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Abstract. The summertime air pollution events endanger-
ing public health in the Guangdong–Hong Kong–Macao
Greater Bay Area are connected with typhoons. The wind
of the typhoon periphery results in poor diffusion conditions
and favorable conditions for transboundary air pollution.
Random forest models are established to predict typhoon-
associated air quality in the area. The correlation coefficients
and the root mean square errors in the air quality index (AQI)
and PM2.5, PM10, SO2, NO2 and O3 concentrations are
0.84 (14.88), 0.86 (10.31 µgm−3), 0.84 (17.03 µgm−3), 0.51
(8.13 µgm−3), 0.80 (13.64 µgm−3) and 0.89 (22.43 µgm−3),
respectively. Additionally, the prediction models for non-
typhoon days are established. According to the feature im-
portance output of the models, the differences in the meteo-
rological drivers of typhoon days and non-typhoon days are
revealed. On typhoon days, the air quality is dominated by
local source emission and accumulation as the sink of pollu-
tants reduces significantly under stagnant weather, while it is
dominated by the transportation and scavenging effect of sea
breeze on non-typhoon days. Therefore, our findings suggest
that different air pollution control strategies for typhoon days
and non-typhoon days should be proposed.

1 Introduction

The rapid and continuous economic and industrial develop-
ment of China in recent decades has resulted in a mount-
ing air pollution problem in the country. Major atmospheric

pollutants, such as particulate matter (PM), O3, SO2 and
NO2, not only have important impacts on ecosystems, traf-
fic safety and weather/climate but also seriously exacer-
bate human health issues and increase morbidity and mor-
tality from cardiovascular and respiratory diseases (Che et
al., 2005, 2014; Lolli et al., 2018; Lolli, 2021; Zheng et
al., 2020; Zhu et al., 2021). The Guangdong–Hong Kong–
Macao Greater Bay Area (GBA), located in southern China,
comprises nine municipalities of Guangdong Province, in-
cluding Guangzhou and Shenzhen, and two Special Admin-
istrative Regions, Hong Kong and Macao. With a high popu-
lation density of over 1100 people per square kilometer, the
GBA is one of China’s most heavily populated and urban-
ized areas. As a result, the area sees a high intensity of air
pollutant emissions and frequent air pollution events (Deng
et al., 2008, 2011; Hou et al., 2019). As well as the in-
tense emission of pollutants, the other main factor influenc-
ing the air quality is the weather circulation pattern (Yang
et al., 2018, 2020a; Zong et al., 2021). For instance, when
light breezes and a temperature inversion layer occur in the
surface layer of the GBA, the air quality deteriorates (Tong
et al., 2018a; Ding et al., 2004; Huang et al., 2005; Yang et
al., 2012). In contrast, the air quality is good when the wind
speed in the area is high – for example, the strong southerly
winds in summer and northerly winds that cross the northern
mountains in winter (Chen et al., 2016; Tong et al., 2018a, b).

The GBA is continually affected by typhoons in summer
(Ying et al., 2014; Lu et al., 2021), and as they make landfall,
the air quality and synoptic situation in the region changes
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significantly (Ding et al., 2004; Huang et al., 2005; Lam et
al., 2005; Feng et al., 2007; Wei et al., 2007, 2016; Yang
et al., 2012; Wang et al., 2022). The causes of typhoon-
associated air pollution can be concluded as follows. On the
one hand, the downdraft of the typhoon periphery leads to
a large-scale temperature inversion layer, meaning light air
and adverse pollutant diffusion conditions prevail in the area
(Feng et al., 2007; Yang et al., 2012; Deng et al., 2019).
Additionally, pollutants in the upper level are transported
down to the lower atmosphere, where they accumulate un-
der the impact of the downdraft. Consequently, the accumu-
lation of local source emissions is aggravated, making the
air quality bad or even severe (Huang et al., 2005; Wei et
al., 2016). On the other hand, the various wind patterns of
the typhoon periphery (mostly northerlies during pollution
events) provide favorable conditions for transboundary air
pollution from both outside the GBA and cities inside the
GBA (Chow et al., 2018; Lam et al., 2018; Luo et al., 2018;
Deng et al., 2019; Yim et al., 2019; Yang et al., 2019).
However, there are still two issues with respect to typhoon-
associated air quality in the GBA that have yet to be fully
understood. (1) Which local meteorological factors play the
dominant role in the change in different atmospheric pol-
lutants during typhoon processes? (2) What are the differ-
ences in the dominant local meteorological factors between
typhoon and non-typhoon processes? These two issues are of
great significance to the forecast of air quality and the adap-
tions of air pollution in the GBA.

Quantitative analysis and the prediction of pollutant con-
centrations have become a focus in this field of study. Exist-
ing methods include numerical forecasting, statistical fore-
casting and machine learning. In terms of numerical fore-
casting, several models have been developed, such as CMAQ
(Community Modeling and Analysis System; developed by
the US EPA) and NAQPMS (a nested air quality prediction
modeling system developed by the Institute of Atmospheric
Physics, Chinese Academy of Sciences) (Arnold et al., 2003;
Li et al., 2011). These models have been applied by some
researchers to study typhoon-associated air quality, and re-
sults have revealed the impacts of meteorological conditions
on the transportation and diffusion of air pollutants – for ex-
ample, the downdraft, northerly winds and high near-surface
air temperatures that boost the photochemical reaction that
generates O3 (Wei et al., 2016). Numerical experiments also
led to the discovery that the contribution of cross-regional
transportation varies with the wind field, and these stud-
ies reflect one of the advantages of the numerical modeling
method, which is that they can analyze the formation mech-
anism of a specific pollution event (Huang et al., 2005; Lam
et al., 2005). However, this approach also has its drawbacks,
such as computational complexity and high data require-
ments. As for statistical methods, examples include cluster-
ing and multiple regression methods based on meteorological
factors and weather types (Su et al., 2009; Singh et al., 2012).
Although the calculations involved in these statistical meth-

ods are simple, their predicted results exhibit uncertainties
with large errors and local dependence (Ross et al., 2007;
Singh et al., 2012). In contrast, machine learning methods
perform very well in terms of accuracy and are already lever-
aged in many fields such as meteorology and the environ-
mental sciences (Li et al., 2021; Zheng et al., 2021; Bochenek
and Ustrnul, 2022; Chen et al., 2022). The forecasting of air
quality is no exception. The most widely used algorithms in-
clude random forest (RF), support vector machines, extreme
gradient boosting (XGBoost) and neural networks. The input
variables include meteorological data and traffic flow data.
Among the machine learning models, RF is an ensemble ma-
chine learning algorithm based on decision trees, which has
certain advantages in capturing the nonlinear relationship be-
tween variables. Attempts made to employ RF in predict-
ing air quality have produced promising results (Kamińska,
2018; Bai et al., 2019; Hu et al., 2021; Ding et al., 2022; Liu
et al., 2022).

It is clear from the literature, as reviewed above, that there
is a definite link between typhoons and air quality in the
GBA. Nevertheless, the meteorological determinants of dif-
ferent kinds of pollutants during a typhoon event are still un-
clear. There is also little research on applying machine learn-
ing to predicting air quality with typhoon location and inten-
sity data, and the accuracy of such predictions remains un-
known. Therefore, in order to improve the accuracy of air
quality prediction for the GBA during typhoon processes,
the present research establishes an RF prediction model of
typhoon-associated air quality in the GBA with air quality
data (air quality index (AQI), PM2.5, PM10, SO2, NO2, O3)
from 39 air quality monitoring stations in 10 cities in the re-
gion, the China Meteorological Administration (CMA) tropi-
cal cyclone best-track dataset from 2014–2020, and meteoro-
logical data from the fifth major global reanalysis produced
by the European Centre for Medium-Range Weather Fore-
casts (ERA5). Also, for the non-typhoon days (NTY days) in
the typhoon season (June–September), RF prediction models
based on meteorological elements are established to analyze
the changes in local meteorological determinants. The aim
of this study is to improve the prediction and assessment of
typhoon-associated air quality in the GBA, which not only
is important from a scientific viewpoint but also has consid-
erable practical application value for tackling the socioeco-
nomic effects of typhoons and associated air quality.

2 Data and methods

2.1 Data

The present study takes 39 air quality monitoring stations in
10 cities in the GBA (Guangzhou, Shenzhen, Zhuhai, Fos-
han, Zhaoqin, Jiangmen, Huizhou, Dongguan, Zhongshan,
Hong Kong) as research objects. Three of these stations from
Guangzhou, Shenzhen and Hong Kong are used for indepen-
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dent testing and are excluded from the training stage. The
input variables of the model are

1. the latitude and longitude of the monitoring stations,
hourly average AQI, and concentrations of PM2.5,
PM10, SO2, NO2 and O3;

2. the typhoon center latitude (Tlat), longitude (Tlon) and
minimum pressure (Tpres), as well as the typhoon near-
center maximum wind speed (Tws), from the CMA
tropical cyclone best-track dataset produced by the
CMA Tropical Cyclone Data Center;

3. ERA5 reanalysis meteorological data, including the
eastward component of the 10 m wind (U10 m), north-
ward component of the 10 m wind (V10 m), 2 m dew-
point temperature (d2 m) and air temperature (T2 m),
planetary boundary layer height (PBLH), surface pres-
sure (SP), total precipitation (TP), vertical velocity at
850 hPa (W850) and 700 hPa (W700), and static stability
(St) (defined as the potential temperature at 700 hPa mi-
nus that at 1000 hPa).

Using the model constructed with the data above, the fu-
ture air quality under the effect of the typhoon can be pre-
dicted. To be specific, the forecasted air quality can be ac-
quired by replacing the ERA5 reanalysis meteorological data
with the ECMWF’s forecast field and introducing the pre-
dicted typhoon location and intensity (for example, from the
CMA). The distribution of all typhoon samples and air qual-
ity monitoring stations is shown in Fig. 1. The data prepro-
cessing procedure is given in Sect. S1 in the Supplement.

2.2 RF model

The RF algorithm, first proposed by Breiman (2001), is a
kind of ensemble machine learning algorithm. The process
for establishing the model is follows. Select a random sample
with the replacement of the training set and train a large num-
ber of decision trees. For each tree, calculate the error at the
node and split with the minimum error as the criterion until
the designated maximum tree depth is reached. The average
of the output of all trees is calculated as the model output.

One of the strengths of the RF model is that it can cal-
culate the importance of features based on impurity, which
means that it can calculate the feature’s importance by the
degree of error reduction brought about by it. The higher
the importance value is, the more influential the feature will
be. Because of these advantages, RF models have been ap-
plied to analyze causal relationships between variables and
provide a powerful tool for determining the dominant fac-
tors among variables (Wang et al., 2019; Yang et al., 2020b;
Zeng et al., 2020; Li et al., 2021; Venter et al., 2021; Chen et
al., 2022).

Figure 2 presents the technology roadmap for establishing
the RF model, which is described as follows.

Step 1: data acquisition and matching. This paper uses the
scikit-learn package in Python to construct the RF forecast
model with the typhoon location and intensity data (on ty-
phoon days, TY days), the location of monitoring stations
and meteorological data as input variables, and the AQI and
concentrations of PM2.5, PM10, SO2, NO2 and O3 as the pre-
dicted variables.

Step 2: RF model establishment and cross-validation.
First, the dataset (data from 36 stations) is randomly divided
into a 70 % training set and 30 % testing set. The hyperpa-
rameter tuning and model training process is conducted on
the training set. The hyperparameter tuning process refers to
determining the best hyperparameters, which means the pa-
rameters must be set manually in advance. The testing set
is used for evaluating the RF model’s ability to predict the
unseen data. To avoid the bias caused by the splitting of
the training and testing sets, 10-fold cross-validation (CV)
is adopted in the training set, which is to say that the training
set is divided into 10 parts, 9 of which are used as the train-
ing set of the tuning process, and then the performance of the
remaining one, called the validation set, is tested. This there-
fore ensures that the optimal parameters of the model that are
found are not affected by data partitioning. The hyperparam-
eters adjusted in the present study are described in Sect. S2.
Afterward, the training set and the testing set were applied to
the optimal model, and the feature importance of the model
output was analyzed to obtain the dominant meteorological
factors of each model.

Step 3: model prediction and verification. Once the op-
timal model is established, the training set, testing set and
data from testing stations in Guangzhou, Shenzhen and Hong
Kong are applied to the model separately, and a series of
model evaluation metrics are calculated, including the mean
absolute error (MAE), root mean square error (RMSE), bias,
correlation coefficient between the observed and predicted
value (R), standard deviation of the observation (SDO), stan-
dard deviation of the prediction (SDP), and index of agree-
ment (IA). The definitions of these metrics are given in Ta-
ble 1. Among these indicators, the smaller the bias, MAE
and RMSE are, the better the model performs; the closer R
and IA are to 1, the more ideal the result is; and the closer
SDO and SDP are, the better the model is overall. If RMSE
is lower than SDO, the IA is high, and SDO is close to SDP,
then the prediction is satisfactory (Lu et al., 1997).

3 Results

3.1 RF model evaluation

3.1.1 TY-associated model

The RF model is applied to the AQI and five pollutants to
establish six distinct RF models (the hyperparameters of the
six models can be seen in Table 2; 70 % of the samples from

https://doi.org/10.5194/amt-16-1279-2023 Atmos. Meas. Tech., 16, 1279–1294, 2023



1282 Y. Chen et al.: Typhoon-associated air quality over the GBA

Figure 1. Overview of the data used in this study: (a) tracks of the studied typhoons (only those typhoons within the dotted box area are
introduced into the model); (b) locations of the 39 observation stations.

Table 1. The definition of evaluation metrics of the model.

Metric Definition

MAE 1
N

N∑
i=1
|φi |

RMSE

[
1
N

N∑
i=1

(φi)
2

]1/2

Bias 1
N

N∑
i=1

φi

R

∑N
i

(
Oi−O

)
(pi−p)√∑N

i=1
(
Oi−O

)2√∑N
i=1(pi−p)

2

SDO
1

N−1

[
N∑
i=1

(
Oi −O

)2]1/2

SDP
1

N−1

[
N∑
i=1

(pi −p)
2

]1/2

IA 1−
∑N
i=1(φi )

2∑N
i

(∣∣pi−O∣∣+∣∣Oi−O∣∣)2
Notation: pi is the predicted value, Oi is the observed
value, N is sample size, O is the mean of observed
value, p is the mean of predicted value, and φi is the
difference between the predicted and observed values.

36 stations are used as the training set and 30 % as the testing
set).

The training and testing results for the AQI, PM2.5 and
PM10 are shown in Fig. 3a, b, d, e, g and h. The R val-
ues between the observed and predicted value of the train-
ing set (testing set) are 0.986 (0.843), 0.986 (0.859) and
0.983 (0.837), respectively; the RMSEs are 5.43 (14.88),
3.88 µgm−3 (10.31 µgm−3) and 6.33 µgm−3 (17.03 µgm−3);
and the biases are 0.10 (−0.07), 0.06 µgm−3 (0.20 µgm−3)

Table 2. The best hyperparameters of the model.

Model The no. of estimators Max depth

TY days NTY days TY days NTY days

AQI 710 750 82 87
PM2.5 170 630 70 88
PM10 420 690 150 41
SO2 250 385 72 61
NO2 580 685 100 71
O3 660 495 80 101

and 0.19 µgm−3 (0.16 µgm−3). As for the MAE and IA, the
RF model also performs well. The IA of the testing is as high
as 0.894, 0.906 and 0.895. It can be seen that the red points
in the training set are mostly close to the diagonal line, which
means that the RF model makes an accurate prediction over
the majority of the samples. Although the data points for the
testing set are not as dense as those for the training set, the
sample with the most frequency is still relatively close to the
y = x line, indicating that the RF model has good predic-
tive ability for unseen data. Concerning the feature impor-
tance (Fig. 3c, f, i), the dominant factor of the AQI is d2 m,
which represents the atmospheric humidity, followed by the
static stability. The first two factors have approximate impor-
tance values, reflecting that the meteorological determinants
of the AQI in the GBA during typhoon events are humid-
ity and static stability. Among all the typhoon information
data, the importance of Tlon and Tlat is intermediate among
all the variables, while the importance of Tpres and Tws is
the lowest. It can be concluded that the typhoon center loca-
tion rather than the typhoon intensity is the key to modify-
ing the synoptic situation in the GBA, thereby changing the
AQI value. Similarly, Figs. S1–S3 in the Supplement show
the R (RMSE) values of the testing set for SO2, NO2 and
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Figure 2. Flow chart of the study framework.

O3 are 0.510 (8.13 µgm−3), 0.799 (13.64 µgm−3) and 0.894
(22.43 µgm−3), respectively. The IA of all pollutants except
SO2 exceeds 0.85, reflecting that the RF model has strong
predictive ability for these pollutants.

The pollutants can be classified into two categories based
on the feature importance output of the RF model with re-

spect to the major meteorological controlling factors. The
first category is the d2 m-driven type, which includes PM2.5
and PM10, whose dominant meteorological driving factor is
d2 m, followed by the PBLH, which is consistent with the
AQI. The reason for this could be that d2 m reflects not only
the humidity but also the precipitation and temperature to
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Figure 3. The results of TY days’ AQI, PM2.5 and PM10 predicted by the RF model: (a) training set of AQI; (b) testing set of AQI; (c) feature
importance of AQI; (d–i) training set of (d) PM2.5 and (g) PM10; testing set of (e) PM2.5 and (h) PM10; feature importance of (f) PM2.5 and
(i) PM10.
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some extent. When there is rainfall related to a typhoon in
the GBA, wet deposition will reduce the concentration of
PM. The reason why total precipitation is less important than
d2 m could be that the latter always has a value and is more
variable. The similarity between the AQI, PM2.5 and PM10
results reveals that the major pollutant in the ambient air of
the GBA during typhoon events is PM, since the AQI value
is the highest of the individual air quality index. The other
category is the PBLH-driven type, which includes SO2, NO2
and O3. Obviously, the major meteorological influence in this
case during typhoon events is the PBLH. Nevertheless, the
situation for SO2 is unlike that of the other two. The most
important variables affecting the SO2 concentration after the
PBLH are U10 m and V10 m. Indeed, this is the highest U10 m
and V10 m importance among the six models, indicating that
the SO2 in the GBA may mainly derive from transboundary
transportation. The variable importance for NO2 and O3 ex-
hibits very similar characteristics because they are both pol-
lutants closely related to photochemical reactions. Under cer-
tain conditions, the free radical reaction of NO2 can gener-
ate O3 (Lam et al., 2005, 2018; Zhang et al., 2013; Deng et
al., 2019). It is also worth noting for these two pollutants that
the PBLH, which has the highest rank of importance among
all variables, is more than twice as important as the second-
highest variable, and this is distinct from the other four mod-
els.

Additionally, this paper uses three testing stations in
Guangzhou, Shenzhen and Hong Kong, which are excluded
from the training and testing set mentioned above, to fur-
ther investigate the generalization ability of the model.
The results for the AQI, PM2.5 and PM10 of TY days
are shown in Fig. 4a–c. The R (RMSE) values for AQI,
PM2.5 and PM10 are 0.868 (11.70), 0.900 (7.16 µgm−3)
and 0.841 (13.45 µgm−3), respectively. As for SO2, NO2
and O3, Fig. S4a–c show the R (RMSE) values of the
testing set for SO2, NO2 and O3 are 0.496 (5.38 µgm−3),
0.538 (27.94 µgm−3) and 0.878 (22.45 µgm−3), respectively.
These results are not significantly different from the results
for the previous 36 stations, indicating that models trained
with some station data also predict equally well in new loca-
tions, which is to say that the RF model successfully captures
the correlation between the typhoon’s location and the mon-
itoring stations’ location. Though the input stations changed,
the model still produces accurate predictions based on the
relative position of the station and the typhoon.

Overall, the model has outstanding predictive ability for
the AQI and five air pollutants and makes correct predictions
for the new stations that are unseen in the training stage. The
present study also highlights that the typhoon location vari-
ables of Tlat and Tlon are more important than the typhoon
intensity variables of Tpres and Tws, showing that the major
driving factor in modifying the synoptic situation in the GBA
and thereby changing the AQI value is typhoon location. The
role of typhoon intensity requires further study. The domi-
nant meteorological drivers of typhoon-associated air quality

are also revealed by the RF model: for the AQI and concen-
trations of PM2.5 and PM10 it is d2 m, while for SO2, NO2
and O3 it is the PBLH.

3.1.2 NTY-associated model

We then use the meteorological data, station location and
air quality data of the NTY days during the typhoon sea-
son (June–September) to build RF models (the hyperparam-
eters of the six models can be seen in Table 2). Similarly,
the model prediction accuracy and output feature impor-
tance are calculated and compared with the results of TY
days. The training and testing results for the AQI, PM2.5 and
PM10 are shown in Fig. 5a, b, d, e, g and h. The R val-
ues between the observed and predicted value of the train-
ing set (testing set) are 0.979 (0.745), 0.978 (0.744) and
0.978 (0.708), respectively; the RMSEs are 5.52 (15.11),
3.60 µgm−3 (9.68 µgm−3) and 5.65 µgm−3 (15.45 µgm−3);
and the biases are 0.19 (0.57), 0.12 µgm−3 (0.27 µgm−3)
and 0.18 µgm−3 (0.48 µgm−3). Compared with the predic-
tion results of the TY days, the prediction accuracy is signif-
icantly reduced, and the R values are all reduced to below
0.8. Figures S5–S7 show the R (RMSE) values of the test-
ing set for SO2, NO2 and O3 are 0.452 (7.00 µgm−3), 0.744
(11.63 µgm−3) and 0.867 (24.18 µgm−3), respectively. The
prediction accuracy of the model is significantly poorer com-
pared with the model of TY days, and it can be seen that the
maximum pollutant concentration on NTY days is signifi-
cantly larger than that on TY days, indicating that the period
of air quality deterioration in the GBA coincides with the pe-
riod of typhoon activity.

The feature importance of model predictions on NTY days
is significantly different from that on TY days. For AQI and
PM2.5, the meteorological driver is longitudinal wind (V10 m),
while for PM10 it is the latitude of the monitoring station
(lat). Considering that the southern part of the GBA is close
to the sea, and the farther north one goes, the farther it is from
the sea, V10 m can represent the strength of the sea breeze
and land breeze, and lat can be seen as the distance from
the sea. By contrast, their meteorological determinants are all
d2 m on TY days, and this change indicates that the typhoon
deters the pollutants from being blown away and replaced by
clean air from the ocean, which is the major sink of pollutants
on NTY days. Therefore, haze occurs. As for the pollutants
classified as the PBLH-driven type – SO2, NO2 and O3 –
their meteorological drivers on NTY days are V10 m, St and
PBLH, respectively.

Consistent with the TY-associated model, three testing sta-
tions from Guangzhou, Shenzhen and Hong Kong are intro-
duced into the NTY-associated model. The results for the
AQI, PM2.5 and PM10 of NTY days are shown in Fig. 4d–
f. The R (RMSE) values for AQI, PM2.5 and PM10 are 0.835
(11.65), 0.825 (7.24 µgm−3) and 0.740 (12.76 µgm−3), re-
spectively. As for SO2, NO2 and O3, Fig. S4d–f show the
R (RMSE) values of the testing set for SO2, NO2 and O3
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Figure 4. The results of AQI, PM2.5 and PM10 of three testing stations predicted by the RF model: (a) AQI of TY days; (b) PM2.5 of TY
days; (c) PM10 of TY days; (d) AQI of NTY days; (e) PM2.5 of NTY days; (f) PM10 of NTY days.

are 0.344 (6.45 µg m−3), 0.413 (25.58 µgm−3) and 0.881
(20.71 µgm−3), respectively. Two comparisons are made:
(1) by comparing the results of three testing stations with
the results of 36 training stations on NTY days, this shows
that the result of testing stations is not worse than 36 train-
ing stations; i.e., the model has a robust ability to predict the
stations in the new location; (2) by comparing the results of
three testing stations on TY days and NTY days, the results
show that the prediction accuracy of the model on NTY days
is significantly poorer compared with the TY days model,
which is in agreement with previous findings.

In general, the prediction results indicate that the RF
model can accurately and effectively capture the mechanism
of the impact of typhoons on air quality. Additionally, differ-
ences in meteorological determinants between TY and NTY
days also have important implications for air quality in the
GBA: for PM, the prevailing sea breeze is the major scaveng-
ing mechanism on NTY days and is deterred by the various
wind patterns of the typhoon periphery on TY days, while
for SO2, NO2 and O3, on TY days, their concentrations are
strongly affected by the PBLH, and the effects of local emis-
sion and accumulations are more dramatic than transbound-
ary air pollution, causing pollution events. In contrast, on

NTY days, transboundary air pollution is more obvious than
the local pollutant emissions. These findings shed new light
on the control of regional air pollution in the GBA, which
is to say that different strategies should be adopted on TY
and NTY days. On NTY days, countermeasures should fo-
cus more on source emission control and make full use of
the diffusion and cleaning effect of the sea breeze to reduce
air pollution. Coordinated emission reduction in the region
should be strengthened to reduce the concentration of pollu-
tants in the entire region at the same time. On TY days, more
focus should be on increasing the sink of pollutants (which is
decreased due to the static and stable weather of the typhoon
periphery). Countermeasures should be taken to increase the
sedimentation and decomposition of pollutants in the area,
such as more road watering.

3.2 Model-predicted correlation between air quality
and typhoon center location

To further investigate the RF model’s ability to capture the
correlation between typhoon location and air quality in the
GBA, each position within the research area (at a spatial in-
terval of 0.5◦) is input into the RF model as the position of
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Figure 5. The results of NTY days’ AQI, PM2.5 and PM10 predicted by the RF model: (a) training set of AQI; (b) testing set of AQI;
(c) feature importance of AQI; training set of (d) PM2.5 and (g) PM10; testing set of (e) PM2.5 and (h) PM10; feature importance of
(f) PM2.5 and (i) PM10.
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the typhoon to predict the AQI and concentrations of PM2.5,
PM10, SO2, NO2 and O3 (the typhoon intensity and mete-
orological variable values are the averages of all typhoons
within the specified spatial interval). Figure 6 shows the av-
erage of the predictions across all stations. In all six models,
the RF model predicts a low level of air pollution in the GBA
when the typhoon is located in the southwest sea area of the
GBA, close to Hainan Island. This is because of the relatively
clean southerly winds from the sea brought by the cyclonic
circulation, significant wind speed and precipitation when ty-
phoons are located here. All these meteorological conditions
are highly favorable for the deposition and removal of pol-
lutants, and the result is consistent with the findings of pre-
vious studies (Yang et al., 2012; Chow et al., 2018; Luo et
al., 2018; Yang et al., 2019). By contrast, the air quality in
the GBA deteriorates when a typhoon is located over the wa-
ters from the Philippines to the island of Taiwan and in the
most northerly area over the waters near 30◦ N. The maxi-
mum average concentration of PM10 exceeds 80 µgm−3. It
is worth noting that the spatial distribution characteristics of
the AQI, PM2.5 and PM10 are very similar because the pri-
mary pollutant in the GBA during typhoon weather is likely
to be PM, as mentioned above. The distribution of typhoons
during SO2 pollution weather is mainly over the sea area to
the east of the island of Taiwan (16–27◦ N), with the max-
imum SO2 concentration predicted by the model reaching
20 µgm−3. However, the prediction results for NO2 and O3
are scattered, which may be because their associated pho-
tochemical reactions are greatly affected by solar radiation,
so the concentrations of these two pollutants possess diurnal
variation, which will cause uncertainty in the predictions of
the RF model. Nevertheless, the model still accurately cap-
tures the overall spatial distribution characteristics; when a
typhoon is located over the waters on the southwest side of
the GBA, near Hainan Island, the pollutant concentrations
are low, but when a typhoon is over the waters near the is-
land of Taiwan (117–125◦ E), they are high.

3.3 Case verification

This paper takes Typhoon Danas (2019) as an indepen-
dent case to analyze the model’s ability to predict typhoon-
associated air quality over the GBA. For better evaluation
of the RF model, Typhoon Danas’s data have been removed
from the dataset in the training and testing steps. The active
time of Danas was 14–21 July 2019, with a minimum cen-
tral pressure of 980 hPa. It did not make landfall in China,
and its path traveled northwards along the eastern coast of
the island of Taiwan. During this typhoon event, a significant
pollution episode occurred in the GBA (Fig. 7). The synop-
tic chart shows northerly winds from inland prevailed in the
GBA during the event (17–19 July), which caused pollutants
to be transported from inland to the GBA. Meanwhile, the
GBA was under high pressure, which was also unfavorable
for the diffusion of pollutants (Fig. S8). Figure 7 presents

the observed and predicted AQI value and concentrations of
PM2.5, PM10, SO2, NO2 and O3. As Fig. 7a depicts, the track
of Danas was L-shaped, which coincides quite well with the
typhoon locations that cause pollution as predicted by the RF
model. Around 16 July, the typhoon turned north over the
sea near the Philippines and then moved along 123◦ E lon-
gitude, gradually increasing in intensity. The observed data
also show a pollution event in the GBA during this period.

First, we examine the spatial distribution of the AQI
(Fig. 8a–b). The AQI of the GBA is higher in the northern
area than in the southern area during the pollution event. This
may be because the southern part is closer to the sea and is
affected by a stronger sea breeze, and the RF model success-
fully predicts this distribution with high accuracy. The distri-
butions of PM2.5 (Fig. 8c–d) and PM10 (Fig. 8e–f) are simi-
lar, but the model slightly overestimates their concentrations.
The spatial distributions of the SO2, NO2 and O3 (Fig. 8g–l)
concentrations are relatively scattered, and, except for the un-
derestimated concentration of SO2, the predicted results are
quite accurate.

Regarding the numerical accuracy of the prediction, Ta-
ble 3 lists the model evaluation metrics calculated by the
average model output. In terms of MAE and RMSE, the
largest values are for the predicted O3, which are 15.047
and 18.319 µgm−3, respectively. Meanwhile, the smallest
MAE (RMSE) is found for PM2.5 (SO2), which is 4.117
(4.876) µgm−3. The R values between the observations and
predictions of the AQI and five pollutants all exceed 0.7, with
that of the AQI and O3 even exceeding 0.85. The bias values
of the predicted AQI and five pollutants are all less than 0,
indicating that the RF model tends to underestimate in this
case. The RMSEs of the result of the AQI, PM2.5, PM10, NO2
and O3 are lower than the SDO values, and the SDO and SDP
values of all the pollutants are quite close. Furthermore, the
IA is high. Among all the models, the IA of the AQI, PM2.5
and O3 exceeds 0.9, indicating that these three air quality
parameters perform the best in this case. The evaluation met-
rics of the results in 10 cities are listed in Tables S1–S10
in the Supplement, revealing that 39 (66 %) of all air qual-
ity parameter predictions in these cities have an RMSE less
than the SDO, and 31 (53 %) have an IA exceeding 0.8. Gen-
erally, the best-performing pollutants are PM2.5 and O3, as
judged by the metrics, while the performance with respect to
SO2 needs improvement. The MAE and RMSE values ob-
tained by city are both larger than the values obtained by the
average over the entire GBA because the averaging process
eliminates some random errors.

In summary, the evaluation metric results are extremely
encouraging and indicate a satisfactory prediction by the RF
model of the Danas-associated air quality in the GBA. More-
over, the RF model obtains temporal information from the
diurnal variation in the input features such as typhoon inten-
sity to accurately predict the diurnal fluctuations in NO2 and
O3, which reflects the model’s ability to capture the nonlinear
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Figure 6. The correlation of air quality over the GBA and typhoon center location predicted by the model. (a) The correlation of AQI and
typhoon center location predicted by the model, as well as for (b) PM2.5, (c) PM10, (d) SO2, (e) NO2 and (f) O3. The scattering points
indicate the average value of air quality when the typhoon is located in the corresponding location.

Table 3. Evaluation metrics of the model prediction of the case of Danas in the GBA.

AQI PM2.5 PM10 SO2 NO2 O3

MAE 5.470 4.117 µgm−3 6.222 µgm−3 4.529 µgm−3 5.037 µgm−3 15.047 µgm−3

RMSE 7.458 5.136 µgm−3 8.135 µgm−3 4.876 µgm−3 5.633 µgm−3 18.319 µgm−3

Bias −2.265 −1.453 µgm−3
−1.509 µgm−3

−4.529 µgm−3
−0.769 µgm−3

−3.870 µgm−3

R 0.862∗ 0.841∗ 0.793∗ 0.727∗ 0.827∗ 0.952∗

SDO 10.705 7.900 µgm−3 11.139 µgm−3 1.451 µgm−3 9.332 µgm−3 47.514 µgm−3

SDP 10.650 7.323 µgm−3 10.679 µgm−3 1.921 µgm−3 6.794 µgm−3 41.153 µgm−3

IA 0.917 0.906 0.884 0.452 0.881 0.966

Note: the correlation coefficient marked with “∗” is significant with a significance level of 0.05.

relationship and its potential for tackling complex prediction
problems.

4 Conclusions and discussions

Typhoons are highly active weather systems in summer that
have substantial effects on the synoptic situation in the en-
tire southern part of China, including the Guangdong–Hong
Kong–Macao Greater Bay Area. In addition to causing vio-
lent winds, rainfall and storm surges in the area close to their
location, typhoons also affect the background circulation sit-
uation in areas more distant from their immediate vicinity.
For instance, the typhoon periphery downdraft brings about
light winds, stagnant weather, high temperatures and a low

planetary boundary layer, and consequently it has a detrimen-
tal impact on the generation, transportation and diffusion of
air pollutants, causing hazy weather. The Guangdong–Hong
Kong–Macao Greater Bay Area, located at the southernmost
tip of the Chinese mainland, is often affected by typhoons.
Therefore, air pollution events associated with typhoons in
the GBA are prevalent in summer.

The present study employs the RF model to predict the
typhoon-associated air quality quantitatively. The R (RMSE)
values of the testing set for the AQI, PM2.5, PM10, SO2,
NO2 and O3 are 0.843 (14.88), 0.859 (10.31 µgm−3), 0.837
(17.03 µgm−3), 0.510 (8.13 µgm−3), 0.799 (13.64 µgm−3)
and 0.894 (22.43 µgm−3), respectively. To test the gen-
eralization ability of the model, three monitoring sta-
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Figure 7. Track of Typhoon Danas (2019) and the observed and model-predicted air quality (the value of a city is the mean value of all its
stations): (a) track and minimum pressure of Typhoon Danas from 20:00 CST (China standard time) on 15 July 2019 to 14:00 CST on 20 July
2019; (b) the observed AQI value; (c) the model-predicted AQI value; (d) the observed PM2.5 concentration; (e) the model-predicted PM2.5
concentration; (f) the observed PM10 concentration; (g) the model-predicted PM10 concentration; (h) the observed SO2 concentration; (i) the
model-predicted SO2 concentration; (j) the observed NO2 concentration; (k) the model-predicted NO2 concentration; (l) the observed O3
concentration; (m) the model-predicted O3 concentration.

tions in Guangzhou, Shenzhen and Hong Kong are se-
lected as testing stations and are excluded from the train-
ing procedure. For these three stations, the R (RMSE)
values for AQI, PM2.5, PM10, SO2, NO2 and O3 on
TY days are 0.868 (11.70), 0.900 (7.16 µgm−3), 0.841
(13.45 µgm−3), 0.496 (5.38 µgm−3), 0.538 (27.94 µgm−3)
and 0.878 (22.45 µgm−3), respectively. The results are sat-
isfactory overall. Then, the model is verified using the
case of Typhoon Danas (2019). The results are averaged
over the GBA, and the R (RMSE) values of the AQI,

PM2.5, PM10, SO2, NO2 and O3 are 0.862 (7.458), 0.841
(5.136 µgm−3), 0.793 (8.135 µgm−3), 0.727 (4.876 µgm−3),
0.827 (5.633 µgm−3) and 0.952 (18.319 µgm−3), respec-
tively. The prediction is accurate for both the air quality of
one city and the average air quality in the GBA. In contrast,
using meteorological data to predict the air quality of NTY
days, the accuracy is significantly lower than the results of
TY days, indicating that the impact mechanism of typhoons
on air pollution is accurately captured by the model, and it is
important for the improvement in model prediction accuracy.
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Figure 8. The spatial distribution of AQI and five pollutants during Typhoon Danas. Observed and predicted (a–b) AQI value, (c–d) PM2.5,
(e–f) PM10, (g–h) SO2, (i–j) NO2 and (k–l) O3.

Another important finding of the present study is the dif-
ference in feature importance output by the RF model on
TY days and NTY days. On TY days, the meteorological
driver of AQI, PM2.5 and PM10 is the d2 m that represents
the air humidity, while SO2, NO2 and O3 are dominated by
the height of the boundary layer. Differently, on NTY days,
their dominant meteorological factors were changed, and the
importance of variables representing regional transportation
and sea breeze diffusion was significantly higher than that
in TY days. These findings suggest that the prevailing sea
breeze is the major scavenging mechanism of pollutants on
NTY days and is deterred by the various wind patterns of the
typhoon periphery on TY days. This implies that different
control strategies should be adopted on TY days and NTY
days. On TY days, countermeasures should be taken to in-
crease the sink of pollutants in order to compensate for the
effect of the weakened sea breeze and the hindered diffusion
of pollutants caused by the static and stable weather of the
typhoon periphery.

Moreover, the present study also highlights the following.

1. The feature importance output by the RF model indi-
cates that the typhoon location is more important than
the intensity, suggesting that the most significant factor
in modifying the synoptic condition, and thereby chang-
ing the air quality, is the location of the typhoon center.

2. By sampling at a spatial interval of 0.5◦ and inputting
the data into the RF model as the typhoon center lo-
cation, the prediction result is consistent with previous
studies; the air quality in the GBA deteriorates when

the typhoon passes over the waters near the island of
Taiwan.

3. The concentrations of NO2 and O3 possess diurnal vari-
ation as a result of their photochemical reactions in the
atmosphere, and the RF model predicts this diurnal cy-
cle with high accuracy because of the diurnal variation
in the input variables such as air temperature, PBLH,
typhoon intensity and wind speed.

Overall, the RF model achieves good results in predicting
typhoon-associated air quality. Compared with approaches
adopted in previous research, such as numerical simulation
and statistical modeling, the RF model has the advantages of
high accuracy and convenient application and produces a pre-
cise quantitative prediction of typhoon-associated air quality
in the GBA. At the same time, the importance of features
revealed by the model also shed new light on regional pol-
lution control on typhoon days. Of course, the impact of ty-
phoons on air quality is not limited to the GBA, but the model
structure provided in the present study can be applied conve-
niently to various areas, which gives it significant applica-
tion value for air pollution prevention and control. It is worth
mentioning that not all typhoons affect the air quality in their
area of impact because of the substantial variability in ty-
phoon tracks. The R and RMSE values in the case study are
better than those of the whole dataset, reflecting that some
typhoons in the dataset do not directly affect the air quality
in the GBA. Meanwhile, as mentioned earlier, the air quality
is also affected by factors such as source emissions. The RF
model’s prediction of the air quality in the GBA under these
scenarios merits further study.
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Code availability. The model in this paper is based on the scikit-
learn package in Python (Pedregosa et al., 2011), and the imple-
mentation and analysis code are available upon request to the cor-
responding author (yyj1985@nuist.edu.cn).

Data availability. The datasets that are analyzed and used to
support the findings of this study are available in the pub-
lic domain: the air quality observation data are deposited
at https://doi.org/10.5281/zenodo.7451539 (Chen, 2022), which
are provided by the China National Environmental Monitor-
ing Center and the Environmental Protection Interactive Cen-
tre of the Environmental Protection Department, Hong Kong
Special Administrative Region government. The CMA tropi-
cal cyclone best-track dataset can be obtained from the CMA
Tropical Cyclone Data Center (https://tcdata.typhoon.org.cn/en/
zjljsjj_zlhq.html, last access: 23 May 2022; Ying et al., 2014,
https://doi.org/10.1175/JTECH-D-12-00119.1; Lu et al., 2021,
https://doi.org/10.1007/s00376-020-0211-7). The ERA5 reanaly-
sis dataset is available at the European Centre for Medium-
Range Weather Forecasts (https://doi.org/10.24381/cds.adbb2d47,
Hersbach et al., 2018b, and https://doi.org/10.24381/cds.bd0915c6,
Hersbach et al., 2018a).
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