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Abstract. PurpleAir sensors (PASs) are low-cost tools to
measure fine particulate matter (PM) concentrations and are
now widely used, especially in regions with few regulatory
monitors. However, the raw PAS data have significant biases,
so the sensors must be calibrated to generate accurate data.
The U.S. EPA recently developed a national correction equa-
tion and has integrated corrected PAS data onto its AirNow
website. This integration results in much better spatial cov-
erage for PM2.5 (particulate matter with diameters less than
2.5 µm) across the US. The goal of our study is to evaluate the
EPA correction equation for three different types of aerosols:
typical urban wintertime aerosol, smoke from biomass burn-
ing, and mineral dust.

We identified 50 individual pollution events, each having
a peak hourly PM2.5 concentration of at least 47 µg m−3 and
a minimum of 3 h over 40 µg m−3 and characterized the pri-
mary aerosol type as either typical urban, smoke, or long-
range transported dust. For each event, we paired a PAS sam-
pling outside air with a nearby regulatory PM2.5 monitor to
evaluate the agreement. All 50 events show statistically sig-
nificant correlations (R values between 0.71–1.00) between
the hourly PAS and regulatory data but with varying slopes.
We then corrected the PAS data using either the correction
equation from Barkjohn et al. (2021) or a new equation that
is now being used by the U.S. EPA for the AirNow Fire
and Smoke Map (U.S. EPA, 2022b). Both equations do a

good job at correcting the data for smoke and typical pollu-
tion events but with some differences. Using the Barkjohn et
al. (2021) equation, we find mean slopes of 1.00 and 0.99
for urban and smoke aerosol events, respectively, for the
corrected data versus the regulatory data. For heavy smoke
events, we find a small change in the slope at very high PM2.5
concentrations (> 600 µg m−3), suggesting a ∼ 20 % under-
estimate in the corrected PAS data at these extremely high
concentrations. Using the new EPA equation, we find slopes
of 0.95 and 0.88 for urban and smoke events, respectively,
indicating a slight underestimate in PM2.5 using this equa-
tion, especially for smoke events. For dust events, while the
PAS and regulatory data still show significant correlations,
the PAS data using either correction equation underestimate
the true PM2.5 by a factor of 5–6.

We also examined several years of co-located regulatory
and PAS data from a site near Owens Lake, California (CA),
which experiences high concentrations of PM2.5 due to both
smoke and locally emitted dust. For this site, we find sim-
ilar results as above; the corrected PAS data are accurate
in smoke but are too low by a factor of 5–6 in dust. Us-
ing these data, we also find that the ratios of PAS-measured
PM10 / PM1 mass and 0.3 µm / 5 µm particle counts are sig-
nificantly different for dust compared to smoke. Using this
difference, we propose a modified correction equation that
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improves the PAS data for some dust events, but further work
is needed to improve this algorithm.

1 Introduction

Low-cost air sensors are becoming a ubiquitous way for the
general public to measure local air quality. There are now
thousands of these sensors publicly reporting data in real
time to the PurpleAir map (http://map.purpleair.com, last ac-
cess: 4 March 2023). As one example, there are more than
700 active PurpleAir sensors (PASs) in the Puget Sound re-
gion of Washington State (from Tacoma to Everett), com-
pared to∼ 15 regulatory monitors in the same area. This pro-
vides an enormous increase in spatial information on PM2.5
(particulate matter with diameters less than 2.5 µm). How-
ever, there are no clear performance standards for accuracy
or precision of low-cost sensors. Several studies have ex-
amined the performance of low-cost sensors, including the
PAS (Singer and Delp, 2018; Li et al., 2020; Ardon-Dryer
et al., 2020; Manibusan and Mainelis, 2020; Tryner et al.,
2020). The PAS uses the Plantower PMS5003 laser sensor to
count particles that scatter light in the optical range (particles
greater than about 0.2 µm in diameter). Most outdoor PASs
include two identical PMS5003 sensors that can be com-
pared to enhance quality control. The PAS data can be down-
loaded with two “conversion factors”, CF= 1 or CF=Atm
(atmosphere). The two PM2.5 values are nearly identical un-
til 25 µg m−3, but above this value CF= 1 will be greater.
The exact algorithm used by the PAS to convert the Plan-
tower data to mass concentration using either the CF= 1 or
the CF=Atm factors has not been published (Ouimette et
al., 2022).

Tryner et al. (2020) evaluated three low-cost PM sen-
sors, including the PMS5003, by exposing them to five dif-
ferent types of aerosols in the laboratory. They found that
the ratios of PMS5003-reported to filter-derived PM2.5 mass
concentrations were inversely proportional to mass median
diameter (MMD). Wood smoke had the smallest MMD,
0.42 µm; its PMS5003 PM2.5 mass had a mean that was
2.5 times the filter-derived mass. Conversely, oil mist had
the largest MMD at 2.9 µm; its PMS5003 PM2.5 averaged
only 0.23 times the filter-derived PM2.5. These lab results
are consistent with the physical-optical model developed for
the PMS5003 by Ouimette et al. (2022). The model pre-
dicted that the PMS5003 response decreases relative to an
ideal nephelometer by about 70 %–90 % for particle diame-
ters ≥ 1.0 µm. This is a result of using a laser that is polar-
ized, the angular truncation of the scattered light, and parti-
cle losses (e.g., due to aspiration) before reaching the laser.
Their model predicted that the PMS5003 would underesti-
mate PM2.5 for dust particles by approximately 70 %–90 %,
depending on the coarse particle size distribution.

The Plantower sensor reports PM mass concentrations in
three bins (PM1, PM2.5, and PM10) and particle counts in
six size bins (> 0.3, > 0.5, > 1, > 2.5, > 5, and > 10 µm),
presumably based on the pulse height of the scattered ra-
diation, although the exact procedure is not documented by
Plantower or PurpleAir. The PAS also reports temperature,
relative humidity (RH), and pressure. A number of field and
laboratory studies have found that the particle number size
distributions reported by the PMS5003 are not correct. Sev-
eral studies have reported that the PMS5003 tends to cre-
ate an invariant normalized size distribution, independent
of the actual size distribution and concentration (Tryner et
al., 2020; He et al., 2020; Kuula et al., 2020; Ouimette et
al., 2022). However, the PMS5003 normalized size fractions
above 1 µm increased by a factor of 2–5 in one high-PM2.5
windblown dust episode observed at Keeler, California (CA;
Ouimette et al., 2022). So, at present, there remains some
ambiguity over how the PAS-reported PM2.5 mass concentra-
tions and particle counts respond to different aerosol types.

Aerosol size distributions can vary considerably depend-
ing on the source type. Previous studies have shown that the
aerosol size distributions for smoke events are similar to the
distributions in typical urban pollution events, with a geo-
metric mean diameter of around 0.2–0.3 µm (Kleeman et al.,
1999; Laing et al., 2016). The mass ratio of PM2.5 / PM10 for
smoke, 0.55–0.75, is also similar to that for urban pollution
(Xu et al., 2017). Dust events are known to have size dis-
tributions that are shifted towards larger particles, compared
to typical urban and smoke aerosols. Jiang et al. (2018) re-
port an average PM2.5 / PM10 ratio of 0.1 for dust events in
China. Sugimoto et al. (2016) suggest a value of 0.35 for the
PM2.5 / PM10 ratio in dust, similar to the values reported by
Tong et al. (2012). In addition, aerosol particles from some
cooking methods, such as barbecue, may also have a size dis-
tribution that is shifted to larger sizes (Kleeman et al., 1999;
Song et al., 2018). If this is correct, then this may have im-
plications for using PAS data to examine indoor air quality.

The South Coast Air Quality Management District (South
Coast AQMD) has completed a rigorous evaluation of a va-
riety of sensors, including the PAS (South Coast AQMD,
2015). This evaluation has shown that the PAS gave pre-
cise results, showed little response to temperature or humid-
ity, and had relatively small variations between units. The
U.S. Environmental Protection Agency (EPA) also provides
information about these sensors via its Air Sensor Toolbox
portal for citizen scientists, researchers, and developers (U.S.
EPA, 2022a). All of these evaluations have demonstrated that
the raw PAS measurements are precise but often biased high
compared to regulatory PM2.5 measurements in the United
States. Several groups have developed correction equations
for the PAS measurements. The Lane Regional Air Protec-
tion Agency (LRAPA), the University of Utah, and the EPA
have empirical corrections for PM2.5, and these can be imple-
mented directly on the PurpleAir website (PurpleAir, 2022).
Barkjohn et al. (2021) (hereafter referred to as Barkjohn
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2021) conducted a comprehensive evaluation of PAS PM2.5
data against regulatory PM2.5 data and developed a US-wide
correction equation starting from PAS raw data (CF= 1) and
using the RH as measured by the PAS:

corrected PAS PM2.5 = raw PAS PM2.5 data (CF= 1)

× 0.52−RH× 0.085+ 5.71. (1)

The LRAPA and the Barkjohn corrections are in close agree-
ment, whereas the University of Utah correction gives some-
what higher values. While the Barkjohn 2021 algorithm
(Eq. 1) was initially used by the EPA, they have recently de-
veloped a new correction algorithm that is now being used
for the national Fire and Smoke Map (Johnson Barkjohn et
al., 2022). This algorithm differs significantly from the ear-
lier Barkjohn 2021 relationship in that it starts from the PAS
data with CF=Atm and involves a more complex, five-part
piecewise regression, with weighting to smooth the transi-
tions between segments. For our analysis, we will refer to the
new algorithm as “new EPA”. Note that the PAS data can be
downloaded with either CF= 1 or CF=Atm. In the present
analysis, we start from raw data with CF= 1 (for Barkjohn
2021) or CF=Atm (for the new EPA correction). Figure S1
in the Supplement compares the raw CF=Atm data with
the new EPA correction algorithm, and Fig. S2 compares the
Barkjohn 2021 and the new EPA correction for the data used
in Part I of this analysis.

Because many PAS devices are now installed around the
world, both outside and inside, they can experience a wide
range of aerosol types. Thus, it is essential to understand the
accuracy and precision of the PAS for various aerosol events,
which could differ based on the particle size distribution or
other aerosol characteristics. In this study, we evaluated the
Barkjohn 2021 correction and the new EPA correction for
50 different aerosol pollution events, encompassing typical
urban aerosols, as well as smoke and dust aerosols. Our goals
are the following:

1. to evaluate the accuracy of both correction equations for
each aerosol type;

2. to examine whether the correction changes at very high
PM2.5 levels (e.g., > 250 µg m−3);

3. to identify whether the PAS data can provide an indica-
tion of the aerosol type and, if so, whether this informa-
tion can be used to improve the correction algorithm.

Below we first describe data treatment and events and aerosol
type identification. Then we report on results comparing reg-
ulatory and PAS observations for different aerosol types for
50 short-term pollution events. We also use a longer time
series from a single site (Keeler, CA) that experiences fre-
quent episodes of high dust and smoke pollution. Our results
demonstrate that the PAS sensors can give accurate PM2.5
data in urban pollution and smoke, but more work is needed
to develop an improved correction for dust aerosols.

2 Methods

2.1 Part I: 50 paired sites

For this analysis we identified 50 short-term pollution events
where the aerosols could be clearly characterized as either
typical urban, smoke, or dust. For these events, PAS data
were downloaded for each sensor from the PurpleAir web-
site (http://map.purpleair.com). The raw data (CF= 1 and
CF=Atm) were downloaded as hourly averages. Regula-
tory PM data for the nearest monitoring site were down-
loaded from the EPA Air Data website (https://www.epa.gov/
outdoor-air-quality-data, last access: 4 March 2023) or the
AirNow-Tech website (https://www.airnowtech.org/, last ac-
cess: 4 March 2023), except for data from the monitoring
site at Portland Cully Helensview School in Portland, Oregon
(OR; Air Quality System – AQS – ID 410512011), which
were downloaded from the Oregon Department of Environ-
mental Quality website (https://www.oregon.gov/deq/aq, last
access: 4 March 2023).

For each paired PAS–regulatory site, we identified an in-
tense pollution event that had an hourly peak PM2.5 value at
the regulatory site of > 40 µg m−3 for at least 3 h. We also
required that there be a good correlation between the regula-
tory and PAS data. For the 50 events we analyzed, the corre-
lation coefficients between the regulatory and corrected PAS
data ranged from 0.77 to 0.996. For each pollution event, we
identified the most likely source of elevated aerosols: typi-
cal urban wintertime pollution, biomass burning smoke, or
dust. Table 1 summarizes the method used to characterize
each pollution event. Table S1 provides details on each of
the 50 individual events, including the PAS site, regulatory
site ID, event dates, and distance between the two sites. The
average distance between the PAS and regulatory sites was
5.4 km, with a range of 0–15 km. As shown in Fig. S3, there
is no significant relationship between the correlation coeffi-
cient and distance between sites.

Typical urban pollution events were identified for the non-
wildfire season (winter months) and with no evidence of
smoke or dust. The PM sources for those events reflect typi-
cal urban wintertime pollution (vehicles, power plants, indus-
try, and residential wood combustion), and the PM2.5 mass is
dominated by particles with diameters in the range of 0.30–
0.60 µm (Zhang et al., 2010; Herner et al., 2005). The typical
urban pollution events had peak hourly PM2.5 values at the
regulatory sites of 47–259 µg m−3.

Smoke events were identified by elevated PM2.5 during the
summer fire season and confirmed using the Hazard Mapping
System (HMS) Fire and Smoke Product (Rolph et al., 2009;
Kaulfus et al., 2017). The HMS product is derived from
multiple satellite images and updated multiple times each
day. Details on the HMS product are given in the references
above. The HMS imagery was obtained via the AirNow-Tech
website. The smoke events had the highest peak PM2.5 val-
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Table 1. Methodology for identification of pollution events for 50 cases in Part I.

Event Method of identification PM2.5 / PM10
(if available)

Typical urban 1 h regulatory PM2.5 measurements exceeded 47 µg m−3 during the non-wildfire
season with no known presence of smoke or dust

> 0.5

Smoke 1 h regulatory PM2.5 measurements exceeded 47 µg m−3 in the presence of smoke
as indicated on the NOAA Hazard Mapping System Fire and Smoke Product

> 0.5

Dust 1 h regulatory PM2.5 measurements exceeded 47 µg m−3 during a known dust event < 0.5

ues at the regulatory sites with peak hourly values of 60–
713 µg m−3.

Dust events were identified by examining large-scale spa-
tial patterns of PM2.5, media reports, and the measured
PM10 / PM2.5 ratios from regulatory sites, if available. In
Part I of our analysis, all six dust events occurred during the
well-known June 2020 Saharan dust cloud that was trans-
ported to the US and impacted surface concentrations across
the southern US (Francis et al., 2020; Euphrasie-Clotilde
et al., 2021; Pu and Jin, 2021). This event brought huge
amounts of dust to the southern US and resulted in daily av-
erage PM2.5 concentrations of 60–103 µg m−3 at many loca-
tions. The six dust events included in our analysis had peak
hourly PM2.5 values at the regulatory sites of 52–72 µg m−3.
Figure S4 shows the impact of this dust on PM2.5 across the
southeastern US.

In total, we identified 50 events as either typical urban,
smoke, or dust, lasting from 24 to 528 h. We verified that
each had an operating PAS and a nearby regulatory monitor-
ing site. For typical urban pollution, 16 cases were identified,
with the majority (13) located in California and the remain-
der in Utah. We identified 28 smoke cases, with locations in
Alaska, California, Idaho, Oregon, and Washington. Six dust
cases were identified, with locations throughout the south-
eastern US. Of the 50 events identified, 17 have co-located
regulatory PM10 data (3 urban, 8 smoke, and 6 dust). The
event times were chosen to incorporate a few hours of low
concentrations before and after the highest PM2.5 concentra-
tions to improve correlations. The corrections on these low
PAS values can sometimes yield negative values at high RH.
If corrected PAS values were less than 2 µg m−3, these val-
ues were excluded from the calculation of correlation with
the regulatory measurements.

2.2 Data quality control

The data were quality-controlled and screened using four cri-
teria:

1. Since most PASs contain two sensors, A and B, we com-
pared mass concentrations from the two sensors and the
data were used only if the values were within 30 %.
Most values are much closer than this, with an average

difference of 10 % across all events considered (4.6 %
for the Keeler, CA, PAS data).

2. The PAS raw A and B values were averaged and ex-
cluded if less than 1 µg m−3.

3. The PAS values were corrected using the Barkjohn 2021
correction and included only if greater than 2 µg m−3.

4. Regulatory PM2.5 data must be greater than 1 µg m−3

(there were a number values that were 0 or negative in
the EPA’s PM2.5 data records).

In total, these steps removed approximately 10 % of the avail-
able data. After screening, the PAS data were corrected using
the Barkjohn et al. (2021) and the new EPA correction algo-
rithms. We evaluated both sets of corrected PAS data using
the same linear relationship using standard linear regression:

regulatory data= slope×PAS data (corrected)

+ intercept. (2)

We also compared the slopes with reduced major-axis regres-
sion (RMA) and found essentially no difference in the re-
sults. Generally, the intercepts were small (a few micrograms
per cubic meter), so we can interpret the slopes as giving the
overall indication of agreement between the two datasets. A
slope near 1 with a zero intercept would indicate no bias. A
slope of < 1 indicates that the corrected PAS data are biased
high compared to the regulatory data; a slope of > 1 indi-
cates the corrected PAS data are biased low compared to the
regulatory data.

2.3 Part II: Keeler, CA, site

To further understand the nature of the PAS response to dust
aerosol, we also used data from Keeler, CA, near Owens
Lake. Owens Lake is a dry lake bed due to diversion of
its primary water source, the Owens River, to Los Angeles.
As a result, the dry lake bed is one of the largest sources
of dust in North America (Cahill et al., 1996; Gillette et
al., 1997), and the region experiences many significant dust
events each year. With increasing drought, it appears that the
dust flux from Owens Lake is increasing (Borlina and Rennó,
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2017). We use regulatory PM2.5 and PM10 data from Febru-
ary 2019–May 2022 from a site in Keeler, CA, and a nearby
PAS site. Both the regulatory and PAS instruments are oper-
ated and maintained by the Great Basin Unified Air Pollution
Control District (GBUAPCD; Chris Howard, personal com-
munication, December 2022), and the regulatory data were
obtained from their data archive (https://www.gbuapcd.org/,
last access: 4 March 2023). The regulatory PM2.5 was mea-
sured using a Thermo Fisher model 1400a TEOM with a
model 8500C conditioning system. For PM10, a Thermo
Fisher model 1400a TEOM was used from February 2019
through September 2021 and a model 1405 TEOM was used
from October 2021 through May 2022. Other information
about the site is given in Table S2. The Keeler PAS and reg-
ulatory sensor inlets are within 4 m of each other. For the
Keeler PAS data, as in Part I, we use the mean of channels A
and B, which have a mean difference of 4.6 %. For the Keeler
analysis, we did not specifically identify events. Instead, we
consider only hours where the Keeler regulatory PM2.5 was
> 25 µg m−3, which provides 1366 h of data spanning a 3.3-
year period. We also restrict the analysis of the Keeler data
to hours where regulatory PM10 exceeds PM2.5 by at least
0.5 µg m−3 and where simultaneous regulatory and PAS data
are available. This yields 1257 h of data with mean PM2.5
and PM10 concentrations from the regulatory monitors of 59
and 118 µg m−3, respectively.

3 Results

3.1 Part I: event analysis

Figure 1 shows time series plots of two example events
(no. 44 and no. 45). The top plot in Fig. 1 shows PAS and
regulatory data during a major smoke event in Washington
State during July–August 2021. The regulatory PM2.5 ex-
ceeded 200 µg m−3 at this site. This figure demonstrates that
the Barkjohn 2021 correction yields excellent bias correc-
tion of the data. The new EPA correction also improves the
fit, compared to the raw data, but appears to yield a posi-
tive bias at the highest concentrations (200–250 µg m−3). The
bottom plot in Fig. 1 shows data from a dust period in June
2020 (event no. 45). In contrast to the smoke event, the raw
PA data are much lower than the regulatory data, and both
correction algorithms significantly underpredict the regula-
tory values; there is essentially no difference between the
two correction schemes. While there is still a good correla-
tion between the regulatory and PAS data (R value of 0.82),
the slope is 6.76, indicating that both correction equations
are significantly underestimating the true concentrations by
a factor of 6 or more. Table S3 shows the results for each
of the 50 individual events. Table 2 summarizes the relation-
ship and correlation slopes between the corrected PAS data
and the regulatory measurements for the 50 events and for
the 3 different aerosol types. The results are consistent with

Fig. 1 in that urban pollution and smoke events are reason-
ably corrected by either the Barkjohn 2021 or the new EPA
algorithms, whereas dust events are not. There are some dif-
ferences between the two correction equations, which we dis-
cuss below.

Tables 3 and 4 summarize the results by aerosol type and
include all hourly data for each identified aerosol type. Ta-
ble 3 uses the Barkjohn 2021 correction, whereas Table 4
shows results using the new EPA correction. For urban,
smoke, and dust aerosols, the slope of regulatory PM2.5 ver-
sus the corrected PAS data with the Barkjohn 2021 algo-
rithm were 1.02, 1.08, and 4.98, respectively, using all hourly
data of each type (Table 3). Using the new EPA correction,
the slopes were 0.95, 0.81, and 4.99, respectively (Table 4).
These slopes indicate that both correction algorithms yield
excellent bias correction for typical urban and smoke events,
but they exacerbate the large negative (low) bias for dust
events. Using either correction on the PAS data during dust
events gives values that are low by a factor of 5–6.

Tables 2, 3, and 4 suggest that the new EPA algorithm has
slightly lower slopes, especially for the smoke events. For ex-
ample, the mean slope for smoke events (shown in Table 2)
is 0.99 for the Barkjohn 2021 correction versus 0.88 for the
new EPA correction. Similarly, using hourly data for smoke-
influenced periods, the slopes are 1.08 using the Barkjohn
2021 correction (Table 3) versus 0.81 using the new EPA cor-
rection (Table 4). We also want to examine whether there is
evidence that the PAS data respond differently at very high
PM concentrations. Figure 2 shows the mean bias using the
hourly data with both correction algorithms versus the regu-
latory PM2.5. This plot includes only data during the urban
and smoke events. The bias is strongly negative using the
Barkjohn 2021 correction at very high PM2.5, greater than
about 300 µg m−3. At medium-high PM2.5 concentrations,
such as 150–300 µg m−3, the new EPA correction shows a
positive bias, which is consistent with the results shown in
Fig. 1a and Tables 2–4. Thus we conclude that the new
EPA correction improves the bias at very high concentra-
tions (> 300 µg m−3) but introduces a modest bias at mod-
erately high pollution levels (150–300 µg m−3), compared to
the Barkjohn 2021 algorithm.

We show above that the raw PAS data, along with both
corrections, are substantially underreporting PM2.5 concen-
trations during dust events. The next question is whether
the PAS data can give some information about dust events
(i.e., the presence/absence of dust), despite significant issues
with the reported size distribution (Ouimette et al., 2022).
To address this question, we calculated the slopes of the
PM1 / PM10 mass ratios and the 0.3 µm / 5 µm particle count
ratio, using the PAS data for each event. The results are re-
ported by event type in Table 2. The results show that the PAS
reports a greater fraction of coarse mass and proportionally
more larger particles, compared to the 0.3 µm particles, in the
dust aerosols, compared to urban or smoke aerosols. Both the
PM1 / PM10 mass ratio and the 0.3 µm / 5 µm particle count
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Figure 1. Time series of hourly regulatory and PAS PM2.5 (raw and corrected) data for two events, no. 44 (smoke, a) and no. 45 (dust, b).
Time is in UTC. Note that for the dust event (no. 45), the two correction schemes give identical results. Details on the sites used for these
figures are given in Tables S1 and S3. For event no. 44, the slopes (using Eq. 2) comparing the Barkjohn 2021 and new EPA correction
schemes are 0.81 and 0.70, respectively. For event no. 45, the slope using the Barkjohn 2021 correction scheme is 6.76. Please note that the
date format used in this figure is month/day/year.

Table 2. Peak regulatory PM2.5, mean slope, and R2 results from analysis of regulatory and PAS data, with the Barkjohn 2021 correction and
new EPA correction, for 50 individual pollution events (Part I dataset). N gives the number of events of each type; SD is standard deviation.
R2 is the mean value for all events of that type. Also shown are the average slopes by aerosol type for the PM1 / PM10 and 0.3 µm / 5 µm
count regressions, both of which are unitless.

Average peak Average slope (R2) Average slope Average slope of Average slope of
regulatory using the Barkjohn (R2) using the raw PAS PM1 / PM10 raw PAS

PM2.5 (µg m−3) 2021 correction new correction mass concentrations 0.3 µm / 5 µm counts

Urban avg (N = 16) 85.15 1.00 (0.88) 0.95 (0.88) 0.56 727
SD 56.69 0.11 0.15 0.10 426

Smoke avg (N = 28) 280.32 0.99 (0.93) 0.88 (0.92) 0.44 402
SD 226.28 0.18 0.13 0.10 265

Dust avg (N = 6) 59.76 5.54 (0.85) 5.53 (0.85) 0.29 133
SD 7.91 1.13 1.10 0.08 77
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Table 3. Relationship between hourly regulatory PM2.5 and corrected PAS PM2.5 with the Barkjohn 2021 algorithm. Data are included for
all simultaneous measurements for the 50 identified events in Part I. (N gives the number of hours of data of each type.)

Mean regulatory Mean corrected PAS Slope for regulatory versus Intercept RMSE∗ Mean bias
PM2.5 (µg m−3) PM2.5 (µg m−3) PAS data with the Barkjohn (µg m−3) (µg m−3) (µg m−3)

2021 correction (R2)

Urban (N = 966) 33.9 28.7 1.02 (0.793) 4.60 10.9 −5.2
Smoke (N = 6536) 66.4 66.0 1.08 (0.866) −4.68 36.0 −0.4
Dust (N = 240) 30.5 6.4 4.98 (0.661) −1.09 27.9 −24.1

∗ Root mean square error.

Table 4. Relationship between hourly regulatory PM2.5 and corrected PAS PM2.5 with the new EPA algorithm. Data are included for all
simultaneous measurements for the 50 identified events in Part I. (N gives number of hours of data of each type.)

Mean regulatory Mean corrected PAS Slope for regulatory versus Intercept RMSE∗ Mean bias
PM2.5 (µg m−3) PM2.5 (µg m−3) PAS data with the new (µg m−3) (µg m−3) (µg m−3)

EPA correction (R2)

Urban (N = 966) 33.9 30.3 0.950 (0.744) 4.90 11.1 −3.6
Smoke (N = 6536) 66.4 77.3 0.807 (0.858) 5.56 43.2 11.0
Dust (N = 240) 30.5 6.4 4.99 (0.664) −1.22 27.9 −24.1

∗ Root mean square error.

ratio increase in the order of dust < smoke < urban. These
differences are statistically significant (p < 0.05) for urban
versus dust using a two sample, two-tailed t test and assum-
ing unequal variance. These relationships will be explored
further below in Part II of this analysis.

We also looked at the coarse aerosol fraction (CAF) for
these events using both the regulatory and PAS data. We de-
fine the CAF as

CAF= (PM10−PM2.5)/PM10. (3)

Out of the 50 events considered, 17 have both regulatory
PM2.5 and PM10. Figure 3 shows the CAF, calculated us-
ing both the regulatory data and the PAS raw data for all
hours for the 17 events with both PM2.5 and PM10 data. For
the PAS data, we use the raw values (CF= 1) for PM2.5 and
PM10, since there are no known correction algorithms for the
PM10 data. Several things are apparent in Fig. 3. First, the
CAF values using the regulatory data are much higher than
CAF values obtained from the PAS data. Nonetheless, both
the regulatory and PAS data show the expected pattern of a
higher CAF in dust compared to the other aerosol types. In
addition, the number of data points is much higher for the
PAS, due to the relative sparsity of regulatory PM10 data. We
note that these relationships change very little if the PAS data
are restricted to the same times as the regulatory data.

3.2 Part II: Keeler, CA, analysis

In Part II we use the multi-year dataset from the Owens Lake
and Keeler, CA, site. The hourly data cover a period of a lit-
tle more than 3 years (February 2019–May 2022). We focus

exclusively on hours with regulatory PM2.5 > 2.5 µg m−3,
which yields 1257 h, after our quality control described
above. Table S2 has more details on both the regulatory and
PAS sites in Keeler, CA.

Figure 4 shows a histogram of the CAF based on the reg-
ulatory data. There is a clear bimodal distribution, indicat-
ing two very different aerosol types during these pollution
events. Given that Keeler is ca. 150 km from the urban areas
of Bakersfield and Fresno, CA, this aerosol is likely either
dust generated from Owens Lake or smoke from the many
California wildfires during 2019–2022. For the points with
a CAF of < 0.5 (n= 1013 h), the vast majority (99 %) oc-
curred in August–October 2020 or August–September 2021,
both times when large fires were burning in central Califor-
nia and influencing air quality across the region. Thus, it is
reasonable to conclude that those hours with a CAF of < 0.5
are predominantly wildfire smoke (1013 h) and those with a
CAF of > 0.7 (200 h) are predominantly dust. In contrast to
the smoke data, the dust data tend to occur in the winter and
spring periods. There are relatively fewer points (44 h) with
0.5 < CAF < 0.7, and these appear to have a mixed character,
as shown below.

Table 5 and Fig. 5 show results grouped by the CAF
calculated using the regulatory data. Tables shows that for
all values of the CAF below 0.5, there are similar ratios
of PM1 / PM10 and 0.3 µm / 0.5 µm counts. For this group,
the PAS PM2.5 with the Barkjohn 2021 correction shows a
good fit to the regulatory PM2.5. For the values with a CAF
of > 0.7, there is similar consistency in the PAS-measured
ratios (PM1 / PM10 and 0.3 µm / 5 µm counts), but for this
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Figure 2. Comparison of mean bias (corrected PAS–regulatory data) using the hourly data for smoke and urban pollution events in Part I
using the Barkjohn 2021 and new EPA correction schemes. Data are binned by regulatory PM2.5 in 50 µg m−3 bins, as shown on the x axis.
The values above the red points are the number of hourly data points in each bin, which is the same for both the Barkjohn 2021 and the new
EPA-corrected values. The error bars show 1 standard deviation within that bin.

Table 5. Mean regulatory (reg) PM2.5, PAS PM2.5 (with the Barkjohn 2021 correction and with the proposed dust correction), ratio of PAS
PM1 / PM10 raw concentrations (CF= 1), and ratio of PAS 0.3 µm / 5 µm counts by coarse aerosol fraction (CAF) bins. The CAF bins are
centered on the indicated value.

CAF bin N Regulatory PAS PM2.5 with PAS PM2.5 with Mean ratio Mean ratio of
midpoint (h) PM2.5 the Barkjohn 2021 the dust correction of PAS PAS 0.3 µm /5 µm

(µg m−3) correction (µg m−3) (µg m−3) PM1 / PM10 counts

0.05 260 89.5 91.4 91.4 0.55 730
0.15 334 59.4 61.5 61.5 0.55 697
0.25 231 41.6 43.4 43.4 0.56 723
0.35 131 37.6 38.5 38.5 0.54 623
0.45 57 36.9 37.3 37.3 0.54 611
0.55 14 40.6 25.1 33.0 0.44 474
0.65 30 52.5 16.0 45.7 0.33 249
0.75 104 68.4 13.5 63.8 0.25 151
0.85 86 59.3 11.2 60.7 0.20 105
0.95 10 57.2 12.4 66.1 0.21 111

group the PAS Barkjohn 2021 correction significantly under-
estimates the regulatory concentrations. For the group with
the CAF is between 0.5 and 0.7, the aerosol has a mixed char-
acter, likely including both smoke and dust.

Figure 5 shows a plot of the regulatory PM2.5 versus PAS
PM2.5 with the Barkjohn 2021 correction, sorted by these
three groups (CAF < 0.5, 0.5 < CAF < 0.7, and CAF > 0.7).
For the smoke aerosols, the PAS with the Barkjohn 2021 cor-
rection shows a slope of 0.99 and an R2 of 0.92, whereas for
the dust aerosols, the slope is 5.6, similar to the slopes shown
in Table 2 (5.5) and Table 3 (5.0). Thus, we conclude that for
dust aerosols the PAS values with the Barkjohn 2021 correc-
tion show a underestimate of 5–6 times the PM2.5 regulatory
values. The mixed aerosols show behavior that is more dif-

ficult to characterize, with some showing more similarity to
dust and others to smoke.

Figures S5 and S6 show the 0.3 µm / 5 µm counts and
the ratios of PM1 / PM10, as measured by the PAS versus
the CAF, and Table 5 shows a summary of the data seg-
regated by the CAF. Both ratios of PM1 / PM10 and the
0.3 µm / 5 µm counts show clear differentiation for the low-
CAF aerosols compared to the high-CAF aerosols. So these
unitless ratios provide a tool that can identify dust aerosols
so that a separate correction can be applied. We explored
both the PM1 / PM10 mass concentrations and the ratio of
0.3 µm / 5 µm counts as tools to identify PM2.5 aerosol that
is dominated by dust. Figure S5 and Table 5 show that us-
ing a ratio of the 0.3 µm / 5 µm counts of somewhere be-
tween 150–250 will provide the best separation of dust and
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Figure 3. Mean coarse aerosol fraction (CAF) (Eq. 3) calculated us-
ing the regulatory data and the PAS raw (CF= 1) data for 17 events
from the Part I dataset that had both PM2.5 and PM10. The values
near each point give the mean and number of data points (hours) in
each bin.

Figure 4. Histogram of coarse aerosol fraction (CAF) at Keeler,
CA, using regulatory PM2.5 and PM10 data for hours with PM2.5 of
> 25 µg m−3. We assume that the aerosol is primarily smoke when
the CAF is < 0.5, mixed when the CAF is between 0.5 and 0.7, and
dust for times when the CAF is > 0.7.

mixed aerosols. By examination of various plots of regula-
tory PM2.5 versus corrected PAS PM2.5 for the Keeler, CA,
data, we found an optimum value of 190. The value of 5.6
comes from the slope of the dust aerosols in Fig. 5. So, this
leads to a new correction equation that depends on PAS-
measured values:

if PAS 0.3µm/5µm > 190,

use the Barkjohn 2021 correction;
if PAS 0.3µm/5µm < 190,

use the Barkjohn 2021 correction× 5.6. (4)

In Eq. (4), we use the Barkjohn 2021 correction, but in
practice there is little difference in the results regardless of
whether this or the new EPA correction is used. Figure 6
shows a plot of the Keeler, CA, regulatory PM2.5 versus PAS
PM2.5 with Eq. (4) applied. There is very little change to

the smoke data as most of these points have PAS-measured
0.3 µm / 5 µm counts of > 190. For the dust aerosols, the ma-
jority of the data points are now much closer to the regulatory
values. The mean bias for the points with a CAF of > 0.7
is now 1.3 µg m−3 compared with 51.4 µg m−3 for the dust
data using the Barkjohn 2021 correction. Figures S7 and S8
show how the choice of the 0.3 µm / 5 µm ratio impacts the
analysis. Using a higher threshold in Eq. (4) results in identi-
fying some points (smoke) with corrected PM2.5 values that
are substantially too high. Using a lower threshold in Eq. (4)
results in missing some dust points and, for those points, gen-
erating corrected PAS PM2.5 values that are too low. While
using a value of 190 in Eq. (4) does miss a small number
of dust points, it appears to be the best balance in finding
and correcting the dust data points for this location. Finally,
Fig. S9 shows regulatory PM2.5 versus PAS PM2.5 with the
new EPA correction separated by the CAF. The results are
nearly identical to Fig. 5, showing that both the Barkjohn
2021 and new EPA correction algorithms have similar be-
havior with dust aerosols.

Equation (4) was developed based on data from one site
(Keeler) that has strong dust and smoke occurrence and with
the sensors in close proximity (30 m). We apply Eq. (4) to
the 50 events from different sites identified in Part I and find
a wider range of results. Table S3 summarizes the results for
each event. Out of the six dust events, four show moderate
improvements with slopes of 0.46–0.72. However, for some
smoke events (e.g., 38, 39, and 40), the slopes are dramati-
cally lower, in the range of 0.17–0.26, which indicates that
the data corrected by PAS with the dust algorithm (Eq. 4) are
overestimating the regulatory data by a large amount. This
occurs due to the fact that during these smoke events some
hours have a ratio of the 0.3 µm / 5 µm counts of > 190 and
thus get multiplied by 5.6. So, while the new dust algorithm
does appear to improve corrected PAS data in dust events
at a single controlled site that is operated by an air quality
agency, it does not provide a useful correction for the bulk of
publicly operated sensors. Nonetheless, the fact that the PAS
data indicate changes in the observed ratios of PM1 / PM10
and the 0.3 µm / 5 µm counts during mineral dust events in-
dicates that the PAS data do provide some useful information
on dust and that more work to identify a suitable correction
algorithm for dust is warranted.

4 Conclusion

PASs are now ubiquitous around the world and far outnumber
the more accurate, regulatory-grade instruments for PM2.5.
These low-cost sensor data are proving to be highly valu-
able for a variety of analyses but especially for improving
our understanding of the spatial distribution of PM2.5. How-
ever, to use these data, it is essential to understand the mea-
surements. Using the Barkjohn 2021 and new EPA correc-
tion algorithm for PAS data, we find that the sensors give
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Figure 5. Regulatory PM2.5 versus PAS PM2.5 with the Barkjohn 2021 correction at Keeler, CA, for hours with regulatory PM2.5 of
> 25 µg m−3. The data are separated by the coarse aerosol fraction (CAF), as measured by the regulatory data. Linear regression relationships
are shown with dotted lines, and the light blue line shows a 1 : 1 relationship.

Figure 6. Regulatory PM2.5 versus PAS PM2.5 with the dust correction (Eq. 4) at Keeler, CA, for hours with regulatory PM2.5 of
> 25 µg m−3. The data are separated by the coarse aerosol fraction (CAF), as measured by the regulatory data. The light blue line shows a
1 : 1 relationship.

reasonably accurate results for PM2.5 for typical urban win-
tertime pollution and smoke events but give concentrations
that are a factor of 5–6 too low for dust events. The Barkjohn
2021 algorithm yields a negative bias at very high PM2.5 con-
centrations (> 300 µg m−3), whereas the new EPA algorithm
yields a positive bias at moderate PM2.5 concentrations (150–
300 µg m−3). Both algorithms underestimate PM2.5 during
dust events by a factor of 5–6. Using the PAS ratios of
PM10 / PM1 mass concentrations and 0.3 µm / 5 µm counts,
we find that there are significant differences in these ratios
for smoke and dust at a site with frequent incursions of both
aerosol types. Using this result, we propose a new PAS cor-

rection algorithm that significantly improves the correction
for dust aerosols and does not change the results for smoke
aerosols but only at this one site. Applying this equation to a
broader array of sites, we find significant problems with the
proposed dust algorithm – it improves PAS PM2.5 estimates
in some dust cases but worsens PAS PM2.5 estimates for
some smoke events. Nonetheless, our analysis demonstrates
that it may be possible to develop an improved PAS correc-
tion algorithm that could identify dust and provide a better
estimate of the PM2.5 concentrations when dust is present.
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