

Supplement of

The AERosol and TRACe gas Collector (AERTRACC): an online-measurement-controlled sampler for source-resolved emission analysis

Julia Pikmann et al.

Correspondence to: Frank Drewnick (frank.drewnick@mpic.de)

The copyright of individual parts of the supplement might differ from the article licence.

S1 Calculation of PM1 mass concentrations

The PM₁ mass concentrations were calculated from the combined particle number size distributions of FMPS ($d_p = 5.6 - 560$ nm) and OPC ($d_p = 0.25 - 32 \mu$ m) assuming spherical particles with a density calculated based on the AMS and black carbon data using the equation of Kuwata et al. (2012) for organic density and Salcedo et al. (2006) for overall density. Since we

5 found that the FMPS under-measures the concentrations in the uppermost size channels these were corrected using the lower OPC size channels. Details on OPC data treatment like the conversion from optical diameter to geometric diameter are provided in Drewnick et al. (2020). The uncertainty for the calculated PM₁ mass concentration is 25%. It was calculated by error propagation from the uncertainty of the density (15%) and the uncertainty of the FMPS and OPC data merging (20%).

10 S2 AMS and PMF data analysis

For the AMS data analysis all standard analysis procedure steps were performed with SQUIRREL 1.63I and PIKA 1.23I. A collection efficiency of 0.5 (Canagaratna et al., 2007) was applied and ionization efficiency (IE) and relative ionization efficiency (RIE) were determined in calibrations before the measurements. Elemental ratios were calculated based on the improved calibration method (Canagaratna et al., 2015).

- For PMF analysis of the organic aerosol, the high-resolution data with error matrix were prepared with PIKA 1.23I. Ions with signal-to-noise ratio (SNR) < 2 were downweighted through increase of the corresponding error by a factor of 2, while ions with SNR < 0.2 were discarded from the data. The CO_2^+ ion and related ions (m/z 16, 17, 18 and 28) were downweighted by a factor of SQRT(5) as they all contain the same information. Additionally, "noisy" ions without contribution to the total measured signal were discarded. To find a robust solution the analysis was run for 1 to 7 factor solutions, with fpeak -1 to 1
- 20 (steps of 0.1) and seed 0 to 50 (steps of 1). For further analysis, the three-factor solution was chosen with fpeak=0 and seed=0. The solution was chosen based on comparison of the time series (Fig. S1a) with those of other instrument data and of the mass spectra (Fig. S1b) with literature references (Fig. S2). The residual mass is smaller than 1 %.

25 Figure S1: Site map with the location of the institute (MPIC) within the city and a wind rose plot (a) and a magnification to show the location of MoLa and the pizza oven on the premises of the institute (Source: © OpenStreetMap contributors).

Figure S2: Time series (a) and mass spectra with the source and background aerosol sampling times highlighted in blue and red (b) of the chosen 3-factor solution of the PMF analysis representing the three different aerosol types, observed during the field-validation measurement.

Figure S3: Comparison of the three PMF factor mass spectra with reference spectra. Shown are Pearson R values from correlation of the PMF factor mass spectra with different reference mass spectra from the AMS Spectral Database (Ulbrich et al., 2022) as color-coded boxes.

S3 CIMS data analysis

For the CIMS data analysis, the software Tofware 3.2.3 (Aerodyne Inc., USA) and custom data procedures were used. All standard analysis procedure steps were performed including m/z calibration (with $I(H_2O)^-$, $I(CH_2O_2)^-$, $I(HNO_3)^-$, I_2^- and I_3^- , deviation < 3 ppm), background correction using the field blanks and normalization to the iodide signal.

40

S4 Error calculation for Fig. 4

To determine the reproducibility, several samples were prepared with equal sample amounts by simultaneously sampling the same aerosol onto multiple filters and TDTs. For the overall reproducibility, the standard deviation over all samples for all individual compounds, which were identified in this study (Section 4), was calculated and then these standard deviations were

45 averaged over all compounds.

As error for the signal intensity of individual compounds the uncertainty, derived from the reproducibility determination, and the error from a Gaussian error propagation of the standard deviation of the blanks and the samples were compared and the larger one was chosen. The signal intensity from compounds found on blank filters was negligible in contrast to source and background samples. The error for the ratios was calculated using Gaussian error propagation from the errors of signal intensity

50 of source and background samples. Error bars of the overall source ratios represent the standard error of the ratios of all ions assigned to the respective sources.

S5 Additional figures and tables

AERTRACC	
	ontrol Software
Julia Pikmann - MPI for Chemistry - 2019	
Before Operation: (1) Start MoLa Display Update (2)	Press Communication Start-Button
Operation Mode: O Automatic Manual	Communication Start Flow Rate & Delay Setup
Sampling Mode: PM1 O PM1+PM10	Formula Help
Sampler1 • Active	Sampler2 • Active
Sampling Time (min): 20 불	Sampling Time (min): 20
Sampling Mass (μg): 2	Sampling Mass (μg): 2 €
Time: 00:08:31 Mass (μg): 1.215 Reset	Тіте: 00:06:11 Mass (µg): 0.9234 Reset
Sampler3 • Active	Sampler4 • Active
Sampling Time (min): inf	Sampling Time (min): inf
Sampling Mass (μg): inf 📮	Sampling Mass (µg): inf 📮
Time: 00:00:00 Mass (μg): 0 Reset	Time: 00:00:00 Mass (µg): 0 Reset

Figure S4: User interface of the AERTRACC software in manual sampling mode. For each sampling path, a sampling time and mass limit can be set. To sample, the "Active" checkbox needs to be checked; then the red indicator for "non-sampling" turns green for "sampling". For each sampling path, two displays show the current accumulated collection time and accumulated aerosol mass. The panel for automatic sampling mode is shown in the main text.

60 Figure S5: Size-dependent transport losses for the (a) PM_1 -only and (b) PM_1/PM_{10} sampling mode. For the calculations, it was assumed that the particles are spherical with a density of 1 g cm⁻³. The considered particle loss mechanisms are diffusion, sedimentation, and inertial deposition.

65 Figure S6: Time series for the relevant parameters black carbon and PM₁ mass concentration as well as CPC and OPC particle number concentration. The source and background aerosol sampling times are highlighted in blue and red.

Figure S7: Ion signal intensities normalized to the respective sampled volume for the PM₁ and PM₁₀ filters from pizza oven and background sampling. Error Bars show the larger uncertainty, either the reproducibility or the uncertainty estimated by error propagation from the standard deviation of the blank and the ambient measurements.

Table S1: List of identified compounds from filter analysis with acronyms used in the main text, molecular formula of the respective detected ion, and assigned sources based on the quoted references.

m/z	Detected ion	Assigned compound	Acronym	Assigned sources	Reference
202 02107	IC-H-O-	dveolie seid	GCOA	biomass burning,	Coggon et al., 2019; Lim et al.,
202.92107	10211403		UCUA	cooking emissions	2005; Reyes-Villegas et al., 2018
212.90541	IC ₃ H ₂ O ₃ -	oxopropanedial, oxoacrylic acid	OPDA	biomass burning	Alves et al., 2010; Zhao et al., 2014
				biomass burning,	Abdullahi et al., 2013; Coggon et
214 02107		numurio ocid		cooking emissions	al., 2019; Lim et al., 2005; Permar
214.92107	IC3H4O3		FIA		et al., 2021; Reyes-Villegas et al.,
					2018; Wang et al., 2006
				biomass burning,	Huang and Yu, 2007; Lim et al.,
216.90033	IC ₂ H ₂ O ₄ -	oxalic acid	OXA	vehicle emissions	2005; Wang et al., 2006; Zhou et
					al., 2015
222.89314	ICH ₄ O ₃ S ⁻	methanesulfonic acid	MSA	aged aerosol	Perraud et al., 2015
224.87241	IH ₂ O ₄ S ⁻	sulfuric acid	SA	oxidation of SO ₂	Perraud et al., 2015
232.93163	IC ₃ H ₆ O ₄ -	glyceric acid	GCEA	cooking emissions	Reyes-Villegas et al., 2018
238.92107	IC ₅ H ₄ O ₃ -	hydroxy furfural, furoic	HF/FA	biomass burning	Permar et al., 2021
				hiomoog huming	Di Uy and Vy 2012, Döhel and
242.91599	IC ₄ H ₄ O ₄ ⁻	butenedioic acid	BDA	biomass burning	Lammal 2002: Va at al. 2021
					Lammer, 2002; Te et al., 2021
246.947	IC ₄ H ₈ O ₄ -	methylglyceric acid	MGCEA	aged aerosol,	Reyes-villegas et al., 2018;
				cooking emission	Szmigielski et al., 2007
252.93672	$IC_6H_6O_3^-$	hydroxymethyl furfural	HMF	biomass burning	Permar et al., 2021; Yee et al., 2013
255.94762	IC ₅ H ₇ NO	pyroglutamic acid	PGA	cooking emissions	Reyes-Villegas et al., 2018
256.93164	IC ₅ H ₆ O ₄ -	methylbutendioic acid	MBDA	biomass burning	Coggon et al., 2019; Ye et al., 2021
				biomass burning,	Coggon et al., 2019; Reyes-
258.94727	IC ₅ H ₈ O ₄ -	glutaric acid	GA	cooking emissions	Villegas et al., 2018; Wang et al.,
					2006

260.92654	IC4H6O5 ⁻	malic acid	MLA	biomass burning,	Röhrl and Lammel, 2002; Wang et
	10411005			vehicle emissions	al., 2006
268 93164	IC ₆ H ₆ O ₄ ⁻	oxidized aromats	OAR2	aged aerosol,	Yee et al 2013
	1001004			biomass burning	
276 95786	$IC_5H_{10}O_5$	pyranose	РҮ	biomass burning,	Chen et al., 2020; Reyes-Villegas et
210.90100	-			cooking emissions	al., 2018; Simoneit et al., 2000
	IC ₄ H ₁₀ O ₅	levoglucosan galactosan		biomass burning,	Abdullahi et al., 2013; Gaston et al.,
288.95786	-	mannosan	LG	cooking emissions	2016; Křůmal et al., 2019; Reyes-
		mannosan			Villegas et al., 2018
295 94254	IC ₇ H ₇ NO	nitroguaiacol	NG	biomass burning	Coggon et al., 2019; Lauraguais et
275.71251	4				al., 2014
300 95786	IC ₇ H ₁₀ O ₅	oxidized aromats, 3-	OAR1	aged aerosol,	Chen et al 2020: Yee et al 2013
500.75700	-	acetylpentane-dioic acid		biomass burning	
302,9371	IC ₆ H ₂ O ₆ -	ascorbic acid,	AS	biomass burning,	Priestlev et al 2021
502.7571	10011300	hydroxyfurans		vehicle emissions	
303 93234	IC ₅ H ₇ NO	oxidized isoprene nitrate	IPN1	aged aerosol	Zhao et al 2021
505175251	6				
305 948	IC ₅ H ₉ NO	oxidized isoprene nitrate	IPN2	aged aerosol	Zhao et al 2021
	6				
306 96841	IC ₆ H ₁₂ O ₆	monosaccharide	MS	biomass burning,	Gaston et al 2016. Ye et al 2021
500.700-11	-	monosuccharide	1110	cooking emissions	

Table S2: List of identified compounds from TDT analysis with acronyms used in the main text, molecular formula of the respective detected ion, and assigned sources based on the quoted references.

m/z	Detected ion	Assigned compound	Acronym	Assigned sources	Reference
171.926	ICH ₃ NO ⁻	formamide	FM	biomass burning, aged aerosol	Permar et al., 2021; Priestley et al., 2018; Schwantes et al., 2019; Ye et al., 2021
186.926	IC ₂ H ₄ O ₂ -	acetic acid	АА	biomass burning, aged aerosol, traffic	Kong et al., 2021; Liggio et al., 2017; Lim et al., 2005; Permar et al., 2021; Ye et al., 2021
188.942	IC ₂ H ₆ O ₂ ⁻	ethylene glycol	EG	aged aerosol, biomass burning	Duncan et al., 2019; Kong et al., 2021; Reyes-Villegas et al., 2018; Schulten and Schurath, 1975
199.921	IC ₂ H ₃ NO 2	N-formylformamide, nitroethen	FFM	biomass burning	Permar et al., 2021; Priestley et al., 2018
200.942	IC ₃ H ₆ O ₂ -	propanoic acid	PA	biomass burning, cooking, aged aerosol	Bi et al., 2022; Jia and Xu, 2018; Priestley et al., 2018; Reyes-Villegas et al., 2018
202.957	IC ₃ H ₈ O ₂ -	propandiol, hydroxyacetone	PDO	aged aerosol	Mehra et al., 2020; Schulten and Schurath, 1975
212.905	IC ₃ H ₂ O ₃ -	oxopropanedial, oxoacrylic acid	OPDA	biomass burning	Alves et al., 2010; Craven et al., 2012; Du et al., 2021; Zhao et al., 2014
214.921	IC ₃ H ₄ O ₃ -	pyruvic acid	РҮА	biomass burning, cooking emission, traffic	Abdullahi et al., 2013; Coggon et al., 2019; Lim et al., 2005; Permar et al., 2021; Reyes-Villegas et al., 2018; Wang et al., 2006
214.957	IC ₄ H ₈ O ₂ ⁻	butyric acid, methyl propanoate	BA	biomass burning, traffic	Duncan et al., 2019; Liggio et al., 2017; Permar et al., 2021; Priestley et al., 2018
224.942	IC ₅ H ₆ O ₂ -	furfuryl alcohol, 2- furanmethanol	FFA	biomass burning, aged aerosol	Kong et al., 2021; Nguyen et al., 2011; Permar et al., 2021; Priestley et al., 2018
230.989	IC ₅ H ₁₂ O ₂ -	alkyldiole	OAL3	traffic	Grayson et al., 2016; Schröder et al., 2016; Sutapa et al., 2021

234.963	IC ₇ H ₈ O ⁻	cresol hexanoic acid,	CRES	biomass burning, cooking, aged aerosol biomass burning,	Klein et al., 2016; Mutzel et al., 2021; Permar et al., 2021 Abdullahi et al., 2013; Liggio et al.,
240.973	$IC_6H_{10}O_2^-$	cyclopentanoic acid	HA	traffic	2017; Reyes-Villegas et al., 2018
252.973	IC ₇ H ₁₀ O ₂ -	Cyclohexene- carboxylic acid	СНСА	traffic, aged aerosol	Hammes et al., 2018; Liggio et al., 2017; Smith et al., 2020
256.968	IC ₆ H ₁₀ O ₃ -	oxohexanoic acid, ethyl acetoacetate, methyloxopenta-noic acid	ОНА	biomass burning, cooking, aged aerosol	Boris et al., 2016; Duncan et al., 2019; Kong et al., 2021
269.004	$IC_8H_{14}O_2^-$	oxidized alkane	OAL4	aged aerosol	Craven et al., 2012; Shao et al., 2022
270.984	IC ₇ H ₁₂ O ₃ ⁻	oxidized alkane	OAL2	aged aerosol	Hammes et al., 2018; Mackenzie-Rae et al., 2018
271.020	IC ₈ H ₁₆ O ₂ -	octanoic acid	OA	traffic, cooking	Abdullahi et al., 2013; Schauer et al., 1999, 2002a, 2002b
275.974	IC ₅ H ₁₁ N O ₄ ⁻	oxidized alkane	OAL1	aged aerosol	Link, 2019
283.020	IC9H16O2-	nonenoic acid	NA	aged aerosol	Hamilton et al., 2011; Qi et al., 2020
292.953	IC5H10O6-	sugar acid	SUGA	cooking	Kurtén et al., 2018; Reyes-Villegas et al., 2018
296.999	IC ₉ H ₁₄ O ₃ -	pinalic-3-acid, limonalic acid	PINA	cooking, aged aerosol	Hammes et al., 2018; Reyes-Villegas et al., 2018
297.036	IC ₁₀ H ₁₈ O ₂	decenoic acid, pinanediol, linalool oxide	DCA	aged aerosol	Bi et al., 2022; Kirkby and Collaboration, 2013; Rondo et al., 2014
299.051	IC ₁₀ H ₂₀ O ₂	decanoic acid	DA	traffic	Schauer et al., 1999, 2002a, 2002b; Sutapa et al., 2021
311.015	IC ₁₀ H ₁₆ O ₃	oxocarboxylic acid	OCA	aged aerosol, traffic, cooking	Hammes et al., 2018; Kong et al., 2021; Liggio et al., 2017; Reyes- Villegas et al., 2018; Ye et al., 2021
327.083	IC ₁₂ H ₂₄ O ₂	dodecanoic acid, methylundeca-noic acid	DDA	traffic, cooking	Schauer et al., 1999, 2002a; Sutapa et al., 2021
363.083	IC ₁₅ H ₂₄ O ₂	β-caryophyllene-aldehyde	СРА	aged aerosol	Gao et al., 2022; Li et al., 2011

	45-60°	60-75 °	75-90 °	Wind (45-90°)	Wind+OPC
Black Carbon (ng m ⁻³)	2.7	3.3	3.1	3.1	22.0
CPC (# cm ⁻³)	1.5	1.9	1.8	1.7	2.8
PAH (ng m ⁻³)	2.1	2.6	2.9	2.5	13.4
PM1 (μg m ⁻³)	2.3	2.9	2.4	2.5	5.2
Organics (µg m ⁻³)	1.7	2.0	2.0	1.9	3.5
OPC (# cm ⁻³)	1.6	1.8	1.8	1.7	22.0
BBOA (µg m ⁻³)	3.6	5.6	5.6	4.9	1.3
OOA (µg m ⁻³)	3.5	3.5	3.5	3.5	3.7
COA (µg m ⁻³)	1.2	1.7	1.9	1.6	1.0
Sampling Time (s)	1198	1273	1087	3779	979

Table S3: Average concentrations of potentially source-related aerosol components and total source-related sampling time for the three-divided wind sectors in comparison to the undivided wind sector and the combined wind sector + OPC sampling condition.

Table S4: Average concentrations of potentially source-related aerosol components and total source-related sampling time for the85five-divided wind sectors in comparison to the undivided wind sector and the combined wind sector + OPC sampling condition.

	45-54°	54-63°	63-72 °	72-81 °	81-90 °	Wind (45-90°)	Wind+OPC
Black Carbon (ng m ⁻³)	2.7	2.8	3.5	3.1	3.1	3.1	22.0
CPC (# cm ⁻³)	1.4	1.7	1.9	1.9	1.7	1.7	2.8
PAH (ng m ⁻³)	2.1	2.4	2.6	2.9	2.6	2.5	13.4
PM1 (μg m ⁻³)	2.4	2.3	3.0	2.6	2.2	1.7	5.2
Organics (µg m ⁻³)	1.7	1.8	2.0	2.2	1.7	1.9	3.5
OPC (# cm ⁻³)	1.6	1.6	1.9	2.0	1.4	1.7	22.0
BBOA (µg m ⁻³)	3.3	4.1	6.0	6.5	4.5	4.9	1.3
OOA (µg m ⁻³)	3.5	3.5	3.5	3.5	3.6	3.5	3.7
COA (µg m ⁻³)	1.2	1.5	1.6	2.0	1.8	1.6	1.0
Sampling Time (s)	700	757	759	733	609	3779	979

Table S5: Average concentrations of potentially source-related aerosol components and total source-related sampling time for the seven-divided wind sectors in comparison to the undivided wind sector and the combined wind sector + OPC sampling condition.

	45-51 °	51-58°	58-64 °	64-71 °	71-77 °	77-84 °	84-90°	Wind (45-90°)	Wind+OPC
Black Carbon (ng m ⁻³)	2.8	2.4	3.1	3.7	3.0	2.8	3.5	3.1	22.0
CPC (# cm ⁻³)	1.4	1.6	1.8	1.9	1.9	1.8	1.7	1.7	2.8
PAH (ng m ⁻³)	2.1	2.1	2.4	2.9	2.7	2.6	3.0	2.5	13.4

PM1 (μg m ⁻³)	2.3	2.3	2.9	2.8	2.8	2.3	2.2	1.7	5.2
Organics (µg m ⁻³)	1.7	1.5	2.0	2.0	2.2	1.8	1.8	1.9	3.5
OPC (# cm ⁻³)	1.6	1.5	1.7	1.8	2.0	1.7	1.4	1.7	22.0
BBOA (µg m ⁻³)	3.2	3.1	5.8	5.3	6.9	5.1	4.7	4.9	1.3
OOA (µg m ⁻³)	3.5	3.5	3.5	3.6	3.5	3.6	3.5	3.5	3.7
COA (µg m ⁻³)	1.1	1.2	1.9	1.5	2.0	1.8	1.9	1.6	1.0
Sampling Time (s)	527	497	607	511	555	466	395	3779	979

References

100

105

110

115

120

- Aljawhary, D., Lee, A. K. Y., and Abbatt, J. P. D.: High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing, Atmos. Meas. Tech., 6, 3211–3224, https://doi.org/10.5194/amt-6-3211-2013, 2013.
- 95 Bai, Z., Ji, Y., Pi, Y., Yang, K., Wang, L., Zhang, Y., Zhai, Y., Yan, Z., and Han, X.: Hygroscopic analysis of individual Beijing haze aerosol particles by environmental scanning electron microscopy, Atmospheric Environment, 172, 149–156, https://doi.org/10.1016/j.atmosenv.2017.10.031, 2018.
 - Bhowmik, H. S., Shukla, A., Lalchandani, V., Dave, J., Rastogi, N., Kumar, M., Singh, V., and Tripathi, S. N.: Inter-comparison of online and offline methods for measuring ambient heavy and trace elements and watersoluble inorganic ions (NO₃⁻, SO₄²⁻, NH₄⁺, and Cl⁻) in PM_{2.5} over a heavily polluted megacity, Delhi, Atmos. Meas. Tech., 15, 2667–2684, https://doi.org/10.5194/amt-15-2667-2022, 2022.

Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass spectrometry reviews, 26, 185–222, https://doi.org/10.1002/mas.20115, 2007.

Celik, S., Drewnick, F., Fachinger, F., Brooks, J., Darbyshire, E., Coe, H., Paris, J.-D., Eger, P. G., Schuladen, J., Tadic, I., Friedrich, N., Dienhart, D., Hottmann, B., Fischer, H., Crowley, J. N., Harder, H., and Borrmann, S.: Influence of vessel characteristics and atmospheric processes on the gas and particle phase of ship emission plumes: in situ measurements in the Mediterranean Sea and around the Arabian Peninsula, Atmos. Chem. Phys., 20, 4713–4734, https://doi.org/10.5194/acp-20-4713-2020, 2020.

DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-offlight aerosol mass spectrometer, Analytical chemistry, 78, 8281–8289, https://doi.org/10.1021/ac061249n, 2006.

Dettmer, K. and Engewald, W.: Ambient air analysis of volatile organic compounds using adsorptive enrichment, Chromatographia, 57, S339-S347, https://doi.org/10.1007/BF02492126, 2003.

Drewnick, F., Böttger, T., Weiden-Reinmüller, S.-L. v. d., Zorn, S. R., Klimach, T., Schneider, J., and Borrmann, S.: Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements, Atmos. Meas. Tech., 5, 1443–1457, https://doi.org/10.5194/amt-5-1443-2012, 2012.

125 Drewnick, F., Pikmann, J., Fachinger, F., Moormann, L., Sprang, F., and Borrmann, S.: Aerosol filtration efficiency of household materials for homemade face masks: Influence of material properties, particle size,

Dettmer, K. and Engewald, W.: Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds, Anal. Bioanal. Chem., 373, 490–500, https://doi.org/10.1007/s00216-002-1352-5, 2002.

particle electrical charge, face velocity, and leaks, Aerosol Science and Technology, 55, 63–79, https://doi.org/10.1080/02786826.2020.1817846, 2020.

Ebert, M., Weigel, R., Kandler, K., Günther, G., Molleker, S., Grooß, J.-U., Vogel, B., Weinbruch, S., and
 Borrmann, S.: Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds, Atmos. Chem. Phys., 16, 8405–8421, https://doi.org/10.5194/acp-16-8405-2016, 2016.

Faber, P., Drewnick, F., Bierl, R., and Borrmann, S.: Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions, Atmospheric Environment, 166, 92–98, https://doi.org/10.1016/j.atmosenv.2017.07.014, 2017.

Fachinger, F., Drewnick, F., and Borrmann, S.: How villages contribute to their local air quality – The influence of traffic- and biomass combustion-related emissions assessed by mobile mappings of PM and its components, Atmospheric Environment, 263, 118648, https://doi.org/10.1016/j.atmosenv.2021.118648, 2021.

140 Fachinger, F., Drewnick, F., Gieré, R., and Borrmann, S.: How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions, Atmospheric Environment, 158, 216–226, https://doi.org/10.1016/j.atmosenv.2017.03.027, 2017.

Forbes, P.: Atmospheric Chemistry Analysis: A Review, Analytical chemistry, 92, 455–472, https://doi.org/10.1021/acs.analchem.9b04623, 2020.

135

145 Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., van der Denier Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., Williams, M., and Gilardoni, S.: Particulate matter, air quality and climate: lessons learned and future needs, Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, 2015.

150 Gilardoni, S.: Advances in organic aerosol characterization: From complex to simple, Aerosol Air Qual. Res., 17, 1447–1451, https://doi.org/10.4209/aaqr.2017.01.0007, 2017.

Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M., Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle, C. R., Kulmala, M., Kürten, A., Lehtipalo, K., Makhmutov, V., Molteni, U., Rissanen, M. P.,

155 Stozkhov, Y., Tröstl, J., Tsagkogeorgas, G., Wagner, R., Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.: Causes and importance of new particle formation in the present-day and preindustrial atmospheres, J. Geophys. Res., 122, 8739–8760, https://doi.org/10.1002/2017JD026844, 2017.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin,

M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.

Harper, M.: Sorbent trapping of volatile organic compounds from air, J. Chromatogr. A, 885, 129–151,
https://doi.org/10.1016/S0021-9673(00)00363-0, 2000.

Heard, D. E.: Analytical techniques for atmospheric measurement, Blackwell Pub, Ames, Iowa, 510 pp., 2006.

- Johnston, M. V. and Kerecman, D. E.: Molecular Characterization of Atmospheric Organic Aerosol by Mass Spectrometry, Annual review of analytical chemistry (Palo Alto, Calif.), 12, 247–274, https://doi.org/10.1146/annurev-anchem-061516-045135, 2019.
- 170 Kuwata, M., Zorn, S. R., and Martin, S. T.: Using elemental ratios to predict the density of organic material composed of carbon, hydrogen, and oxygen, Environmental science & technology, 46, 787–794, https://doi.org/10.1021/es202525q, 2012.

Laskin, J., Laskin, A., and Nizkorodov, S. A.: Mass Spectrometry Analysis in Atmospheric Chemistry, Analytical chemistry, 90, 166–189, https://doi.org/10.1021/acs.analchem.7b04249, 2018.

- 175 Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurtén, T., Worsnop, D. R., and Thornton, J. A.: An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds, Environmental science & technology, 48, 6309–6317, https://doi.org/10.1021/es500362a, 2014.
- Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Lutz, A., Hallquist, M.,
 Worsnop, D., and Thornton, J. A.: A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO), Atmos. Meas. Tech., 7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, 2014.
- Mercier, F., Glorennec, P., Blanchard, O., and Le Bot, B.: Analysis of semi-volatile organic compounds in indoor suspended particulate matter by thermal desorption coupled with gas chromatography/mass spectrometry,
 Journal of chromatography. A, 1254, 107–114, https://doi.org/10.1016/j.chroma.2012.07.025, 2012.
 - Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.

190

Paatero, P. and Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203, 1994.

Parshintsev, J. and Hyötyläinen, T.: Methods for characterization of organic compounds in atmospheric aerosol particles, Anal. Bioanal. Chem., 407, 5877–5897, https://doi.org/10.1007/s00216-014-8394-3, 2015.

195 Schneider, J., Weimer, S., Drewnick, F., Borrmann, S., Helas, G., Gwaze, P., Schmid, O., Andreae, M. O., and Kirchner, U.: Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles, International Journal of Mass Spectrometry, 258, 37–49, https://doi.org/10.1016/j.ijms.2006.07.008, 2006. Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., Kuang, C., Laskin, A.,
Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin, P., Seinfeld, J. H., Shilling, J., Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop, D. R., Zaveri, R. A., Zelenyuk, A., and Zhang, Q.:
Recent advances in understanding secondary organic aerosol: Implications for global climate forcing, Rev. Geophys., 55, 509–559, https://doi.org/10.1002/2016RG000540, 2017.

Stavroulas, I., Bougiatioti, A., Grivas, G., Paraskevopoulou, D., Tsagkaraki, M., Zarmpas, P., Liakakou, E.,
 Gerasopoulos, E., and Mihalopoulos, N.: Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens): a high temporal-resolution chemical composition measurement study, Atmos. Chem. Phys., 19, 901–919, https://doi.org/10.5194/acp-19-901-2019, 2019.

- Struckmeier, C., Drewnick, F., Fachinger, F., Gobbi, G. P., and Borrmann, S.: Atmospheric aerosols in Rome,
 Italy: sources, dynamics and spatial variations during two seasons, Atmos. Chem. Phys., 16, 15277–15299,
 https://doi.org/10.5194/acp-16-15277-2016, 2016.
 - Sun, Y.-L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W.-N., Bae, M.-S., Hung, H.-M., Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y.-C.: Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer, Atmos. Chem. Phys., 11, 1581–1602, https://doi.org/10.5194/acp-11-1581-2011, 2011.

Ulbrich, I. M., Handschy, A., Lechner, M., and Jimenez, J.L.: High-Resolution AMS Spectral Database, 2022.

215

225

- Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
- von der Weiden, S.-L., Drewnick, F., and Borrmann, S.: Particle Loss Calculator a new software tool for the assessment of the performance of aerosol inlet systems, Atmos. Meas. Tech., 2, 479–494, https://doi.org/10.5194/amt-2-479-2009, 2009.

Williams, B. J., Goldstein, A. H., Kreisberg, N. M., and Hering, S. V.: An In-Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols: Thermal Desorption Aerosol GC/MS-FID (TAG), Aerosol Sci. Technol., 40, 627–638, https://doi.org/10.1080/02786820600754631, 2006.

- Woolfenden, E.: Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods, J. Chromatogr. A, 1217, 2685–2694, https://doi.org/10.1016/j.chroma.2010.01.015, 2010.
- Yatavelli, R. L. N., Lopez-Hilfiker, F., Wargo, J. D., Kimmel, J. R., Cubison, M. J., Bertram, T. H., Jimenez, J.
 L., Gonin, M., Worsnop, D. R., and Thornton, J. A.: A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species, Aerosol Science and Technology, 46, 1313–1327, https://doi.org/10.1080/02786826.2012.712236, 2012.

- Zhou, W., Xu, W., Kim, H., Zhang, Q., Fu, P., Worsnop, D. R., and Sun, Y.: A review of aerosol chemistry in
 Asia: insights from aerosol mass spectrometer measurements, Environmental science. Processes & impacts,
 22, 1616–1653, https://doi.org/10.1039/D0EM00212G, 2020.
 - Zhou, Y., Huang, X. H., Bian, Q., Griffith, S. M., Louie, P. K. K., and Yu, J. Z.: Sources and atmospheric processes impacting oxalate at a suburban coastal site in Hong Kong: Insights inferred from 1 year hourly measurements, J. Geophys. Res., 120, 9772–9788, https://doi.org/10.1002/2015JD023531, 2015.