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Figure S1. Comparison of the integrated raw signals from heating, reheating cycles and ambient blanks for () Quartz fiber
filters and (d) Teflon filters, thermograms of C¢H100sl™ (b) and C12H23NOgl™ (c) of heating and reheating cycles for Quartz
fiber filters, and thermograms of CsH100s1™ (€) and C12H23NOgl™ (f) of heating and reheating cycles for Teflon filters.
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Figure S2. The average Is ratios between reheating and heating cycles for the Quartz filter with the standard deviations for
the three reheating tests. Dots were colored by the relative errors (defined as the Std/Avg of Is from the duplicate tests) of
compounds



Figure S3. The distribution of Is ratios from reheating/heating for 0.75 and 1.2 pg loading Quartz samples. The negative
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Figure S4. Exponential fit for reheating/heating signal ratios
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Figure S5. Thermograms for C¢H100sl™ of sample and field blank (blk), and the thermal baselines for sample and blanks using
background subtraction Method 4
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Figure S6. Comparison of the integrated signals for the 24-h samples for different blank subtraction methods
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Figure S7. Comparison of the integrated signals (Is) of all compounds for the 2.5-h versus the sum of signals of five 0.5-h
samples (a) without blank subtraction, with blank subtraction using (b) Method 1, (c) Method 2a, (d) Method 2b, () Method
3a, (f) Method 3b, (g) Method 4. The size of dots is proportional to the 4" root of integrated signal intensities of compounds,
and they are color-coded by the ions’ m/z (mass-to-charge ratio). Compounds with 1s<0.2 are shown on a linear scale and
compounds with 1s>0.2 on a log scale
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Figure S8. The distribution of Is ratios between the 2.5-h and the sum of five 0.5-h samples for the 25% of compounds with
the highest signal intensity for different background subtraction methods. The distribution range is from -1 to 6 with bins of
0.5, which covers 82%, 61%, 94%, 93%, 90%, 72%, and 96% of the top 25% of compounds with respect to signal for no
blank subtraction, Method 1, 2a, 2b, 3a, 3b, and 4, respectively.
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Figure S9. Comparison of the raw CHOX integrated signal intensities (Is) and standard deviations of the corresponding
backgrounds (scaled field blanks) for (a) 24-h Teflon, (b) 12-h Quartz, (c) 12-h Teflon, and (d) 12-h Quartz samples
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Figure S10. Comparison of the integrated signal intensities for the 3 duplicate tests of the 2.5-h sample for the (a) Teflon and
(c) quartz fiber filters, the histogram of the distributions of the ratios of the 3 duplicate tests to their average for (b) Teflon

and (d) Quartz fiber filters
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Figure S11. Frequency distribution of the integrated signals of CHOX compounds for Quartz and Teflon samples in (a) 2.5-
h collection time (bin width: 1x10° counts), (b) 24-h collection time (bin width: 1x10 counts). The correlations between
log-transformed Is of Quartz and Teflon samples from (c) 2.5-h, and (d) 24-h samples.
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Figure S12. Comparison between CHOX mass concentrations from FIGAERO-CIMS, organic aerosols (OA), and secondary
organic aerosols (SOA) derived from ToF-ACSM at the Peking University Campus (PKU) site. Calibrations for FIGAERO-
CIMS were conducted for a series of chemical compounds with both the permeation tube and micro-syringes. The details of
the site, comparison setting up, calibrations, and calculations can be found in Zheng et al. (2021).
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Figure S13. Thermograms (normalized to the highest signal) from the 24h Teflon sample with/without correction from non-
uniform ramping and uniform ramping protocols, (a) HNOsl", (b) C4HgOal", (c) CsHsNOgsl, (d) CeHsNOal, (€) CsH100sl, ()

CsgH12061"
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Figure S14. Two-dimensional (2D) thermograms of CHOX compounds for the Quartz filter in () the fast linear ramping, (b)
the intermediate ramping without correction, and (c) the intermediate ramping after correction. The blue dashed box marks
the slow temperature rate region.

Table S1 Sampling information and mass loadings on the punches for the thermogram comparison of different
filter types (T is for Teflon; Q is for quartz fiber)

] PM s loading OA loading
Sar(;lqllng Sampling time Filter type (ng/2mm punch,
e 0.031 cm?) (Mg/punch)
6-Nov 21:30-9:00 Tand Q 0.57 0.38
8-Nov 21:30-9:00 Tand Q 1.49 0.61
9:30-21:00 Tand Q 4.84 1.01
13-Nov
21:30-9:00 Tand Q 5.57 1.15
24-Nov 9:30-9:00 T and Q (3 duplicate tests) 3.03 1.25
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