In order to see SB effects, we instead use a
dP_abp filter in this work. Updated quality flags in ver-
sion 10 retain a lower, more realistic number of sound-
ings per SAM compared to vEarly operational flags and
eliminate a larger number of soundings relative to our
dP_abp filter. This change is highly coupled with the
EOF improvements described in the previous bullet.

– A parametric XCO2 bias correction term was added in
v10, accounting for biases related to the retrieved weak
CO2 band albedo, derived from a training dataset which
covers a longer time period than that of vEarly.

– Based on the larger training dataset, all coefficients in
the parametric bias correction were updated. This in-
cludes the dP bias correction term coefficient, which
was increased from smaller than −0.1 to −0.62. The
new value is more in line with expectations, based on
experience with OCO-2.

Operational v10 quality filtering is much more thorough
than our simple dP_abp attempt, and as far as bias correc-
tion, from our work with vEarly, we expect that the stronger
dP bias correction term in particular may have a signifi-
cant effect on SAMs’ SB. In particular, our February SAM
exhibited some correlation between XCO2 and dP, and we
see a similar pattern in a number of other vEarly SAMs.
For mitigation of SB, simple linear bias correction derived
solely from dP proves more effective in those cases than the
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Figure 17. sd_median versus each of our tested parameters.

Figure 18. 23 February 2020 vEarly SAM from OCO-3, showing the effects of the operational bias correction and a linear dP-derived bias
correction on the observed SB. The linear dP bias correction is more similar to the bias correction in v10.

vEarly operational bias correction. Figure 18 shows this phe-
nomenon for the 23 February vEarly data. This may make
some sense relative to our simulation results, which show
that aerosol properties have the most influence on SB: the
retrieval might account for complex aerosol effects by over-
correcting surface pressure. Some, but not all, of our simula-
tion configurations did show a similar correlation between dP
and XCO2 . Thus the improved dP correction seems likely to
improve SB, via mitigation of aerosol effects, in some scenes
but not all. The dP bias correction in v10 will be more effec-
tive generally than in vEarly, because the dP correction as-
sumes accurate prior surface pressures, which is not the case
in the presence of the significant geolocation errors suffered
in vEarly.

For our comparison between v10 and vEarly, we evaluate a
total of 5459 SAMs from v10 (specifically, version B10306r;
OCO-2/OCO-3 Science Team et al., 2022) that have vEarly

counterparts. These SAMs span from August 2019 to June
2021. For the most direct comparison, we first apply the
more restrictive v10 sounding selection criteria to vEarly.
We apply quality filtering and bias correction, narrow down
to only SAMs with at least 500 soundings (N > 500 repre-
senting the number of soundings, NSAM representing the
number of N > 500 SAMs), and calculate our SB param-
eters from Eq. (1). vEarly quality filtering is our custom
|dP_abp|< 16 hPa filter, and v10 is filtered using the oper-
ational v10 quality flags. Figure 19 details the comparison.

Recall from Sect. 3 that sb_ratio is the result of divid-
ing sd_median by mean_sd, where sd_median is essentially
a measure of swath-to-swath bias and mean_sd a measure
of within-swath – or within-scene – noise. Figure 19 shows
that the swath-to-swath bias is greatly decreased with filter-
ing and bias correction in v10; the same is true of the noise
within-swath noise. We conclude that swath bias in v10 looks
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Figure 19. Normalized histograms of swath bias parameters for vEarly and v10 SAMs, using v10 sounding selection for both datasets. All
SAMs have at least 500 soundings (N > 500). The number of SAMs in each dataset is given by NSAM. vEarly is in blue, v10 is in orange,
and the SB threshold of sb_ratio > 0.75 is indicated by the gray line. The number of swath bias cases is listed as NSB in panel (c).

distinctly different than in vEarly: the magnitude is much
smaller and exists within a much smoother XCO2 field. The
distribution of the sb_ratio does look similar to vEarly, but
there are fewer SAMs with SB in v10. Quality filtering in v10
decreases the number of N > 500 SAMs fairly significantly,
which we believe is a more realistic result than the more per-
missive dP_abp filtering used for vEarly. Per this exercise,
out of the full 5459 SAMs compared, vEarly contains 6.9 %
SB cases, compared to only 3.7 % in v10.

Quality filtering and bias correction each have their own
effect on the swath bias, and improvements due specifically
to the v10 bias correction could be derived either from the
improved dP correction or the new weak CO2 albedo cor-
rection, although we suspect the dP term as previously dis-
cussed. To separate these effects, we apply each of the v10
parametric bias correction terms to the raw XCO2 data indi-
vidually and evaluate the change in SB strength (defined as
the sb_ratio from Eq. 1). We perform this test for a subset
of 475 cases with sb_flag= 1 in the raw v10 data. Figure 20
shows the results of this exercise.

The dP correction indeed has the largest impact in reduc-
ing SB, in line with our hypotheses regarding both aerosol
effects and geolocation. The median SAM’s SB is weakened
by 20 % with this bias correction term applied. The weak
CO2 albedo correction has a much smaller effect on SB over-
all, with a median SB change of −1 %. Other bias correction
terms have a similarly minor effect on SB compared to dP,
and the full bias correction with all terms applied reduces SB
in most SAMs, with a median SB change of−16.5 %. We do
note, however, that in tests applying the bias correction and
quality filtering separately, the quality filtering had a more
substantial effect on SB: bias correction alone reduced the
number of v10 SB SAMs from 325 (in raw data) to 310, and
quality filtering reduced it from 325 to 225. While dP had the
largest impact within the bias correction, the quality filtering
had an even larger impact, indicating that the swath bias is
not driven specifically by dP but rather by extreme aerosol
effects being characterized poorly within the retrieval.

Figure 20. SB response to individual v10 bias correction terms for
475 v10 SAMs whose sb_flag= 1 prior to filtering and bias correc-
tion. This set of SAMs extends beyond the time period used in the
vEarly comparison.

All three of the Australian ECOSTRESS SAMs used
in our simulation work benefit from v10 improvements.
Figure 21 shows a comparison between their vEarly and
v10 bias-corrected and quality-filtered counterparts. None of
these cases are flagged as having SB in v10, all with sb_ratios
less than 0.75. Between the three, several v10 improvements
are apparent.

In the 23 February SAM, geolocation and calibration im-
provements remove the across-swath gradient almost en-
tirely, and improved quality flags also remove many sound-
ings where we retrieve higher aerosol optical depths. On
4 April, improved geolocation and bias correction sharpen
a few thin topographical features stretching northwest to
southeast, indicating a topography effect such as those de-
scribed in (Kiel et al., 2019). A footprint-dependent bias is
also removed by bias correction in v10 – we see the same
bias improved in the 8 May SAM. On 8 May the v10 bias
correction also removes a signal in the northeast corner of
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Figure 21. The three Australian SAMs used in our simulation work, comparing the operational products from vEarly (a, c, e) and v10 (b, d, f).

the SAM, which we believe is related to a real aerosol sig-
nal manifesting in dP, per MAIAC data over the site. The
sb_ratio is reduced in v10 for all three SAMs.

Aside from our three Australian SAMs, we perform some
visual analysis of 243 quality-filtered, bias-corrected SB
SAMs from the v10 dataset, extending through October
2021. In an attempt to estimate how many of these SAMs
seem to suffer from a genuine geometry-related SB and how
many simply contain across-swath XCO2 gradients derived
from other sources, we look at maps of raw XCO2 , bias-
corrected and quality-filtered XCO2 , dP, retrieved albedo, and
TROPOMI NO2 (Veefkind et al., 2012; Van Geffen et al.,
2019). We estimate that at least half of the 243 SAMs are
flagged as SB cases due to XCO2 variability caused not by
geometry or aerosol effects, but by other biases (e.g., topog-
raphy, albedo); real XCO2 signals, including some with fossil
signals which are verifiable using TROPOMI NO2 data; or
other unknown sources. An example of fossil emissions trig-

gering a false SB flag is shown in Fig. 22, on the coast of
Saudi Arabia. TROPOMI NO2 indicates a real XCO2 plume,
but despite the v10 quality flags removing a generous number
of soundings, enough of the OCO-3 SAM remains after bias
correction and filtering to see an across-swath gradient which
is derived from the contrast of the fossil fuel signal and back-
ground. Figure 23 shows an example of a v10 SAM with true
swath bias: both the raw and bias-corrected data show a shift
of nearly 1 ppm in XCO2 between swaths, which may drown
out any existing fossil signal as observed by TROPOMI NO2.
The swath bias appears to be due to higher aerosol loading in
the scene, with MAIAC indicating AODs of nearly 0.3.

We acknowledge that vEarly suffers from the same limita-
tions as v10 in terms of this interpretation of the sb_flag, indi-
cating that vEarly likely also suffers from a far smaller num-
ber of true SB cases than our flag suggests. Despite this, we
still consider v10 an improvement based on the across-swath
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Figure 22. A v10 OCO-3 SAM whose SB flag is triggered by a real across-swath XCO2 gradient due to a fossil fuel emission signal clustered
on one side of the SAM, rather than a geometry-related bias.

Figure 23. A v10 OCO-3 SAM at Boundary Dam power plant in Saskatchewan, Canada, which appears to have a true swath bias, even after
bias correction and quality filtering. The SAM was taken at 16:42 UTC (10:42 LT), and MODIS data indicate high AODs of around 0.3 in
the area on this date.

and within-swath improvements to the XCO2 field shown in
Fig. 19.

There is a small number of SB-affected SAMs in v10
which are not flagged as such in vEarly, which we find is
due to a less noisy XCO2 field overall – that is, a reduction in
the denominator of Eq. (1). We do not believe most of these
cases suffer from significant SB. Overall, SB appears to be
driven primarily by aerosol effects, and as shown in Sect. 6,
our retrieval generates its own SB in certain instances. How-
ever, v10 quality filters prove especially effective at mitigat-
ing swath biases, and the dP term in the v10 bias correction
appears to remove some SB even after quality filtering be-
cause of the way aerosol effects are often folded into dP.
Therefore, while it still exists, filtering and bias correction
largely appear to mitigate SB in OCO-3 v10 data.

8 Conclusions

Target mode data from the OCO-2 and OCO-3 missions, and
SAM data from OCO-3, provide us with an avenue to explore
not only local-scale CO2 emissions but also geometry-related

biases in space-based CO2 measurements, since they sample
a nearly instantaneous atmosphere from a range of viewing
angles. With the arrival of the first operational OCO-3 SAM
data, we observe a new geometry-related bias in the form of
a swath-dependent XCO2 gradient spanning several parts per
million. We refer to this as swath bias.

In this study we develop a set of criteria to detect swath
bias (SB) in any given SAM by calculating the ratio of swath-
to-swath scatter in the XCO2 field to the scatter over the full
scene and triggering a swath bias flag (sb_flag) over a thresh-
old value of 0.75 (Eq. 1). Per these criteria, we find that
roughly 12 % of SAMs in the vEarly dataset suffer from SB,
and 256 of those 352 cases are over urban/fossil sites. An
analysis of key retrieval parameters reveals a relationship be-
tween SB and local time of day, correlated to solar zenith
angle. Together these describe a correlation to path length,
which could be related to viewing and solar geometry, as well
as aerosol optical depth – and we do observe a higher fraction
of SB at SAMs with higher retrieved optical depths. There is
also a higher frequency of SAMs over scenes with higher re-
trieved albedo. We turn to the L1b simulator framework to
study these relationships in a more systematic manner.
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By studying real OCO-3 SAMs, we show that SB in XCO2

is primarily correlated to the viewing geometry, though the
geometry signal in other retrieved parameters appears easily
obscured by signals from other sources, such as heteroge-
neous aerosol fields or surface topography. To remove addi-
tional in-scene variability, we build custom aerosol and sur-
face scenes to generate simulated radiance spectra and use
those spectra to retrieve XCO2 with the ACOS L2FP algo-
rithm. Our first tests show that we can successfully repro-
duce geometry-driven SB effects via this method, and while
not identical to the observed vEarly SB, the similarities are
enough to instill confidence in the utility of the procedure.
We select a set of three SAMs over an Australian desert site,
which represent a range of solar zenith angles and viewing
geometries, as well as a range of SB effects. For these three
SAMs, we perform a series of controlled tests, changing in-
dividual inputs to the simulated scene.

Scenes with no aerosol show little to no SB, but each
SAM’s response to aerosol height and optical depth is consis-
tent – the higher the aerosol within the column, or the higher
the AOD, the stronger the SB. We test one coarse and one
fine mode aerosol for each SAM, and each produces a differ-
ent SB, but which is stronger depends on the conditions of
the SAM. The precise combination of geometry and aerosol
optical properties required for a strong SB appears to be com-
plex; although it is apparent that the unique optical properties
of each aerosol type interact with the geometry to produce
the different XCO2 patterns. The exact nature of these interac-
tions would require further study to describe in a quantitative
manner.

Our manipulation of surface albedo, testing a range of val-
ues from 0.1 to 0.6 in each of the three OCO-3 bands, reveals
that swath bias is more likely to occur over dark surfaces
with low albedos. Our O2 A-band filter is skilled at mitigat-
ing the effect over dark surfaces, however, where aerosols
are differentiable from the surface beneath. It has more trou-
ble discerning aerosols and their effects over bright surfaces
and is less likely to filter out affected soundings. We believe
this behavior may account for the observed trend of more SB
SAMs at higher albedos in vEarly and reinforces the fact that
SB is intimately linked to aerosols.

Finally, we replicate our vEarly analysis using the updated
version 10 dataset and see vastly improved statistics. We find
that improved quality filtering is the primary driver of this
development, removing a significant number of soundings in
SB-affected SAMs. Better sounding selection and significant
geolocation improvements, combined with a better dP bias
correction, also make v10 more effective at mitigating SB
effects and generally improve the quality of the final data
product. We estimate that at least half of the remaining v10
SB SAMs, after filtering and bias correction, may in fact be
triggered by other biases or real XCO2 signals, but further in-
vestigation is required to quantify these numbers accurately.
For the remaining truly geometry-related SB, we hypothesize
that retrieval algorithm adjustments, with increased complex-

ity or better prior aerosol information, may help mitigate the
SB signal in the final Level 2 product. Some remaining SB
may also be due to small remaining OCO-3 geolocation er-
rors, improvements to which are being pursued in future data
versions and may address this issue; additionally, alternate or
supplemental postprocessing may prove effective. We leave
these approaches to future study.

We conclude that the swath bias effect is intrinsically
linked to the presence of aerosols, their interplay with obser-
vation geometry, and our ability to filter out aerosol-affected
soundings, as well as the way aerosols are characterized
within our retrieval. There has long been room for improve-
ment in the latter, and it is a critical piece of the retrieval
puzzle with further complexity to be studied. Work by Rusli
et al. (2021), in support of the European Space Agency’s CO2
Monitoring (CO2M) mission (Ciais et al., 2017; Janssens-
Maenhout et al., 2020), showed with synthetic data that
jointly retrieving XCO2 and aerosol information provided by
a multi-angle polarimeter (MAP) can significantly improve
aerosol-related biases, overall bias, and spread in the re-
sulting XCO2 . Strategies along these lines – complementary,
aerosol-dedicated instruments alongside spectrometers mea-
suring trace gases – may be one effective approach to im-
proving the biases we see in this study. Accurately repre-
senting aerosols in greenhouse gas retrievals will prove just
as important to future CO2-monitoring missions as it has to
OCO-3 – perhaps even more so as the remote sensing com-
munity continues to hone in on local-scale emissions.

Code and data availability. OCO-3 Level 2 files are available at
the NASA GES DISC (https://doi.org/10.5067/970BCC4DHH24,
OCO-2/OCO-3 Science Team et al., 2022). Version 10.3 (B10306r,
specifically) is used in this study, which is nearly identical
to Version 10.4 on the GES DISC, apart from a small time-
dependent correction which does not affect the few-minute vari-
ations we analyze here. B10306r files are available upon re-
quest. CarbonTracker CT2019B is available through NOAA GML
at https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2019B/
molefractions/co2_total/ (last access: 25 July 2022; Jacobson et al.,
2020). NCEP-NCAR Reanalysis 1 meteorological data are provided
by the NOAA PSL in Boulder, Colorado, and are found at https:
//psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (last access:
25 July 2022; NOAA/NCEP, 2022). The MODIS MCD43A1 prod-
uct is at https://doi.org/10.5067/MODIS/MCD43A1.006 (Schaaf
and Wang, 2015). The left panel and insets of Fig. 3
were created using visualization software developed at CSU/-
CIRA by Heather Cronk, the code for which is available at
https://doi.org/10.5281/zenodo.7517017 (Cronk et al., 2023).
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