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Abstract. Earth radiances in the form of hyperspectral mea-
surements contain useful information on atmospheric con-
stituents and aerosol properties. The Geostationary Environ-
ment Monitoring Spectrometer (GEMS) is an environmental
sensor measuring such hyperspectral data in the ultraviolet
and visible spectral range over the Asia–Pacific region. After
completion of the in-orbit test of GEMS in October 2020, bad
pixels are found as one of remaining calibration issues result-
ing in obvious spatial gaps in the measured radiances as well
as retrieved properties. To solve the fundamental cause of the
issue, this study takes an approach reproducing the defective
spectra with machine learning models using artificial neural
network (ANN) and multivariate linear regression (Linear).
Here the models are trained with defect-free measurements
of GEMS after dimensionality reduction with principal com-
ponent analysis (PCA). Results show that the PCA-Linear
model has small reproduction errors for a narrower spectral
gap and is less vulnerable to outliers with an error of 0.5 %–
5 %. On the other hand, the PCA-ANN model shows bet-
ter results emulating strong non-linear relations with an er-
ror of about 5 % except for the shorter wavelengths around
300 nm. It is demonstrated that dominant spectral patterns
can be successfully reproduced with the models within the
level of radiometric calibration accuracy of GEMS, but a
limitation remains when it comes to finer spectral features.
When applying the reproduced spectra to retrieval processes
of cloud and ozone, cloud centroid pressure shows an error
of around 1 %, while total ozone column density shows rela-
tively higher variance. As an initial step reproducing spectral
patterns for bad pixels, the current study provides the poten-
tial and limitations of machine learning methods to improve
hyperspectral measurements from the geostationary orbit.

1 Introduction

Earth radiances provide useful information on the atmo-
spheric chemical composition, especially when it is mea-
sured in the form of many contiguous spectral bands.
This type of measurement is referred to as “hyperspectral”
(Bovensmann et al., 1999; Goetz et al., 1985), which is sam-
pled with high spectral resolution to accurately describe ab-
sorption lines of targeted gaseous or particulate components
(Boersma et al., 2004; Loyola et al., 2011; Hedelt et al.,
2019; Manolakis et al., 2019; Kang et al., 2020). The Geo-
stationary Environment Monitoring Spectrometer (GEMS)
on-board the Geostationary Korea Multi-Purpose Satellite-
2B (GEO-KOMPSAT-2B) is an environmental sensor pro-
viding such a hyperspectral measurement in the ultraviolet
and visible (UV–VIS) spectral region from 300 to 500 nm
with a spectral resolution of finer than 0.6 nm (Kim et al.,
2020; Kang et al., 2022). Following the launch of the satel-
lite in February 2020, the in-orbit test (IOT) of GEMS was
successfully completed in October 2020 with some issues to
be continuously monitored on the radiance level (Level 1B)
with collected long-term measurements (Schenkeveld et al.,
2017; Pan et al., 2019; Lee et al., 2020; Ludewig et al., 2020)

One of the issues to be periodically monitored is bad pix-
els, which refers to anomalous pixels having hot, cold, noisy
or drifted readout values in raw data (Han et al., 2002; López-
Alonso and Alda, 2002). The definition of bad pixels is not
universal, and in this paper, it refers to all kinds of pixels hav-
ing abnormal observation features. The impact of bad pixels
on the GEMS data products is obvious because the given ar-
eas affected by bad pixels cannot provide any measured in-
formation. It causes spatial discontinuity in Level 1B data
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and retrieved properties (Level 2) by affecting retrieval pro-
cesses with contaminated spectral features. The defective re-
gion is not large so far, but the area could be enlarged as
time goes by (Kieffer, 1996) and the missing areas may in-
crease, possibly including scientifically important regions,
especially for environmental monitoring.

Because there is a constant measurement gap for certain
areas in the GEMS field of regard (FOR), one might need al-
ternative information for the areas for practical or scientific
reasons. To supplement the information and investigate the
applicability of machine learning, this study focuses on re-
placing the Level 1B radiances using spectral relations with
simple machine learning methods. One of advantages of re-
placing Level 1B data (not Level 2) is that improving spec-
tral features can be an efficient way to solve the bad-pixel
issue for all Level 2 products. The proposed approach places
more emphasis on efficiency and further applicability of ma-
chine learning, even though the spatial gaps in Level 2 data
can be filled with a more suitable method for each product
with higher accuracy (e.g., variogram or mathematical fil-
ters) (Fang et al., 2008; Katzfuss and Cressie, 2011; Guo et
al., 2015; Llamas et al., 2020; Yang et al., 2021). Another
advantage is that the approach helps the current retrieval al-
gorithms to avoid bad-pixel effects without further develop-
ment. The GEMS cloud height retrieval algorithm, for in-
stance, had to modify the fitting window during the IOT be-
cause the targeted O2–O2 absorption lines (around 477 nm)
are affected by bad pixels. The proposed approach, how-
ever, has the potential to reproduce the O2–O2 absorption
features with the information from unaffected wavelengths
(e.g., rotational Raman scattering lines). If it is successful, re-
trievals can avoid bad-pixel effects without further algorithm
development. The main question to be answered for that
is whether non-linear spectral relations could be effectively
emulated with spectral replacement using machine learning
techniques.

For atmospheric remote sensing, the majority of research
has employed machine learning as a proxy for the radiative
transfer model to retrieve geophysical states from measured
spectral radiances (Loyola et al., 2018; Zhu et al., 2018;
Hedelt et al., 2019). There are fewer approaches applied to
obtain radiation flux (Zarzalejo et al., 2005) and even much
fewer to obtain hyperspectral radiances to accurately quan-
tify radiative forcing in climate system (Taylor et al., 2016),
increase spectral resolution (Le et al., 2020) and fill in a spec-
tral gap for inter-calibration (Wu et al., 2018). A monochro-
matic radiance itself rarely contains any important mean-
ing and thus has seldom been a final target. In this study,
however, radiance at each wavelength for a targeted spec-
tral region is an important output to be reproduced with ma-
chine learning models, artificial neural network (ANN) and
multivariate linear regression. Theoretically, ANN can accu-
rately emulate non-linear relations with a simple model struc-
ture using large training data (Cybenko, 1989; Hornik et al.,
1989). Machine learning methods also have a high chance

to successfully process hyperspectral data because the abun-
dant datasets make the training process more efficient af-
ter breaking the curse of dimensionality with a proper pre-
processing step (Gewali et al., 2018). Principal component
analysis (PCA) is applied for that in this study, which is use-
ful to extract important information from hyperspectral mea-
surements (Horler and Ahern, 1986; Bajorski, 2011; Li et al.,
2013, 2015; Joiner et al., 2016).

The following sections are organized as follows. Section 2
introduces sensor specification of GEMS and a general de-
scription of machine learning models with model structure
and hyperparameter setting. Section 3 contains model opti-
mization results and error analysis for wide defect regions.
With the optimized model, the spatial and spectral inspection
is performed for reproduced radiances and retrieved proper-
ties. In Sect. 4, conclusions are presented with limitations as
well as further application in future study.

2 Data and methods

2.1 Data description

2.1.1 GEMS

GEMS is a UV–VIS imaging spectrometer in the geosta-
tionary orbit observing the Asia–Pacific region (5◦ S–45◦ N,
75–145◦ E) with high spatial and spectral resolution to re-
trieve key atmospheric constituents such as ozone (O3), sul-
fur dioxide (SO2), nitrogen dioxide (NO2), formaldehyde
(HCHO), glyoxal (CHOCHO) and aerosol properties (Kim
et al., 2020). The observation targets of GEMS are the Sun
(irradiance mode) and the Earth (radiance mode), and the
description for each measurement mode is summarized in
Table 1. In both measurement modes, incident light from a
scene passing through fore optics and a spectrometer reaches
to a two-dimensional detector array, the charge-coupled de-
vice (CCD) detector. The CCD of GEMS comprises 2048
rows and 1033 columns of photoactive pixels along the spa-
tial direction from north to south and the spectral direction
with a sampling interval of 0.2 nm, respectively. GEMS ob-
serves the Sun for the purpose of calibration once a day.
For Earth measurements, GEMS measures the backscattered
radiation from east to west about 700 times by moving a
scan mirror, and for each scan, 2048 pixels in total are ob-
tained along the north–south direction. All measurements
at each scan position are combined to cover the full FOR
of GEMS. The data used in this study are the operational
data (Level 1C), which are used for the retrieval processes of
Level 2 products.

2.1.2 Bad pixel

Bad-pixel detection is generally performed with dark-current
measurements which are taken without exposure to light
for a certain integration time (Howell, 2006): about 70 ms
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Table 1. Top level measurement specifications of GEMS.

Measurement mode Solar irradiance Earth radiance

Data dimension [spectral, spatial, scan] [1033, 2048] [1033, 2048, 695] (nominal scene)

Spectral range (nm) 300–500

Spectral sampling (nm per pixel) 0.20

Spectral resolution (nm) < 0.60

Spatial resolution (km2) – 3.5× 8 (spatial× scan)

Measurement frequency Once a day (13:00 UTC) Every hour (00:45–07:45 UTC)

Figure 1. The two-dimensional bad-pixel map (a) on the GEMS
CCD detector along the spectral (x axis) and spatial direction (y
axis) and (b) zooming in on the bad-pixel positions from top to
bottom rows for Defects 1–3. Bad pixels are marked in white.

for GEMS. The bad-pixel detection is based on the sensor
characterization sorting out erroneous signals from a normal
trend. Figure 1 illustrates bad-pixel positions (in white) on
the GEMS CCD detector array. A cluster and distinct line
shapes of bad pixels shown in Fig. 1a were initially identi-
fied during on-ground calibration before the launch. Some
pixels were additionally sorted out during the IOT possi-
bly due to the impacts from the launch environment condi-
tions in space. Following the suggestions made by the in-
strument developers, linear interpolation along the spatial di-
rection (north–south) is applied to replace the measurements
on bad-pixel positions (Fischer et al., 2007; Schläpfer et al.,
2007). However, it was found during the IOT that significant
interpolation error could be introduced on the bad-pixel po-
sitions denoted as Defects 1–3 (see Fig. 1b), especially when
the spatial width of the bad pixels is too wide. Especially,
when a scene on the Earth dramatically changes, discontinu-
ity caused by the interpolation becomes more apparent.

The interpolation error seriously affects Level 2 products
for which the spectral fitting windows are overlapped with
bad-pixel areas. For instance, cloud properties and aerosol

effective height (AEH) of GEMS are retrieved from O2–O2
absorption bands around 477 nm (Choi et al., 2021; Kim et
al., 2021) where the cluster of bad pixels is located (De-
fect 3). During the IOT, Defect 3 caused spatial discontinu-
ity to the retrieved cloud and AEH distribution, which made
the fitting window of the products moved to avoid bad-pixel
effects. Ozone retrieval is also affected by Defect 2 (300–
400 nm) as the spectral radiances within 300–380 nm are ma-
jor ozone absorption lines in the UV–VIS spectral range (Bak
et al., 2019). Even though spatially interpolated radiances
are homogeneous with their surroundings (see Fig. 2), the
spectral patterns are not properly reproduced with the op-
erational method (spatial interpolation) causing distinct hor-
izontal lines in the retrieved products (to be discussed in
Sect. 3.2 2).

2.2 Replacement approach

2.2.1 General description

Upwelling radiances are determined by the interactions of
light with trace gases, aerosols and clouds in the atmosphere
and surface reflection. Spectral replacement is based on the
fact that radiances at different wavelengths for a scene have
certain spectral relations (Liu et al., 2006; Wu et al., 2018)
with which missing values in a spectrum could be repro-
duced. To investigate this, randomly collected GEMS spectra
measured on defect-free pixels are used to establish the rela-
tions with the basic premise that neighboring pixels on the
detector array (set to within 100 spatial indices) would have
similar measurement characteristics.

Because it is highly possible that input radiances have re-
dundant information, PCA is applied for dimensionality re-
duction to compress the input radiances to low-dimensional
principal components (PCs). The strong linear relations
among radiances in a spectrum are compressed to the first
PC, which has the largest variance. The non-linear properties
caused by atmospheric scattering, absorption, different opti-
cal paths and sensor noise are projected onto the subsequent
PC subspaces. The PCA process is given by the following
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Figure 2. Spatial distribution of GEMS radiances at 312 nm with
bad pixels (a) marked in dark gray and (b) reproduced with spatial
interpolation. The GEMS spectra were measured on 10 March 2021
(06:00 UTC).

Eq. (1):

Zn×p = Xn×λWλ×p, (1)

where Z, X and W represent the PC scores, input and PC
matrix, respectively. The PC scores matrix (Z) is obtained
by projecting the input to the PC subspaces with W, which
is obtained by applying eigenvalue decomposition to the X.
The subscripts n, λ and p indicate the dimension of matrix
corresponding to the number of datasets, input wavelengths
and the number of PCs, respectively.

With the compressed data, multivariate linear regression
(PCA-Linear) and ANN (PCA-ANN) models are trained to
define the relations between input (Xm) and output (Yn) radi-
ances in a spectrum. The PCA-ANN model is constructed
with a simple feed-forward model with a hidden layer as
described in Fig. 3. In the model optimization process, the
PCA-ANN model with a hidden layer showed faster and
more effective convergence of loss function than the mod-
els having multiple hidden layers. The PCA-Linear model

adopts a simple linear model structure consisting of param-
eters such as weight and bias having the minimum mean
squared error (MSE) between the regressed and measured
radiances. After model optimization, bad pixels (X′m, Y ′n) are
replaced with reproduced radiances likely measured by the
sensor.

2.2.2 Input–output and model optimization

For the model training, radiances in a spectrum are divided
into input and output radiances based on the specified spec-
tral ranges in Table 2. The spectral ranges of output radiances
for Defects 1–3 are identical to each defective region, while
the remaining part of a spectrum is the input radiances. The
GEMS measurements randomly selected in a month (March
2021) are split into training and test data, which are used
to update model parameters and to check for overfitting, re-
spectively. The sampling process should be carefully done
to avoid unstable training caused by oversampling of certain
scenes (dark scenes in this case). The datasets for the models
are interpolated at identical spectral grids in a pre-processing
step and then are reversely interpolated onto its original spec-
tral grids after the reproduction. Considering that the intrinsic
information could be lost during the interpolation processes,
finer spectral grids (0.1 nm) are adopted for the model to min-
imize interpolation errors by preserving radiances at more
frequent intervals. The solar zenith angle (SZA) and view-
ing zenith angle (VZA) are key variables determining optical
paths of upwelling and downwelling radiances and thus are
used as input variables together with radiances. As described
in Fig. 3, the activation function is the rectified linear unit
(ReLU) in the hidden layer of the ANN model. The struc-
ture itself is not complicated, but it has multiple nodes in the
input and output layers, which makes ReLU more compet-
itive (Nwankpa et al., 2018). The hyperbolic tangent (tanh)
and sigmoid function show poor results especially when the
output parameters have lower variance making the optimiza-
tion stuck at the average value and preventing the model from
being updated.

For the optimizer, Adaptive Moment Estimation (Adam)
is used which shows stable results compared to stochastic
gradient descent (SGD) and root mean square propagation
(RMSProp) (Kingma and Ba, 2014). It is empirically found
that SGD without gradient clipping tends to cause explod-
ing gradients and RMSProp has difficulty reaching the global
minima compared to Adam. Figure 4 presents the converg-
ing process of the PCA-ANN model for Defect 2 applying
different optimizers with and without SZA and VZA condi-
tions. The addition of angle conditions as input parameters
speeds up the model convergence with smaller MSE because
without it, the information would be implicitly elicited in the
optimization process. The models with angle conditions con-
verge at 44, 98 and 33 epochs for Adam, SGD and RMSProp,
respectively. Adam converges at the smallest MSE, while
SGD converges with the highest MSE. RMSProp presents
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Figure 3. Schematic chart of the training and bad-pixel replacement process. W and b represent weight and bias parameters in each layer.
The subscripts m, n, p and k are equal to the spectral dimension of input and output parameters, the number of PCs, and the hidden nodes of
the ANN model, respectively.

Table 2. Input and output (I/O) parameters for the training process of machine learning models and the optimized hyperparameter setting of
the ANN model.

Model Parameter Defect 1 Defect 2 Defect 3 Remark

I/O Input (Xm) SZA/VZA Random selection

300–400 nm 400–500 nm 460–483.9/491.1–500 nm (100 000 for training

Output (Yn) 400.1–500 nm 300–399.9 nm 484–491 nm and test data)

Hyper- Activation function ReLU

parameter Optimizer Adam optimizer

Loss function Mean squared error

Scaling Standardization

unstable loss for validation data and converges with higher
MSE compared to Adam.

3 Results and discussion

3.1 Model optimization

Figure 5 shows model optimization results for each model
with the different number of PCs as the input nodes. Because
the spectral range of output radiances differs for each defect
region (Defects 1–3), model optimization is also separately
performed. The spectral ranges of output radiances for De-
fects 1 and 2 are wider than that of Defect 3, which results
in higher MSE. PCA-ANN seems to be unstable for Defect 1
showing overfitting which might be caused by unfiltered out-
liers in output radiances of GEMS at the wavelengths longer
than 480 nm. Defect 2 contains ozone absorption lines which
increase non-linearity between input and output radiances.
Because of the strong non-linearity, PCA-ANN shows bet-
ter performance than PCA-Linear for Defect 2. Defect 3 has
the smallest number of output parameters in a narrow spec-

tral gap, which causes strong correlation between input and
output radiances as shown in Fig. 5c. In short, the optimized
number of PCs is set to 90 for all defect regions when loss
functions for both training and test data converge, with PCA-
Linear for Defects 1 and 3 and the PCA-ANN model for De-
fect 2.

The model performance is evaluated with training and test
datasets specified in Table 2. Figure 6 presents mean and nor-
malized root mean squared error (NRMSE) of the output ra-
diances for both datasets. The NRMSE is a statistical indi-
cator normalized by the mean radiance at each wavelength.
Especially, the radiances in 400–500 nm provide insufficient
information to properly represent ozone absorption features
at the wavelengths shorter than 325 nm in Defect 2. Defect 1
also has higher errors around the edges of output spectral
ranges where pixel saturation occurs. Defect 3 shows the
smallest NRMSE of around 0.2 % because of strong linear re-
lations between input and output radiances. The results show
that it is possible to successfully reproduce spectral features
at a narrower spectral range.
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Figure 4. Training and validation losses for Defect 2 (a) with and
(b) without the angle conditions as input parameters with different
optimizers such as Adam (black), SGD with the gradient clipping
value of 0.5 (blue) and RMSProp (orange).

3.2 Evaluation

3.2.1 Spatial inspection

For quantitative evaluation, we investigated each defect area
(Defects 1-3) and its surroundings where actual measure-
ments regarded as “true” exist. The evaluation is made with
the data measured on 10 March 2021 (06:00 UTC), which
are excluded for the model training. Table 3 presents spec-
tral ranges of Defects 1–3 and the target wavelengths for the
analysis. Targeting the wavelengths helps analyze the exact
spectral patterns.

The measured and reproduced radiances with machine
learning methods are directly compared, which are hereafter
referred to as GEMS radiances and ML radiances. In Figs. 7–
9, each column shows GEMS, ML radiances and the differ-
ences, while the first and second rows show the radiances at
the wavelengths showing the smallest and the largest differ-
ences, respectively. Figure 7 shows the comparison results
of the Defect 3 area, which represents the best performance
among the three defect areas. The differences in Fig. 7 are
within the range of ±0.5 % because the spectral gap of De-
fect 3 is narrower than the counterparts of Defects 1–2. For
Defect 3, there is no distinct scene dependence over the out-
put wavelengths and the differences show noise-like features
originating from instrument artifacts. One thing to be noted is

that the results presented here are calculated at the finer spec-
tral grids of 0.1 nm before being interpolated to the original
spectral grids. After the interpolation, the differences espe-
cially at strong peaks in a spectrum could increases by 0.5 %
for Fig. 7b.

Figure 8 shows the Defect 1 area where differences be-
tween GEMS and ML radiances are within about 5 %. It
shows that dark targets (clear sky with low radiance) show a
positive difference, while bright targets (mostly clouds with
high radiance) show the opposite. The tendency is also found
on the other dates for different angle conditions. It seems the
applied machine learning model (PCA-Linear) might have its
limitation in describing the non-linear relations of angle con-
ditions, scene properties and radiances causing the difference
of about 5 %.

For the Defect 2 area, the information from radiances at
the wavelengths longer than 400 nm is insufficient to effec-
tively reproduce the spectral features at shorter wavelengths
(consistent results with Fig. 6). Both Defects 2–3 have the
output spectral ranges of about 100 nm, but it seems the out-
put radiances near 300 nm for Defect 2 need more informa-
tion. In particular, the stripping features found in Fig. 9b are
more significant at 312 nm for the ML radiances compared
to Fig. 9a. The stripping features seem to be added during
the reproducing process especially for shorter wavelengths,
and the reason is still unclear. We suspect that unpredictable
noises from the instrument would cause the features, and it
seems more distinguishable in low signals. The scene depen-
dence found in Fig. 8 is also dominant in Fig. 9 at shorter
wavelengths but with the opposite tendency. It is also shown
that some areas undetected as bad pixels cause big differ-
ences over the areas close to the spatial index of 1240 in
Fig. 9.

3.2.2 PCA-based analysis

To further characterize the reproduced spectral patterns, we
apply PCA to GEMS radiances collected within each area in
Figs. 7–9 at the target wavelengths (see Table 3). With PCA,
various spectral patterns are compressed to PC scores. If a
spectrum has disparate spectral patterns, the PC scores would
have distinct values compared to the PC scores of defect-
free spectra. Figure 10 shows the PC scores of GEMS and
ML radiances projected with the identical eigenvector matrix
(corresponding to X in Eq. 1) constructed with GEMS radi-
ances. The Defect 3 area is presented for the visual inspection
with the second PC scores because the first PCs mostly rep-
resent mean radiances. The radiances reproduced with spa-
tial interpolation on the bad-pixel area show disparate values
as shown in Fig. 10a. The ML radiances in Fig. 10b show
spatially homogeneous PC scores on the contrary because
the machine learning methods properly reproduce dominant
spectral patterns.

The dominant spectral patterns for each PC are presented
in Fig. 11 with the eigenvector matrix constructed from
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Figure 5. Loss function with the different number of PCs of the PCA-ANN (red) and PCA-Linear (black) models for spectral replacement
with training and test datasets for Defects 1–3 (a: Defect 1; b: Defect 2; c: Defect 3). The number of hidden nodes for ANN is double the
number of PCs.

Figure 6. Output radiances for Defect 1–3 with the average and NRMSE for (a) training and (b) test datasets measured in March 2021. The
unit of NRMSE is percent.

GEMS radiances for the specified target wavelengths in Ta-
ble 3. Each color indicates the eigenvector for the first six
PCs contributing to total radiances at each wavelength. Li et
al. (2015) verified that the leading PCs (shorter than 360 nm)
mainly represent dominant absorption and surface properties,
while the trailing PCs are associated with instrument arti-
facts and unresolved spectral features, as similarly shown in
Fig. 11.

As presented in Table 4, comparing PC scores provides
qualitative information on the effectiveness of the suggested
method. The results show that the mean spectral pattern (the
first PC) and dominant patterns could be reproduced with
sufficient information. However, other spectral features such

as the third PC for Defect 1 or the second PC for Defect 2
show insufficient information available from input radiances.
As shown with the explained variance ratio (EVR), each PC
except the first one may contribute to a small extent to total
radiances. However, it could be enough to determine subtle
spectral patterns, which are important for retrieval processes.
The effectiveness of spectral replacement could be glimpsed
in the results, which will be discussed further in the following
section with retrieval results.
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Table 3. The spectral range of Defects 1–3 and target wavelengths for the analysis. The third column presents GEMS retrieval products for
which the fitting window is overlapped with Defects 1–3.

Defect Target wavelength GEMS Level 2 product Optimized model

1 (400–500 nm) 432–450 nm CHOCHO, NO2 PCA-Linear
2 (300–400 nm) 312–360 nm O3, HCHO, SO2, NO2, aerosol optical depth PCA-ANN
3 (484–491 nm) 484–491 nm Cloud, AEH PCA-Linear

Figure 7. Spatial distribution of GEMS, ML radiances and the differences (from the first to the third column) at the wavelengths presenting
(a) the smallest and (b) the largest differences for the Defect 3 area. The difference is calculated between the ML and GEMS radiances and
divided by the latter in percent. Bad pixels are marked in dark gray, and the color bar range for differences is ±0.5 %. The unit of NRMSE
is percent divided by mean radiance.

3.3 Level 2 retrieval results

3.3.1 Cloud and ozone retrieval

In the previous section, the overall prediction error with the
suggested method is about 5 % for radiances except for ozone
absorption lines. The next question is whether the reproduced
spectral features are applicable to retrieval processes. Even
if the trained models accurately reproduce radiances at each
wavelength, the Level 2 retrieval could be unsuccessful if
non-linear relations are too elusive to be properly emulated
with the model. To prove this, we performed the cloud re-

trieval with the fitting window in 460.2–490.0 nm contain-
ing bad pixels. The replaced radiances at O2–O2 absorption
lines related to Defect 3 have the smallest error of 0.5 %,
and the retrieval is quite successful. Figure 12 presents cloud
centroid pressure retrieved with ML and GEMS spectra by
zooming in on defect-free areas to analyze cloud distribution.
The difference in cloud centroid pressure between Fig. 12a
and b is about 1 % on average, while the cloud properties of
ML spectra have weak stripping features. The spectral range
of Defect 3 is very narrow within the fitting window, and thus
the replacement errors could be small enough not to cause
additional retrieval errors.
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Figure 8. Same as Fig. 7 for the Defect 1 area with the color bar range for differences within ±5 %.

Table 4. Correlation coefficients (Corr.) of PC scores of GEMS and
ML radiances and the EVR of GEMS radiances for each target re-
gion in Figs. 8–10 excepting bad-pixel area.

PC Defect 1 Defect 2 Defect 3

Corr. EVR Corr. EVR Corr. EVR

1 0.9999 99.9906 0.9998 99.9504 1.0000 99.9953
2 0.9983 0.0070 0.8672 0.0294 0.9976 0.0038
3 0.8511 0.0007 0.9857 0.0135 0.9863 0.0003
4 0.9731 0.0006 0.5469 0.0019 0.8147 0.0001
5 0.6646 0.0001 0.8454 0.0012 0.6079 0.0001
6 0.7999 0.0001 0.7197 0.0005 0.7815 0.0001

Ozone retrieval results are presented in this section. Fig-
ure 13 shows total ozone column density including bad pixels
and defect-free areas as presented in Fig. 9. The ozone prop-
erties retrieved with measured GEMS spectra show distinct
spatial discontinuity over the bad-pixel area (see Fig. 13a),
while the discontinuity is somewhat reduced with ML spec-
tra in Fig. 13b. However, the retrieved properties show differ-
ent spatial distribution patterns even for the defect-free areas.
It seems the ozone properties are underestimated especially
for higher radiances in Fig. 13b, and the stripping features

found in Fig. 9 also exist in Fig. 13b. The SZA and VZA as
input parameters of the PCA-ANN model provide important
information because ozone retrievals with replaced radiances
without the angle information show unrealistic features with
much higher variance (not shown). In short, the ozone prop-
erties retrieved with the ML spectra can present approximate
spatial patterns within the reasonable ranges but with high
uncertainty within about 8 %–10 %.

3.3.2 Cause analysis for further application

The high uncertainty in ozone retrieval is attributed to the
lack of information in the input data or insufficient model
optimization because the inputs (400–500 nm) may have de-
ficient information. To clarify this and investigate further, we
targeted ozone absorption lines in 312–360 nm and Fraun-
hofer lines in 390–400 nm for the replacement with different
input cases. In the Fraunhofer lines, the Ring effect caused by
rotational Raman scattering can be found over two radiance
peaks and is generally known to be very small and largely
affected by the existence of clouds (Joiner et al., 1995). It is
expected the analysis can give clear evidence on whether the
small scattering features could be reproduced with machine
learning for different input wavelengths. For the analysis, the
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Figure 9. Same as Fig. 8 for the Defect 2 area with the color bar range for differences within ±5 %.

PCA-ANN model is trained for each input case, with defect-
free measurements in March 2021 (around 80 000 spectra af-
ter bad-pixel masking and the elimination of saturation pix-
els).

Figure 14 presents mean absolute errors in reproduced ra-
diances at ozone absorption and Fraunhofer lines with four
different input conditions: (1–2) including each near side
(within 20 nm) from the output spectral regions (A or B for
the left and the right side, respectively); (3) including both
near sides of wavelengths (A and B); and (4) all wavelengths
in 300–500 nm except for A, B and the output spectral re-
gion. Each input case is plotted in Fig. 14 as red, sky blue,
blue and black lines. Results show that prediction errors in-
crease at the spectral peaks and overall error patterns differ
with different input conditions. As assumed, the errors are
higher with the input spectral bands farther from the output
spectral region. Figure 14a clearly shows that insufficient in-
formation from the input data may cause large errors for ra-
diances at shorter wavelengths related to the ozone retrieval.
Figure 14b also presents that each input case has a different
level of information, which could determine the accuracy of
spectral replacement especially for the weak scattering fea-
tures.

Figure 15 presents a closer inspection by dividing spectra
into four groups depending on the scene brightness. Differ-
ent scenes could have different error levels which could be
ignored in the averaged values in Fig. 14. The analysis is
performed with the spectra reproduced with the input con-
ditions showing the smallest (blue lines) errors in Fig. 14.
Figure 15 shows that the PCA-ANN model reproduces dom-
inant spectral features with an error of 0.4 % for all scenes
with the best input condition. However, the difference in-
creases with darker scenes (weak signals), which indicates
low signals would be less predictable even with the infor-
mation extracted from the very close wavelengths. It could
be a limitation because radiances with small signals mostly
have meaningful information for trace gases (clear-sky) in
the UV–VIS spectral region.

In this section, the reproduced absorption or scattering
lines are compared with different input conditions. The sug-
gested method (PCA-ANN) could be quite effective when
the input spectral ranges are closer to the target wavelengths
to be reproduced. However, it is not necessarily true that the
wider the input spectral range is, the more accurate the re-
placement becomes. If input spectral ranges have some cali-
bration issues (e.g., stray light or saturation) or provide con-
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Figure 10. The second PC scores of (a) GEMS radiances and
(b) ML radiances on the target area for Defect 3. The PC is scaled
for clarity of presentation.

flicting features with other input spectral bands as shown
in Fig. 14a, the reproduced spectrum would have inconsis-
tent features causing higher error. In summary, the suggested
method accurately predicts the overall magnitude of a spec-
trum, but reproducing finer spectral features with high accu-
racy would need more information especially for low signals
or strong absorption lines. At least, the input and output spec-
tral regions should be close enough to reduce the spectral er-
ror up to 0.5 %, the uncertainty in the reproduced spectra at
O2–O2 absorption lines presenting successful cloud retrieval
results.

4 Conclusions

GEMS is an environmental sensor measuring hyperspectral
radiances from 300 to 500 nm in the Asia–Pacific region for
timely atmospheric monitoring. During the IOT of GEMS,
we found that bad pixels on the detector array are not prop-
erly replaced with spatial interpolation, the current opera-

tional method. It is clear that when the bad-pixel area is too
large, the spatial interpolation tends to cause a high interpo-
lation error especially for a scene having large spatial inho-
mogeneity (i.e., cloud edges). The high interpolation error
causes horizontal discontinuity at a certain latitude in the re-
trieval of Level 2 products.

For this reason, in this study, we more focus on improv-
ing the erroneous radiances to check whether the issue could
be more efficiently resolved for both radiances and retrieved
properties. This study suggests machine learning methods
(PCA-ANN and PCA-Linear) to fill in various spectral gaps
denoted as Defects 1–3 by investigating how much informa-
tion could be obtained to reproduce spectral features with-
out any additional information. The basic assumption of this
approach is that radiances of a spectrum have strong linear
and non-linear relations, which could be emulated with the
ANN and multivariate linear regression. The spectral range
of output radiances is set to the wavelengths of bad pixels,
while the input radiances correspond to the remaining part of
a spectrum for Defects 1–3.

In the results, the PCA-Linear model presents smaller pre-
diction errors for the defective regions which have strong lin-
ear relations between input and output radiances (Defect 1)
or a narrower spectral gap (Defect 3). When applying the
reproduced spectra in Defect 3 to the cloud retrieval, cloud
centroid pressure is successfully retrieved with an error of
1 % on average. This is because the output spectral range of
Defect 3 is comparably narrower and thus the input wave-
lengths provide enough information to reproduce exact spec-
tral features. The PCA-ANN model is better for the output ra-
diances having strong non-linear relations (Defect 2). Dom-
inant spectral patterns and the overall magnitude of spectra
could be successfully reproduced mostly with an error of 5 %
except for ozone absorption lines. When applying the repro-
duced spectra to the ozone retrieval, however, we can obtain
the spatial patterns of total ozone column density with higher
uncertainty within about 8 %.

Further investigation reproducing Fraunhofer lines and
ozone absorption lines helps conclude the benefits and limi-
tations of the approach as follows:

1. The closer the input and output wavelengths are, the
smaller the reproduction error becomes. This is because
radiances at adjacent wavelengths could contain more
information valid for the replacement. Even though the
condition is not fulfilled, approximate spatial patterns
could be obtained but with low accuracy for both radi-
ances and retrieval properties.

2. The input radiances should be carefully selected be-
cause machine learning models (especially ANN) are
vulnerable to outliers or erroneous input radiances. If
one adopts more complex models, the importance of the
selection would increase.
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Figure 11. Eigenvector of the first six PCs applied to GEMS radiances for the target wavelengths of (a) Defects 1, (b) Defect 2 and (c) De-
fect 3. All eigenvectors are scaled (min–max scaling) and shifted for clarity of presentation.

Figure 12. Spatial distribution of cloud centroid pressure retrieved
with (a) GEMS and (b) ML radiances zooming in on a certain area
presented in Fig. 7. The GEMS spectra were measured on 10 March
2021 (06:00 UTC).

Figure 13. Spatial distribution of total ozone column density re-
trieved with (a) GEMS and (b) ML radiances presented in Fig. 9.
The GEMS spectra were measured on 10 March 2021 (06:00 UTC).
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Figure 14. Mean absolute errors between the reproduced and mea-
sured radiances at (a) ozone absorption and (b) Fraunhofer lines
with different input cases. The x1 and x2 in the legend indicate the
wavelengths at the boundary of output spectral bands, respectively.
The absolute error is calculated between the ML and GEMS radi-
ances and divided by the latter in percent.

3. Errors coming from instrument artifacts such as the
stripping feature could be propagated with the method
as it seems the feature is not properly emulated in the
model.

4. Finally, low radiances could have higher uncertainty
even when using the spectral information as much as
possible. GEMS is an environmental sensor and thus
may provide useful information with clear-sky condi-
tions. Considering this, additional information would be
needed if one pursues very high retrieval accuracy with
the replaced spectra. In this regard, combining the exter-
nal information together with the spectral components
would be the next step to develop the approach. Since
the research adopts very simple machine learning mod-
els, it also can be updated further.

Considering that the number of bad pixels would increase
in operation as it did in the Ozone Mapping and Profiler
Suite (OMPS) (Seftor et al., 2014), an efficient way of re-
placing bad pixels would be necessary for the long-term op-
eration of GEMS. It is also highly possible that an unex-

Figure 15. Mean absolute errors between the reproduced and mea-
sured radiances at (a) ozone absorption and (b) Fraunhofer lines
with the input case showing the smallest errors in Fig. 14. The Q1,
Q2 and Q3 represent the first, second and third quartile, and each
color indicates the average in the range of each quartile. The x1 and
x2 indicate wavelengths at the boundary of output spectral bands
and the absolute error is calculated between the ML and GEMS ra-
diances and divided by the latter in percent.

pected issue could occur such as the row anomaly of the
Ozone Monitoring Instrument (OMI) (Schenkeveld et al.,
2017). The ultimate goal of this research is to increase the
usefulness of GEMS data for a longer time period, at least
for a designed lifetime of 10 years. The current work verifies
that the gap filling (in Level 1) with certain spectral condi-
tions shows quite reliable results even with the limitations
for the strong absorption bands, which is natural and pro-
vides the reason why we need observation data over such
spectral bands. However, we also anticipate that with the ac-
cumulation of measurements along with auxiliary data and an
improved non-linear algorithm, the limitation could be im-
proved in future study. For this reason, this paper provides
the basis for further applicability of the method by evaluat-
ing the efficiency of machine learning methods to reproduce
hyperspectral data especially in the UV–VIS spectral range.
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