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Abstract. Low-cost sensors are often co-located with refer-
ence instruments to assess their performance and establish
calibration equations, but limited discussion has focused on
whether the duration of this calibration period can be op-
timized. We placed a multipollutant monitor that contained
sensors that measured particulate matter smaller than 2.5 µm
(PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2),
ozone (O3), and nitric oxide (NO) at a reference field site
for 1 year. We developed calibration equations using ran-
domly selected co-location subsets spanning 1 to 180 consec-
utive days out of the 1-year period and compared the poten-
tial root-mean-square error (RMSE) and Pearson correlation
coefficient (r) values. The co-located calibration period re-
quired to obtain consistent results varied by sensor type, and
several factors increased the co-location duration required
for accurate calibration, including the response of a sensor
to environmental factors, such as temperature or relative hu-
midity (RH), or cross-sensitivities to other pollutants. Using
measurements from Baltimore, MD, where a broad range of
environmental conditions may be observed over a given year,
we found diminishing improvements in the median RMSE
for calibration periods longer than about 6 weeks for all the
sensors. The best performing calibration periods were the
ones that contained a range of environmental conditions sim-
ilar to those encountered during the evaluation period (i.e., all
other days of the year not used in the calibration). With opti-

mal, varying conditions it was possible to obtain an accurate
calibration in as little as 1 week for all sensors, suggesting
that co-location can be minimized if the period is strategi-
cally selected and monitored so that the calibration period is
representative of the desired measurement setting.

1 Introduction

Instrument calibration is one of the main processes used to
ensure instrument accuracy. In one method of calibration,
measurements are compared between an uncalibrated instru-
ment and a reference instrument, which can then be used
to adjust the output of the uncalibrated instrument to see
whether the data can meet performance standards (often in
terms of accuracy and precision). In the case of low-cost air
pollution sensors, the raw output is often a voltage or re-
sistance instead of a concentration, so a calibration curve is
needed to convert the raw output into practical units. Cross-
sensitivities to environmental conditions or other pollutants,
nonlinear responses, and variability between sensor units are
common difficulties that must be considered when work-
ing with low-cost sensor data (Van Zoest et al., 2019; Levy
Zamora, 2022; Li et al., 2021; Spinelle et al., 2015; Ripoll
et al., 2019). Several methodologies have been used to de-
rive the calibration equations needed to convert the raw data
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into useable concentrations, such as exposing the sensors to
known concentrations in a laboratory setting and co-locating
the sensors with a reference instrument, often in a similar
setting to which the sensor is to be used (Taylor, 2016; Zim-
merman et al., 2018; Mead et al., 2013; Ikram et al., 2012;
Hagler et al., 2018; Cross et al., 2017; Holstius et al., 2014;
Mukherjee et al., 2019; Gao et al., 2015; Heimann et al.,
2015; Air Quality Sensor Performance Evaluation Center,
2016a, b, 2017; Levy Zamora et al., 2018a). Field co-location
is a widely used calibration method, but a trade-off must be
made between the time dedicated to collecting calibration
data and the data collected at the final measurement loca-
tion. There is currently no standardized co-location duration,
and the reported co-location durations for low-cost sensors
with reference instruments in recent work have varied from
several days to several months (Mukherjee et al., 2019; Gao
et al., 2015; Topalović et al., 2019; Kim et al., 2018; Spinelle
et al., 2017; Pinto et al., 2014; Datta et al., 2020). To date,
little discussion has focused on whether the selected periods
were adequate for the deployment period or whether the cal-
ibration period can be optimized in future studies (Topalović
et al., 2019; Okorn and Hannigan, 2021). In one study that as-
sessed the impacts of the co-location duration for a low-cost
sensor, Okorn and Hannigan (2021) randomly selected cal-
ibration periods of up to 6 weeks in duration from 6 weeks
of methane data in Los Angeles. The calibration equations
were then applied to data from an earlier month at the same
location. They reported that longer calibration periods (i.e.,
6 weeks) produced fits with a lower bias than fits from shorter
calibration periods (i.e., 1 week). In that study, the 1-week
calibrations yielded the best R2 values.

The central goal of this specific work was to identify the
key factors that influence the duration of the co-location re-
quired to obtain sufficient data to achieve consistent calibrate
curves for five low-cost sensors (particulate matter smaller
than 2.5 µm, PM2.5; carbon monoxide, CO; ozone, O3; ni-
trogen dioxide, NO2; and nitrogen monoxide, NO) (Buehler
et al., 2021). In addition, we aim to identify how this neces-
sary calibration period can be optimized.

2 Methods

2.1 Data collection

Data collected at two sites were used in the co-location
analyses based on the availability of reference instrumenta-
tion. The CO (Alphasense CO-A4), NO2 (Alphasense NO2-
A43F), NO (Alphasense NO-A4), and O3 (MiCS-2614)
sensors were co-located with reference instruments at the
Maryland Department of the Environment (MDE) Essex
site (ID 240053001) in Baltimore County, MD. The PM2.5
sensor (Plantower PMS A003) was concurrently co-located
with a reference instrument at the MDE Oldtown site
(ID 245100040) in Baltimore City, MD. The Essex site

(lat 39.310833◦, long −76.474444◦) is about 11 km east of
the Oldtown site (lat 39.298056◦, long −76.604722◦). Addi-
tional details about the sensors in the multipollutant monitor
have been described in detail by Buehler et al. (2021) and
Levy Zamora et al. (2022). Co-location data from 1 February
2019 to 1 February 2020 were used in the PM2.5 analysis,
and co-location data from 1 February to 20 December 2019
were used in the CO, NO, NO2, and O3 sensor analyses. Due
to an issue affecting the gas sensor inlet on the Essex mon-
itor, the O3, NO2, and NO sensor data were unavailable af-
ter 20 December 2019. Hourly average data were used in all
analyses. Both reference sites also measured hourly averaged
temperature and relative humidity (RH). The ambient tem-
perature and RH ranged between −11 and 36 ◦C and 14 %
and 95 % over the full year, respectively. The temperatures
and RHs measured inside the multipollutant pollutant moni-
tors were slightly different from the ambient values due to di-
rect sunlight warming the monitors and the small amount of
heat produced by the sensors themselves within the box. The
box temperatures and RHs ranged between−8 and 45 ◦C and
14 % and 80 %, respectively.

2.2 Assessing the role of co-location duration

We use different subsets of the full co-location period to cre-
ate a suite of hypothetical co-location durations based on
which the calibration models will be trained. For each hy-
pothetical calibration co-location scenario (i.e., ranging from
1 to 180 consecutive days in 1 d increments), 250 sample cal-
ibration test periods were randomly selected of that duration.
These test periods were used in the sensitivity analysis for
each test condition to assess the range of potential resulting
root-mean-square error (RMSE) and Pearson correlation co-
efficient (r) values. For example, a calibration duration of 1 d
indicates that a 24 h period was randomly selected out of the
available data, referred to as the “calibration period”, and
the data from the 24 h were used to develop the calibration
equations (see below) relating the raw sensor data to ambi-
ent conditions. This was then evaluated against all days not
included in the calibration period, referred to as the “evalua-
tion period”. The randomly chosen calibration periods could
overlap, but no two periods were exactly the same. In Fig. S1
in the Supplement, the start times of 250 randomly selected
PM2.5 calibrations are shown as an example. Each tested co-
location duration produced 250 RMSE and r values, and only
calibration periods with at least 70 % valid sensor and refer-
ence data were used in the analyses (e.g., a 24 h calibration
period needed to have more than 16 h of valid data for both
instruments). No laboratory or information from the man-
ufacturer was used to additionally calibrate the sensors in
this work. All data analysis was conducted using MATLAB
(2020a).

Sensor data from the calibration period were used to de-
termine the coefficients for multiple linear regression (MLR)
models based on previously identified known environmen-
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tal factors influencing concentration for each sensor (Levy
Zamora, 2022). A generic MLR model is given by

ReferencePollutant(t)= β0+β1×SensorPollutant(t)

+

n∑
1
βn×Predictorn(t), (1)

where ReferencePollutant is the reference concentration at
time t for a given pollutant, β0 is the constant inter-
cept, β1 is the coefficient applied to the uncalibrated
SensorPollutant value for a given pollutant at time t , and βn is
the coefficient applied to Predictorn. Levy Zamora et al.
(2022) have reported the predictors needed to calibrate these
five low-cost sensors in detail. Briefly, the PM2.5 sensor
model incorporated temperature and RH as predictors; the
CO sensor model included temperature, RH, and time, where
time refers to the current date and time that the data were
collected; the NO2 sensor model included temperature, RH,
NO, O3, and time; the O3 model included temperature, RH,
NO2, and time; and the NO model included temperature and
CO as predictors. The CO, O3, and NO2 sensors may exhibit
baseline drift over the year, which is why the time predictors
were included. The data used as the predictors came from the
other sensors in the multipollutant monitor (e.g., the NO sen-
sor model used the co-located low-cost CO sensor for the
CO predictor). Once the regression coefficients were deter-
mined for a calibration period, this equation was applied to
all data in the corresponding evaluation period.

For each calibration period tested, the RMSE and corre-
lation coefficient values were determined by comparing the
1 h averaged reference and corrected sensor data from all
hours during the evaluation period. The RMSE was calcu-
lated using Eq. (2), where Referencei and Predictedi are the
corresponding ith 1 h averaged concentrations from the eval-
uation period with N data points.

RMSE=

√∑N
i=1(Referencei −Predictedi)2

N
(2)

An RMSE value of 0 would indicate a perfect agreement
between the reference and the sensor. The correlation coeffi-
cient is a measure of the linear correlation between two data
sets. It is a value between −1 and 1, where 1 indicates a
strong positive relationship, −1 indicates a strong negative
relationship, and 0 has no discernible relationship. The me-
dian RMSE and median r referenced in this paper refer to
the median value from all 250 calibration scenarios for each
duration. Outliers are defined as values that are more than
3 scaled median absolute deviations (MADs) away from the
median.

We hypothesize that a user could strategically choose a co-
location period to minimize the calibration period and that
the co-location duration is not the only factor to consider
when optimizing co-locating an instrument for calibration.
In these analyses, we use the term “coverage” to indicate the

representativeness of environmental conditions during a cali-
bration period compared to that observed across the full data
set (calibration and evaluation periods). In order to visual-
ize how the environmental conditions during the calibration
period compared to the evaluation period, we compared the
range of temperature, RH, and other key pollutants from each
period. For example, if the full RH ranged between 10 %
and 90 % and the calibration period ranged between 20 %
and 60 %, the RH coverage of that calibration period would
be 50 % (40/80). Descriptive statistics of the reference data
used in the calibration models from the full year are dis-
played in Table S1.

Coverage=

Maximum ValueCalibration Period
−Minimum ValueCalibration Period

Maximum ValueFull Year
−Minimum ValueFull Year

× 100 (3)

3 Results and discussion

3.1 Impact of co-location duration on calibration
performance

The range of RMSE values from 250 calibration periods in
the sensitivity analysis of six co-location durations (i.e., 1 d,
1 week, 1 month, 6 weeks, 3 months, and 6 months) for all
five low-cost sensors are shown in Table 1, and the box plots
of the RMSE values from co-location durations ranging from
1 to 180 d are shown in Fig. 1 (PM2.5 and CO) and Fig. 2
(NO2, O3, and NO). Overall, longer calibrations resulted in
lower median RMSE values. The greatest improvements in
the median RMSE values were observed when increasing
the co-location duration from 1 d to about 2 weeks. After
about 6 weeks, diminishing improvements were observed in
the median RMSE values for all the sensors except O3. The
median RMSE for O3 decreased by about 5 ppb when in-
creasing the duration from 6 weeks to 6 months. There was
also a limited number of high outlier RMSE values for all
of the sensors after about 2 months, indicating that most of
the 250 calibrations were generally yielding similar RMSE
values. In addition, the lowest RMSE values (e.g., 1st per-
centile) were similar for all co-location durations longer than
about 1 week for many of the sensors. This suggests that op-
timized calibration periods can yield high-performance cal-
ibrations. For example, the RMSE values from the 1-week
calibration periods for the PM2.5 sensor ranged between 3.1
and 18.3 µgm−3, and the 6-month calibrations ranged be-
tween 3.2 and 3.7 µgm−3. The 1st percentile RMSE val-
ues for the 1-week and 6-month calibration periods were
also similar for CO (61 and 51 ppb, respectively), NO2 (4.1
and 3.6 ppb, respectively), O3 (9.1 and 8.1 ppb, respectively),
and NO (3.3 and 2.9 ppb, respectively). The 10th percentile
RMSE values were similar after about 1 month for most sen-
sors. For example, the 10th percentile for PM was 3.4 at
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Table 1. The median and range (1st–99th percentile) of the RMSE from 250 calibration runs from six co-location lengths (1 d, 1 week,
6 weeks, 1 month, 3 months, and 6 months) for five low-cost sensors. The median and range (min to max) of PM2.5, CO, NO2, O3, and NO
reference concentrations were 7 (1–53) µgm−3, 199 (100–2950) ppb, 5.5 (1–58) ppb, 32 (1–110) ppb, and 0.5 (0.1–136.5) ppb, respectively.

1 d 1 week 1 month 6 weeks 3 months 6 months

PM2.5 (µgm−3) 44.9 6.6 3.4 3.4 3.5 3.6
(5.2–400) (3.1–18.3) (3.1–9.1) (3.2–7.9) (3.2–5.6) (3.2–3.7)

CO (ppb) 4870 437 125 98 77 76
(196–28 580) (61–1630) (57–231) (59–219) (57–135) (51–105)

NO2 (ppb) 22.4 8.6 6.1 6.1 6.0 4.9
(7.8–1830) (4.1–21.8) (4.1–10.5) (3.9–8.7) (3.7–7.8) (3.6–7.6)

O3 (ppb) 721.2 50.8 15.7 15.8 15.0 10.3
(15.2–10 100) (9.1–267.8) (8.9–27.1) (8.2–22.8) (8.4–23.0) (8.1–12.6)

NO (ppb) 16.3 7.5 4.3 3.5 3.6 3.2
(4.2–624) (3.5–72.4) (3.3–6.2) (3.1–4.7) (2.4–4.1) (2.9–3.6)

1 month and 3.5 µgm−3 at 6 months (CO: 66 and 69 ppb,
respectively; NO2: 4.3 and 4.1 ppb, respectively; O3: 11.0
and 8.4 ppb, respectively; NO: 3.5 and 2.9 ppb, respectively).
The differences between the 1st and 99th percentile RMSE
values for the 6-month scenarios were comparatively small
for all sensors compared with the overall concentrations and
ranges (e.g., the RMSE range at 6 months for PM2.5 was
0.5 µgm−3 compared with the annual average concentration
of 8.3 µgm−3).

The ranges of correlation coefficients for the five low-cost
sensors are shown in Table 2, and the box plots of the r values
from co-location durations between 1 and 180 d are shown
in Fig. 1 (PM2.5 and CO) and Fig. 2 (NO2, O3, and NO)
in the Supplement. Overall, longer calibrations also resulted
in higher r values, although it was possible to produce cor-
relation coefficients at or above 0.6 in as little as 1 d for
all five sensors in some individual test periods. After about
6 weeks, only incremental improvements were observed in
the median correlations for all the sensors. For example, the
greatest improvement in the median correlation after 6 weeks
was observed for O3 which increased from 0.71 at 6 weeks
to 0.84 at 6 months. All of the sensors were able to achieve
reliably high correlations without poorly performing outlier
cases (e.g., all 250 calibrations produced r > 0.6), but the
co-location durations required to reduce this risk of outliers
ranged between 18 d for the NO sensor and about 120 d for
the CO sensor (Figs. S1 and S2).

3.2 Selecting optimal calibration conditions for
co-location periods

The results show that the calibration performance from
shorter-term co-locations varies considerably depending on
the chosen co-location period. If a user wanted all 250 po-
tential co-location periods for the PM2.5 sensor to have
an RMSE below 4 µgm−3 and an r > 0.6, the minimum

co-location duration that would ensure all calibration pe-
riods satisfied these two requirements would be 108 d at
this site. However, 22 % of the 7 d co-locations also pro-
duced calibrations that satisfied these two requirements, so
we analyzed the environmental factors during 1-week cali-
brations that led to low and high RMSE values. In Fig. 3
and Fig. S3, results from two 1-week calibration periods
are shown to demonstrate the range of potential RMSE
values for the PM2.5 sensor with differences in calibra-
tion conditions. The corresponding raw sensor, tempera-
ture, and RH data are also shown in Fig. 3b and c In
this comparative example, “Calibration Period 1” produced
more accurate concentrations during the evaluation periods
(RMSE= 3.1 µgm−3), whereas “Calibration Period 2” per-
formed poorly (RMSE= 19.5 µgm−3). Calibration Period 1
included a wider range of concentrations (1–45 µgm−3),
temperatures (−2–12 ◦C), and RHs (17 %–93 %) and was
able to yield similar concentrations to those produced us-
ing the reference data for the full year, whereas Calibration
Period 2 was more limited in its range of conditions (6–
37 µgm−3, 21–30 ◦C, and 42 %–88 %, respectively) and per-
formed reasonably only during the summer months. In ad-
dition, the largest 6-month RMSE values (e.g., 3.7 µgm−3

for PM2.5 and 12.6 ppb for O3; Table 1) were generally
comprised of more months during which ambient concen-
trations were low and less variable (summer and winter, re-
spectively), and the scenarios with the lowest RMSE val-
ues included the months with the greatest concentrations ob-
served in the data set. An analysis of the PM data in which
the 250 randomly selected calibration periods were from be-
tween February 2019 and November 2019 and the evaluation
period was held to between November 2019 and February
2020 (only one season) is shown in Fig. S4. The results are
consistent with the original method.

Based on these results, we hypothesized that a key element
governing good calibration outcomes is if the calibration co-

Atmos. Meas. Tech., 16, 169–179, 2023 https://doi.org/10.5194/amt-16-169-2023



M. Levy Zamora et al.: Identifying optimal co-location calibration periods for low-cost sensors 173

Figure 1. The potential range of the (a, b) RMSE and (c, d) correlation coefficients (r) for a given co-location length for the low-cost PM2.5
and CO sensors. A calibration length of 1 d indicates that a random, continuous 24 h period was selected out of all available days. The RMSE
for a given sample calibration was determined by comparing the 1 h averaged reference and corrected sensor data from the days during the
evaluation period (i.e., all other days of the year not used in the calibration). For each calibration length tested, 250 sample calibration periods
were used to assess the range of potential RMSE and correlation coefficient values. All sensors were calibrated using previously identified
predictors in a multiple linear regression using data from the calibration period only. Reference PM2.5 concentrations ranged between 1 and
53 µgm−3, with a median concentration of 7 µgm−3, and reference CO concentrations ranged between 100 and 2947 ppb, with a median
concentration of 199 ppb.

location period is representative of the evaluation period in
terms of the required predictors in Eq. (1). Note that the re-
quired predictors are distinct for each sensor type, so optimal
periods may differ by sensor. To evaluate this hypothesis, the
median RMSE values for three sensors (PM2.5, NO2, and
CO) were plotted as a function of the coverage of key pre-

dictors in the calibration period (Fig. 4). The gases NO2 and
CO are shown because the NO2 sensor responds to numer-
ous factors including other pollutants (i.e., cross-sensitivity)
and the CO sensor exhibits a nonlinear response to temper-
ature (Levy Zamora et al., 2022). The median RMSE of the
corrected PM2.5 sensor is plotted as a function of RH and
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Figure 2. The potential range of RMSE values for a given co-location length for three low-cost sensors (NO2, O3, and NO). A calibration
length of 1 d indicates that a random 24 h period was selected out of all available days between February 2019 and February 2020. The
RMSE for a given test calibration period was determined by comparing the 1 h averaged reference and the corrected sensor data associated
with that calibration across the evaluation period (all days not included in the calibration period). For each calibration length, 250 randomly
selected calibration periods were used to assess the potential RMSE range. All sensors were calibrated using previously identified predictors
in a multiple linear regression using data from the calibration period only. The reference NO2 concentrations ranged between 1 and 58 ppb
over the full year, with a median concentration of 5 ppb, the reference O3 concentrations ranged between 1 and 110 ppb, with a median
concentration of 31 ppb, and the reference NO concentrations ranged between 0.1 and 137 ppb, with a median concentration of 0.5 ppb.

Table 2. The median and range (1st–99th percentile) of correlation coefficients (r) from 250 calibration runs from six co-location lengths
(1 d, 1 week, 1 month, 6 weeks, 3 months, and 6 months) for five low-cost sensors.

1 d 1 week 1 month 6 weeks 3 months 6 months

PM2.5 0.11 0.66 0.77 0.79 0.80 0.84
(−0.78–0.70) (−0.61–0.80) (0.57–0.82) (0.66–0.82) (0.69–0.83) (0.78–0.87)

CO 0.18 0.41 0.76 0.86 0.88 0.92
(−0.48–0.73) (−0.40–0.90) (−0.21–0.92) (−0.17–0.92) (0.54–0.92) (0.88–0.95)

NO2 0.49 0.70 0.75 0.77 0.78 0.85
(−0.58–0.82) (0.39–0.88) (0.63–0.89) (0.69–0.88) (0.74–0.88) (0.76–0.88)

O3 0.07 0.30 0.70 0.71 0.74 0.84
(−0.47–0.63) (−0.18–0.88) (0.17–0.90) (0.36–0.91) (0.61–0.92) (0.81–0.90)

NO 0.27 0.88 0.94 0.94 0.95 0.97
(−0.89–0.95) (−0.23–0.95) (0.73–0.96) (0.86–0.96) (0.94–0.97) (0.97–0.98)
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Figure 3. Example comparison of two potential 1-week calibration periods. These were selected to illustrate the range of potential RMSE
values that can result from using different periods of the same co-location duration. In the example here, “Calibration Period 1” yielded more
accurate concentrations (shown in green; RMSE= 3.1 µgm−3), whereas “Calibration Period 2” performed poorly when considered across
the whole evaluation period (shown in red; RMSE= 19.5 µgm−3). (a) The calibrated PM2.5 (µgm−3) time series are shown using the two
test calibration periods and the reference data (black) from February to August 2019. (b) Scatterplot of PM2.5 data from the two calibration
periods compared to reference data in comparison to the full data set. (c) Comparison of RH and ambient temperature for the two calibration
periods compared to data from the full year.

Table 3. Comparison of the median RMSE (µgm−3) for PM2.5 from 1-week calibration periods with different coverages of temperature
and RH conditions. Only calibration periods with more than 50 % coverage of the PM2.5 concentration range were included in the table
(> 50 % corresponds to 26 µgm−3 or more in this data set). For four scenarios (e.g., PM2.5 coverage > 50 %, RH coverage > 50 %, T cov-
erage > 20 %), the 1st percentile RMSE, the 99th percentile RMSE, and the percentage of calibrations that exhibited all required conditions
(e.g., RH>X % and T >X %) are shown (1st–99th percentile; %). For comparison, the median (1st–99th percentile) of the PM2.5 1-week
calibration periods from the full data set (i.e., no coverage requirements) was 6.6 µgm−3 (3.1–18.3 µgm−3).

PM2.5 RMSE from 1-week Increasing temperature data coverage −→

calibrations with > 50 % T range>1 10 ◦C T range>1 15 ◦C T range>1 20 ◦C T range>1 25 ◦C T range>1 30 ◦C
concentration coverage (coverage>∼ 20 %) (coverage>∼ 30 %) (coverage>∼ 40 %) (coverage>∼ 50 %) (coverage>∼ 60 %)

←
−

In
cr

ea
si

ng
R

H
da

ta
co

ve
ra

ge RH range>1 40 % 4.7 4.7 4.7 4.4 3.8
(coverage>∼ 50 %) (3.2–17.2; 21 %) (3.3–11.5; 2 %)

RH range>1 48 % 4.7 4.7 4.7 4.4 3.7
(coverage>∼ 60 %)

RH range>1 56 % 4.3 4.3 4.4 4.3 3.7
(coverage>∼ 70 %)

RH range>1 64 % 4.3 4.3 4.3 4.1 3.7
(coverage>∼ 80 %)

RH range>1 72 % 4.2 4.2 4.3 3.9 3.6
(coverage>∼ 90 %) (3.2–6.8; 7 %) (3.2–3.7; 1 %)
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Figure 4. Median RMSE values for PM2.5, CO, and NO2 sensors are shown as a function of data coverage (i.e., representation) of observed
ambient conditions for key predictors within 1-week calibration periods. Bluer colors indicate better calibration results with lower RMSE
values. The “+” markers indicate where there were at least 25 calibration runs that fell within that box. The “coverage” values indicate the
representativeness of the 1-week calibration period compared to the full data set across all seasons. For example, if the temperature ranged
from 0 to 40 ◦C over the full year and a given calibration period ranged from 0 to 12 ◦C, the temperature coverage of that calibration period
would be 30 % (i.e., δ12◦C/40◦C). The ambient temperature and RH ranged between −11 and 36 ◦C and 14 % and 95 % over the full year,
respectively.

temperature coverage because they have been shown to drive
biases in the PM2.5 sensor data (Sayahi et al., 2019; Levy
Zamora et al., 2022, 2018a). If the coverage of key predictors
is high, this indicates that the conditions during the calibra-
tion period are representative of the evaluation period (i.e.,
they cover a similar range of values). In general, the cali-
brations for PM2.5 become more accurate (lower RMSE val-
ues) as the RH coverage increases (i.e., moving to the right
in Fig. 4a), and there is a slight improvement with increas-
ing temperature coverage (i.e., Fig. 4a moving upwards).
The lowest RMSE values were observed when the cover-
age was high for both temperature and RH. To further clarify
the influence of coverage on calibration outcomes, the me-
dian RMSE values as a function of temperature and RH cov-
erages when the PM2.5 concentration coverage was greater
than 50 % are shown in Table 3. RH strongly influences the
sensor’s raw output, particularly compared with temperature
(Levy Zamora et al., 2018b; Levy Zamora et al., 2022; Sayahi
et al., 2019). To yield the best performing calibration out-
comes, highly influential cross-sensitives or environmental
factors (i.e., RH) should have a minimum coverage of about
70 % and secondary factors (i.e., temperature) should have a
minimum coverage of about 50 %.

The NO2 sensor exhibits cross-sensitivities to O3 and NO
in addition to responding to temperature and RH (Li et al.,
2021; Levy Zamora et al., 2022), so an adequate calibration
period should cover an adequate range for all four param-
eters. The reference NO2 concentrations ranged between 1
and 58 ppb, with a median concentration of 5 ppb. In gen-
eral, the RMSE values in the NO2 plots decrease as the RH
(Fig. 4c x axis), temperature (Fig. 4c y axis), and O3 cover-
age increase (Fig. 4d x axis), but the gradient is more clearly
seen in the NO coverage (i.e., moving upwards on the y axis
in Fig. 4d). The O3 sensor is an example of another sensor
that exhibits a cross-sensitivity to another common pollutant
(NO2; not shown in the main text), which has been demon-
strated in a previous work (Levy Zamora et al., 2022). Addi-
tional examples of coverage of key variables for all the sen-
sors are shown in Fig. S5.

For all three sensors in Fig. 4, the RMSE values decreased
as the concentration coverage increased, but it was particu-
larly notable for the CO sensor, likely due to the significant
differences in seasonal concentrations (e.g., the peak refer-
ence CO concentrations from December and July were 2950
and 773 ppb, respectively). The reference CO concentrations
ranged between 100 and 2950 ppb during the full year, with
a median concentration of 199 ppb. This indicates that a pe-
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riod with only low concentrations may not be able to yield
as accurate calibration curves if the evaluation period has a
much broader concentration range than observed during the
calibration period. In the CO sensor panel (Fig. 4b), greater
temperature coverage generally resulted in lower RMSE val-
ues, but a key factor for the CO sensor is that the calibration
must cover warm temperatures if the calibration is going to
be applied to warm seasons. This is due to the notably dif-
ferent responses to high and low temperatures. This CO sen-
sor exhibits minimal temperature effects below about 15 ◦C
but strongly responds to warmer temperatures (i.e., the sen-
sor will overestimate concentrations at higher temperatures
if not properly calibrated) (Levy Zamora et al., 2022). More
specifically, if a calibration period only included tempera-
tures below 15 ◦C, those data could not reasonably be extrap-
olated to a warmer period because they would not be able to
correct for this overestimation at high temperatures. Sensors
with more linear responses are less sensitive to this issue be-
cause a smaller range may be more accurately extrapolated.
We note that the NO and O3 sensors also exhibit nonlinear
responses to temperature.

It is important to mention that Baltimore, MD, is a region
that experiences a broad range of meteorological conditions
each year, so the co-location duration must be long enough
to capture an adequate range of conditions to fully charac-
terize the calibration curves. The pollutants also exhibit sig-
nificant seasonal variation at this location. In other regions
where the weather conditions are less variable, shorter co-
location durations may be more likely to produce accurate
results. This is the primary reason why employing a “cover-
age” approach might be a more useful approach for identify-
ing appropriate co-location durations. Moreover, we applied
the calibration equations on data from a full year, but shorter
co-location durations would likely be satisfactory if the cali-
bration and measurement period were going to be completed
under similar conditions (e.g., within one season). For exam-
ple, if we limited the calibration and evaluation periods to be-
tween 1 June and 31 August 2019 (peak PM2.5= 25 µgm−3),
70 % of 1-week co-locations would have an RMSE below
4 µgm−3 and an r > 0.6. Similarly, if we limited the calibra-
tion and evaluation periods to between 1 November 2019 and
1 February 2020 (peak PM2.5= 53 µgm−3), 40 % of 1-week
co-locations would have fulfilled these two requirements.
Another benefit of strategically identifying co-location needs
is that it may permit users of sensor networks to co-locate
each device in the network for shorter periods to get device-
specific calibration equations. By ensuring a minimum cov-
erage of key factors for each device co-location period, cal-
ibration data between units would likely be more consistent,
even if the data were collected from different periods. This
would be particularly advantageous for sensor types that ex-
hibit notable variability between units.

If little information is known about key predictors at the
measurement sites, which is likely at remote locations, it may
be possible to use historical meteorological data and general

information about pollutant patterns (e.g., emissions and sea-
sonal concentration patterns) to determine a representative
range of conditions. Future work should explore whether a
combination of multiple, shorter calibration periods in dif-
ferent seasons may produce reasonable calibrations for year-
round data sets. However, in all cases, it is advisable to in-
crease the estimated co-location periods in case of data loss
or unusual air quality events to increase the probability of
well-performing calibrations.

4 Conclusions

In this study, we assessed five pairs of co-located reference
and low-cost sensor data sets (PM2.5, O3, NO2, NO, and CO)
to identify key factors that influence the duration required to
calibrate low-cost sensors via co-location. We compared the
RMSE and correlation coefficient values from co-location
periods spanning from 1 to 180 d. While longer co-location
periods of up to several months generally improved the per-
formance of the sensor, optimal calibration could be pro-
duced from shorter co-location lengths if the calibration pe-
riod covered the span of conditions likely to be encountered
during the evaluation period. We determined that many fac-
tors could increase the duration of co-location required, in-
cluding if a sensor responds to environmental factors, such as
temperature or RH; if the sensor exhibits a cross-sensitivity
to another pollutant; if a response is nonlinear to any of these
factors; and the duration of the full deployment (i.e., within
a season or spanning multiple seasons). Particular attention
must be given to sensors that exhibit a nonlinear response
if the actual measurement period (e.g., the evaluation pe-
riod) is going to extend into another season. These results
suggest that co-location time can be minimized if selected
strategically based on the typical characteristics of a region.
The factors that strongly influence the sensor response should
have a minimum coverage of about 70 %, and secondary fac-
tors should have a minimum coverage of about 50 %. Future
work should evaluate if employing methods that account for
the nonlinear responses of key predictors can further opti-
mize the calibration of low-cost sensors as well as if more
sophisticated comparisons of the statistical distributions of
predictors across calibration periods are beneficial.
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