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Abstract. In the next few years, numerous satellites with
high-resolution instruments dedicated to the imaging of at-
mospheric gaseous compounds will be launched, to finely
monitor emissions of greenhouse gases and pollutants. Pro-
cessing the resulting images of plumes from cities and in-
dustrial plants to infer the emissions of these sources can be
challenging. In particular traditional atmospheric inversion
techniques, relying on objective comparisons to simulations
with atmospheric chemistry transport models, may poorly fit
the observed plume due to modelling errors rather than due
to uncertainties in the emissions.

The present article discusses how these images can be ad-
equately compared to simulated concentrations to limit the
weight of modelling errors due to the meteorology used to
analyse the images. For such comparisons, the usual pixel-
wise L2 norm may not be suitable, since it does not lin-
early penalise a displacement between two identical plumes.
By definition, such a metric considers a displacement as an
accumulation of significant local amplitude discrepancies.
This is the so-called double penalty issue. To avoid this is-
sue, we propose three solutions: (i) compensate for position
error, due to a displacement, before the local comparison;
(ii) use non-local metrics of density distribution comparison;
and (iii) use a combination of the first two solutions.

All the metrics are evaluated using first a catalogue of
analytical plumes and then more realistic plumes simulated
with a mesoscale Eulerian atmospheric transport model, with
an emphasis on the sensitivity of the metrics to position er-
ror and the concentration values within the plumes. As ex-
pected, the metrics with the upstream correction are found

to be less sensitive to position error in both analytical and
realistic conditions. Furthermore, in realistic cases, we eval-
uate the weight of changes in the norm and the direction of
the four-dimensional wind fields in our metric values. This
comparison highlights the link between differences in the
synoptic-scale winds direction and position error. Hence the
contribution of the latter to our new metrics is reduced, thus
limiting misinterpretation. Furthermore, the new metrics also
avoid the double penalty issue.

1 Introduction

Near-real-time monitoring of atmospheric gaseous com-
pounds at the scale of power plants, cities, regions, and
countries would allow decision-makers to track the effec-
tiveness of emission reduction policies in the context of cli-
mate change mitigation (Horowitz, 2016) or other voluntary
emission reduction efforts. Inventories of the emitted atmo-
spheric gaseous compounds are diverse in scale (Janssens-
Maenhout et al., 2019; Kuenen et al., 2014) and methodol-
ogy. The elaboration of comprehensive inventories generally
combines various approaches based on a complex mixture of
measurement techniques, database elaboration, and numeri-
cal modelling. Despite the use of quality assurance and con-
trol verifications (Calvo Buendia et al., 2019a, b), the emis-
sions fluxes can bear large uncertainties, depending on the
species, on the countries or on the spatial scale (Cai et al.,
2019; Hergoualc’h et al., 2021; Meinshausen et al., 2009; Pi-
son et al., 2018; Solazzo et al., 2021). Furthermore, the delay
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between the emissions and the release of the corresponding
inventory could be important due to a large amount of data to
gather and aggregate. Even when the inventories are known
to be accurate, they currently do not fulfil the need for real-
time monitoring of emissions at a regional scale. By observ-
ing from space the plumes of gases downwind of large cities
and industrial plants, and atmospheric signals at a scale of a
few to several hundreds of kilometres, the new generation of
high-resolution satellite imagery may help address this need
(Veefkind et al., 2012; Broquet et al., 2018). For instance, the
future Copernicus Anthropogenic Carbon Dioxide Monitor-
ing (CO2M) mission will provide images of CO2 concentra-
tions at a resolution of almost 2 km2, which will enable the
observation of urban-scale pollutant plumes (Brunner et al.,
2019; Kuhlmann et al., 2019, 2020). These new images can
be directly used through fast methods to quantify the mean
emissions of sources (Varon et al., 2018, 2020; Hakkarainen
et al., 2021). These fast methods only require images to esti-
mate the emissions. They do so either by using a simplified
chemical transport model (CTM) or by averaging the emis-
sions of a given source.

Here we focus on the use of such images to update the
emissions sources on a smaller timescale. This can be done
using an inverse method relying on comparisons between the
images and the predictions of a CTM. A better match be-
tween the observed concentration fields and the simulated
one will result from a more accurate source. However, the
CTM prediction is bounded by the meteorological condi-
tions used. It takes as inputs temperature, pressure, winds,
cloud cover fields, etc. Usually, these atmospheric fields are
provided by predictions previously obtained with mesoscale
numerical weather prediction models (Lian et al., 2018).
The estimated atmospheric fields come with uncertainties,
which in turn yield uncertainties in the simulated concen-
tration fields, for instance, the location or the main direction
of the plume. Within the retrieval algorithm, the concentra-
tion fields derived from satellites and CTM models are usu-
ally compared pixel-wise. However, pixel-wise comparison
cannot easily remove the relative weight of the meteorologi-
cal uncertainties within the comparison between observation
and simulation. This results in estimated increments applied
to the emissions inventories that are biased by the approx-
imated meteorology used in the simulations. This issue is
also present in other simulations with observation compar-
isons (Dumont Le Brazidec et al., 2021; Farchi et al., 2016;
Keil and Craig, 2007). Assuming that the temporal variabil-
ity (e.g. annual cycle, seasonal cycle, diurnal cycle) of the
emissions is well-known and that the CTM is perfect, the
displacement between the observed and simulated plumes
is driven by the meteorological conditions. Such a displace-
ment yields a position error in the inversion. Thus our main
goal is then to define a metric for the comparison that levels
down the position error to reduce the weight of meteorology
uncertainties within the inversion.

A better account of position error for observation versus
simulation comparison of coherent features is a subject of
active research (e.g. Ebert and McBride, 2000; Ebert, 2008;
Gilleland et al., 2009; Gilleland, 2021). These authors de-
veloped several metrics and skill scores that are more sen-
sitive to pathological situations where usual metrics provide
less information, especially when there is a position error be-
tween the feature they observed and the one forecasted. To
do so, they build indicators by splitting the sources of dis-
crepancies and by doing comparisons on deformed meshes
(Hoffman et al., 1995; Hoffman and Grassotti, 1996; Amodei
et al., 2009; Marzban and Sandgathe, 2010; Gilleland et al.,
2010). We will follow the same methodology, by splitting the
different sources of discrepancies, but the position errors will
include errors due to a translation and a rotation. We will con-
sider a specific class of deformations to free the comparison
from position errors. We will consider either (i) an isometric
transformation or (ii) a transport map resulting from optimal
transport, both differentiable with respect to the compared
plumes. Optimal transport metrics were already used for ra-
dionuclide plumes (Farchi et al., 2016), but there were com-
putation limitations. To allow a more systematic comparison
between the metrics, we use the Kantorovich standpoint on
optimal transport.

The objective of this paper is to develop a simple and effi-
cient metric for urban-scale plume images which can level
down the difference due to the meteorology while fitting
into an inverse framework (following Feyeux et al., 2018;
Tamang et al., 2022). Even though the methods could be used
for other gaseous compounds, reactive atmospheric gaseous
compounds have a more complex transport due to chemistry.
For the sake of simplicity, we will consider CO2 since it is a
passive tracer. Several metric candidates are introduced and
compared. From the baseline local L2 norm, a new metric
with an upstream non-local correction of position errors is
described in Sect. 2. In Sect. 3, going further away from the
local comparison, we use the optimal transport theory to de-
fine the Wasserstein distance between two plumes and then
to build a new metric freed from position errors. The differ-
ent metrics are then evaluated and compared on a database
of analytical two-dimensional Gaussian puff cases in Sect. 4.
The metrics are then compared on a realistic database of
CO2 plumes from a German power plant in Sect. 5. For both
databases, the images and the simulations are computed us-
ing the same model, which allows us to monitor the discrep-
ancies seen by the metrics. In Sect. 6 we describe the depen-
dence of the four metrics on meteorology, before concluding
in Sect. 7.

2 Local metrics and illustration of double penalty issue
using analytical plumes

In this section, we start by introducing the notation in
Sect. 2.1 and then the Gaussian puff model used to simulate
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the plumes in the analytical experiments in Sect. 2.2. Fur-
thermore, we assume that the plumes are already detected
and separated from the background noise and instrumental
noise. These steps bring challenges that are outside the scope
of this article. The L2 norm is then defined in Sect. 2.3, with
an emphasis on the double penalty issue. To deal with the
double penalty issue associated with the family of pixel-wise
metrics such as the L2 norm, a second metric is proposed in
Sect. 2.4.

2.1 Discrete and continuous representation of an image

In the present article, we focus on two-dimensional images
of the enhancement of the total column of CO2 concentration
or of the ground-level concentration. These images are given
with a discretisation of N pixels. An image can hence be
represented by a vector x = (x1, . . .,xN )

>
∈ RN .

It is also possible to obtain a continuous representation of
the image using interpolation (e.g. bilinear). In this case, the
image is represented by a two-dimensional field X : E→ R
defined on a finite domain E⊂ R2. Without loss of gener-
ality, we can assume that E= [0,1]2. Furthermore, the two-
dimensional field X can be extended to R2 by using zero
padding outside the original domain E. If needed, a smooth
transition from X to 0 can be included to avoid a sharp gra-
dient at the boundaries of the original domain E.

For each metric definition, we will use either the discrete
or the continuous representation of the images, but this will
be explicitly mentioned.

2.2 Analytical plumes

Our Gaussian puff model is a simplified model of a concen-
tration field (e.g. concentration at a given altitude or total col-
umn concentration in specific conditions). It has the advan-
tage of yielding analytical expressions for the Wasserstein
metrics (see Sect. 3). It is also a relevant case in transport
modelling: the transport of a three-dimensional Gaussian
puff is a simplified model to estimate the transport of non-
reactive pollutants (Korsakissok and Mallet, 2009; Seigneur,
2019). A set of Gaussian puffs is used extensively in the fol-
lowing sections to illustrate and evaluate the metric candi-
dates.

In the Gaussian puff model, we assume that X is propor-
tional to the probability density function (pdf) of the normal
distribution N (µ,6):

X(x)∝
1√

(2π)2|6|
exp

[
−

1
2
(x−µ)>6−1(x−µ)

]
, (1)

where µ and 6 are the mean and the covariance matrix, re-
spectively. The operator |.| is the determinant for square ma-
trices. Also, note that since the covariance matrix 6 is posi-
tive definite, it can be factored as follows:

6 = R(θ)1R(θ)>, (2)

where R(θ) is the rotation matrix of angle θ , the angle be-
tween the principal axis of the Gaussian and the x axis, and
where1 is a diagonal matrix with the variance along the two
principal axes of the Gaussian. Two examples of puffs based
on the Gaussian puff model are provided in Fig. 1b and c.

2.3 The L2 norm and the double penalty issue

To compare two concentration fields, one can see to what ex-
tent the fields overlap. This provides a pixel-wise (i.e. local)
assessment of the discrepancies. The L2 norm is then defined
as the sum of the squared discrepancies. More specifically,
the L2 norm d between two concentration fields XA and XB
is defined as

d(XA,XB),

√∫
R2 [XA(x)−XB(x)]2dx∫

R21Edx
, (3)

or

d(xA,xB),

√√√√ 1
N

N∑
n=1

(
xA,n− xB,n

)2
, (4)

in the discrete case, where xA and xB are the two concen-
tration vectors corresponding to the concentration fields XA
and XB . In the limit of a higher and higher resolution, the
discrete formulation should converge towards the continuous
formulation.

To identify the origin of the discrepancies, Feyeux et al.
(2018) propose to split the difference between two fields into
two categories: the position error and the amplitude error. A
position error occurs when the two compared plumes are not
located in the same place in the images. An amplitude error
occurs when the two compared plumes are in the same place
in the images, but locally their pixels do not have the same
values. With the L2 pixel-wise norm, all the discrepancies
are seen as local amplitude errors. This property is illustrated
in Fig. 1, where a uniform concentration field UE is com-
pared to two Gaussian puffs shifted by ε = 0.054 along the
x axis with respect to each other.1 The values of the distance
are reported in Table 1. In this case, a small position error is
penalised by d as much as an absence of plume: this is the
so-called double penalty issue. For this metric, the transla-
tion cost is composed of two equal contributions. The first is
the cost of setting to zero all pixels at the location of the first
Gaussian puff. The second is the cost of enhancing the pixels
at the translated location.

In the following sections, we further extend the classifica-
tion of Feyeux et al. (2018) by splitting the amplitude error
into two subcategories: the scale error and the shape error.
The scale error corresponds to the difference in total ampli-
tude between two shape-matching fields, i.e. the difference
between the sum of the compared image pixels. The shape

1For this specific value of ε, the d distance between UE and the
first plume is similar to the d distance between the two plumes.
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Figure 1. Example of pixel-wise comparison. (a) Uniform concentration. (b) First Gaussian puff. (c) Second Gaussian puff, similar to (b)
but shifted along the x axis by ε = 0.054. (d) Discrepancies between the concentration fields (b) and (a). (e) Discrepancies between the
concentration fields (b) and (c).

Table 1. Comparison between the distances for the example in
Fig. 1. d is the L2 norm, dF the L2 norm with upstream posi-
tion correction as defined in Sect. 2.4, w the Wasserstein distance
(Sect. 3.1) and wF the Wasserstein distance with upstream position
correction (Sect. 3.4). The results are not provided with units since
it depends on the metric used. The metrics d and dF share the same
units, while w and wF share another one.

Distance (a) versus (b) (b) versus (c)

d 48.80× 10−5 48.80× 10−5

dF 48.82× 10−5 11.59× 10−8

w 32.68× 10−2 52.90× 10−3

wF 31.75× 10−2 93.13× 10−11

error corresponds to the difference between the isocontours
after removal of the scale error (i.e. normalisation) and posi-
tion error (i.e. when both centres of mass and principal axes
are superimposed) fields. This splitting of errors is illustrated
in the flow chart in Fig. 2.

2.4 Local metric with non-local upstream position
correction

We propose to address the double penalty issue while still
relying on the L2 norm by applying an upstream correction
of the position error to d . The position error can be seen as a
combination of an orientation and a translation error. The ori-

entation error corresponds to the differences that could be re-
duced by a rotation applied to two concentration fields shar-
ing the same centre of mass location that maximises their
overlapping. The translation error corresponds to the differ-
ence that could be reduced by a translation applied to two
concentration fields.

The new distance is defined in a way that involves finding
the rotation and translation that minimise d. The idea is that
the rotation should cancel the orientation error, and the trans-
lation should cancel the translation error. Let us consider the
plane transformation F defined as follows:

F(x)= x0+ xt +R(θ)[x− x0], (5)

which corresponds to a translation of vector xt = (xt ,yt )>,
followed by a rotation of angle θ and of centre x0+ xt ,
where x0 = (x0,y0)

> is the position of the centre of mass
of the plume before the transformation. The transformation
F depends on three parameters: (xt ,yt ,θ). Note that this is
an isometry of the plane. The optimal transformation should
minimise

J (xt ,yt ,θ), d2 (XA,XB ◦F) , (6a)

=

∫
R2

[XA(x)−XB (F(x))]2dx/
∫
R2

1Edx. (6b)

However, this cost function is constant for any transforma-
tion that moves all the mass of the B plume outside the do-
main E= [0,1]2, and by construction XB is then null. This
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Figure 2. Flow chart of error splitting.

would make the minimisation very difficult with gradient-
based optimisation methods. For this reason, we add the fol-
lowing regularisation term to the cost function to penalise
any transformation that moves the B plume outside the do-
main E:

ρ(xt ,yt ),

{ (
x2
t + y

2
t −

1
2

)3
if
(
x2
t + y

2
t

)
> 1/2,

0 else,
. (7)

This regularisation does not affect the location of the minima
of dF . The final cost function is

J (θ,xt ,yt ), α d2 (XA,XB ◦F)+β ρ(xt ,yt ), (8)

where α is set to the average mass of theA andB plumes, and
β is set by trial and error to 104. In practice, the cost func-
tion J can be minimised with the limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) algorithm (Nocedal
and Wright, 2006) that is based on the gradient of J with
respect to all three parameters θ , xt , and yt , whose expres-
sions are given in Appendix C. To compute the gradient, the
spatial partial derivatives of the concentration field XB are
needed. Hence, to ensure the continuity of the partial deriva-
tives, we use second-order bivariate spline interpolation to
define the continuous concentration field XB from its orig-
inal image xb. In order to avoid any issue due to the local
non-convexity of the problem, we also provide a specific ini-
tialisation to the minimisation algorithm. The initial transla-
tion is then computed using the two centres of mass. Then
we do orthogonal regressions to compute the principal axes

of both XA and XB . The initial θ is the angle between these
axes.

Finally, with the optimal transformation F∗, i.e. the one
that minimises J defined by Eq. (8), the new distance, called
dF , is defined by

dF (XA,XB), d
(
XA,XB ◦F∗

)
. (9)

For the example of Fig. 1, the values of dF are reported in
Table 1 and can be compared to the values of d. In the second
case (distance between the two Gaussian puffs), dF is close
to zero. The residual value is due to the finite resolution of the
images. In the first case (distance between the Gaussian puff
and the uniform concentration), dF stays similar to d because
any transformation F that keeps the plume in the domain is
optimal.

3 Metrics based on optimal transport theory

In this section, we introduce the Wasserstein distance, the
distance of the optimal transport, as a non-local alternative to
the pixel-wise L2 norm.

3.1 Optimal transport and the Wasserstein distance

The optimal transport theory was first introduced in the 17th
century by Monge in his famous memoir (Monge, 1781). It
is based on the idea that there exists a transport plan to move
masses that minimises a given cost of transport. A wider view
of the problem was proposed by Kantorovich (1942) using a
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probabilistic approach. The field has finally regained popu-
larity in the last few decades, in particular with the generali-
sation by Villani (2009).

In this section, we follow the Kantorovich approach,
which means that we will use the discrete representation
(see Sect. 2.1). Moreover, the theory is defined only for vec-
tors whose coefficients are non-negative and sum up to one.
While the first condition is satisfied in our case (because we
work with images of pollutant concentration), the second is
not. Therefore, in the following instead of working with the
concentration vectors xA and xB , we will work with their
normalised counterparts x̂A and x̂B :

x̂ ,
x

x>1
, (10)

where 1 ∈ RN is the vector full of ones and x ∈ RN is either
xA or xB .

The set of couplings P between x̂A and x̂B is defined by

U (̂xA, x̂B),
{

P ∈ RN×N+ : P1= x̂A and P>1= x̂B
}
. (11)

Note that U (̂xA, x̂B) is not empty because P= x̂Ax̂>B is a
coupling between x̂A and x̂B . The cost of a coupling P ∈
U (̂xA, x̂B) is defined by

J (P)=
N∑

i,j=1
Ci,jPi,j , (12)

where Ci,j ≥ 0 is the (i,j) element of the cost matrix C pe-
nalising the transport between x̂A and x̂B . Here, it is chosen
to be the square of the Euclidean distance between the ith and
j th pixels of the original image. For this specific choice, the
cost function J defined by Eq. (12) has a minimum, which is
obtained for a unique coupling P∗. The Wasserstein distance,
the distance of the optimal transport, is then defined by

w(̂xA, x̂B)=

√√√√ N∑
i,j=1

Ci,jP
∗

i,j , (13)

and it is actually a distance according to the mathematical
definition. The proofs of these statements can be found in
optimal transport textbooks (e.g. Villani, 2009).

Two interesting properties of the Wasserstein distance can
be highlighted. First, this metric is defined for normalised
vectors only. This means in our case that the difference in to-
tal mass between two images is entirely ignored. Alternative
solutions have been proposed to take into account this differ-
ence, e.g. the one proposed by Farchi et al. (2016) or the use
of unbalanced optimal transport (Chizat et al., 2018), but this
is beyond the scope of the present study.

Second, following Benamou and Brenier (2000), it is pos-
sible to define an optimal transport interpolation between x̂A
and x̂B . This optimal transport interpolation can help us vi-
sualise the idea of vicinity according to w. An example is

shown in Fig. 3 for two Gaussian puffs. In the case of the
optimal transport interpolation, the w distance between the
first puff and the interpolated puff is linearly growing (by the
construction of the interpolation), while the increase of the d
distance is at first very steep. In some sense, this behaviour
was expected since the first puff and the interpolated puff are
quickly separated from each other. In the case of the linear
interpolation, the same phenomenon happens: the d distance
is linearly growing (by the construction of the interpolation),
while the increase of the w is steeper, but not as steep as the
increase of d in the first case. This shows that the Wasser-
stein distance w is a metric that better handles the position
error than d , since it accounts linearly for the mismatch in
the plume positions.

3.2 Sinkhorn’s algorithm

To compute the Wasserstein distance, we have to determine
the optimal coupling matrix P∗ by minimising J defined by
Eq. (12). The convexity of the cost function J is not guar-
anteed; thus it is usual (see, e.g. Peyré and Cuturi, 2019, and
references therein) to add the following entropic regularisa-
tion:

H(P),−
N∑

i,j=1
Pi,j

(
lnPi,j − 1

)
. (14)

The objective function to minimise becomes

J ε(P)=
N∑

i,j=1
Pi,jCi,j + ε

N∑
i,j=1

Pi,j
(
lnPi,j − 1

)
, (15)

under the same constraint P ∈ U (̂xA, x̂B). The solution of
the regularised problem is an approximation of the Wasser-
stein distance. When ε→ 0, it converges toward the exact
value of the Wasserstein distance w (̂xA, x̂B); when ε→∞,
the optimal coupling matrix converges toward P= x̂Ax̂>B .

It is possible to show that minimising Eq. (15) is equiva-
lent to minimising the Kullback–Leibler divergence between
P ∈ U (̂xA, x̂B) and the Gibbs kernel K= exp(−C/ε),
where the exponential is applied entry-wise, which is given
by

KL(P|K)=
N∑

i,j=1
Pi,j ln

(
Pi,j

Ki,j

)
−Pi,j +Ki,j . (16)

The advantage of this formulation it that this problem is
known to admit a unique solution which is the projection of
the Gibbs kernel K onto U (̂xA, x̂B). This unique solution can
be written

P= u>Kv, (17)

where u and v are vectors with positive or null entries satis-
fying
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Figure 3. Comparison between the optimal transport interpolation (top panels) and the liner interpolation (bottom panels). In both cases, we
interpolate between two puffs using a pseudo time ranging from t = 0 (interpolated puff equal to the first puff) to t = 1 (interpolated puff
equal to the second puff). In each panel, the legend indicates both the w and d distances between the first puff and the interpolated puff,
normalised by the distance between the first and second puff. By construction, for the optimal transport interpolation w linearly grows with
t , and for the linear interpolation d linearly grows with t .

u ◦ (Kv)= x̂A, (18a)

v ◦ (K>u)= x̂B . (18b)

In these equations, ◦ is the Schur–Hadamard (i.e. entry-wise)
product in RN .

The (u,v) factorisation is unique and can be easily found
using the iterative update scheme proposed by Sinkhorn,
where the lth update is given by

u(l+1)
= x̂A÷Kv(l), (19a)

v(l+1)
= x̂B ÷K>u(l+1), (19b)

where ÷ is the entry-wise division in RN .

3.3 Log-formulation of Sinkhorn’s algorithm

Sinkhorn’s algorithm provides a simple and quick solution
to the optimal transport problem. However, this formulation
raises technical issues. The first is that for small values of ε
– which is what we are aiming for to be as close as possible
to the true optimal transport solution – the algorithm con-
verges slowly.2 To accelerate the convergence, we use a high
value of ε and progressively decrease it whenever (u,v) has
converged. We will use this technique in our experiments.

Another numerical issue appears when ε is small com-
pared to the entries of C. In this case, u, v, and K explode
and cannot be computed with finite numerical precision. To
address this issue, we adopt the log-Sinkhorn algorithm pro-
posed by Peyré and Cuturi (2019), which is presented in the
following lines.

2The convergence speed is measured here by the number of iter-
ations.

Let us introduce f and g, which are related to u and v by

ui = exp(fi/ε), (20a)
vj = exp(gj/ε). (20b)

Instead of updating (u,v) with Sinkhorn iteration Eq. (19),
we update (f ,g) using

f
(l+1)
i =−ε ln

[
N∑
j=1

exp

{
f
(l)
i + g

(l)
j −Ci,j

ε

}]
+ f

(l)
i + ε ln x̂A,i, (21a)

g
(l+1)
j =−ε ln

[
N∑
i=1

exp

{
f
(l+1)
i + g

(l)
j −Ci,j

ε

}]
+ g

(l)
j + ε ln x̂B,j . (21b)

Combining the log-Sinkhorn algorithm while decreasing
ε is not straightforward, because there are a lot of numerical
decisions to make: intermediate and final values of ε, con-
vergence criteria, etc. After several tests, we ended up with
Appendix A, which we found to be a good trade-off between
speed and accuracy. The value of ε is progressively decreased
from 1 to 10−5: each time the convergence criterion is met,
ε is reduced by a factor of 10. In our case, the convergence
criterion is met when the relative difference between the for-
mer and the current value of the Wasserstein distance falls
below ζ = 5×10−4. In addition, we set a maximum number
of Sinkhorn iterations of 200 per value of ε to keep the com-
putational cost under control. Finally, note that, for a given ε,
one can try to accelerate the convergence by using the aver-
aging step proposed in Chizat et al. (2018), but this is beyond
the scope of the present study.
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3.4 Gaussian approximation and upstream correction

Following the derivation of Sect. 2.4, we want to apply the
same upstream correction of the position error to the Wasser-
stein distance w. However, this would require the gradient
of the Wasserstein distance w with respect to each one of
its inputs. The computation is not straightforward, even tak-
ing into account the log-Sinkhorn formulation developed in
Sect. 3.3. For this reason, we will use the Gaussian approxi-
mation, for which the Wasserstein distance has an analytical
formula.

More specifically, we assume that we have two continuous
concentration fieldsXA andXB that follow the Gaussian puff
model:

XA(x)=
1√

(2π)2|6A|

exp
[
−

1
2
(x−µA)

>6−1
A (x−µA)

]
, (22a)

XB(x)=
1√

(2π)2|6B |

exp
[
−

1
2
(x−µB)

>6−1
B (x−µB)

]
, (22b)

with 6A and 6B given by

6A = R(θA)1AR(θA)>, (23a)

6B = R(θB)1BR(θB)>. (23b)

In this case, the squared Wasserstein distance between XA
and XB is given by3

w2(XA,XB)= ‖µA−µB‖
2
+Tr(6A+6B)

− 2Tr
([
6

1/2
A 6B6

1/2
A

] 1
2
)
. (24)

Following the approach of Sect. 2.4, let us now apply the
plane transformation F given by Eq. (5) to XB . The squared
Wasserstein distance becomes

w2(XA,XB ◦F)= ‖µA−µB + xt‖2+Tr(1A+1B)

− 2Tr
[
1

1/2
A R(θ + θB − θA)1B

R>(θ + θB − θA)1
1/2
A

] 1
2
, (25)

which depends on xt , yt , and θ , the three parameters of F. It
can be shown (see Appendix D) thatw2(XA,XB ◦F) reaches
its minimum when xt = µA−µB and θ = θA− θB (modulo

3By construction, XA and XB are normalised, in such a way
that we do not need to renormalise them to be able to compute the
Wasserstein distance.

π ), in which case the distance is given by

w(XA,XB ◦F)=
√

Tr(1A+1B)− 2Tr
[
(1A1B)

1
2

]
, (26a)

=

√√√√Tr

[(
1

1
2
A−1

1
2
B

)2
]
, (26b)

which is known as the Hellinger distance between XA and
XB (Peyré and Cuturi, 2019). By construction, this distance
estimates the shape error between XA and XB , since the
translation, the rotation, and the scale differences have been
removed. In the following, it will be written wF to point out
the similarity between the relationship d/dF on the one hand
and w/wF on the other hand. In the case where XA and XB
are not exactly Gaussian, we can still use the Gaussian puff
model as an approximation. In this case, wF provides an ap-
proximation of the shape error.

Finally, an issue with both w and wF is that they are nor-
malised fields, and thus they ignore the scale error, i.e. the
difference of total mass between the images. As a conse-
quence, these metrics cannot be used as such in an inversion
framework. One way to address this issue is to add to w and
wF a term to represent the scale error. Using discrete formal-
ism, this term could be

d2
mass(xA,xB)∝

1− 2

N∑
n=1

xA,n
N∑
n=1

xB,n(
N∑
n=1

xA,n

)2

+

(
N∑
n=1

xB,n

)2


2

, (27)

which is convex. The remaining question would then be the
relative contribution of w (or wF ) and dmass in the final dis-
tance, which is related to the following question: which kind
of error (position, mass, etc.) should be penalised more? This
kind of question is beyond the scope of the present article,
which is why we only use w and wF as is in our numerical
experiments.

4 Comparison of the metric on analytical test cases

In this section, we evaluate and compare the metrics with a
database of images built using a set of Gaussian puffs. The
database is introduced in Sect. 4.1, the computation of the
non-local metrics is validated in Sect. 4.2, and the behaviour
of the metrics on this Gaussian puff database are compared
in Sect. 4.3.

4.1 Gaussian puff database and experimental setup

The database consists of 104 pairs of images constructed
using Gaussian puffs and then discretised on the domain
E= [0,1]2 using a finite resolution of 32× 32 pixels. Each
puff is parameterised by its mean µ (two scalars) and its co-
variance matrix 6 = R(θ)1R(θ)> (three scalars: θ and both
diagonal entries of1), which are randomly drawn as follows:
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1. Both components of µ are uniformly drawn in
[0.15,0.85].

2. θ is uniformly drawn in [−π,π ].

3. σ1 and then σ2, the two non-zero components of 1, are
drawn from a half-normal distribution with a standard
deviation of 0.33. If needed, σ1 and σ2 are then swapped
to ensure σ1 ≥ σ2.

Ideally, the domain E should cover a large majority of the
mass of each puff. In practice, more than 99% of the mass
of a Gaussian puff is covered by the 6σ1×6σ2 rectangle cen-
tred on µ and oriented along the principal axes. For this rea-
son, we repeat step 3 of the random draw until this 6σ1×6σ2
rectangle is included in the domain E. In addition, the puffs
should not be too small, which is why in our case when 6σ1
and 6σ2 are both smaller than 9 pixels, it is rejected and en-
tirely re-drawn.

The characteristics of the database are shown in Fig. 4
and cover the analytical pathological situations described in
Davis et al. (2009). As expected, the distribution of ‖µ‖ is
close to Gaussian, the distribution of θ is close to uniform,
and the distribution of σ1 and then σ2 are close to log-normal.

4.2 Validation of the implemented Sinkhorn algorithm

For our Gaussian puff database, there are four different ways
to compute the Wasserstein distance:

1. The analytical formula Eq. (24) can be used with the
exact values of µA,B and 6A,B . This approach will be
called wth.

2. The analytical formula Eq. (24) can be used but with
µA,B and 6A,B being the sample mean and covariance
of the 32× 32-pixel images. This approach is closer to
what will be practically done for real image plume, ex-
tracting information only from the image, and it will be
called wnum.

3. The network simplex algorithm (Bonneel et al., 2011)
can be used to find the exact solution of the optimal
transport problem using the images like wnum. This ap-
proach will be called wemd.

4. The log-Sinkhorn iterations can be applied using Ap-
pendix A using the images like wnum. This approach
will be called wε .

We have applied all four methods, and the differences are
shown in Fig. 5. Note that wemd has been computed using
the Python Optimal Transport (POT) library (Flamary et al.,
2021).

The fractional bias over all pairs is no more than 5 %
when we compare wth to the other three methods of com-
puting the Wasserstein distance. By contrast, wemd and wnum

Table 2. Correlations between the distances d , w, dF , and wF on
the one hand and the quantities T , θ , and H on the other hand for
the 104 cases in the Gaussian puff database.

Pearson correlation

T θ H

d 0.33 0.00 −0.11
w 0.97 0.00 −0.03
dF 0.04 −0.01 0.58
wF −0.04 −0.01 0.65

are very close to each other. We have checked that the lat-
ter phenomenon is reduced when the resolution is increased.
Therefore, we conclude that the gap between wth on the one
hand and wnum, wemd, and wε on the other hand is not due
to the estimation of the Wasserstein distance but results from
the discretisation of the problem with the 32× 32 resolution
(sampling errors). Figure 5 also shows that wε matches wemd
well, which validates our log-Sinkhorn implementation.

4.3 Correlation to the different error categories

In this subsection, we compare the behaviour of the metrics
with respect to three error categories: the translation error, the
orientation error, and the shape error. Note that the behaviour
with respect to the scale error cannot be compared since the
w and wF distances use normalised images. We used the
Pearson correlation as our main indicator of the strength of
the link between the behaviour of the metrics and the error
category. The closer the norm of the Pearson correlation is to
1, the more linear the relation between the quantities is. If the
Pearson correlation is positive, then the increase in an error
category leads to an increase in the metric value, if negative
it leads to a decrease, and if nearly null it means that the two
quantities seem independent.

For each pair of images in the database, we define T
(for translation) as ‖µB−µA‖2. This quantity represents the
translation error between both images. The correlation be-
tween T and the four distances is reported in the first column
of Table 2.

As expected, the Wasserstein distance w is strongly corre-
lated to T . The L2 norm d is also showing a significant cor-
relation of 0.33 to T , highlighting a likely dependency. Both
dF and wF are designed to be released from the position er-
ror and, in particular, the translation error. This property is
confirmed by the very low correlation between T on the one
hand and dF andwF on the other hand. Additionally, the fact
that T is much more correlated to d than to dF confirms that
d indeed depends on the T quantity.

For each pair of images in the database, we define θ as
‖θB − θA‖. This quantity represents the orientation error be-
tween both images. The correlation between θ and the four
distances is reported in the second column of Table 2. The
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Figure 4. Characteristics of the Gaussian puff database. (a, b) Images A (a) and B (b) number 10. (c–j) Histograms of ‖µA‖ (c), ‖µB‖ (d),
θA (e), θB (f), σA,1 (g), σB,1 (h), σA,2 (i), and σB,2 (j).

results show also that there is no correlation between θ and
any of the distances. In a sense, this shows that all the dis-
tances are, for our database, not sensitive to the orientation
error.

For each pair of images in the database, we defineH as the
Hellinger distance between A and B, as given by Eq. (26).
This is actually very similar to wF , but with one exception:

H uses the theoretical values of1A and1B (i.e. the ones that
have been drawn), while wF uses the sample covariance of
the 32× 32-pixel images. This quantity represents the shape
error between both images. The correlation between H and
the four distances is reported in the third column of Table 2.

Both d and w show a low correlation to H , which is not
the case of dF and wF . On the one hand, the correlation be-
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Figure 5. Comparison of the different ways to compute the Wasserstein distance over the Gaussian puff database. Relative errors in percent
between wemd, wth, wnum, and wε . The orange line is the median. Box boundaries are defined by the first and the third quartiles. The
whiskers are set at 150 % of the inter-quartile range.

tween wF and H was highly expected from the definition of
H . The remaining difference is due to the finite resolution
of the images. On the other hand, the proportionality of dF
with the H was wanted but not assessed. By superimposing
optimally the plumes, we removed the position error, but dF
remains sensitive to H , meaning we did not remove all er-
rors. Thus such behaviour reflects our way of splitting the
error. More generally, this comparison on the Gaussian puff
database confirms that both dF and wF are freed from the
position error and seem to be driven by the shape error.

5 Comparison of the metric on realistic test cases

To go deeper in our analysis, we now compare the metrics
using realistic plumes. This section follows the same or-
ganisation as Sect. 4: we present the experimental setup in
Sect. 5.1, we validate the computation of the non-local met-
rics in Sect. 5.2, and we compare the behaviour of the metrics
on this specific database in Sect. 5.3.

5.1 Simulation database and experimental setup

We use a simulation database of hourly 3D fields of CO2
concentrations due to anthropogenic CO2 emissions from
the Neurath lignite-fired power plant (Germany, 51.04◦ N,
6.60◦ E). The database is extracted from a larger one, over
western Europe, as described in Potier et al. (2022). Simu-
lations were performed with the CHIMERE Eulerian trans-
port model (Menut et al., 2013) driven by the Community
Inversion Framework (CIF; Berchet et al., 2021). The res-
olution of the simulation (longitude: 6.82◦W to 19.18◦ N
; latitude: 42.0 to 56.39◦ N, Fig. 6; Santaren et al., 2021)
goes from 50 to 2 km. The Neurath power plant is located
in the 2 km× 2 km resolution zoom (longitude: 1.25◦W to
10.64◦ E; latitude: 47.45 to 53.15◦ N). The vertical grid is

composed of 29 pressure layers extending from the sur-
face to 300 hPa (approximately 9 km above the ground
level). CHIMERE is forced by meteorological variables
at 9 km resolution (Agusti-Panareda, 2018), provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) for the CO2 Human Emissions project (CHE;
https://www.che-project.eu/, last access: 14 March 2023).
The CO2 emissions from the Neurath power plant are ex-
tracted from the ∼ 1 km (1/60◦× 1/120◦) resolution inven-
tory (TNO_GHGco_1x1km_v1_1) of the annual emissions
produced by the Netherlands Organisation for Applied Sci-
entific Research (TNO) over Europe for the year 2015 (De-
nier van der Gon et al., 2017; Super et al., 2020). The tem-
poral disaggregation at the hourly scale is based on coef-
ficients provided with the TNO inventories for the sector
A-Public Power, in the Gridded Nomenclature For Report-
ing (GNFR) of the United Nations Framework Convention
on Climate Change (UNFCCC). Emissions are projected on
the CHIMERE vertical grid with coefficients corresponding
to this A GNFR sector (Bieser et al., 2011), also provided
with the TNO inventories. We simulate 14 d of 1 h emission
pulses at the Neurath power plant location, from 1 to 14 July
2015, i.e. 336 puffs. The transport of these puffs is simulated
until midnight. Consequently, the later in the day the puffs
are emitted, the shorter they are tracked. Assuming that the
source continuously releases CO2, the puffs are aggregated
to create plume images for every hour. Due to this experi-
mental setup, the plume follows a 24 h cycle. It appears after
0 h and grows until past 24 h of simulation and then restarts.

We ensure that the daily evolution of the hourly emission
rate from the source is the same for all plumes. Hence, for a
given hour of the day, the difference between two simulated
plumes from two different days is due to the meteorology. We
build a database that regroups per pair simulated plumes at a
given hour but from different days (e.g. day 1 hour 10 versus
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Figure 6. Experimental setup. The simulation grid from Santaren
et al. (2021) is in blue, centred on Belgium. The zoom in red corre-
sponds to the vicinity around the Neurath power plant. An example
of the Neurath power plant CO2 plume image is also displayed.

day 3 hour 10). To get a realistic two-dimensional concentra-
tion field, we compute the vertical mean of the concentration
weighted by the width of the vertical levels. We ignore the
first 2 h of the simulation, to ensure that a plume appears in
the image. This leaves 2093 pairs of distinct plumes. The im-
ages are cropped to 100× 100-pixel (here 1 pixel is equal
to 2 km square cell of the simulation) images to reduce the
computer resource requirements.

5.2 Comparison of the different estimations of the
Wasserstein distance

We have applied all three methods, and the differences are
shown in Fig. 7. The results show, as for the Gaussian puff
database, that wε and wemd are close to each other, which
once again validates our algorithm. Moreover, the results
show that wnum is a reasonably good approximation of w
as well. The distance wnum makes the approximation that
the images are Gaussian puffs, which is a strong approxi-
mation but allows for very quick computation. The values of
wnum seem to be usually lower than those of wε . This pre-
vious remark is in agreement with Theorem 2.1 from Gel-
brich (1990). It is shown that, for elliptic contour distribu-
tions with given mean and covariance matrices, the distance
between the two Gaussians with these respective parame-
ters (i.e. wnum) is a lower bound of the Wasserstein distance
between the two distributions. We are not assured to work
with plumes that are elliptic distributions. However, it seems
to be a good direction to look at to explain and quantify, if
possible, this negative bias. The understanding of the discrep-
ancies betweenwnum andwε is needed to be able to substitute
wnum to wε . For this reason, wnum is not tested further in the
following sections.

Figure 7. Comparison of the different ways to compute the Wasser-
stein distance over the realistic database. Relative errors in per-
cent between wemd, wnum, and wε . The orange line is the median.
Box boundaries are defined by the first and the third quartiles. The
whiskers are set at 150 % of the inter-quartile range.

Table 3. Correlations between the distances d, w, dF , and wF on
the one hand and the quantities T , θ , and H on the other hand for
the 2093 cases in the realistic database.

Pearson correlation

T θ H

d 0.19 −0.04 0.32
w 0.99 0.20 0.37
dF 0.12 −0.11 0.41
wF 0.31 0.03 1.00

5.3 Correlation to the different error categories

In this subsection, we compare the behaviour of the metrics
with respect to the same three error categories as in Sect. 4.3:
the translation, orientation, and shape error. To do so, we
keep the same quantities T , θ , andH , with the notable excep-
tion thatH is now equal towF because there is no theoretical
covariance. The results are reported in Table 3.

While the correlation between w and T remains very
strong, d shows less correlation to T than for the Gaussian
puff database. Both dF and wF are less correlated to T than
d andw, respectively, but their correlation to T is here higher
than with the Gaussian puff database. Hence for this realistic
database, both dF and wF are only partially freed from the
translation error.

In this case, the correlations between the metrics and θ are
higher than for the Gaussian puff database but again do not
prompt a clear conclusion.

By construction, wF is equal toH , which yields a correla-
tion of 1. Both d and w show a small correlation toH , which
was not the case in the Gaussian puff database. The correla-
tion to H is still higher for dF , which was expected since dF
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is designed to be partially freed from the position error. This
result, however, should be taken with caution because here,
contrary to the Gaussian puff database, H now only partially
accounts for the shape error between two plumes.

This second study with realistic cases shows that the be-
haviour of each metric slightly differs from what has been
seen in the Gaussian case. Nevertheless, the results confirm
that both dF and wF are partially freed from the position
error while being still sensitive to the shape error, which is
what we hoped for.

6 Sensitivity to the meteorological conditions

As stated in the introduction, the goal of this article is to de-
velop and test metrics that can discriminate errors stemming
from imperfect meteorology from other sources of discrep-
ancies. Therefore, following the approach used in the previ-
ous sections, we define here four indicators that we consider
representative of the difference in meteorological conditions
between the two images. We then examine the correlation be-
tween these indicators, the previous indicators (T , θ , andH ),
and the metrics in the case of the realistic database.

6.1 Definition of meteorological indicators

To simplify the analysis, we define four scalar indicators that
characterise the meteorological conditions. These indicators
focus on the direction and the norm of the wind as expe-
rienced by the pollutant during its transportation. For each
image, we proceed as follows.

1. We first average the wind components (three-
dimensional fields) in the vertical direction between
the surface and the planetary boundary layer (PBL)
height. Indeed, the realistic database has been simulated
with summer conditions, and hence the plumes are
assumed to be dispersed within the PBL. This results in
two-dimensional fields for each time snapshot.

2. We compute the norm and the direction of the averaged
winds. This results in two two-dimensional fields for
each time snapshot.

3. We average the norm and the direction over the 100×
100-pixel grid. This results in two scalars for each time
snapshot.

4. We finally compute the time average and time standard
deviation of the averaged norm and direction between
midnight (the time at which the emissions started) and
the time of the image. This results in four scalars: EN
(averaged wind norm), ED (averaged wind direction),
SN (deviation of wind norm), and SD (deviation of wind
direction).

The meteorological indicators are then defined as the abso-
lute differences in EN, ED, SN, and SD between the two im-

Table 4. Correlations between 1EN, 1ED, 1SN, and 1SD on the
one hand and T , θ , and H on the other hand for the 2093 cases in
the realistic database.

Pearson correlation

T θ H

1EN 0.39 0.23 0.15
1ED 0.52 −0.02 0.30
1SN 0.09 0.04 0.09
1SD 0.06 0.03 0.48

ages that are compared, simply written 1EN, 1ED, 1SN,
and 1SD.

6.2 Correlation between the meteorological indicators
and the error categories

Using the realistic database, we compute the correlation be-
tween1EN,1ED,1SN, and1SD on the one hand and T , θ ,
and H on the other hand. The idea is to see how differences
in the meteorological conditions impact the position and am-
plitude errors. The results are reported in Table 4.

One can notice that T is mainly correlated to 1ED and a
little less to 1EN, while 1SD and 1ED are correlated to H .
This means that differences in meteorology like 1ED will
likely induce both position error and shape error. Therefore,
by removing the position error, we only partially remove the
meteorological impact on the differences. Explaining why
1SD induces differences in shape is straightforward, but ex-
plaining how1ED induces differences in terms of translation
instead of orientation is not as so. A difference in the main di-
rection of the plume (which translates into 1ED) will move
further away the centres of mass from each other and hence
induce a larger T (which is the distance between the two cen-
tres of mass). It should be noted that a wind direction change
that will keep superimposed the centre of mass will drive ori-
entation error.

6.3 Correlation between the meteorological indicators
and the metrics

To conclude our study, we now compare the different metrics
to the meteorological indicators. The results are reported in
Table 5.

According to the correlations shown in Table 5, the metric
w is correlated to1ED and1EN indicators. This is expected
since these meteorological changes tend to move the centre
of mass and thus increase the translation error. The results
show also that wF sees a drop in correlation to 1ED com-
pared to w while getting a correlation with respect to 1SD.
For optimal transport metrics, we can see that removing the
position error does not always remove the sensitivity to a
change in meteorology. It should be noticed that increasing
in either d or dF does not seem to be more correlated to our
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Table 5. Correlations between 1EN, 1ED, 1SN, and 1SD on the
one hand and the distances d, w, dF , wF , d∗, and d∗

F
on the other

hand for the 2093 cases in the realistic database.

Pearson correlation

d w dF wF d∗ d∗
F

1EN −0.09 0.41 −0.11 0.15 0.07 0.02
1ED 0.14 0.53 0.14 0.30 0.24 0.20
1SN −0.03 0.11 0.00 0.09 −0.21 −0.17
1SD 0.21 0.09 0.26 0.48 −0.03 0.19

different meteorology indicators. Such a lack of correlation
compared to the optimal transport theory metrics could result
from the weight of the scale error in the distance definition.
We normalised the plume the same way as we do for w be-
fore computing the distance d and dF , leading us to the nor-
malised image distances d∗ and d∗F . First, d∗ and d∗F are more
correlated than d and dF to 1ED and 1SN, showing that the
scale error is masking the sensitivity of pixel-wise metrics
with respect to meteorology. Second, d∗F gains significantly
in correlation to 1SD compared to d∗ but remains as corre-
lated to 1ED as d∗. Then the plane transformation applied
in d∗F allows a better alignment of the compared plumes, giv-
ing more weight to shape error induced by1SD, but does not
compensate for all the changes resulting from1ED or1EN.

The lack of correlation to our meteorological indicators for
d and dF seems appealing, but it is due to amplitude error
held by a small number of highly concentrated pixels above
the source for our cases (i.e. a hotspot). For similar cases,
d remains a good metric for updating the inventories. If the
“hotspots” of the two images have amplitudes close to each
other or there is no “hotspot” but a large plume, d and dF
become more correlated to several meteorological changes,
making them less suitable. Pixel-wise metrics seem to be bet-
ter adapted to compare “hotspot” and not highly extended
plumes. A more versatile metric will be a weighted distance
using the wF , or at least a normalised d∗F , which is not sensi-
tive to all changes in meteorology, and a term that represents
the scale error between the two images.

7 Conclusions

In this article, we discussed the use of new metrics for com-
paring passive gas plumes, practically CO2 plumes, within
an inverse framework aiming at the monitoring of pollutant
emissions.

At first, we emphasised how critical the double penalty is-
sue related to pixel-wise comparison is. The traditional L2
norm tends to overweight position errors mixing up with
other sources of errors. In the context of source inversion,
this results in an over-penalised comparison of concentration
fields that are slightly shifted from each other, and the mix-
ing makes it difficult to evaluate the relative weight of dif-

ferent types of error afterwards. Yet, for us, the identification
of the relative weight of the errors is critical, since we want
to level down the one due to meteorology and level up the
one related to emissions. Assuming that most of the position
error is driven by meteorology, we proposed to design met-
rics that are freed from position error. Following this goal, a
pixel-wise metric with an upstream position correction was
designed. This new metric has the advantage of keeping the
formalism of the L2 norm while being released from posi-
tion errors. In addition, it is proposed to use a metric based
on the optimal transport theory: the Wasserstein distance. Fo-
cusing on the algorithmic aspects related to two-dimensional
satellite images, we derived and validated a method to com-
pute this metric. The Wasserstein metric is more sensitive to
position errors, but it is not hampered by the double penalty
issue. To complete our catalogue of metrics, an optimal trans-
port metric freed from position errors is proposed. It can be
easily computed with a Gaussian approximation. This metric
coincides with the Hellinger distance. Nevertheless, both op-
timal transport metrics rely on normalised images and thus
are unaware of the difference in the total mass present in
the plumes. The scale factor between the images is linearly
related to emission fluxes which we want to estimate. This
means that, within the inversion framework, the scale factor
between the two images should be added and weighted inde-
pendently.

These four metrics were compared on a specifically de-
signed Gaussian puff database and evaluated according to
their correlations with respect to translation error, orientation
error, and shape error. The numerical experiments showed
that the resolution of the images tends to impact the optimal
transport problem. As expected, the two metrics designed to
be freed from position errors are not correlated to translation
and orientation errors. The L2 norm and Wasserstein metrics
are both correlated to the translation error. From this, we ex-
tended our tests to a realistic plume database. This second
test series shows that, for a more complex plume geometry,
the metrics are still correlated to the translation error. This
implies that the new metrics are only partially freed from po-
sition errors.

Then we discussed the link between a position error and a
variation within the mesoscale meteorology using the same
realistic database. Designing relevant scalar indicators re-
lated to meteorological variance, we evaluated how specific
changes in meteorological conditions lead to an increase in
the distance between the plumes. We have seen that the me-
teorological changes can be correlated to position errors as
well as amplitude errors between plumes. This means that re-
moving the position error from the metrics will not make the
comparison insensitive to a meteorological change. However,
some metrics were found to be more sensitive to specific
changes in meteorological conditions. For instance, while the
Wasserstein metric is sensitive to changes in the main direc-
tion or intensity of the winds, the Hellinger metric is more
sensitive to changes in the spread of the wind direction both
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in time and space. This provides guidelines to enlighten the
choice of a metric for a given meteorological situation. By
composing this with these new metrics freed from position
error and additional scaling terms, we get more manageable
metrics that will level down in the weight of modelling error
due to the meteorology used in the comparison.

These metrics are used to quantify the proximity of a cou-
ple of plumes and could hence be used in an inverse frame-
work, in particular for processing XCO2 images. The ques-
tion of the impact of the meteorological changes on the met-
rics discussed here can be translated into another question:
what importance do we give to each error category? We know
that meteorological changes can result in position errors, and
we strongly suspect that changes in the emission’s temporal
profile or vertical distribution can also yield position errors.
In such a case, it would be interesting to evaluate the im-
pact of the removal of the position errors and whether the
amplitude errors carry enough information to compensate.
We have seen that amplitude errors can also emerge from
changes in meteorology. Thus further studies have to be un-
dergone to evaluate the sensitivity of the metrics to either
the emissions or the meteorology, to determine which error
has to be more weighted from the perspective of monitoring
the emissions. We have to make sure that by removing some
sensitivity with respect to meteorology, we are not levelling
down by the same factor the sensitivity with respect to the
emissions.

For an operational purpose, optimising on non-local met-
rics is much more difficult than on pixel-wise metrics be-
cause it requires the computation of non-trivial gradients.
The three non-local metrics that we proposed are param-
eterised. These parameters usually balance a trade-off be-
tween computational efficiency and accuracy. In the case
of the pixel-wise distance with an upstream correction, the
choice of the optimal isometry to apply depends on these pa-
rameters. Even though this study could be done with a per-
sonal computer, further computation optimisation develop-
ments are needed for operational use. Here we are only con-
sidering passive tracers, but an extension of the study should
be using these metrics for reactive pollutants. However, it
requires quantifying the relative impact of chemistry on the
shape, scale, and position of the plume.

The key idea here is that meteorology is fixed and bounds
our model predictions. We choose to develop metrics that aim
to remove the weight of such bound within the comparison
to the observation. We could instead consider that meteorol-
ogy is not fixed and can be seen as additional degrees of
freedom to estimate. Thus the Wasserstein metric is inter-
esting because it penalises the position error linearly, but it
remains numerically costly compared to pixel-wise metrics.
Yet, we have seen that approximating the plume by Gaussian
puffs yields a cheap estimate of the true Wasserstein distance.
To ease the computation, we suggest using an approxima-
tion of the Wasserstein distance, assuming Gaussian puff-like
plumes or separable into a Gaussian mixture as in Chen et al.

(2019) and Delon and Desolneux (2020). But the relevance
of these approximations has to be discussed when it comes
to real, noisy, cloudy, plume images. This paper was a first
step towards the use of smarter metrics to compare plume
images to monitor atmospheric gaseous compound emissions
through an inverse method.

https://doi.org/10.5194/amt-16-1745-2023 Atmos. Meas. Tech., 16, 1745–1766, 2023



1760 P. J. Vanderbecken et al.: Accounting for meteorological biases in simulated plumes using smarter metrics

Appendix A: Log-Sinkhorn algorithm

Algorithm A1 Log-Sinkhorn algorithm with decreasing ε to compute the Wasserstein distance.

Parameters: ε0 = 1, ε∗ = 10−5, δε = 10, convergence criterion ζ = 5× 10−4, maximum number of iterations kmax = 200
Input: Cost matrix C, Normalised concentration vectors x̂A and x̂B
1: f ← 0
2: g← 0
3: ε← ε0 F Initialise ε
4: while ε ≥ ε∗ do
5: k← 0 F Number of iterations
6: w← 105

F Initialise w
7: repeat
8: w−← w F Previous value of w
9: for i = 1 to N do

10: fi←−ε ln

[
N∑
j=1

exp

{
f
(l)
i +g

(l)
j −Ci,j

ε

}]
+ f

(l)
i
+ ε ln x̂A,i

11: end for
12: for j = 1 to N do

13: gj ←−ε ln

[
N∑
i=1

exp

{
f
(l+1)
i +g

(l)
j −Ci,j

ε

}]
+ g

(l)
j
+ ε ln x̂B,j

14: end for
15: P← exp

{
f 1>+1g>−C

ε

}
16: w←

√√√√ N∑
i,j=1

Ci,jPi,j F Current value of w

17: k← k+ 1
18: until |w−−w|/w < ζ or k ≥ kmax F Convergence criterion
19: ε← ε/δε F Progressively decrease ε
20: end while
21: return Wasserstein distance w
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Appendix B: Notations

x Position vector in the image
XA,B Continuous interpolation of the concentration field
xA,B Discrete representation of the concentration field
x̂A,B Normalised discrete concentration field
N (µ,6) Normal distribution of mean µ and error covariance matrix 6
UE Uniform distribution over the domain E
µ Always refers to a mean vector
6 Always refers to an error covariance matrix
1 Diagonal matrix with the eigenvalues of 6
R(θ) Rotation matrix of angle θ
xt Translation vector
x0 Centre of mass coordinate vector
F Transformation in the plane
d Usual pixel-wise Euclidean distance
dF Pixel-wise distance with an upstream position correction
w Wasserstein distance
wF Wasserstein distance with an upstream position correction
wemd Earth mover distance
wε Log-Sinkhorn approximation of the Wasserstein distance
wnum Wasserstein distance between two Gaussian puffs
wth Analytical Wasserstein distance between two Gaussian puffs
ε Weight of the entropic regularisation of the log-Sinkhorn algorithm
ζ Convergence criterion for the log-Sinkhorn algorithm
T Translation length between the centre of mass of two plumes
θ Rotation angle between the principal axes of two plumes
H Hellinger distance between the error covariance matrices of two plumes
EN Mean wind speed seen by the plume averaged over the image domain and time
ED Mean wind direction seen by the plume averaged over the image domain and time
SN Standard deviation of the wind speed seen by the plume across the image domain and time
SD Standard deviation of the wind direction seen by the plume across the image domain and time

https://doi.org/10.5194/amt-16-1745-2023 Atmos. Meas. Tech., 16, 1745–1766, 2023



1762 P. J. Vanderbecken et al.: Accounting for meteorological biases in simulated plumes using smarter metrics

Appendix C: Gradient of the cost function for dF

To minimise Eq. (8) we use the L-BFGS algorithm provided
by the SciPy library. The algorithm explicitly uses the gradi-
ent of the cost function J with respect to θ , xt , and yt . The
first term of this gradient – corresponding to d2 (XA,XB ◦F)
– is given by

∂J
∂α
=− 2

∫
R2

[XA (x)−XA (F(x))]

[
∂XB

∂x
(F(x)) ·

∂Fx

∂α
+
∂XB

∂y
(F(x)) ·

∂Fy

∂α

]
dx, (C1)

where α is either θ , xt , or yt , x = (x,y)>, and F=(
Fx,Fy

)>. The partial derivatives of XB are given by the
second image (using the interpolation method), and the par-
tial derivatives of Fx and Fy are

∂Fx

∂θ
=−(x− x0)sinθ − (y− y0)cosθ,

∂Fy

∂θ
= (x− x0)cosθ − (y− y0)sinθ, (C2a)

∂Fx

∂xt
= 1,

∂Fy

∂xt
= 0, (C2b)

∂Fx

∂yt
= 0,

∂Fy

∂yt
= 1. (C2c)

Appendix D: From the Wasserstein distance w to the
Hellinger distance wF

Let us define the cost function

J (xt ,yt ,θ), w2 (XA,XB ◦F) , (D1)

where w2 (XA,XB ◦F) is given by Eq. (25). The goal is to
minimise J . From Eq. (25), we remark that J has three
terms J = J1+J2+J3, with

J1 , Tr(1A+1B), (D2)

J2 (xt ,yt ), ‖µA−µB + xt‖
2, (D3)

J3 (θ),− 2Tr
[
1

1/2
A R(θ + θB − θA)1B

R(θ + θB − θA)>1
1/2
A

] 1
2
. (D4)

Minimising J with respect to (xt ,yt ,θ) is equivalent to min-
imising J2 with respect to (xt ,yt ) and minimising J3 with
respect to θ . The minimum of J2 is 0 and is reached for
xt = µB −µA. Let us now focus on the minimum of J3. For
convenience, we define

M(θ),11/2
A R(θ+θB−θA)1BR(θ+θB−θA)>1

1/2
A , (D5)

in such a way that J3 (θ)=−2TrM(θ)
1
2 . With our notation,

we have

1A =

[
σ1,A 0

0 σ2,A

]
, (D6a)

1B =

[
σ1,B 0

0 σ2,B

]
, (D6b)

R(θ + θB − θA)=
[

cos θ̃ −sin θ̃
sin θ̃ cos θ̃

]
, (D6c)

where θ̃ , θ + θB − θA, and hence

M(θ)=[
σ1,Aσ1,Bcos2 θ̃ + σ1,Aσ2,B sin2 θ̃

√
σ1,Aσ2,A

(
σ1,B − σ2,B

)
cos θ̃ sin θ̃

√
σ1,Aσ2,A

(
σ1,B − σ2,B

)
cos θ̃ sin θ̃ σ2,Aσ2,Bcos2 θ̃ + σ2,Aσ1,B sin2 θ̃

]
. (D7)

By construction, M(θ) is symmetric and positive definite;
therefore it is diagonalisable with strictly positive eigenval-
ues λ± (θ). As a consequence, we have

TrM(θ)
1
2 =

√
λ+ (θ)+

√
λ− (θ). (D8)

Let us now introduce the following ancillary quantities:

α , σ1,Aσ1,B + σ2,Aσ2,B , (D9a)

β , σ1,Aσ2,B + σ2,Aσ1,B , (D9b)

κ (θ), TrM(θ)= αcos2θ̃ +βsin2θ̃ , (D9c)

γ (θ), κ2 (θ)− 4detM(θ)

= κ2 (θ)− 4σ1,Aσ1,Bσ2,Aσ2,B . (D9d)

Note that γ (θ) is the discriminant of the characteristic poly-
nomial of M(θ), which means that γ (θ)≥ 0 because M(θ)

is symmetric and positive definite. With these quantities, we
have

λ± (θ)=
1
2

(
κ (θ)±

√
γ (θ)

)
. (D10)

Let us first consider the case γ (θ)= 0. In this case,
λ+ (θ)= λ− (θ), λ(θ); in other words M(θ)= λ(θ)I.
From the definition of M(θ), Eq. (D5), we deduce that

R
(
θ̃
)
1BR

(
θ̃
)>
= λ(θ)1A, (D11)

which enforces θ̃ = 0 (modulo π ). This means that Eq. (D7)
simplifies into

M(θ)=

[
σ1,Aσ1,B 0

0 σ2,Aσ2,B

]
, (D12)

and hence λ(θ)= σ1,Aσ1,B = σ2,Aσ2,B . Without loss of gen-
erality, we can assume in the definition of1A and θA that 0<
σ1,A ≤ σ2,A and the same forB.4 This means that σ1,Aσ1,B =

4If this is not the case, we just have to change θA to θA+π to
swap σ1,A and σ2,A.
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σ2,Aσ2,B actually implies σ1,A = σ2,A and σ1,B = σ2,B . In
this case, the covariance matrices for A and B are isotropic,
and J3 does not actually depend on θ .

Let us now consider the non-isotropic case: 0< σ1,A <

σ2,A and 0< σ1,B < σ2,B , which is the only case where J3
depends on θ . In this case, we necessarily have γ (θ) > 0. We
can then take the derivative of J3 with respect to θ :

−
1
2
J ′3 (θ)

=
λ′+ (θ)

2
√
λ+ (θ)

+
λ′− (θ)

2
√
λ− (θ)

, (D13)

=

√
λ+ (θ)λ

′
+ (θ)

2λ+ (θ)
+

√
λ− (θ)λ

′
− (θ)

2λ− (θ)
, (D14)

=

√
λ+ (θ)

(
κ ′ (θ)+

γ ′(θ)

2
√
γ (θ)

)
4λ+ (θ)

+

√
λ− (θ)

(
κ ′ (θ)−

γ ′(θ)

2
√
γ (θ)

)
4λ− (θ)

, (D15)

=

√
λ+(θ)√
γ (θ)

(
κ ′ (θ)

√
γ (θ)+ 1

2γ
′ (θ)

)
4λ+ (θ)

+

√
λ−(θ)√
γ (θ)

(
κ ′ (θ)

√
γ (θ)− 1

2γ
′ (θ)

)
4λ− (θ)

, (D16)

=

√
λ+(θ)√
γ (θ)

(
κ ′ (θ)

√
γ (θ)+ κ ′ (θ)κ (θ)

)
4λ+ (θ)

+

√
λ−(θ)√
γ (θ)

(
κ ′ (θ)

√
γ (θ)− κ ′ (θ)κ (θ)

)
4λ− (θ)

, (D17)

=

2
√
λ+(θ)√
γ (θ)

κ ′ (θ)λ+ (θ)

4λ+ (θ)
−

2
√
λ−(θ)√
γ (θ)

κ ′ (θ)λ− (θ)

4λ− (θ)
, (D18)

= κ ′ (θ) ·

√
λ+ (θ)−

√
λ− (θ)

2
√
γ (θ)

, (D19)

= (β −α)cos θ̃ sin θ̃ ·
√
λ+ (θ)−

√
λ− (θ)

√
γ (θ)

, (D20)

which is the product of three terms: β −α, cos θ̃ sin θ̃ ,
and

(√
λ+ (θ)−

√
λ− (θ)

)
/
√
γ (θ). The third term is always

strictly positive because γ (θ) > 0. The first term is always
strictly negative because we have assumed that σ1,A < σ2,A
and σ1,B < σ2,B . Hence we only need to consider the second
term cos θ̃ sin θ̃ to conclude that the minima of J3 are met for
θ̃ = 0 (modulo π ) or equivalently θ = θA− θB (modulo π ).
In this case, M(θ)=1A1B and J3 (θ)=−2Tr(1A1B),
which yields the correct formula for wF , Eq. (26). Finally,
note that this formula is also valid in the case where at least
one of A or B is isotropic.
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