
Atmos. Meas. Tech., 16, 1461–1476, 2023
https://doi.org/10.5194/amt-16-1461-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Correcting 3D cloud effects in XCO2 retrievals from the Orbiting
Carbon Observatory-2 (OCO-2)
Steffen Mauceri1, Steven Massie2, and Sebastian Schmidt2

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
2Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA

Correspondence: Steffen Mauceri (steffen.mauceri@jpl.nasa.gov)

Received: 30 June 2022 – Discussion started: 18 July 2022
Revised: 31 January 2023 – Accepted: 20 February 2023 – Published: 21 March 2023

Abstract. The Orbiting Carbon Observatory-2 (OCO-2)
makes space-based radiance measurements in the oxygen A
band and the weak and strong carbon dioxide (CO2) bands.
Using a physics-based retrieval algorithm these measure-
ments are inverted to column-averaged atmospheric CO2
dry-air mole fractions (XCO2 ). However, the retrieved XCO2

values are biased due to calibration issues and mismatches
between the physics-based retrieval radiances and observed
radiances. Using multiple linear regression, the biases are
empirically mitigated. However, a recent analysis revealed
remaining biases in the proximity of clouds caused by 3D
cloud radiative effects (Massie et al., 2021) in the process-
ing version B10. Using an interpretable non-linear machine
learning approach, we develop a bias correction model to ad-
dress these 3D cloud biases. The model is able to reduce un-
physical variability over land and sea by 20 % and 40 %, re-
spectively. Additionally, the 3D cloud bias-corrected XCO2

values show agreement with independent ground-based ob-
servations from the Total Carbon Column Observation Net-
work (TCCON). Overall, we find that the published OCO-
2 data record underestimates XCO2 over land by −0.3 ppm
in the tropics and northward of 45◦ N. The approach can be
expanded to a more general bias correction and is generaliz-
able to other greenhouse gas experiments, such as GeoCarb,
GOSAT-3, and CO2M.

Copyright statement. © 2022 California Institute of Technology.
Government sponsorship acknowledged.

1 Introduction

The Orbiting Carbon Observatory-2 (OCO-2; Eldering et
al., 2017; Crisp et al., 2004) makes space-based top-of-
atmosphere radiance measurements in three spectral bands:
oxygen A band at 0.76 µm, the weak CO2 band at 1.61 µm,
and the strong CO2 band at 2.06 µm. Using an optimal es-
timation retrieval (Rodgers, 2000) called ACOS (O’Dell et
al., 2018), these measurements are converted to column-
averaged atmospheric CO2 dry-air mole fractions (XCO2 ).
ACOS employs a physics-based forward model that takes
into consideration viewing and solar geometry and various
atmospheric and surface parameters. Since OCO-2 generates
on the order of 100 000 soundings per day, ACOS makes
multiple approximations to speed up the retrieval algorithm.
Most importantly, the retrieval makes the independent pixel
approximation, where the radiance in a given sounding only
depends on the properties (e.g., surface pressure, surface re-
flectance, aerosols, trace gas concentration) within the field
of view of this sounding. This approximation exploits the fact
that for most clear-sky observations there is no significant
horizontal exchange of photons.

Nearby clouds, however, can scatter a significant number
of photons into the field of view of OCO-2, which enhances
the observed radiance. This horizontal exchange of photons
due to clouds, or the 3D cloud effect, is not accounted for
in the ACOS retrieval. Nevertheless, the forward model at-
tempts to match the enhanced radiances, which leads to er-
rors in the converged state vector and, most importantly, neg-
ative biases in retrieved XCO2 (Massie et al., 2021, 2017;
Merrelli et al., 2015; Emde et al., 2022; Kylling et al., 2022;
Yu et al., 2022). Merrelli et al. (2015) applied the spherical-
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harmonics discrete-ordinate method (SHDOM) 3D radiative
transfer code (Evans, 1998) to perturb OCO-2 type spectra
and calculated OCO-2 retrievals without and with the 3D ra-
diance perturbations. Retrieved XCO2 values were lower than
clear-sky retrievals by 0.3, 3, and 5–6 ppm for surfaces char-
acterized by bare soil, vegetation, and snow-covered foot-
prints, respectively. From an empirical perspective, Fig. 6 of
Massie et al. (2021) demonstrates that retrieved XCO2 over
sea generally decreases when the distance between observa-
tions and clouds becomes less than 5 km.

Nearby clouds can also cause radiance dimming due to
cloud shadows. Cloud brightening occurs on both sides of
clouds since 40 % of OCO-2 observations are within 4 km of
clouds (Massie et al., 2021), and cloud brightening extends
over a 5 to 10 km horizontal scale. A cloud shadow occurs
only on one side of a cloud, with the shadow covering a lim-
ited angular portion of the side. Since the majority of OCO-
2 observations are next to low-level clouds (think of an ob-
servation embedded in low-level Amazon cloud streets), the
cloud shadows project only about 1 km or so from the low-
level clouds. Using a year’s data volume, Massie et al. (2022)
discuss detailed calculations, based on an analysis of OCO-
2 O2 A-band continuum radiances, that yield an estimate
of cloud shadowing frequency to be on the order of 4 %,
compared to 96 % for the observations influenced by cloud
brightening.

To mitigate biases in retrieved “raw” XCO2 , a linear bias
correction and threshold-based filtering are applied to the
data, yielding “bias-corrected” XCO2 . Bias correction and fil-
tering are based on co-retrieved elements from the state vec-
tor that are used to bring retrieved XCO2 into agreement with
multiple truth sources (Kiel et al., 2019). These truth sources
include a “small-area analysis”, which assumes that XCO2 is
constant over small distances (< 100 km) within the same or-
bit; comparisons to ground-based observations from the To-
tal Carbon Column Observation Network (TCCON) (Wunch
et al., 2010); and comparisons to a multi model-mean of six
models that assimilate in situ data. Nevertheless, there are
remaining underestimates in retrieved XCO2 that have been
linked to 3D cloud effects in the proximity of clouds with
an average of −0.4 and −2.2 ppm for high-quality and low-
quality data (Massie et al., 2021). To address these biases
Massie et al. (2021) developed a linear bias correction and
filtering approach using a set of features indicative of 3D
cloud effects calculated from Moderate Resolution Imaging
Spectroradiometer (MODIS) and OCO-2 files. However, bi-
ases in XCO2 caused by nearby clouds are highly non-linear.
Consequently, the present study has two goals. The first goal
is to explore if a non-linear bias correction can reduce 3D
cloud biases more than a linear approach. While the devel-
oped cloud features (normalized standard deviation of the ra-
diance field – H3D, differences in continuum radiances of
an observation to adjacent observations – HC, ratio of con-
tinuum radiance spatial standard deviation and noise level
– CSNoiseRatio, cloud distance; discussed below) more di-

rectly capture 3D cloud effects, co-retrieved variables from
the state vector might be more indicative of the resulting
XCO2 biases. Thus, the second goal is to investigate if addi-
tional variables, co-retrieved with XCO2 , can be used to fur-
ther reduce 3D cloud biases.

2 Data

We make use of OCO-2 (B10) (https://disc.gsfc.nasa.
gov/datasets/OCO2_L2_Lite_FP_10r/summary, last access:
13 March 2023) data from September 2014 to July 2019.
These files contain bias-corrected XCO2 for soundings over
sea in glint mode (in which sunlight is directly reflected by
the Earth’s surface towards OCO-2) and soundings over land
with a nadir viewing geometry. We correct for remaining 3D
cloud biases by utilizing a variety of parameters describing
the retrieved atmospheric state vector, viewing and solar ge-
ometry, results from OCO-2 cloud screening pre-processors,
location and time, and a quality flag (QF) for each sounding.
The QF is determined by a series of hand-tuned thresholds
for various variables derived from state vector elements that
are indicative of retrieval biases in XCO2 . High-quality data
have a QF= 0, and low-quality data have QF= 1. Similarly,
the operational bias correction is performed with hand-tuned
linear fits to various state vector elements (Kiel et al., 2019).

In addition, we utilize ground-based observations by TC-
CON from all 27 stations that are in close proximity in time
(24 h) and space (2.5◦ in latitude, 5◦ in longitude) to OCO-
2 observations (https://tccondata.org/, last access: 13 March
2023; Total Carbon Column Observing Network (TCCON)
Team, 2017). The ground-based observations are used for
validation only. However, they can only provide comparisons
for a limited number of locations, with relatively few ground-
based sites in the tropics and island locations.

Finally, we make use of four variables indicative of 3D
cloud effects (Massie et al., 2021): H3D, HC, CSNoiseR-
atio, and cloud distance. H3D (Liang et al., 2009; Massie
et al., 2017) describes the normalized standard deviation of
the MODIS radiance field and is calculated based on of-
fline MODIS radiance data files (Cronk, 2018). The radi-
ance standard deviation is calculated in a circle with a ra-
dius of 10 km surrounding each OCO-2 data point. HC is
calculated from differences in O2 A-band continuum radi-
ances of an observation point and adjacent points in three
rows (frames) of footprints. A frame has eight adjacent OCO-
2 footprints, with each footprint on the order of 2 km in size.
CSNoiseRatio is the ratio of the O2 A-band continuum ra-
diance spatial standard deviation and noise level, calculated
within a footprint (which has 20 “ColorSlice” sub-pixel ele-
ments). These three variables are indicative of 3D cloud ef-
fects since radiance gradients are present when clouds are
next to observation footprints (radiance enhancements be-
come larger as cloud distance decreases). Cloud distance
(Massie et al., 2021) is the distance of the nearest cloud to
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each observation point, as determined from offline radiance
data files (Cronk, 2018), which contain 500 m MODIS ra-
diances, geolocation, and cloud mask data. Calculated 3D
cloud features can be found for OCO-2 from September
2014 to July 2019 at https://doi.org/10.5281/zenodo.4008764
(Massie et al., 2020).

3 Methods

3.1 Small areas and TCCON as truth metric

As a pre-processing step we match the 3D cloud variables,
OCO-2 soundings, and TCCON by time and location. After-
wards, we remove soundings where no 3D cloud variables
are available. To develop the bias correction model, we use
the small-area analysis, which is based on the assumption
that CO2 is a well-mixed gas and assumed to be constant
over spatial scales of less than ∼ 100 km (though there can
be exceptions for strong CO2 emitters such as megacities).
To exploit this constraint on XCO2 we split OCO-2 soundings
from the same orbit into small areas with a maximum size of
100 km. Each small area is generated by collecting soundings
(sorted by observation time) until the distance between the
first and last sounding exceeds the 100 km threshold. After-
wards, the collection process of the next small area is started.
For each small area we identify soundings that are assumed
to be free of 3D cloud biases (nearest cloud is at least 10 km
away). From those soundings we define the median retrieved
XCO2 as the true XCO2 of a given small area, and any differ-
ences to this median are treated as biases. Small areas that
contain fewer than 10 soundings free of 3D cloud biases are
removed from the data set. Since this process biases the re-
maining small areas towards longer cloud distances, we re-
sample the remaining soundings so that the distribution of
nearest-cloud distances is similar to the original data set, with
about 40 % of the sounding having a nearest-cloud distance
of less than 4 km. Note that this processing will interpret real
XCO2 enhancements, for example from power plants, as pos-
itive biases. However, we postulate that these cases are rare
and that a model that is robust to outliers can still learn a use-
ful bias correction from these data. Next, we remove outliers
with large XCO2 errors from the data set by applying a se-
ries of thresholds to the variables from the state vector. The
variables and their thresholds are given in Table 1. Note that
these filters remove only a small fraction of soundings (4 %).
Finally, we remove small areas with fewer than 20 sound-
ings. This results in approximately 5× 106 soundings over
land and 20× 106 soundings over the ocean, with a small
subset of the soundings having coincident TCCON measure-
ments. TCCON can only provide comparison for a limited
set of regions, with most stations in the Northern Hemisphere
and over land. This challenges the development of a bias cor-
rection approach based on XCO2–TCCON differences that
would be representative of areas far away from existing sta-

tions, such as Africa, South America, and most of the ocean.
Therefore, we use TCCON only as an independent truth met-
ric for validation and not to develop the model itself.

The distribution of nearest-cloud distance, biases from the
small-area analysis, and comparison to TCCON for land
nadir and sea glint observations with QF= 0 and QF= 1 are
shown in Fig. 1. The plots show that the majority of OCO-2
soundings are taken within close proximity of clouds and that
many of those soundings are filtered out in the current OCO-
2 product (QF= 1). This is especially problematic for areas
such as the tropics that are dominated by clouds and, as a re-
sult, have few valid soundings. The small-area and TCCON
biases for QF= 0 data are roughly normally distributed, with
a mean and standard deviation of 0.0±0.5 ppm for small-area
biases and 0.2± 0.8 ppm compared to TCCON for sound-
ings over sea. For soundings over land the small-area bias
and bias compared to TCCON are similar, with a mean and
standard deviation of 0.1±∼ 1 ppm. For QF= 1 the distribu-
tion of biases has a larger standard deviation for small-area
biases (land: 2.7 ppm; sea: 1.8 ppm) and, compared to TC-
CON (land: 3.7 ppm; sea: 1.9 ppm), is skewed and contains
negative biases that far exceed positive biases, as analyzed
with the small areas (land: −0.6 ppm; sea: −1.2 ppm) and
compared to TCCON (land:−1.2 ppm; sea:−1.2 ppm). This
long-tail distribution of negative biases is indicative of 3D
cloud effects (Massie et al., 2021) and should be mitigated
with a successful 3D cloud bias correction.

3.2 Train, validation, test split

To fit, or train, the bias correction model we used sound-
ings from September 2014 to the end of July 2017, totaling
roughly 12× 106 and 3× 106 soundings over sea and land,
respectively. To find the best model parameters and evaluate
what features minimize biases the furthest we use a sepa-
rate validation set containing soundings from the beginning
of August 2017 to the end of July 2018. Finally, to test how
the trained model performs on new data we use a separate
testing set of soundings from the beginning of August 2018
to the end of July 2019. The validation and testing set have
3× 106 and 2× 106 soundings over the sea with QF= 0 and
QF= 1, respectively, and 5× 105 soundings each over land
with QF= 0 and QF= 1.

3.3 Bias correction model

We train two types of models for the bias correction, non-
linear models (random forest) and linear models (ridge re-
gression), to provide a baseline comparison. A random for-
est is an ensemble of classifying decision trees and outputs
the mean of those trees (Breiman, 2001). Random forests are
easy to interpret and robust to outliers. Each tree is trained
in a supervised manner with a random subset (50 %) of the
available training data, also referred to as bootstrapping. Us-
ing the training data, each tree iteratively splits the data us-
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Table 1. Variables and their thresholds used to remove outliers.

Variable Description Land Sea

co2_ratio Ratio of retrieved XCO2 in WCO2 and SCO2 bands x < 1 or x > 1.04 x < 1 or x > 1.03

co2_grad_del Change between the retrieved CO2 profile and the a priori profile x <−100 or x > 100 x <−50 or x > 100

deltaT Retrieved offset to a priori temperature profile x < 0

dpfrac Retrieved XCO2 multiplied by difference in retrieved and x > 7
a priori surface pressure (Kiel et al., 2019)

rms_rel_sco2 Root mean square error in the L2 fit residuals for the SCO2 band, x > 0.5
relative to the continuum signal

snr_sco2 Signal-to-noise ratio in SCO2 band x < 200

Figure 1. Histogram of data used in this study for nearest-cloud distance (left), small-area (SA) biases (middle), and biases compared to
TCCON (right) for soundings over land (top) and sea (bottom). Higher-quality data (QF= 0) are shown in blue, and lower-quality data
(QF= 1) are shown in orange.

ing the feature that can minimize the mean square error in
the predictions the furthest until it reaches a maximum user-
provided number of splits, or depth. For our land model we
used a depth of 8 and for our ocean model a depth of 15. The
larger model size for the ocean is mostly due to there being
more training data available over the ocean than over land,
which allows a larger model that still generalizes to be fit to
new data. Each random forest was composed of 100 individ-
ual trees. These parameters were chosen to maximize model
performance on the validation set. The model inputs are a set
of selected features from the OCO-2-retrieved state vector
(e.g., co2_grad_del), and the model output is the remaining
XCO2 bias derived from the small-area analysis.

Since the operational OCO-2 bias correction uses a linear
approach, we also perform a baseline comparison to a lin-
ear model. We choose multivariate linear regression with a
small Tikhonov regularization term (the regularization helps
if some of the inputs are correlated, which is the case for most
real-world applications), also referred to as ridge regression

(Hoerl and Kennard, 1970b, a). Thus, using the training set
we seek to find the weights, w, that minimize the following
equation:

‖y−Xw‖22+α‖w‖
2
2 , (1)

where y is the standardized (mean removed and divided by
standard deviation) XCO2 bias, X represents the standard-
ized features, ‖·‖2 is the Euclidean norm, and α controls the
strength of the Tikhonov regularization. For our application
we found that α = 10−5 maximizes performance for the val-
idation set.

3.4 Feature selection

First, we identified retrieved state variables that show a
strong dependence (change in mean or variability) on
nearest-cloud distance, indicating that they might be good
candidates to correct for 3D cloud effects. Two examples
are shown in Fig. 2. In addition to the list of identified fea-
tures we added solar and viewing geometries and surface
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albedo. Those variables have a direct physical impact on 3D
cloud effects; 3D cloud effects are amplified at large solar
zenith angles and for brighter surfaces (Okata et al., 2017).
Finally, we removed highly correlated variables. This results
in a set of 23 features for soundings over land and 24 fea-
tures for soundings over sea that may be used to correct for
3D cloud biases in retrieved XCO2 (more information about
each variable can be found on pp. 29 to 40 in Jet Propulsion
Laboratory, 2018). Next, we used recursive feature elimina-
tion to identify what subset of features can reduce biases the
furthest. Reducing the number of features makes the model
more robust to new data, avoids overfitting, and aids inter-
pretability.

For the recursive feature elimination, we removed one fea-
ture at a time and trained a small random forest model with
32 trees each on a random selection of 5× 105 soundings
with QF= 0 and QF= 1 from the training set. Afterwards
we calculated the model performance on the full validation
set. As the performance metrics we used the correlation co-
efficient (R2) between modeled bias and existing bias as in-
dicated by the small-area calculations. The feature that has
been removed from the highest-performing model is then
permanently removed, and the process is repeated until only
one feature is left. The iterative process was performed sep-
arately for land and sea soundings. The order of the feature
elimination and resulting R2 is shown in Fig. 3. The least
important variables are shown at the top and were removed
first. A low importance can either result from a variable vary-
ing independently of biases in XCO2 , or the variable could be
correlated with another variable (e.g., dp and dp_abp) or set
of variables that provide similar information, making one of
them obsolete. The most important variables are shown on
the bottom.

For our bias correction model we decided to use the five
most important variables for land and four most impor-
tant variables for sea soundings, as identified by the fea-
ture elimination. These variables explain most of the vari-
ance and partially overlap for land and sea. For land the most
important variables are dp_abp (retrieved surface pressure
from pre-processor retrieval minus surface pressure from the
GEOS-5 FP-IT model), h2o_ratio (ratio of retrieved H2O
column from the WCO2 band to that from the SCO2 band),
co2_grad_del (a measure of the difference in the retrieved
and prior CO2 vertical gradient), dp (retrieved surface pres-
sure from the L2 full-physics retrieval minus the O2 A-
band prior surface pressure), and aod_water (retrieved ex-
tinction optical depth of cloud water at 755 nm). For sea
the most important variables are dp, co2_grad_del, aod_ice
(retrieved extinction optical depth of cloud ice at 755 nm),
and albedo_wco2 (retrieved Lambertian albedo in the WCO2
band). Note that the final set of features does not include
any of the 3D cloud metrics used in the bias correction dis-
cussed in Massie et al. (2021). Additionally, solar and view-
ing geometry was removed in the iterative process. How-
ever, the process includes the surface albedo in the weak CO2

band, dp, and dp_abp, which have a direct physical connec-
tion to 3D cloud effects. As discussed below in relation to
Fig. 2b, dp_abp and nearest-cloud distance are empirically
correlated. Additionally, increased values in aod_water and
deviations from unity for h2o_ratio are indicative of cloud
contamination (Jet Propulsion Laboratory, 2018). This indi-
cates that elements of the operational retrieval state vector
(co2_grad_del, dp, dp_abp, h2o_ratio, aod_water, aod_ice,
albedo_wco2) are more directly correlated with remaining
biases in XCO2 (due to 3D cloud and other effects) than fea-
tures that directly measure 3D cloud effects which perturb
the radiation field (H3D, HC, CSNoiseRatio).

From an operational standpoint, using elements from the
current retrieval state vector to correct 3D cloud biases sim-
plifies the bias correction in future operational products. It is
also more generally applicable to other missions that might
not have available coincident cloud field measurements that
can be applied to derive nearest-cloud distances, such as
OCO-3 (Eldering et al., 2019). On the other hand, it reduces
the interpretability of the developed model and does not al-
low 3D cloud biases to be directly linked to 3D cloud met-
rics. The OCO-2 and 3D cloud variables and their meaning
are summarized in Table 2.

Note that it is not possible to clearly separate biases due to
3D cloud effects and other mismatches between the forward
model of the retrieval algorithm and the observed radiances.
For example, differences in modeled and real aerosol opti-
cal properties (Chen et al., 2022) or uncertainties in absorp-
tion profiles of various trace gases (Payne et al., 2020) are
likely important. Additionally, uncertainties in the instrument
calibration can cause systematic biases as well. Thus, some
of the features might also correct for non-3D cloud effects.
However, we tried to mitigate the effect of non-3D cloud bi-
ases by only adding features to the feature selection process
that show some dependence on nearest-cloud distance (see
Fig. 2) or have a direct physical relationship to 3D cloud
biases. Additionally, our bias correction is applied to data
that have already been corrected with the operational OCO-2
bias correction (our processing utilizes bias-corrected XCO2 ).
Thus, biases independent of 3D cloud effects should be min-
imized.

4 Results

4.1 Reduction in XCO2 biases

After the random forest was trained using the training set
(September 2014–July 2017) we evaluated the model perfor-
mance on the testing set (August 2018–July 2019). Figure 4
compares remaining XCO2 biases in OCO-2 (as determined
by the small-area analysis) with biases after our correction is
applied (OCO-2 corr.) for QF= 0 and QF= 1 soundings. For
land soundings XCO2 biases are reduced from a root mean
square error (RMSE) of 2.0 to 1.6 ppm (see Fig. 4c). For sea
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Table 2. Summary of OCO-2 state vector variables and 3D cloud variables.

Variables Description

dp_abp Retrieved surface pressure from pre-processor retrieval, minus surface pressure from forecast model
dp Retrieved surface pressure from full-physics retrieval, minus surface pressure from O2 A-band prior
h2o_ratio Ratio of retrieved H2O column from WCO2 band to SCO2 band
co2_grad_del Change between retrieved CO2 profile and a priori profile
aod_water Retrieved extinction optical depth of cloud water
aod_ice Retrieved extinction optical depth of cloud ice
albedo_wco2 Retrieved surface albedo in WCO2 band
H3D Normalized standard deviation of the radiance field
HC Differences in continuum radiances of an observation to adjacent observations
CSNoiseRatio Ratio of continuum radiance spatial standard deviation and noise level
Cloud distance Distance to the nearest cloud

Figure 2. Change in variability and mean in percent of potential
features with respect to nearest-cloud distance. Change in mean
is shown in red; change in the 5th and 95th percentile is shown
in yellow; no change (baseline) is shown with a straight brown
line. Change is calculated with respect to feature mean for observa-
tions with a nearest-cloud distance of 14 to 15 km. Panel (a) shows
co2_grad_del, and panel (b) shows dp_abp. Please refer to the text
for a description of the two features.

soundings the bias correction has a significantly bigger im-
pact and reduces biases from 1.4 to 0.9 ppm (see Fig. 4d).
Over the sea the bias correction mostly corrects negative bi-
ases less than −0.8 ppm (see Fig. 4b).

Table 3 shows the RMSE by quality flag. For QF= 0 and
QF= 1 the biases in XCO2 corrected with our model are less
than the testing set operational OCO-2 biases. However, for
QF= 0 improvements by our correction (OCO-2 corr.) com-
pared to OCO-2 are small (< 10 %). The QF= 0 data have
significantly fewer soundings with clouds in close proximity
(see Fig. 1), which explains in part the smaller difference.
Additionally, the quality flags are determined so that the op-
erational linear bias correction of OCO-2 works well; i.e.,
XCO2 biases have a mostly linear relationship to elements of
the state vector where QF= 0. For QF= 1 the difference is
more significant, reducing the RMSE from 2.6 to 2.1 ppm
over land and from 2.3 to 1.3 ppm over sea.

To more directly link the bias correction to 3D cloud ef-
fects we show biases with respect to nearest-cloud distance
in Fig. 5. XCO2 from OCO-2 shows a clear negative mean
bias and increased variance for a nearest-cloud distance of

less than 3 and 4 km over land and sea, respectively. After
applying our bias correction the mean bias in the proximity
of clouds is close to zero. Thus, the bias correction effectively
mitigates biases due to 3D cloud effects.

4.2 Linear vs. non-linear bias correction

Building on the work by Massie et al. (2021) one of the guid-
ing research questions was whether a non-linear approach
based on interpretable machine learning techniques would
improve upon a linear 3D cloud bias correction. To probe
this question, we compare the performance of the non-linear
random forest model to linear ridge regression (see Eq. 1). To
train the linear model we used the same features and training
and testing sets used for the random forest model develop-
ment. The RMSEs for the linear model (OCO-2 lin. corr.) and
non-linear model (OCO-2 corr.) are shown in Table 3. For
QF= 0 land and sea observations the linear and non-linear
model have similar performance, with the non-linear model
allowing for a slightly lower RMSE. For QF= 1 the non-
linear random forest reduces remaining biases further than
the linear ridge regression, from 2.3 to 2.1 ppm over land and
from 1.5 to 1.3 ppm over the sea.

4.3 Comparison to using dedicated cloud variables

A second question that we wanted to answer was whether
additional variables from the OCO-2-retrieved state vector
could improve the 3D cloud bias correction. As shown in
Fig. 3, the four cloud variables (H3D, HC, CSNoiseRatio,
nearest-cloud distance) were removed during the recursive-
feature-elimination step, indicating that other variables from
the state vector are more directly correlated with XCO2 bi-
ases. To better understand how much of the model perfor-
mance stems from the new set of features we performed a
set of experiments. For the first experiment we trained a ran-
dom forest using only the four cloud variables in addition
to surface albedo, solar zenith angle, sensor zenith angle,
and the difference between solar and sensor azimuth. The
results are shown in Table 3 (OCO-2 cloud corr.). As ex-
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Figure 3. Feature ordering by importance as determined by recursive feature elimination. Features were removed from top to bottom, with the
most important features on the bottom. The model performance for removing a given feature is indicated by R2 calculated on the validation
set. Please refer to p. 29 to 40 in Jet Propulsion Laboratory (2018) for a description of the individual features.

Table 3. RMSE of XCO2 as determined by small-area analysis for the testing set (August 2018–July 2019). The RMSE is shown for the
operational OCO-2 product (OCO-2), the proposed bias correction approach (OCO-2 corr.), a linear bias correction using the same features
as the proposed approach (OCO-2 lin. corr.), and a random forest using dedicated cloud metrics (OCO-2 cloud corr.). The data are separated
by high-quality data (QF= 0), low-quality data (QF= 1), and all data (QF= 0+ 1).

Land XCO2 (ppm) Sea XCO2 (ppm)

OCO-2 OCO-2 OCO-2 OCO-2 OCO-2 OCO-2 OCO-2 OCO-2
corr. lin. corr. cloud corr. corr. lin. corr. cloud corr.

QF= 0 0.94 0.90 0.92 0.92 0.53 0.44 0.49 0.46
QF= 1 2.60 2.10 2.31 2.43 2.29 1.31 1.52 1.44
QF= 0+ 1 1.95 1.62 1.79 1.88 1.42 0.89 1.06 0.98

pected, using the cloud variables with the non-linear random
forest model leads to worse performance than using the ran-
dom forest with the features identified using the recursive
feature elimination. One caveat of this experiment is that our
bias correction approach, aimed at 3D cloud biases, might
also make corrections for biases stemming from other effects
(e.g., aerosols) that are independent of clouds and, thus, can-
not be explained with cloud variables. Unfortunately, it is not
possible to clearly separate various sources.

For the other experiment we combine the 3D cloud vari-
ables with the variables determined by the recursive fea-
ture elimination (dp_abp, co2_grad_del, h2o_ratio, dp, and
aod_water for land and dp, co2_grad_del, aod_ice, and
albedo_wco2 for sea) and compare the results to using only

the features from the recursive feature elimination. If adding
the 3D cloud variables would significantly reduce biases in
XCO2 further, it would indicate that the set of identified fea-
tures is mostly correcting for biases unrelated to 3D cloud
effects. In total we compare the model performance of four
sets of features: the features determined by the recursive fea-
ture elimination in addition to (a) nearest-cloud distance;
(b) CSNoiseRatio; (c) nearest-cloud distance, CSNoiseRatio,
HC, and H3D; and (d) deltaT (see Tables 1 and 2). The last
set of features serves as a control experiment where we quan-
tify the effect of adding a random variable that is unrelated
to 3D cloud effects to the set of chosen features. The results
are shown in Table 4. For QF= 0 there are practically no dif-
ferences for the four test cases compared to our chosen set of
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Figure 4. Reduction in non-physical variability in XCO2 for OCO-
2 and the proposed bias correction approach (OCO-2 corr.) for
land (a, c) and sea (b, d) for QF= 0 and QF= 1 data from 2018
to 2019. (a, b) Distribution of biases from individual soundings,
(c, d) distribution of standard deviation for individual small areas.

features. For sea QF= 1 data the best set of features is (c),
which reduces the RMSE from 1.31 to 1.25 ppm. Overall, the
addition of 3D cloud variables (a, b, c) allows the models to
lower the RMSE further compared to our proposed model;
however, the improvements are only marginal. This indicates
that the set of chosen features in our bias correction model
accounts for the majority of 3D cloud biases in XCO2 . Fur-
ther evidence for this is shown in Fig. 5 and is presented in
the next section with an independent comparison to TCCON.

4.4 Comparison to TCCON

We further compare bias-corrected XCO2 to TCCON. TC-
CON observations have low uncertainties and are used to
validate OCO-2-retrieved XCO2 . However, they can only pro-
vide point measurements and are non-uniformly distributed,
with most TCCON sites over land and in the Northern Hemi-
sphere. For our comparison we consider coinciding obser-
vations of OCO-2 and TCCON for the period of the testing
set (August 2018–July 2019). This results in 1768 (QF= 0:
7459; QF= 1: 2794) matches over land and 1305 (QF= 0:
2165; QF= 1: 1111) matches over sea. Note that our bias
correction model was trained without taking TCCON ob-
servations into consideration, while OCO-2 takes OCO-2–
TCCON biases explicitly into consideration for its linear bias
correction and filtering and to calculate global offsets. Thus,
comparisons between OCO-2 and TCCON are not indepen-
dent.

Table 5 shows the mean and standard deviation of dif-
ferences between OCO-2 and TCCON and after we apply
our bias correction (OCO-2 corr. – TCCON) for QF= 0 and
QF= 1. Over land and sea the bias correction reduces the
standard deviation between OCO-2 and TCCON for QF= 0

and QF= 1. For observations over sea the bias-corrected
XCO2 exhibits a systematic positive offset compared to TC-
CON of about 0.7 ppm. The systematic offset could be ad-
dressed by recalculating the scaling factor used for retrievals
over sea in OCO-2. However, there are only few TCCON sta-
tions that can provide comparisons for those data, and these
stations are not equally distributed over the ocean.

To better understand how the bias correction addresses 3D
cloud biases as compared to TCCON, Fig. 6 shows XCO2 bi-
ases vs. nearest-cloud distance. For land and sea there are
negative biases in OCO-2 in the proximity of clouds (Fig. 6a
and c). Interestingly, there is a positive bias for OCO-2 sea
data when no clouds are close to OCO-2 soundings (> 2 km)
that likely stems from OCO-2 incorporating a multi-model
mean in its bias correction in addition to TCCON. After ap-
plying our bias correction, XCO2 biases over land show a re-
duced dependence on nearest-cloud distance (Fig. 6b). For
sea, the bias correction pushed XCO2 up by roughly 0.5 ppm
in the proximity of clouds, resulting in a uniform positive
bias of 0.7 ppm independent of cloud distance (Fig. 6d).
Thus, the bias correction removed the dependency of XCO2

biases on nearest-cloud distance but did not address the over-
all offset present in OCO-2.

5 Discussion

5.1 Model interpretation

To better understand how the model utilizes the input fea-
tures to calculate the bias correction we show the modeled bi-
ases with respect to the individual features in Fig. 7. Overall,
the bias–feature relationship is non-linear for most features
over the complete state space but linear over part of the state
space. This explains the lower model performance of the lin-
ear model we compared to in Sect. 4.2 over the complete
state space (QF= 0+1) and the only marginal improvement
compared to QF= 0 data. Differences between retrieved sur-
face pressure and a reference surface pressure (dp, dp_abp)
show a positive correlation with XCO2 biases. When the oper-
ationally retrieved surface pressure is underestimated, XCO2

is underestimated as well. The ratio of the retrieved H2O
column from the WCO2 band to that from the SCO2 band
(h2o_ratio), for soundings over land (Fig. 7b), is indepen-
dent of XCO2 biases for ratios of less than 1 and has a strong
negative correlation for ratios above 1. A ratio of 1.05 corre-
sponds on average to an XCO2 bias of −1.5 ppm. The differ-
ence between the retrieved CO2 profile and the a priori pro-
file (co2_grad_del) shows mostly a positive correlation for
negative values (surface CO2 is underestimated compared to
CO2 higher up in the atmosphere) and a negative correlation
for positive values. This indicates that 3D cloud effects chal-
lenge the accurate retrieval of the XCO2 profile. The sensi-
tivity of XCO2 biases to changes in co2_grad_del is approxi-
mately twice as strong over sea compared to land (see Fig. 7c
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Figure 5. XCO2 bias vs. cloud distance for OCO-2 soundings over land (a), soundings over land corrected by our proposed method (b),
OCO-2 soundings over sea (c), and soundings over sea that are corrected (d) for QF= 0 and QF= 1 data from 2018 to 2019. The 5th and
95th percentiles are indicated by the yellow shaded area, the mean is shown by a red line, and individual comparisons are shown by gray
dots.

Table 4. RMSE of XCO2 as determined by small-area analysis for the testing set (August 2018 –July 2019). The RMSE is shown for
the proposed bias correction approach (OCO-2 corr.) and using the same approach but with additional features. In addition to the variables
determined by the recursive feature elimination, (a) shows nearest-cloud distance; (b) shows CSNoiseRatio; (c) shows nearest-cloud distance,
CSNoiseRatio, HC, and H3D; and (d) shows deltaT.

Land XCO2 (ppm) Sea XCO2 (ppm)

OCO-2 corr. (a) (b) (c) (d) OCO-2 corr. (a) (b) (c) (d)

QF= 0 0.90 0.90 0.90 0.90 0.90 0.44 0.43 0.43 0.42 0.44
QF= 1 2.10 2.09 2.10 2.08 2.10 1.31 1.29 1.28 1.25 1.28
QF= 0+ 1 1.62 1.62 1.62 1.61 1.62 0.89 0.87 0.86 0.84 0.87

and f). This feature cannot be exclusively linked to 3D cloud
effects since it is one of the most important features for the
operational bias correction of OCO-2. The retrieved extinc-
tion optical depth of cloud water (aod_water) shows a mostly
negative linear correlation with a XCO2 bias of−2 ppm for an
extinction optical depth of 0.1. The retrieved extinction opti-
cal depth of cloud ice (aod_ice) is negatively correlated with
XCO2 biases. Finally, the surface albedo in the weak CO2
band (albedo_wco2) has mostly no dependence on XCO2 bi-
ases for most of its range but shows some negative correla-
tion with biases for brighter surfaces. Note that our bias cor-
rection is applied in addition to the bias correction that has
already been performed in the operational OCO-2 retrieval.
While the operational OCO-2 bias correction does not explic-
itly account for 3D cloud biases it might implicitly mitigate
such biases with its linear bias correction (since the opera-

tional bias correction variable dp is correlated with nearest-
cloud distance; see the red line in Fig. 2b).

To understand why some variables of the OCO-2-retrieved
state vector are correlated with 3D cloud biases it is impor-
tant to remember that the operational retrieval, based on op-
timal estimation, tries to match the observed radiances with
a forward radiative transfer model. However, while the ob-
served radiances can be perturbed by 3D cloud effects, the
forward model tries to match those radiances with an inde-
pendent pixel approximation that does not physically include
3D cloud effects. In particular the 3D cloud effect enhances,
or brightens, the radiances as compared to no clouds be-
ing present. To compensate for this brightening the forward
model decreases the retrieved surface pressure (reduction in
dp and dp_abp), increases the optical depth of cloud water
(aod_water), and increases the surface albedo in the WCO2
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Table 5. Mean and standard deviation of bias in XCO2 compared to TCCON observations for the testing set (August 2018–July 2019). The
comparison for the operational OCO-2 product is indicated by OCO-2 – TCCON and the proposed random forest approach by OCO-2 corr.
– TCCON.

Land XCO2 (ppm) Sea XCO2 (ppm)

OCO-2 – TCCON OCO-2 corr. – TCCON OCO-2 – TCCON OCO-2 corr. – TCCON

QF= 0 −0.05± 1.24 −0.16± 1.21 0.57± 0.74 0.67± 0.69
QF= 1 −1.7± 4.21 0.45± 2.77 −1.01± 1.83 0.59± 1.34
QF= 0+ 1 0.47± 2.42 −0.23± 1.74 0.06± 1.40 0.69± 0.97

Figure 6. XCO2 bias vs. cloud distance of OCO-2 over land (a), OCO-2-corrected (b), OCO-2 over sea (c), and OCO-2-corrected (d) for
QF= 0 and QF= 1 data from 2018 to 2019. The 5th and 95th percentiles are indicated by the yellow shaded area, the mean is shown with a
red line, and individual comparisons are shown with gray dots.

band. These relationships are shown empirically in Fig. 7.
As shown in Fig. 2 of Massie et al. (2021), the spectral sig-
nature of the 3D cloud effect (the optical depth structure of
the radiative perturbation of the 3D effect) differs from the
spectral signatures of perturbations in surface pressure, sur-
face reflectivity, aerosol, and XCO2 . Figure 2 illustrates that
a decrease in surface pressure and XCO2 and an increase in
surface reflectance will increase the observed radiance. In or-
der to provide for extra radiance enhancement in the cloud-
brightened observed radiance, a variety of state variable ad-
justments (and their unique spectral contributions) are uti-
lized by the retrieval to bring forward model radiances in
agreement with the observed radiances. The relationship of
3D cloud biases to surface pressure differences and surface
albedo is likely due to a combination of physically based 3D
cloud radiative effects and operational-retrieval-algorithmic
considerations.

A further look at the relative importance of the model
features shows dp_abp as being the most important feature
for land and dp for sea observations. Over land dp_abp is
followed by dp, h2o_ratio, co2_grad_del, and aod_water.
Over sea dp is followed by co2_grad_del, aod_ice, and
albedo_wco2 (see Fig. 8). The feature importance was calcu-
lated as the normalized total reduction in mean square error
brought by an individual feature; i.e., if we were to omit dp
from our model as a feature the bias correction would be less
effective than if we were to omit co2_grad_del.

5.2 Regional biases

To further understand regional impacts of our bias correction
we calculate biases, as identified by our model, for soundings
from 2014 to 2019 and averaged results over 2◦× 2◦ cells
(see Fig. 9); i.e., in applying the proposed bias correction,
the results shown in Fig. 9 are subtracted from OCO-2 XCO2 .
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Figure 7. Bias identified by correction by the proposed model (OCO-2 bias) with respect to its features: dp (a), h2o_ratio (b),
co2_grad_del (c), dp_abp (d), aod_water (e) over land and co2_grad_del (f), dp (g), aod_ice (h), and albedo_wco2 (i) over sea for QF= 0
and QF= 1 data from 2018 to 2019. The 5th and 95th percentiles are indicated by the yellow shaded area, the mean is shown with a red
line, and individual comparisons are shown with gray dots. The scale of the x axis is different for each plot. Please refer to Sect. 3.4 for a
description of the individual features.

Figure 8. Feature importance for the bias correction model. Feature importance is shown for land (a) and sea (b) observations. The model
was trained using the training set with QF= 0 and QF= 1 data. Please refer to Sect. 3.4 for a description of the individual features.

Since using soundings only from the testing set leads to many
areas with no data, we used all available data (2014–2019)
for this visualization. Over land negative biases (i.e., XCO2

from OCO-2 is underestimated) are present north of 45◦ in
America, Europe, and Asia, averaging−0.3 ppm. Around the
tropics within ±10◦ of the Equator, average biases are near
−0.3 ppm as well. Positive biases are most dominant over the
deserts of northern Africa and Saudi Arabia. Over sea biases
are more equally distributed than over land. When compar-
ing the regional biases to a map of nearest-cloud distance
(see Fig. 10) there is overlap between negative biases and

areas dominated by clouds (correlation coefficient between
nearest-cloud distance and OCO-2 bias is R = 0.3).

5.3 Effect of bias correction on true CO2 enhancements

As discussed in Sect. 3.1 we use the small-area analysis as a
truth proxy to develop our model. This assumes that CO2 is
well mixed and constant over short spatial scales (< 100 km).
However, this assumption is violated for strong CO2 emitters
such as power plants. Even though these strong emitters are
rare in the data and likely do not influence the bias correc-
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Figure 9. Biases in XCO2 identified by our model. Biases are averaged over 2◦× 2◦ for all soundings (2014 to 2019; QF= 0 and QF= 1).
Negative biases are shown in blue, positive biases in red, and “no data” in white.

Figure 10. Nearest-cloud distance derived from MODIS. Nearest-cloud distances are averaged over 2◦×2◦ for all matched soundings (2014
to 2019; QF= 0 and QF= 1). Darker blues indicate closer clouds; “no data” is shown in white.

tion model, there is a risk that the model would “correct”,
i.e., remove, real local CO2 enhancements. To confirm that
real CO2 enhancements are still present after the proposed
bias correction, we compare OCO-2-retrieved and OCO-2-
corrected XCO2 from three OCO-2 overpasses over large coal
power plants (see Fig. 11) that have been used in a previous
study (Nassar et al., 2017). The CO2 enhancements of the
retrieved and corrected XCO2 for the three overpasses (the
singular spikes in XCO2 in the middle of the graphs) agree
closely and demonstrate that the bias correction does not er-

roneously remove true CO2 enhancements from the OCO-2
data record.

6 Future work and conclusion

6.1 Future work

The developed bias correction approach is aimed at mitigat-
ing 3D cloud biases in OCO-2 but could readily be expanded
to a more general bias correction. Future research will need
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Figure 11. XCO2 anomalies for OCO-2 and bias-corrected OCO-
2 retrievals in the proximity of coal power plants. Power plant
(a) Westar at lat 39.28◦, long −96.12◦, on 4 December 2015;
(b) Ghent at lat 38.75◦, long −85.03◦, on 13 August 2015; and
(c) Sasan at lat 23.98◦, long −82.63◦, on 23 October 2014.
Anomaly is calculated by subtracting the mean.

to show how far the approach used in this research (deter-
mining the bias correction solely from small-area biases) will
work for correcting previously uncorrected XCO2 (the “raw”
XCO2 from the operational retrieval). For such a correction a
two-step approach might be necessary that combines a global
(comparison to TCCON) and local (small-area analysis) bias
correction approach. However, developing such an approach

would be challenged by the sparse coverage of TCCON sta-
tions.

The operational bias correction used for OCO-2 is aimed
at QF= 0 data. This is highlighted by the significant re-
duction in XCO2 biases our correction was able to achieve
in QF= 1 data, while improvements in QF= 0 data were
small. Filtering out low-quality data is a simple approach
to improve the overall quality of the OCO-2 XCO2 retrieval.
However, it leaves certain areas with too few samples, most
notably the tropics (due to clouds); higher latitudes (due to
large solar zenith angles); and around Brazil, Bolivia, and
Paraguay (due to the South Atlantic Anomaly). Improving
the bias correction of future OCO-2 versions that allow for
less restrictive filtering would benefit applications that rely
on those data.

Finally, one could expand the approach taken here, devel-
oping one model for land and one for sea data, to have mul-
tiple models for land and sea to better capture the diverse
causes for biases in XCO2 across Earth; for example, dif-
ferent types of aerosols dominate different areas and might
lead to specific biases in different regions or seasons. Such
a location-based bias correction could also be expanded to
a location-based filtering approach that would, for example,
allow less restrictive filtering at higher latitudes (Mendonca
et al., 2021; Jacobs et al., 2020) to have more of those sound-
ings pass the filter and be available for scientific inquiry. A
key challenge of such an approach will be validation due to
the limited number of available TCCON stations.

6.2 Conclusion

We identified five variables from the state vector for OCO-
2 retrievals over land (dp, dp_abp, h2o_ratio, co2_grad_del,
aod_water) and four variables over sea (dp, co2_grad_del,
aod_ice, albedo_wco2) that are used in a machine learning
model that allows 3D cloud biases to be mitigated in OCO-
2-retrieved XCO2 . We demonstrate that this machine learning
model does not erroneously remove true CO2 power plant
enhancements from the OCO-2 data record. All variables
are by-products of the operational retrieval used by OCO-
2, which simplifies their inclusion for bias correction in fu-
ture versions of the operational product. The proposed non-
linear bias correction is based on a random forest approach
and is able to reduce the RMSE from 1.95 to 1.62 ppm over
land and 1.42 to 0.89 ppm over sea for QF= 0 and QF= 1
data on an independent testing set. We demonstrated a sys-
tematic approach to correct for biases in optimal estimation
retrievals. Namely, (1) find a physical variable that is well un-
derstood and correlated with the cause of the bias (in our case
“nearest-cloud distance”), (2) identify elements from the re-
trieved state vector and other retrieval products that show a
dependence on the variable from step (1) in addition to other
variables that have a physical connection to the bias, (3) use
recursive feature elimination to identify which subset of the
elements identified in (2) should be used for the bias cor-

https://doi.org/10.5194/amt-16-1461-2023 Atmos. Meas. Tech., 16, 1461–1476, 2023



1474 S. Mauceri et al.: Correcting 3D cloud effects in XCO2 retrievals from OCO-2

rection, and (4) use a simple explainable machine learning
model to map the features identified in (3) to the biases and
correct for them.
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