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Abstract. Our global understanding of clouds and aerosols
relies on the remote sensing of their optical, microphysical,
and macrophysical properties using, in part, scattered solar
radiation. These retrievals assume that clouds and aerosols
form plane-parallel, homogeneous layers and utilize 1D ra-
diative transfer (RT) models, limiting the detail that can be
retrieved about the 3D variability in cloud and aerosol fields
and inducing biases in the retrieved properties for highly het-
erogeneous structures such as cumulus clouds and smoke
plumes. To overcome these limitations, we introduce and val-
idate an algorithm for retrieving the 3D optical or microphys-
ical properties of atmospheric particles using multi-angle,
multi-pixel radiances and a 3D RT model. The retrieval soft-
ware, which we have made publicly available, is called At-
mospheric Tomography with 3D Radiative Transfer (AT3D).
It uses an iterative, local optimization technique to solve a
generalized least squares problem and thereby find a best-
fitting atmospheric state. The iterative retrieval uses a fast,
approximate Jacobian calculation, which we have extended
from Levis et al. (2020) to accommodate open and periodic
horizontal boundary conditions (BCs) and an improved treat-
ment of non-black surfaces.

We validated the accuracy of the approximate Jacobian
calculation for derivatives with respect to both the 3D volume
extinction coefficient and the parameters controlling the open
horizontal boundary conditions across media with a range
of optical depths and single-scattering properties and find

that it is highly accurate for a majority of cloud and aerosol
fields over oceanic surfaces. Relative root mean square er-
rors in the approximate Jacobian for a 3D volume extinction
coefficient in media with cloud-like single-scattering prop-
erties increase from 2 % to 12 % as the maximum optical
depths (MODs) of the medium increase from 0.2 to 100.0
over surfaces with Lambertian albedos < 0.2. Over surfaces
with albedos of 0.7, these errors increase to 20 %. Errors in
the approximate Jacobian for the optimization of open hor-
izontal boundary conditions exceed 50 %, unless the plane-
parallel media providing the boundary conditions are opti-
cally very thin (∼ 0.1).

We use the theory of linear inverse RT to provide insight
into the physical processes that control the cloud tomography
problem and identify its limitations, supported by numerical
experiments. We show that the Jacobian matrix becomes in-
creasing ill-posed as the optical size of the medium increases
and the forward-scattering peak of the phase function de-
creases. This suggests that tomographic retrievals of clouds
will become increasingly difficult as clouds become optically
thicker. Retrievals of asymptotically thick clouds will likely
require other sources of information to be successful.

In Loveridge et al. (2023a; hereafter Part 2), we examine
how the accuracy of the retrieved 3D volume extinction co-
efficient varies as the optical size of the target medium in-
creases using synthetic data. We do this to explore how the
increasing error in the approximate Jacobian and the increas-
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ingly ill-posed nature of the inversion in the optically thick
limit affect the retrieval. We also assess the accuracy of re-
trieved optical depths and compare them to retrievals using
1D radiative transfer.

1 Introduction

Cloud and aerosol properties retrieved from the inversion
of remote sensing measurements (Stephens and Kummerow,
2007; Dubovik et al., 2011) are a critical source of in-
formation for understanding and testing the closure of the
Earth’s radiation budget (Raschke et al., 2005; McFarlane
et al., 2016; Zhou et al., 2016), validating dynamical atmo-
spheric models of varying complexity (Hack et al., 2006;
Endo et al., 2015; Bodas-Salcedo et al., 2016), and de-
veloping parameterizations in large-scale models (Hill et
al., 2012; Xie and Zhang, 2015). Cloud radiative feedbacks
and aerosol–cloud interactions (ACIs; Bellouin et al., 2020),
particularly in cumuliform clouds (Sherwood et al., 2014;
Vial et al., 2018), are key sources of uncertainty in projec-
tions of future climate (Sherwood et al., 2020) and the fore-
casting of weather (Van Weverberg et al., 2018) and solar
energy (Jimenez et al., 2016).

As dynamical modeling of the atmosphere and climate be-
comes more and more complex, there is a greater demand
for high-quality observations to constrain the uncertain pro-
cesses within the models and inform model development
(Morrison et al., 2020). New observational techniques are re-
quired that can provide robust statistics of small-scale, spa-
tially resolved cloud and aerosol microphysical parameters
so that their controlling processes can be constrained in both
high- and low-resolution modeling. We describe a novel re-
mote sensing retrieval technique with the potential to meet
these needs by providing 3D instantaneous snapshots of vol-
umetric properties of the atmosphere, thus making complete
use of the resolution of the sensors.

Scattered solar radiation is one of the best candidates for
providing high-resolution constraints on aerosol and cloud
microphysics, due to its well-documented sensitivity to the
properties of particles in those size ranges (Dubovik et
al., 2002; King and Vaughan, 2012; Dzambo et al., 2021;
Ewald et al., 2021) and our ability to design narrowband sen-
sors that can cost-effectively reach a high spatial resolution
(tens of meters) from space. Typical cloud and aerosol re-
mote sensing retrieval algorithms do not utilize realistic 3D
radiative transfer (RT) models to interpret measured scat-
tered solar radiation (e.g., Dubovik et al., 2011; Grosvenor et
al., 2018). Instead, they make use of two key simplifying as-
sumptions when interpreting radiance measurements. First,
they assume that the media (e.g., clouds) form horizontally
homogeneous, plane-parallel layers within the field of view
of each radiance measurement. Second, they assume that
there is no radiative interaction between the regions within

the field of view of each radiance measurement in what is
known as the independent pixel approximation (IPA).

These assumptions dramatically reduce the computational
complexity of the retrieval process, but they also compromise
retrieval accuracy (Marshak et al., 2006; Zhang et al., 2012;
Kato and Marshak, 2009), leading to errors in, for example,
cloud optical depth that can have domain biases of ∼ 35 %
in cumuliform clouds (Seethala, 2012). These errors con-
tribute to the large inter-instrument inconsistencies in re-
trievals (Di Girolamo et al., 2010; Lebsock and Su, 2014;
Ahn et al., 2018; Fu et al., 2019; Painemal et al., 2021). These
errors arise because clouds and aerosols can have strong hori-
zontal gradients in their physical and optical properties (Mar-
shak et al., 1997; Gerber et al., 2001; Zhao and Di Giro-
lamo, 2007; Kahn et al., 2007), which breaks the assumption
of the IPA and necessitates the use of 3D RT to accurately
model the transport of radiation (Davies, 1978; Cahalan et
al., 2005).

These errors distort into our climate records and also affect
retrievals made using a combination of passive and active
sensors (Saito et al., 2019). The retrieval assumptions also
limit the amount of detail about the cloud and aerosol fields
that can be retrieved using passive sensing as, once the IPA
is imposed, there is no way to identify the vertical geomet-
ric variability in cloud microphysics within a layer without
active instruments, which in the case of cloud radar requires
strong assumptions about the shape of the particle size dis-
tribution. An algorithmic advance in operational retrievals is
required to better extract the information about 3D variabil-
ity in cloud and aerosol microphysics contained within high-
resolution solar radiance measurements to provide the novel
observations required for advancing cloud and aerosol sci-
ence.

Many algorithms have been demonstrated that utilize 3D
RT to improve remote sensing retrievals of cloud properties
but have been limited to using radiometric information from
a single mono-angle imager at a time (Marshak et al., 1998a;
Marchand and Ackerman, 2004; Zinner et al., 2006; Cornet
and Davies, 2008) or a single zenith radiance measurement
(Fielding et al., 2014). This restriction limits the amount of
information obtainable from the radiance field, so that only
column integrals or horizontal averages of cloud properties
can be inferred, rather than their three-dimensional variabil-
ity. As a result, several of these methods have relied on exter-
nal sources of information, such as scanning radar or in situ
data (Marchand and Ackerman, 2004; Fielding et al., 2014),
or strong assumptions that are not generally applicable (Mar-
shak et al., 1998a; Zinner et al., 2006; Cornet and Davies,
2008). It is clear that a new source of information is required
to relax the strong assumptions required by these retrieval al-
gorithms to enable the retrieval of the 3D spatial structure of
cloud and aerosol microphysics.

Multi-angle imagery is a promising source of information
to constrain the 3D structure of the atmosphere. Inverse prob-
lems, where multi-angle boundary measurements are used to
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infer internal structure, are commonly known as tomography.
In atmospheric science, tomographic methods have been ap-
plied to retrieve cloud properties using non-scattering, multi-
angle microwave emission (Huang et al., 2008, 2010); water
vapor, using microwave attenuation (Jiang et al., 2022); and
aerosol, using scattering measurements (Garay et al., 2016;
Zawada et al., 2017, 2018). Multi-angle imaging has been
utilized to systematically retrieve the geometric properties
of clouds (Muller et al., 2002, 2007) and aerosols (Kahn et
al., 2007) using stereoscopic methods.

In the field of medical imaging, multiple detectors are rou-
tinely utilized to retrieve spatially varying optical properties
of the human body from multiply scattered near-infrared ra-
diation in a process known as diffuse optical tomography
(Arridge and Schotland, 2009; Bal, 2009). Taking this as in-
spiration, a similar tomographic approach has been proposed
and formalized for the retrieval of spatially varying atmo-
spheric constituents from multi-angle imagery of multiply
scattered solar radiation in the atmospheric context (Mar-
tin et al., 2014). These methods must make use of 3D RT
models, as 1D RT models are unable to reproduce the angu-
lar variations in the observed radiation field (Di Girolamo
et al., 2010). Tomographic methods have the potential to
provide remote sensing retrievals of volumetric cloud and
aerosol properties, such as the 3D distribution of volume ex-
tinction coefficient, and possibly even microphysical quanti-
ties.

Tomography problems are commonly solved using itera-
tive, physics-based optimization procedures similar to state-
of-the-art methods in aerosol remote sensing (Xu et al., 2019;
Gao et al., 2021). They can also be solved using statisti-
cal methods (Zhang and Zhang, 2019; Ronen et al., 2022)
or heuristic methods, which have been explored recently in
the atmospheric science context (Alexandrov et al., 2021).
Tomographic methods in diffuse optical tomography typi-
cally make use of computationally efficient forward-adjoint
methods to linearize a 3D RT model and calculate the cost
function gradients (Arridge and Schotland, 2009). Similar
methods have been employed in plane-parallel retrievals of
aerosol properties (Hasekamp and Landgraf, 2005). So far,
the tomographic retrievals utilizing forward-adjoint methods
have only been demonstrated in atmospheric sciences in 2D
(Martin and Hasekamp, 2018).

Similar tools have been developed elsewhere. The Monte
Carlo 3D RT equation (RTE) solver McArtim (Deutschmann
et al., 2011) is specialized for radiance derivative calculations
using forward-adjoint methods but uses a backward Monte
Carlo technique, similar to other work (Loeub et al., 2020),
with importance sampling, which will not scale well to the
multi-angle imagery required for tomography. Other Monte
Carlo techniques for derivative calculations typically use for-
ward methods with path recycling (Langmore et al., 2013;
Yao et al., 2018; Czerninski and Schechner, 2021); how-
ever, most implementations of such models lack the vari-
ance reduction methods required for the efficient modeling

of radiances with sharply peaked phase functions (Buras and
Mayer, 2011; Wang et al., 2017) and have not been bench-
marked on atmospheric problems.

Of the available 3D RTE solvers that are benchmarked on
atmospheric scattering problems (Cahalan et al., 2005), the
deterministic (i.e., explicit) spherical harmonics discrete or-
dinates method (SHDOM; Evans, 1998) is the most compu-
tationally efficient for tomography. This is due to the need
to simulate many radiometric quantities. SHDOM is almost
2 orders of magnitude more computationally efficient than
Monte Carlo on CPU for multi-angle imagery (Pincus and
Evans, 2009). Monte Carlo solvers specialized for 3D at-
mospheric scattering problems have been slow to adopt a
GPU-based computation, which is anticipated to give a re-
duction in the wall time of between 1 and 2 orders of mag-
nitude (Efremenko et al., 2014; Ramon et al., 2019; Wang
et al., 2021; Lee et al., 2022), thereby making Monte Carlo
competitive against SHDOM in the future.

At the time of writing, there is no publicly available ad-
joint to a deterministic (i.e., explicit) 3D RTE solver appro-
priate to the atmospheric context like SHDOM. A forward-
adjoint linearization of the SHDOM method has been devel-
oped (Doicu and Efremenko, 2019), and an SHDOM solver
has been extended so that general adjoints appropriate for
tomography can be computed (Doicu et al., 2022b). This
forward-adjoint linearization, following the theory of Mar-
tin et al. (2014), is also technically able to compute the Ja-
cobian matrix of partial derivatives of the forward model.
However, this is computationally inefficient for tomography
problems where the number of measurements is very large
(Martin et al., 2014). Unfortunately, the software implement-
ing the forward-adjoint linearization of SHDOM is not pub-
licly available, which means we are unable to build upon
these advances. Fortunately, a computationally efficient ap-
proximation to the adjoint of SHDOM has been developed
and used to demonstrate the success of fully 3D retrievals of
the volume extinction coefficient of clouds using multi-angle,
mono-spectral imagery in a first for atmospheric remote sens-
ing (Levis et al., 2015). This method of approximate lin-
earization has been extended to utilize multi-spectral (Levis
et al., 2017) and polarized (Levis et al., 2020) observations.
This approximate linearization opens up computationally ef-
ficient access to an approximate Jacobian matrix. However,
so far, only gradient-based optimization methods have been
used, and it is unclear how robust or efficient the approxi-
mate linearization will be when combined with optimization
methods which make direct use of the Jacobian matrix. In-
terestingly, the forward-adjoint method of cloud tomography
using SHDOM suffered from slow convergence, and the au-
thors only found success in their synthetic tomographic re-
trievals when utilizing the approximate linearization of Levis
et al. (2020) and Doicu et al. (2022a) in combination with
their adjoint method (Doicu et al., 2022b).

The method of Levis et al. (2020) is the most mature and
successful remote sensing retrieval using solar radiances and
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3D RT available in the atmospheric sciences. The method is
still restricted in that its implementation is limited to isolated
3D domains and Lambertian surfaces, and the approximate
linearization is a poor approximation for non-black surfaces.
Despite these limitations, the method’s maturity makes it the
ideal starting point for developing retrievals of 3D volumetric
microphysical parameters at similar resolutions to those used
in large-eddy simulations. The future spaceborne CloudCT
mission (Schilling et al., 2019) will provide the required si-
multaneous multi-angle imagery for tomographic retrievals.
Existing airborne instruments such as AirMSPI (Airborne
Multi-angle Spectro Polarimetric Imager; Diner et al., 2013)
and AirHARP (Airborne Hyper-Angular Rainbow Polarime-
ter; McBride et al., 2020) and the space-borne MISR (Multi-
angle Imaging SpectroRadiometer) and MAIA (Multi-Angle
Imager for Aerosols) also have the potential for tomographic
retrievals, though they must additionally deal with the effects
of cloud evolution (Ronen et al., 2021), as they do not acquire
their observations simultaneously. The availability of these
measurements makes the continued development of tomo-
graphic algorithms especially timely. Retrievals of this sort
have the potential to provide the robust statistics of small-
scale cloud and aerosol properties required for constraining
cloud processes (Morrison et al., 2020), especially when ex-
tended to include information from other instruments such as
cloud radar.

In this two-part series of papers, we present and validate
an extension to the retrieval framework of Levis et al. (2020),
which we have implemented and made publicly available in
the software package Atmospheric Tomography with 3D Ra-
diative Transfer (AT3D; Loveridge et al., 2022). This paper,
which is Part 1, is devoted to the description of the retrieval
methodology and the underlying theory of the retrieval, along
with supporting numerical evidence. Part 2 of this study is
devoted to tomographic retrievals on synthetic data to vali-
date the method.

In Sect. 2, we describe the retrieval software AT3D, which
is quite general in that it is designed for retrieving the 3D mi-
crophysical properties of external mixtures of atmospheric
particles using multi-angle, multi-pixel, and possibly multi-
spectral polarized radiances. In Sect. 3, we describe exten-
sions to the method of Levis et al. (2020) to include an im-
proved treatment of non-black surfaces and the retrieval of a
plane-parallel medium in which the 3D domain is embedded,
thereby improving the realism of the method. The Appendix
documents the discrete implementation of the algorithm and
model verification.

Despite the successful demonstrations of the tomographic
retrieval (Levis et al., 2015, 2017; Martin and Hasekamp,
2018; Levis et al., 2020; Doicu et al., 2022a, b), it is still un-
clear how the effectiveness of tomographic techniques will
vary with scattering regime. Previous studies have shown
that success is not uniform, with poorer performance in opti-
cally thick clouds (Levis et al., 2015). It is not clear whether
this is a result of a limitation in the approximate lineariza-

tion method or a physical limitation. In Sect. 4, we present
the theory of linear inverse transport problems and use it to
explain the limitations of tomography in general, to provide
insight into the physical processes that control the cloud to-
mography problem. This theory is drawn from both the wider
literature on inverse problems (Bal and Jollivet, 2008; Bal,
2009; Chen et al., 2018; Zhao and Zhong, 2019) and the rel-
evant literature in the atmospheric sciences that have studied
the loss of information about spatial detail of cloud properties
in multi-pixel radiances due to multiple scattering (Marshak
et al., 1995, 1998b; Davis et al., 1997; Forster et al., 2020).

In Sect. 5, we perform a detailed quantitative validation
of the approximate linearization to SHDOM that is utilized
in AT3D, following Levis et al. (2020). Despite the success
of the method in several test cases in Levis et al. (2015,
2017, 2020), no validation of the approximation itself has
yet been performed, which has made it as yet unclear how
the method will generalize to the wider variety of scatter-
ing regimes present in the cloudy atmosphere. We present an
alternative derivation of the approximation that places it in
the context of the forward-adjoint formalism developed by
Martin et al. (2014). We can then explain the success of the
approximate method using the theory presented in Sect. 4.
In Sect. 6, we briefly quantitatively contrast stratiform and
cumulus cloud geometries, in terms of the well-posedness of
the tomography problem from a linear perspective, using the
approximate Jacobian. We summarize our results in Sect. 7.
In Part 2 of this study, we explore how these issues affect the
fully nonlinear retrieval problem and demonstrate the effec-
tiveness of the method described here.

2 Atmospheric Tomography with 3D Radiative
Transfer (AT3D)

Atmospheric Tomography with 3D Radiative Transfer
(AT3D) is a software package designed to perform tomo-
graphic retrievals of atmospheric properties. It poses the in-
verse problem as a nonlinear, generalized least squares prob-
lem that is solved using iterative local optimization tech-
niques. The solution procedure is physics based and uses the
3D RT model SHDOM (Evans, 1998) as its forward model to
connect retrieved quantities to measured radiance. SHDOM
is an explicit solver of the polarized 3D RTE that is well es-
tablished in atmospheric science. During the intercomparison
of 3D radiative transfer codes (I3RC; Cahalan et al., 2005),
SHDOM was well within the consensus results. This is also
true of intercomparisons of polarized RT (Emde et al., 2015,
2018).

In brief, SHDOM solves the integral form of the
monochromatic vector RTE on a Cartesian grid using a fixed-
point iteration scheme for collimated solar or thermal emis-
sion sources of radiation. A spherical harmonic expansion
representation of the radiation field is used for computing
the SOURCE function of the RTE, while a discrete ordinate
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representation is used for the streaming of radiation. At each
iteration, the SOURCE function is transformed to discrete
ordinates, new radiances are computed at each grid point us-
ing a short characteristic scheme, and a new spherical har-
monic representation of the SOURCE function is computed.
An adaptive spatial grid is employed so that grid cells with
a variation in the SOURCE function larger than a threshold
are split in half, generating new grid points. The number of
spherical harmonics kept at each grid point is also adaptively
truncated. SHDOM uses delta-M scaling (Wiscombe, 1977)
and the truncated multiple-scattering (TMS) approximation
(Nakajima and Tanaka, 1988) to treat problems involving
highly anisotropic scattering. The truncation fraction used in
the delta-M scaling of the optical properties is set by the an-
gular resolution of the SHDOM solver and the Legendre ex-
pansion of the phase function.

AT3D builds on the software implemented by Levis et
al. (2020), which itself builds upon the work of Evans (1998)
in the publicly available Fortran implementation of SHDOM.
AT3D is also a Python wrapper for the SHDOM RTE solver
developed using the F2PY (Fortran to Python interface gen-
erator) tool (Peterson, 2009); this enables easy interfacing
with external optimization libraries from SciPy (Virtanen et
al., 2020). The use of Python also enables interactivity, even
in high-performance-computing (HPC) environments, which
accelerates data exploration and code prototyping. The key
features of the SHDOM software are preserved in AT3D,
with the only notable exception being that AT3D does not yet
implement the message-passing interface (MPI)-based paral-
lelization of SHDOM, so it is not yet able to efficiently utilize
HPC resources to solve large-scale forward or inverse prob-
lems.

AT3D’s strength is as a provider of a physics-based, and
therefore flexible, method for solving the inverse problem
of atmospheric tomography. It is therefore perfectly suited
for performing sensitivity tests to changes in the measuring
instrument’s configuration (e.g., number of view angles and
sensor resolution). AT3D supports the retrieval of multiple
external mixtures of 3D distributions of scattering particles
with solar and thermal sources, using arbitrary combinations
of possibly polarized, multi-wavelength monochromatic ra-
diances. Each unknown can be retrieved on a 3D grid or on
a user-specified simplified spatial basis (e.g., column aver-
ages). AT3D does not yet support non-simultaneous mea-
surements and the corresponding retrieval of a time-varying
cloud (Ronen et al., 2021). Flexibility with the configuration
of any retrieval problem is supported using object-oriented
and functional programming in the Python wrapper. Cur-
rently, AT3D includes just the Rayleigh and Mie scattering
particle models for homogeneous spheres distributed with
SHDOM (https://nit.coloradolinux.com/shdom.html, last ac-
cess: 20 March 2023; Evans, 1998). The parameterization
of the size distribution and accompanying selection of un-
knowns (e.g., droplet number concentration or liquid water
content) for retrievals is flexible.

We note that the software is far from a black-box tool and
operates more as a library of high-level objects and functions
that can be combined in short Python scripts according to
user specifications. This level of flexibility is good for a re-
search tool that is under active development, though it can
lead to a steeper learning curve than in a well-defined exe-
cutable with a fixed set of options common that is in other RT
software packages. The code is well documented, and several
tutorials are included with the code to mitigate this. Users or
potential developers are welcome to contact the correspond-
ing author to discuss their potential use case.

Just like the SHDOM software, AT3D is not a complete
RT package and does not include detailed spectroscopic or
particle scattering data that can be found elsewhere (Emde
et al., 2016; Gordon et al., 2022; Saito et al., 2021). Inter-
facing with these packages is relatively simple, as the data
are represented in AT3D using the xarray package (Hoyer
and Hamman, 2017), which supports a variety of file formats
such as NetCDF.

AT3D supports all surface bidirectional reflectance distri-
bution functions (BRDFs) available in SHDOM but does not
yet include linearization with respect to the parameters de-
scribing surface BRDFs. AT3D supports the inversion of op-
tical or microphysical properties with solar, thermal, or com-
bined sources. This is a helpful extension over Levis et al.
(2020) for the far shortwave infrared (SWIR) and infrared
(IR). However, linearization with respect to atmospheric tem-
perature is not yet supported. These aspects are under de-
velopment. The radiance calculations in AT3D have been
generalized from SHDOM to support more realistic sensor
geometries and sensor spatial response functions. However,
as noted above, observables are currently monochromatic,
and some small extension to the software would be required
to accommodate observables requiring multiple monochro-
matic RTE solutions during inversion. The representation of
phase functions within the SHDOM solver has been modified
so that the SHDOM model is differentiable (Appendix B).
The package also includes several useful tools, including a
stochastic generator for making synthetic clouds (described
in Part 2), a space-carving algorithm (Lee et al., 2018) for
performing volume cloud masking for retrieval initialization
(Sect. 5.3), and several basic regularization schemes.

While many practical extensions have been made to the re-
trieval software since Levis et al. (2020), including a compre-
hensive verification (Appendix C and E), which is critical to
establish the veracity of the scientific results (Kanewala and
Bieman, 2014), the novel elements of the retrieval software
are the extensions of the linearization to non-homogeneous
surfaces and open boundary conditions (BCs), which are
documented in the following section.
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3 Retrieval methodology

We now present an overview of the iterative retrieval pro-
cess. There are many mathematical terms introduced in this
section. A glossary is provided in Appendix A for reference,
and a flowchart of the retrieval process is shown in Fig. 1. The
solution of the tomography problem involves the selection of
a state vector (a) that parameterizes a discrete representation
of the atmospheric optical or physical properties and best fits
the available measurements (y) and any prior knowledge of
the unknown state. The total size of the state vector (a) de-
pends on the domain size and discretization scheme, but even
for the smallest problems with a 3D gridded representation, it
will typically range upwards of 10 000. We note that the state
vector does not necessarily need to consist of physical vari-
ables and may instead consist of, for example, linear combi-
nations of physical variables. This is a generalization that is
preferable to ensure the associated optimization problem is
well scaled (Nocedal and Wright, 2006).

The measurement vector (y) contains multi-angle, multi-
pixel radiances, which may also be multi-spectral and polar-
ized. The number of observations will also typically range
above 10 000 and exceed the dimension of the state vector
to avoid ill-posedness. The forward model F (a) provides the
mapping from the state vector to the measurement space by
producing synthetic measurements equivalent to y, based on
the unknown state vector (a) and any fixed ancillary data.
The forward model consists of multiple components, includ-
ing the mapping from the state vector (a) to the 3D optical
properties at all required wavelengths; the solution of the re-
quired 3D RT problems; and, finally, the sampling of the ra-
diance field at the required positions, angles, wavelengths,
and polarization states to produce synthetic measurements.
We describe each of these components of the forward model
in the following subsection.

We select a best-fitting state by minimizing a scalar cost
function. The scalar cost function χ2 is chosen to penal-
ize the misfit from the measurements in a generalized, least
squares sense.

χ2
= (y−F (a))TS−1

ε (y−F (a))+R(a) , (1)

where the error covariance matrix of the residual between the
measurements (y) and the forward model F (a) is denoted
by Sε and accounts for both measurement uncertainty and
forward-model uncertainty. AT3D currently supports a block
diagonal Sε , where error correlations are allowed between
different Stokes components measured at each pixel, which
supports the inclusion of certain types of forward-modeling
error and instrumental noise (van Harten et al., 2018). It does
not yet support systematic error correlations between pixels
due to, for example, uncertainties in the flat-fielding oper-
ation, camera-to-camera intercalibration, band-to-band cali-
bration error, or absolute calibration error. R(a) is a differen-
tiable regularization term that reflects prior knowledge about
the structure of the unknown state. Note that there is no re-

quirement here that the regularization term takes the form of
an a priori distribution. As such, the formulation in AT3D
is more general than the optimal estimation frameworks uti-
lized widely in atmospheric remote sensing (Sourdeval et
al., 2013; Wang et al., 2016). We note that the cost function
in Eq. (1) can take modified forms if transforms (e.g., loga-
rithmic) are used to stabilize (pre-condition) the optimization
process (Chance et al., 1997).

The solution to the inverse problem is given by the mini-
mizer of the cost function, subject to the box constraints de-
scribed by vectors of lower bounds (l) and upper bounds (u)
on each element of the state vector. Formally,

ã = argmin
a

χ2, subject to l ≤ a ≤ u . (2)

For example, these bounds can be used to ensure positivity
of the liquid water content or volume extinction coefficient.
This optimization problem can be solved efficiently, using a
local minimization technique, such as the limited-memory
Broyden–Fletcher–Goldfarb–Shanno method for bounded
minimization (L-BFGS-B; Byrd et al., 1995), when the cost
function is differentiable. The local minimization proceeds
through the selection of an initial guess a0 and iteratively up-
dating the state through repeated evaluation of the cost func-
tion and its gradient. At the mth iteration, we then have the
following:

am+1 = am+1am. (3)

The retrieval method requires the selection of an initial guess,
which can have a significant influence on the optimization. In
Part 2 of this study, we describe some of the ways that initial
guesses can be generated in AT3D.

The L-BFGS-B method is a quasi-Newton method which
selects the update to the state vector (1am) by first select-
ing a search direction through the minimization of an ap-
proximate, local, quadratic model of the cost function. The
quadratic model uses an approximation to the Hessian of the
cost function, which is formed by analyzing how the cost
function gradient changes over the most recent M iterations.
M is a hyperparameter of the optimization. In essence, the
approximation to the Hessian of the cost function is formed
from the finite differencing of successive gradient vectors.
As such, it only reflects curvature information along the di-
rections that the optimization trajectory is currently explor-
ing. After the selection of a search direction, an inexact line
search, obeying the Wolfe–Armijo conditions, which ensure
stability and convergence, is then used to select the final up-
date 1am along the search direction. The implementation
of L-BFGS-B from the SciPy library is used (Virtanen et
al., 2020). The L-BFGS-B algorithm has a better conver-
gence rate than simple gradient descent but still only requires
the evaluation of the cost function and its gradient. The com-
putational cost of the update is modest once the gradient vec-
tor is computed. The storage requirement of L-BFGS-B is
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Figure 1. A flowchart depicting the overall iterative retrieval methodology of AT3D.

also modest and is limited to storing the state updates and
gradient changes over the past M iterations, so it scales lin-
early with the size of the state vector. This makes the method
appropriate for the large-scale optimization problem of cloud
tomography.

The expression for the gradient of the data fit term required
by the L-BFGS-B algorithm is as follows:

∂χ2

∂a
= 2(y−F (a))TS−1

ε K, (4)

where K is the Jacobian matrix containing the partial deriva-
tives of the ith output of the forward model with respect to
the j th component of the state vector. This is determined as
follows:

Kij =
∂Fi(a)

∂aj
. (5)

It is in our interest to understand the information content of
our measurements and the factors that control the conver-
gence rate of the retrieval so that these can be maximized.
The linear information content in the measurements in the
vicinity of a cost function minimum can be determined by us-
ing the Fisher information matrix, which, in the case of Gaus-
sian errors, takes the simple form KTS−1

ε K. The singular-
value spectrum of this matrix describes the magnitude of re-
trieval uncertainties across different directions in state space,
and this distribution is largely controlled by the singular-
value spectrum of K. Strong off-diagonal error covariances in

the measurements can also affect the spectrum of the Fisher
information matrix through S−1

ε , though multi-angle imagers
typically have block-diagonal error covariances that limit this
effect. The largest physical values of the singular-value spec-
trum of K are physically bounded (Chen et al., 2018), and a
linearization of RT tends to have rapidly (i.e., exponentially)
decaying singular values (Culver et al., 2001). As such, we
summarize the singular-value spectrum using just the condi-
tion number of the Jacobian matrix κ(K), which is the ratio
of its largest (slargest) and smallest (ssmallest) singular values.

κ(K)=
slargest

ssmallest
(6)

The L-BFGS-B method can suffer in systems where the con-
dition number becomes large, where poor accuracy and slow
convergence can occur (Zhu et al., 1997), even for quadratic
cost functions. A slow convergence rate is particularly trou-
bling, as it will determine the computational feasibility of
performing cloud tomography. In Sect. 4, we relate the struc-
ture of the Jacobian matrix, specifically the condition num-
ber, to the properties of the medium through the principles of
RT theory and support these principles with numerical sim-
ulations. We then examine the ability of the approximate Ja-
cobian to accurately represent the true Jacobian matrix and
to correctly capture the information content of the measure-
ments about the state vector. Before presenting these results,
we must first introduce the formulation of the forward model
and the exact calculation of the Jacobian matrix.
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3.1 Forward-model description

We now describe the formulation of the forward model and
calculation of its Jacobian matrix. The theory for such calcu-
lations has already been presented for general 3D problems
(Martin et al., 2014) and also in the specific context of the
SHDOM model with periodic BCs (Doicu and Efremenko,
2019). In the work of Levis et al. (2015, 2017, 2020), open
BCs were used without any incoming radiance at the do-
main edges (i.e., vacuum BCs). Neither of these configura-
tions fully represents the realistic case of retrieving a hetero-
geneous 3D domain embedded within a horizontally infinite
medium such as might be performed when we retrieve a field
of cumulus clouds embedded in a cloud-free atmosphere. In
this section, we describe a forward model for this scenario
and its linearization, focusing on the specific context of the
SHDOM solver. We describe the linearization of the forward
model with respect to the parameters that control both the 3D
domain and the embedding horizontally infinite medium, as
implemented in AT3D.

Note that the principles of the forward model itself re-
main unchanged from the implementation of open BCs in
the original SHDOM code. In SHDOM, when open horizon-
tal BCs are selected, incoming radiances may be prescribed
at the horizontal boundaries of the primary domain of 3D
RT through the solution of auxiliary RT problems that de-
scribe the radiance field in the embedding medium. These
auxiliary RT problems are 2D and 1D, describing the plane-
parallel embedding medium. The coupling of the BCs be-
tween the RT problems, and the fact that a sampled radiance
measurement contains contributions from both the primary
3D RTE solution and also the auxiliary RTE problems, intro-
duces some complexity in the mathematical formulation of
this model and its linearization. Our description below builds
upon the formalism presented by Martin et al. (2014) and ap-
plies it to describe existing behavior of the SHDOM model.
This description includes features that were not described in
Evans (1998), such as the influence of the open BCs on the
calculation of the radiance. This detailed description is nec-
essary so that we can differentiate between the exact calcu-
lation of the Jacobian matrix and the approximations used in
AT3D in Sect. 3.2 and 3.3. For a more pragmatic descrip-
tion of the essence of the approximate Jacobian calculation
that does not include the treatment of the boundary condi-
tions presented here, readers may refer to Levis et al. (2020).
Our treatment focuses on the continuous problem rather than
the details of numerical implementation, such as the delta-
M scaling of the optical properties, except where conceptu-
ally necessary. Pertinent details on the numerical implemen-
tation related to the delta-M scaling and TMS correction in
SHDOM can be found elsewhere (Evans, 1998; Doicu and
Efremenko, 2019) and in Appendix B and D. Section 3.1.1
presents the definitions and geometry of the model. Sec-
tion 3.1.2 describes the RT solution procedure. Section 3.1.3
describes the radiance calculation.

3.1.1 Problem setting

We begin by first defining the spatial domain of interest in
which the monochromatic vector 3D RTE will be solved.
The SHDOM model adopts a Cartesian geometry, and the
physical domain D ⊂ R3 is the horizontally infinite slab of
thickness Lz, where z ∈

[
0,Lz

]
. This domain is broken up

into nine cuboids, and a different RT problem is solved in
each. A top-down view of the arrangement of the domains
is shown in Fig. 2. The primary physical domain of 3D RT
is the cuboid D1, described by the position vector r , with
smooth boundary ∂D1.

D1 =
{
r ∈ R3

: 0< x < Lx,0< y < Ly,0< z < Lz
}

(7)

The auxiliary RTE domains, D2 through D9, are around this
primary domain, which we may consider to also be cuboids,
but they have horizontal boundaries at some very large dis-
tance from the primary domain. We will denote the position
of these horizontal boundaries as being at infinity; for ex-
ample, x =−∞. Practically speaking, the absolute extent of
these auxiliary cuboids only needs to be greater than the po-
sition of any considered sensor. The absolute size only comes
into play during the calculation of radiances in SHDOM and
not the solution of the RTE itself, as will soon become appar-
ent. In our description, we only consider a subset of the aux-
iliary domains and their coupling to the primary domain, as
the rest can be treated similarly, following symmetry.D2 and
D4 are examples of corner auxiliary domains, which share
1D edges with the primary domain (D1), while D3 is an ex-
ample of a side auxiliary domain, which shares a horizontal
plane with the primary domain (D1). Specifically,

D2 =
{
r ∈ R3

: −∞< x < 0,y > Ly,0< z < Lz
}
, (8)

D3 =
{
r ∈ R3

: −∞< x < 0,0< y < Ly,0< z < Lz
}
, (9)

D4 =
{
r ∈ R3

: −∞< x < 0,y < 0,0< z < Lz
}
. (10)

Optical properties are defined at all positions in D and
are allowed to vary in 3D within D1. Within the auxiliary
domains, the optical properties are simplified, depending on
whether the auxiliary domain shares a corner (e.g., D2 and
D4) or a horizontal side (e.g., D3) with the primary domain
D1. Optical properties are homogeneous in the x and y di-
rections in the corner domains and are homogeneous in the
direction normal to the boundary of the side domain that is
shared with the primary domain. In the case ofD3, this is the
x direction.

To describe the RT problems and their coupling, we need
to distinguish between the domains and their boundaries, for
which we must define some relevant sets. These definitions
are also illustrated in Fig. 3. The set of directions for the RTE
is the unit sphere S2 scanned by the propagation direction �.
For any domain Dn, if we define the unit outward normal to
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Figure 2. Top-down view of the geometry of the system of RT prob-
lems. D1 denotes the domain of 3D RT. The blue arrows denote the
directions in each domain for which there are periodic horizontal
BCs. The red arrows denote which domains supply incoming radi-
ances at each boundary. For example, the RTE problem solved on
D3 supplies the horizontal radiance BCs to the 3D RTE problem
solved on D1 at the common plane shared between them.

Figure 3. A side view of the nth RT domain illustrating several key
definitions, such as the internal, incoming, and outgoing sets and the
normal vector. Directional quantities are shown in red, while posi-
tional quantities are shown in black. See Eq. (11) and the associated
discussion in the main text for more details.

the boundary of domain Dn as nn(r), then we can define the
incoming 0−n and outgoing sets 0+n on the boundary of the
domain as follows:

0±n =
{
(r,�) ∈ ∂Dn× S2

: ±nn(r) ·�> 0
}
. (11)

These two sets allow the separation of radiance at the bound-
ary of the domain into the sets of directions that are entering
the domain (�−) and those directions where radiance is leav-
ing the domain (�+).

For each domain (n= 1, . . .,9), we solve the monochro-
matic vector RTE for the polarized radiance field (i.e., Stokes
vector) In (r,�)= [I,Q,U,V ]T

n on the internal setDn×S2.
In the following, we omit the domain subscript unless rele-
vant, i.e., when considering the coupling between domains.
The union of the internal set and boundary is written as
Dn×S2

⊕0±n . The RTE can be written, in terms of the trans-

port operator, as follows:

L [I (r,�)]=� ·∇I (r,�)+ I (r,�)σ (r)

−ω(r)σ (r)

∫ 2

S
Z
(
r,�,�′

)
I
(
r,�′

)
d�′, (12)

where σ (r) is the volume extinction coefficient, ω(r) is the
single-scattering albedo, and Z

(
r,�,�′

)
is the phase ma-

trix. The RTE is then simply

L [I (r,�)]= f (r,�) on Dn×S2, (13)

where f (r,�) is the volume source vector. For example,
thermal emission is an isotropic unpolarized volume source
that reads as f (r,�)= (1−ω(r))σ (r)B(r), whereB (r)=
[Bλ(T ),0,0,0]T with Bλ(T ) being the Planck blackbody ra-
diance function. Equation (13) is paired with appropriate
BCs, which constrain the solution through enforced conti-
nuity of the radiance field at the boundary. The BCs of the
primary, side, and corner domains are different, and this in-
troduces significant complexity in the formulation of the for-
ward model. Corner domains (e.g., D2 and D4) have peri-
odic BCs in both the x and y direction, while side domains
(e.g.,D3) have periodic boundaries only in the direction nor-
mal to the boundary of the primary domain. The periodic
boundary conditions in the auxiliary domains ensure that
the RT solution in each auxiliary domain is independent of
the 3D domain so that the system of RTs is solvable. This
approximation neglects multiple-scattering interactions be-
tween the heterogeneous medium (D1) and the auxiliary do-
mains. As a result, open horizontal boundary conditions are
an approximate treatment of the RT solution for a hetero-
geneous medium embedded in a horizontally homogeneous
medium. Features like cloud and surface adjacency effects
cannot be modeled unless the domain of 3D radiative trans-
fer is sufficiently large enough to resolve them. The periodic
boundary conditions can be expressed as follows. In D3, a
side domain, we have the following in the x direction:

I 3 (x =−∞,y,z,�)|0+3
= I 3 (x = 0,y,z,�)|0−3 . (14)

Directions of periodicity in the RT in each domain are de-
noted by the blue arrows in Fig. 2. For the horizontal direc-
tions that do not have periodicity, we have open BCs, with
incoming radiance prescribed by the boundary source vector
g(r,�) and the reflection of outgoing radiance by the reflec-
tion operator R:

I (r,�)|0− −R
[
I (r,�)|0+

]
= g (r,�)|0− on 0− . (15)

The reflection operator R is defined as the integral over the
hemisphere of incoming directions weighted by R

(
r,�,�′

)
,

which is a polarized bidirectional reflectance distribution
function (BRDF), as follows:

R
[
I
(
r,�′

)∣∣
0+

]
(r,�)

=

∫
�+

∣∣n ·�′∣∣R(r,�,�′)I (r,�′)d�′, on 0+ . (16)
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We note that, in the implementation of SHDOM, the BRDF
function R

(
r,�,�′

)
is non-vanishing only on the lower

boundary of all the domains (z= 0). Within SHDOM, the
boundary source vector g(r,�) is also restricted to being
composed of four components. The first three are thermal
emissions from the surface gBOT(r,�), a horizontally homo-
geneous, isotropic emission from the domain top gTOP(r,�),
and a unidirectional collimated source due to solar illumina-
tion, g�(r,�), with intensity F 0 incident on the domain top
as follows:

g�(r,�)= F 0δ (�−�sun)δ (z−Lz) . (17)

The fourth component is the most complex and is only
defined on the horizontal sides, which we will denote by
gSIDE(r,�). This boundary source vector on the sides is the
solution of the neighboring auxiliary RTE problem and thus
represents the incoming light into each domain due to the
embedding medium. Taking the side domainD3 as an exam-
ple, the incoming boundary source at each of the boundaries
shared with corner domains D2 and D4 is simply the outgo-
ing radiance fields in those corner domains:

gSIDE
3

(
x,y = Ly,z,�

)∣∣∣
0−3

= I 2
(
x,y = Ly,z,�

)∣∣
0+2
; (18)

gSIDE
3 (x,y = 0,z,�)

∣∣∣
0−3

= I 4 (x,y = 0,z,�)|0+4 . (19)

Similarly, for the primary domain,D1, the incoming radiance
at all horizontal sides will be prescribed by the four auxiliary,
side RT solutions. For example, for the side shared between
D1 and D3, we have the following:

gSIDE
1 (x = 0,y,z,�)

∣∣∣
0−1

= I 3 (x = 0,y,z,�)|0+3 . (20)

This flow of incoming radiance is denoted by the red arrows
in Fig. 2. We can see that there is a one-way propagation of
radiance from the corner domains to the side domains and
finally to the primary domain. This interaction is one-way
due to the periodic BCs used in the solution of the auxiliary
problems and ensures that the system of RTEs is solvable.

3.1.2 Radiative transfer solutions

With this basic setup, we can now describe the solution pro-
cedure of the system of RTEs. The solution to the RTEs is
the first step in modeling specific instrument observables,
i.e., the radiance at a particular pixel on a sensor. This forms
the essence of the forward model that connects the unknown
state to the measurements in AT3D. First, the corner RTEs
must be solved to provide BCs to the side problems, and then
these side problems must be solved to provide the BCs for the
primary 3D problem. At this point, we go into some detail be-
low about the solution procedure, as the concepts introduced
here are necessary for describing the approximate Jacobian
calculation that is actually used in AT3D.

In SHDOM, the radiance field is decomposed into the di-
rect solar radiance I� (r,�) and the diffuse, scattered radi-
ance field I d (r,�):

I (r,�)= I� (r,�)+ I d (r,�) . (21)

This is done so that the anisotropic scattering of the angular
singularity of the solar source can be treated more accurately.
We must also separate the incoming boundary source at the
horizontal sides into its direct gSIDE

� (r,�) and diffuse com-
ponents gSIDE

d (r,�):

gSIDE (r,�)= gSIDE
� (r,�)+gSIDE

d (r,�) . (22)

The direct component of the boundary source at the horizon-
tal sides is due to the propagation of the solar beam through
an auxiliary RT domain to the incoming boundary of the do-
main under consideration. The direct radiance field is sim-
ply the propagation of the boundary solar and direct sources
into the domain, which are attenuated by the transmission
along their optical path of propagation. On the other hand, the
specification of the diffuse radiation requires the solution of
multiply scattering RT problems whose source vectors are no
longer angular singularities. To solve for the direct radiance
field, we define the streaming operator T which propagates
boundary radiances into the domain with the appropriate at-
tenuation. This streaming operator maps 0−n toDn×S2

⊕0±n
and is defined as follows:

T
[
I
(
r ′,�′

)]
(r,�)

= δ

(
r ′− r

‖r ′− r‖
−�′

)
δ
(
�−�′

)
I
(
r ′,�′

)
T(r,r ′), (23)

where we have made use of the transmission between two
points. The transmission is defined as follows:

T
(
r,r ′

)
= exp

(
−

∫ ‖r ′−r‖
0

σ

(
r ′− l

r ′− r

‖r ′− r‖

)
dl

)
. (24)

The streaming operator provides the direct solar radiance so-
lution, namely

I� (r,�)= T
[
gSIDE
� (r,�)+g�(r,�)

]
. (25)

The RTE for the diffuse radiance then takes the following
form:

L [I d (r,�)]= f d (r,�)

= σ(r)ω(r)

∫
S2
Z
(
r,�,�′

)
I� (r,�)d�′

+ σ(r)(1−ω(r))B(r) , (26)

where B(r) is an optional isotropic unpolarized blackbody
emission vector. The BCs of this equation are straightforward
modifications to Eq. (15):

I d (r,�)|0− −R
[
I d (r,�)|0+

]
= gd (r,�)|0−

=R
[
I� (r,�)|0+

]
+gTOP (r,�)+gBOT (r,�)

+gSIDE
d (r,�), (27)
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where we have defined the diffuse boundary source vectors
gX

d (r,�) for top (X=TOP), bottom (X=BOT), and side
(X=SIDE) boundaries. This system of RTEs is solved using
a solution operator U , which is an abstract representation of
the SHDOM solver, as described in Martin et al. (2014):

I d (r,�)= U
[
f d
gd

]
. (28)

In SHDOM, all of the RTE problems are solved jointly so
that the BCs of the primary 3D problem evolve over the iter-
ative solution procedure, along with the solution for the pri-
mary diffuse radiance field.

3.1.3 Observable evaluation

Now that we have outlined the solution procedure for the sys-
tem of RTEs, the final step in the evaluation of the forward
model is the sampling of the radiance fields by the sensors.
With this final step, we will have described how observables
(elements of the forward model) are modeled in AT3D. We
will then be able to evaluate the cost function that measures
the misfit between our modeled state and the measurements
we are using in a given tomography problem. We will then
also be able to present, in Sect. 3.2, the derivatives of these
observables with respect to elements of the state vector which
form the Jacobian matrix. These are used in AT3D to perform
the tomographic retrieval.

The sampling operation to calculate observables can be
expressed as the inner products between a sensor response
function and the radiance fields. Let us define the inner prod-
ucts on each domain in terms of test fields v and w:

〈v,w〉Dn×S2 =

∫
Dn

∫
S2
v (r,�) ·w (r,�)dS�dVr ; (29)

〈v,w〉0−n
=

∫
Dn

∫
�−
v (r,�) ·w (r,�)dS�dVr ; (30)

〈v,w〉0+n
=

∫
Dn

∫
�+
v (r,�) ·w (r,�)dS�dVr . (31)

For fields that are defined on both the boundaries and interior
of each domain, we also define a composite inner product
over the union of the domainsDn×S2

⊕0±n , which is simply
the sum of the right-hand sides of Eqs. (29), (30), and (31).

As an example, an observable could be radiance exit-
ing a domain, which could be modeled as an inner prod-
uct between an as-yet-unspecified sensor response func-
tion P i (r,�) and the radiance field, 〈P i (r,�) ,I (r,�)〉0+n .
There are several complications with this simplistic picture,
due to both the coupling between the different RT domains
and the numerical representation of the radiance field in
SHDOM. To address these issues completely, we proceed by
first defining the particular sensor response functions used
in AT3D. Then we describe how to evaluate the radiances
at particular positions within each domain with SHDOM. Fi-
nally, we describe how these components combine to provide
a radiance representative of the coupled system.

The sensor response functions P i (r,�) in the original
SHDOM software (Evans, 1998) take the form of an ide-
alized, singular sampling at position r i and angle �i , with
polarization analyzer Oi , which is a vector that weights the
contribution of the different Stokes components to each ob-
servable. For example,Oi = [1,0,0,0] for an intensity mea-
surement. In AT3D, we have generalized the sensor response
function to a weighted sum over k singular samplings, which
we refer to as sub-pixel rays. Each sub-pixel ray has its own
position within the domain, r ik ∈D, and angle, �ik , with
weights, wk , that sum to unity. In this way, we can more ac-
curately model the field of view of sensors with a resolution
much coarser than the resolution of the RT grid. This addi-
tion to AT3D enables the straightforward modeling of more
realistic imagers, unlike in the SHDOM software. The sensor
response function is then

P i (r,�)=Oi

∑
k
wkδ (r − r ik)δ (�−�ik) , (32)

where the weights are determined by a quadrature scheme
over the sensor’s detectors, e.g., a 2D Gauss–Legendre
quadrature over each pixel. Given the linearity of the inner
product, there is an easy generalization from a single quadra-
ture point to a sum over several points, as in Eq. (32), so
we simply consider sampling by just one sub-pixel ray in the
following descriptions. This removes the need for summation
over the k sub-pixel rays, but we keep the k index as a sub-
script so that sub-pixel quantities are clearly differentiated
from pixel quantities in the following discussion.

The form of Eq. (32) indicates that we only need to be able
to evaluate radiances at a set of singular positions r ik and an-
gles �ik to evaluate the inner product. This is not as simple
as it appears as, while we already have the diffuse radiance
solution from SHDOM defined at every position and direc-
tion in Eq. (28), it is insufficiently accurate for radiances at
particular positions and angles. This is because the diffuse
radiance is represented in SHDOM on an angularly smooth
basis of spherical harmonics that is appropriate for fluxes but
not for highly anisotropic radiances.

To sample accurate radiances at position r ik and angle�ik
from the RT solution, the formal solution of the RTE is used
instead. To formalize this procedure, we define some quanti-
ties and operators. First, there is the effective volume source
and the effective boundary source of the RTE, which are de-
fined, respectively, as follows:

f̂d (r,�)= σ(r)ω(r)

∫
S2
Z
(
r,�,�′

)
I d
(
r,�′

)
d�′

+f d (r�) , (33)

and

ĝd (r,�)|0− =R
[
I d (r,�)|0+

]
+gd (r,�)|0− . (34)

The effective volume source is also commonly known as
the SOURCE function of the RTE problem (e.g., Evans,
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1998), though we have adopted our more precise nomencla-
ture to avoid ambiguity with other sources such as bound-
ary sources. The two effective sources are the arguments of
the formal solution of the RTE, which is stated below in
Eq. (36). The effective volume source is represented on a ba-
sis of spherical harmonics in SHDOM, which is quite accu-
rate, as the radiance fields have been angularly smoothed by
convolution with the phase matrix and are therefore far less
affected by truncation error.

The final definition required for the radiance calculation is
that of the volume streaming operator, which integrates the
effective volume source along a characteristic. It maps from
Dn×S2 to Dn×S2

⊕0+n and is defined in terms of the test
field v as follows:

S
[
v
(
r ′,�

)∣∣
Dn×S2

]
Dn×S2

0+ (r,�)

=

∫ ‖r ′−r‖
0

v(r − l�,�)T (r − l�,r)dl . (35)

The radiance at a given position r ik and angle �ik is then
given by the following:

〈δ (�−�ik)δ(r − r ik),I (r,�)〉Dn×S2⊕0±n

= I� (r ik,�ik)+ T
[
ĝd (r,�)|0−

]
(r ik,�ik)

+S
[
f̂ d

∣∣∣
Dn×S2

]
(r ik,�ik) . (36)

In our formulation, the direct component of the radiance
I�, which is singular in direction, is assumed to never be
observed, and so we actually neglect the first term on the
right-hand side of Eq. (36). This is not a strong limitation
for the back- or side-scattering observation geometries of
Earth-viewing remote sensing instruments deployed on air-
borne and satellite platforms. The TMS method used for ra-
diance calculation in SHDOM can have significant inaccu-
racies near the solar direction (Nakajima and Tanaka, 1988).
Therefore, further extension of this retrieval method to in-
clude measurements of the direct solar radiance should also
include improvements to the SHDOM solver itself.

The evaluation of an element of the forward model in-
volves contributions from these streaming operations from
each domain along the line of sight of the sensor. Not all do-
mains contribute similarly. This is because we would like to
treat the coupled system as one cohesive approximation to
the horizontally infinite atmosphere in the evaluation of the
forward model by applying the formal solution of the RTE
across all unified domains, ignoring all horizontal bound-
aries. This means that all domains that intersect the line of
sight will contribute their effective volume source to the ob-
servable. Expressing this precisely takes some complexity,
as we wish to express the radiance as a sum over inner prod-
ucts over each domain so that we can easily express differ-
entiation of the observables with respect to the state vector,
following Martin et al. (2014).

Figure 4. A side view of the system of RTE domains, illustrating
the differences in how radiances are calculated during the solution
of the RTEs in each domain and during the evaluation of the for-
ward model. Consider the calculation of the radiance at the posi-
tion r ik and angle �ik at the upper boundary of D3 denoted by the
large black arrow. During the solution of the RTE in D3, the ra-
diance is calculated by integration along the red characteristic that
follows the periodic BCs at the edge ofD3. On the other hand, when
the forward model is evaluated, the radiance is calculated through
integration along the characteristic denoted by the gray shading
which passes through D3 into D1 and D5. The correspondence be-
tween the mathematical expressions for the evaluation of the for-
ward model (Eq. 41), in this case, and the graphical illustration are
shown. See the main text for additional details.

To begin, let us consider the example shown in Fig. 4 be-
fore introducing the general mathematical description, which
follows in Eq. (41). The mathematical expression specific to
this example is shown in Fig. 4. We want to calculate a radi-
ance at the position r ik and direction �ik of a sub-pixel ray.
This sub-pixel ray has a line of sight that points in the oppo-
site direction to the propagation of the radiance that is sam-
pled by the ray,−�ik . In Fig. 4, this line of sight is presented
as gray shading. We can see that the line of sight of the sub-
pixel ray overlaps the three domains,D3,D1, andD5, and so
they will all contribute to the radiance calculation.

The line of sight first intersects D3. All we actually want
fromD3 is the contribution to the radiance from the effective
volume source in the region of overlap between the dashed
red line and the gray shading. Let us call this contribution
the “overlap contribution”. If we were to just evaluate the
radiance at position r ik and direction �ik using only the RT
solution of D3 using Eq. (36), then we would be following
the periodic boundary conditions of D3, with the integration
domain of the streaming operator denoted by the red arrow in
Fig. 4. Let us call this radiance the “D3 radiance”. To isolate
the overlap contribution, we must additionally calculate the
periodic boundary radiance which is in blue in Fig. 4. This
boundary radiance, attenuated along the line of sight to r ik ,
must then be subtracted from the D3 radiance to give the
overlap contribution, which is a portion of the observable.

We then need to add the contributions to the observable
from D1 by evaluating Eq. (36) in that domain, which is
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shown in purple in Fig. 4. The line of sight intersects the
horizontal boundary of D1. The evaluation of the boundary
term in Eq. (36), which is the second term on the right-hand
side, requires a contribution from D5. Following the open
BCs (e.g., Eq. 18), the incoming radiance at the horizontal
boundaries of D1 is simply the radiance at the boundary of
D5, which is calculated using Eq. (36). This calculation re-
quires integration along the green chord.

To write this mathematically, we first need to isolate the
incoming set on the horizontal side, which is a subset of the
incoming set defined in Eq. (11):

0Sn =
{
(r,�) ∈ 0−n : 0< z < Lz

}
. (37)

We then need to define an indicator function for the domains
for which we need to calculate direct radiance contributions.
For the example above, the domains that directly contribute
areD1 andD3.D5 does not directly contribute; it contributes
instead through the open BC ofD1. This distinction is impor-
tant for linearization of the forward model. We use an indica-
tor function to separate between these cases, which takes the
form of a Heaviside function along the line of sight.

To define the indicator, we need to define a length denoted
by L, which is the distance until the intersection of the line
of sight with a boundary of a domain with a lower dimen-
sionality of radiative transport than the current domain. This
intersection marks the point at which the domains contribute
indirectly through the open BCs. Recall that the corner do-
mains are 1D, the side domains are 2D, and the primary do-
main is 3D. For the example in Fig. 4, we would find the
intersection at the boundary between D1 and D5. The corre-
sponding length L is illustrated in Fig. 4. We can then define
the indicator function as follows:

HL(x)=

{
1, 0≤ x < L
0, otherwise . (38)

Note that the indicator function is not inclusive. Now, we can
define the volume response functions pik,n (r,�) and the at-
tenuated boundary response function qik,n (r,�) for the sub-
pixel ray for each of the n domains.

pik,n (r,�)=Oiδ (r ik − r)δ (�−�ik) in Dn×S2, (39)

and

qik,n (r,�)=HL (‖r ik − r‖)Oiδ

(
r ik − r

‖r ik − r‖
−�i

)
δ (�−�ik)T(r,r ik) on 0+n . (40)

These two response functions will sample the radiance within
each domain if the sensor is internal to a domain and also at
the boundaries of all of the domains along the line of sight
between the sensor and the primary domain. The bound-
ary sample is weighted by the transmission to the sensor. In
the example in Fig. 4, qik,1 and qik,3 are non-zero, while
qik,5 and all other attenuated boundary response functions

are zero. Additionally, all pik,n are zero in the example in
Fig. 4, as r ik is not interior to any domain.

The forward model is then expressed as follows:

Fi(x)=
〈
pik,1,I 1,d

〉
D1×S2 +

〈
qik,1,I 1,d

〉
0+1

+

∑9
n=2

(〈
pik,n,In,d− T

[
In,d

∣∣
0Sn

]〉
Dn×S2

+

〈
qik,n,In,d− T

[
In,d

∣∣
0Sn

]〉
0+n

)
. (41)

The inner products over the internal sets will be non-zero
only if the sensor is internal to that domain and will there-
fore be non-zero only for one domain. The inner products
over the boundaries will be non-zero only when the line of
sight of the ray intersects the outgoing boundary of a do-
main. The first two terms on the right-hand side of Eq. (41)
describe the sampling of the radiance field in the primary do-
main of 3D RT (D1), which follows the formulation of Mar-
tin et al. (2014).

The second set of inner products shows the contributions
of the auxiliary domains. We have removed the component
from the radiance field that originates from the periodic hori-
zontal BCs. The resulting expressions are still differentiable,
though the existence of an adjoint formulation has not been
proven. We do not consider the adjoint formulation of this
system here. This forward model is valid for all radiances, ex-
cept those that are measured exactly in the horizontal plane,
where it is undefined just like for periodic horizontal BCs.
We now have a full description of the forward model F (a)
used in AT3D to connect radiometric observables to the state
of the atmosphere.

The derivatives of those inner products with respect to the
state vector can be expressed using tangent-linear or forward-
adjoint principles, as long as care is taken to address the sen-
sitivity of this RT solution to changes in the incoming bound-
ary radiance. This extension to the optimization of the BCs is
not discussed in Martin et al. (2014) but is relatively straight-
forward and will be described below.

3.2 Linearization of the forward model

We can now calculate derivatives of the forward model, with
respect to a component of the state vector aj , which form
the essence of the tomographic retrieval employed in AT3D.
These derivatives, which form the Jacobian matrix (K, Eq. 5),
tell us how to optimally adjust the state vector to better match
the measurements. We compute these derivatives for the first
set of inner products in Eq. (41) over the primary 3D domain,
following Martin et al. (2014). Let Fi,n(a) refer to the contri-
bution of the nth RTE domain to the forward-model output.
For n= 1, we have the following:

∂Fi,1(a)

∂aj
=

〈
pi,

∂I 1,d

∂aj

〉
D1×S2

+

〈
qi,

∂I 1,d

∂aj

〉
01
+

. (42)

These inner products are evaluated by solving a modified
RTE problem for the derivatives of the diffuse radiance. The
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following expression holds for an arbitrary RTE domain and
is formed by differentiating the RTE (Eq. 26) and regrouping
terms to find the volume source vector of the modified RTE
for the derivatives of the radiance field, 1f j :

L
[
∂I d (r,�)

∂aj

]
=−I d

∂σ

∂aj

+

(
∂σ

∂aj
ω+

∂ω

∂aj
σ

)∫
S2
ZI dd�′+ σω

∫
S2

∂Z

∂aj
I dd�′

+ I� (r,�)

[
∂σ

∂aj
ωZ+

∂ω

∂aj
σZ+

∂Z

∂aj
σω

]
+

(
∂σ

∂aj
(1−ω)−

∂ω

∂aj
σ

)
B + σ (1−ω)

∂B

∂aj

+
∂I� (r,�)

∂aj
ωσZ =1f j . (43)

The spatio-angular structure of the volume source of this
modified RTE (1f j ) is controlled by the radiance field,
which varies with the direction of solar illumination, for ex-
ample.

We also differentiate the BCs of the RTE (Eq. 27) to obtain
the associated boundary source vector of the modified RTE,
1gj , as follows:

∂I d

∂aj

∣∣∣∣
0−

−R

[
∂I d

∂aj

∣∣∣∣
0+

]
=R

[
∂I�

∂aj

∣∣∣∣
0+

]

+
∂R
∂aj

[
I�+ I d

]
+
∂gTOP (r,�)

∂aj
+
∂gBOT (r,�)

∂aj

+
∂gSIDE

d (r,�)

∂aj
=1gj . (44)

The derivative of the reflection operator (Eq. 16) is

∂R
∂aj

[I ]=
∫
�+

∣∣n ·�′∣∣ ∂R
(
r,�,�′

)
∂aj

I
(
r,�′

)
dS�′ . (45)

The solution to these modified systems is then

∂I d (r,�)

∂aj
= U

[
1f j
1gj

]
. (46)

Equation (46) constitutes a tangent-linear model to SHDOM
(Eq. 28). To evaluate 1f j , we just need the solution of the
forward RTE problem and the optical property derivatives.
We also have to calculate the derivatives of the direct solar
beam; that is,

∂I� (r,�)

∂aj
=
∂T

∂aj

[
gS
�(r,�)+g�(r,�)

]
+ T

[
∂gSIDE
� (r,�)

∂aj

]
. (47)

The derivative of the streaming operator (Eq. 23) simply
follows from the derivative of the transmission function

(Eq. 24):

∂T
∂aj

[
I
(
r ′,�′

)]
(r,�)

=−T
[
I
(
r ′,�′

)]
(r,�)

∫ ‖r ′−r‖
0

∂σ

∂aj(
r − l

r ′− r

‖r ′− r‖

)
dl′ . (48)

The remaining terms to be specified are the derivatives of the
boundary source vectors on the domain top, ∂g

TOP(r,�)
∂aj

; bot-

tom, ∂g
BOT(r,�)
∂aj

; and sides, ∂g
SIDE
d (r,�)

∂aj
and ∂gSIDE

� (r,�)

∂aj
. The

first two terms are determined by local analytic relationships
with the state, so that their derivatives can be readily calcu-
lated. For instance, the surface emission source on the right-
hand side of Eq. (15) depends on temperature, and the sur-
face BRDF in Eq. (16) on the left-hand side may also be
parameterized by elements of the state vector. The second
two terms involve the side boundary sources, which are non-
zero only for the open boundaries and involve coupling be-
tween the different RTE solutions. The direct component,
∂gSIDE
� (r,�)

∂aj
, is just the direct radiance derivative, ∂I�(r,�)

∂aj
,

on the adjoining boundary and can therefore be calculated
through recursive application of Eq. (46) across each domain
until the direct solar source is only the domain top, where
∂gSIDE
� (r,�)

∂aj
= 0. We do not need to differentiate the domain-

top solar source, g�(r,�), which is fixed and known. The
derivatives of the diffuse boundary source are more complex
to calculate, requiring their own RTE solutions. Specifically,
the derivatives of the diffuse boundary source on the 3D pri-
mary domain D1 require RTE solutions on the side domains
(e.g., D3). The derivatives of the diffuse boundary source on
the side domains require RTE solutions on the corner do-
mains (e.g.,D2 andD4). We can then evaluate the following:

∂gSIDE
1,d (r,�)

∂aj
=

〈
δ(x),

∂I 3,d

∂aj

〉
03
+

+

〈
δ(y),

∂I 5,d

∂aj

〉
05
+

+

〈
δ (x−Lx) ,

∂I 7,d

∂aj

〉
07
+

+

〈
δ
(
y−Ly

)
,
∂I 9,d

∂aj

〉
09
+

. (49)

For each of the side domains, we then have, for example,

∂gSIDE
3,d (r,�)

∂aj
=

〈
δ
(
y−Ly

)
,
∂I 2,d

∂aj

〉
02
+

+

〈
δ (y) ,

∂I 4,d

∂aj

〉
04
+

. (50)
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We can now evaluate all of the derivatives of the forward
model as follows:

∂Fi(a)

∂aj
=

〈
pi,1,

∂I 1,d

∂aj

〉
D1×S2

+

〈
qi,1,

∂I 1,d

∂aj

〉
0+1

+

∑9
n=2

(〈
< pi,n,

∂In,d

∂aj
− T

[
∂In,d

∂aj

∣∣∣∣
0S
n

]

−
∂T
∂xj

[
In,d

∣∣
0S
n

]〉
Dn×S2

+

〈
qi,n,

∂In,d

∂aj
−T

[
∂In,d

∂aj

∣∣∣∣
0S
n

]
−
∂T
∂aj

[
In,d

∣∣
0S
n

]〉
0+n

)
. (51)

This is an exact treatment of the derivatives of the forward
model and is what would be numerically approximated by
performing finite differencing of the forward model. This is
not the approach directly employed in AT3D.

3.3 Approximate Jacobian calculation

In AT3D, we evaluate approximate derivatives of the forward
model instead of exactly evaluating Eq. (51). This is done
for reasons of algorithmic simplicity and computational ef-
ficiency but naturally can have consequences for the accu-
racy of the retrieval. This is quite common in optimization
problems (Ye et al., 1999; Eppstein et al., 2003; Dwight and
Brezillon, 2006), as convergence is the key criterion to mea-
sure success of an optimization-based retrieval, rather than a
high-accuracy solution to any particular linearized problem.
The approximate derivatives use approximate solutions to the
RTEs for the radiance derivatives. Specifically, the approxi-
mation to the derivatives uses a no-scattering assumption in
the solution of the tangent-linear model and resulting eval-
uation of the radiance fields, following Levis et al. (2020).
The no-scattering assumption is equivalent to a zeroth or-
der approximation to a successive order of the scattering so-
lution to Eq. (46). It does not involves setting the single-
scattering albedo to zero. The result is that the multiple-
scattering tangent-linear model in Eq. (46) does not need
to be evaluated, which saves the computational expense of
evaluating an additional 3D RT model at each iteration to
calculate derivatives. The approximate radiance derivatives
require only the evaluation of the formal, integral solutions,
which are just line integrations with the same geometry as
the forward model (see Fig. 4). This gives us an easy way to
adjust the unknown state to better match the measurements
and, from there, perform the tomographic retrieval. This key
approximation is the essence of AT3D and makes it computa-
tionally suitable for solving practical tomography problems.

Let us formalize the approximate derivative calculation.
We define the effective volume source and the effective
boundary source of the radiance derivative RTE analogously

to in the forward solution (Eqs. 33 and 34) as follows:

1f̂ j (r,�)= σ (r)ω(r)

∫
S2
Z
(
r,�,�′

) ∂I d

∂aj

(
r,�′

)
d�′

+1f j (r,�), (52)

and

1ĝj (r,�)|0− =R
[
∂I d

∂aj
(r,�)|0+

]
+1gj (r,�)|0− . (53)

The inner products in Eq. (51) may then be evaluated, fol-
lowing the same rule for singular sampling as in the forward
model (Eq. 36):〈
δ (�−�ik)δ (r − r ik) ,

∂In,d

∂aj

〉
Dn×S2⊕0±n

= T
[
1ĝd (r,�)|0−n

]
(r ik,�ik)

+S
[
1f̂ j

∣∣∣
Dn×S2

]
(r ik,�ik) . (54)

In AT3D, Eq. (54) is approximated by invoking the no-
scattering assumption, so the effective volume and boundary
sources contain no recursive dependence on ∂I d

∂aj
. In particu-

lar, we approximate the effective volume source for the radi-
ance derivatives as follows:

1f̂ j

∣∣∣
Dn×S2

≈1f j (r,�) . (55)

We also neglect the first term on the right-hand side of
Eq. (53), which is the reflection of diffusely scattered ra-
diance derivatives at the boundary. These two no-scattering
approximations are applied for a given domain for the eval-
uation of integrals of the form of Eq. (54). However, there
is also an effect through the BCs that further approximates
1gj (r,�)|0− , due to the application of the no-scattering ap-
proximation to all domains. The diffuse horizontal boundary

sources for the radiance derivatives in Eq. (44),
∂gSIDE

n,d (r,�)

∂aj
,

are calculated by applying the same singular sampling of the
radiance derivative expressed in Eq. (54) on the other do-
mains. For a side domain (e.g., D3), the horizontal diffuse
boundary radiance comes from only corner domains (e.g.,
D2 and D4), which themselves do not have open horizontal
BCs. As such, the diffuse horizontal boundary sources for
radiance derivatives in Eq. (50) are approximated as follows:

∂gSIDE
3,d (r,�)

∂aj
=

〈
δ
(
y−Ly

)
,
∂I 2,d

∂aj

〉
02
+

+

〈
δ(y),

∂I 4,d

∂aj

〉
04
+

≈
∂g

SIDE,0
3,d (r,�)

∂aj

=

〈
δ
(
y−Ly

)
, T

[
1gj

∣∣
0−

]
(r,�)+S

[
1f j

∣∣
D2×S2

]
(r,�)

〉
02
+

+

〈
δ(y), T

[
1gj

∣∣
0−

]
(r,�)+S

[
1f j

∣∣
D4×S2

]
(r,�)

〉
04
+

. (56)
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Note that, when compared to Eq. (54), we have made
the approximation that 1ĝj (r,�)|0− ≈1gj (r,�)|0− in
Eq. (56), in addition to Eq. (55). The simpler form of the
boundary term is because the corner domains have no hor-

izontal sides, so
∂gSIDE

n,d (r,�)

∂aj
= 0, without requiring further

approximation. For the side domains (e.g., D2 and D4)

and primary domain (D1), the approximation of
∂gSIDE

n,d (r,�)

∂aj
,

with
∂g

SIDE,0
n,d (r,�)

∂aj
, leads to the approximation of the effective

boundary source as follows:

1ĝn,j (r,�)|0−n
≈1ĝ0

n,j (r,�)|0−n
=R

[
∂I�

∂aj

∣∣∣∣
0n+

]

+
∂R
∂aj

[
In,�+ In,d

]
+
∂gTOP

n (r,�)

∂aj
+
∂gBOT

n (r,�)

∂aj

+
∂g

SIDE,0
n (r,�)

∂aj
. (57)

With this, the approximate radiance derivatives in any do-
main at position r ik and direction �ik are calculated as fol-
lows:〈
δ (�−�ik)δ (r − r ik) ,

∂In,d

∂aj

〉
Dn×S2⊕0±n

≈ T
[
1ĝ0

n,j (r,�)|0−n

]
(r ik,�ik)

+S
[
1f j

∣∣
Dn×S2

]
(r ik,�ik) , (58)

with the appropriate recursive calculation of 1ĝ0
n,j . The nu-

merical implementation of these integrals in Eq. (58) is de-
scribed in Appendix D. The computational cost of this cal-
culation relative to the evaluation of radiances (Eq. 41) is
presented in Appendix G.

As this series of approximations follows from a no-
scattering assumption in the tangent-linear model, the error
in the resulting radiance derivatives, and therefore forward-
model derivatives, will depend on the relative contribution of
higher orders of scatter to the radiance derivative at the po-
sitions and angles sampled by the sensor. When the single-
scattering albedo is near unity, these contributions will be
most significant. They will also be relatively large when the
optical path between the source and sensor is large, as the ra-
diance reaching the sensor will necessarily have undergone
many scattering events. The approximation is clearly appro-
priate for emission problems without scattering or in the
single-scattering limit, where it is also exact. For highly scat-
tering solar transport problems, this approximation requires
some justification. The approximation of the volume source
of the radiance derivative term in Eq. (55) is the same as de-
scribed in Levis et al. (2020). The treatment of the surface
source of the radiance derivative term here is an extension
from Levis et al. (2020), as 1ĝj was assumed to vanish in

that formulation. We note that the treatment of the volume
source of the radiance derivative term is identical to the for-
mulation of Zawada et al. (2017), where it is appropriate in
the quasi-single-scattering context of limb scattering.

In this section, we have described the tomographic re-
trieval methodology, including a full description of the for-
ward model and its approximate linearization, which is uti-
lized in AT3D for computationally efficient solutions to the
retrieval problem. In the following section, we present a lin-
ear analysis of the conditioning of the inverse radiative trans-
fer problem and other properties of the exact Jacobian matrix.
This provides us with a more detailed framework for under-
standing the limitations of the cloud tomography method and
how it will generalize to the full range of scattering regimes
in the atmosphere. We will then apply this framework in
Sect. 5 to understand, in more detail, the quantitative behav-
ior of the approximate linearization described here.

4 Linearized inverse radiative transfer

Our analysis in this section is focused on describing the in-
formation content about the spatial variability in the optical
properties contained within multi-angle measurements and
therefore is focused on the inversion of the RT within a lin-
earized context. We begin this analysis by first describing the
conditioning of the exact Jacobian matrix, which we measure
by its condition number (Eq. 6). Studying the exact Jacobian
matrix provides a point of reference for understanding the
effects of using approximate Jacobian matrix. Through the
comparison, we can identify which limitations of tomogra-
phy are physical and which are a result of using an approx-
imate Jacobian. This section contains some results that have
wider implications for tomographic retrievals and also some
which are specific to the SHDOM solver. The implications
of these results are discussed in Sect. 4.3.

The structure of the inverse problem and the nature of the
Jacobian approximation used in AT3D can most easily be
conceptualized if we use the equivalent adjoint formulation
of the inner products, for reasons that we make clear below.
This formulation will provide the basis for our presentation
of the qualitative theory of inverse RT. Here we give only
a brief summary of the adjoint formulation of the Jacobian
calculations. More details on the formulation of the adjoint
problem can be found in Martin et al. (2014) for 3D vec-
tor RT or in similar formulations for plane-parallel media
(Hasekamp and Landgraf, 2005). In the adjoint formulation,
the inner products in Eq. (51) are expressed in terms of an
adjoint radiance field, whose sources are now the sensor re-
sponse functions, pi and qi (instead of the Sun). The ad-
joint RT problem is solved using an adjoint solution operator
U∗, which is adjoint to the forward solution operator U . In
practice, the adjoint RTE is not directly solved. Instead, a
pseudo-forward RTE problem is solved, whose source is the
direction-reversed and polarization-flipped sensor response

Atmos. Meas. Tech., 16, 1803–1847, 2023 https://doi.org/10.5194/amt-16-1803-2023



J. Loveridge et al.: Retrieving 3D distributions of atmospheric particles using AT3D 1819

functions p†
i and q†

i :

p
†
i =Q

†pi (r,−�) , (59)

and

q
†
i =Q†qi (r,−�) , (60)

where

Q†
=


1

1
1
−1

 . (61)

The pseudo-forward problem is solved by the forward-
solution operator U so it can, in principle, be solved by a for-
ward model like SHDOM as long as its implementation sup-
ports sufficiently general volume and boundary source vec-
tors. In practice, this pseudo-forward problem is much more
numerically challenging due to the spatio-angular singularity
of the sources p†

i and q†
i in 3D (Doicu and Efremenko, 2019;

Martin and Hasekamp, 2018). The adjoint radiance field can
then be found by direction reversal and polarization flipping
of the pseudo-forward radiance I † (r,�).

I † (r,�)= U
[
p

†
i

q
†
i

]
(62)

We can then express the inner products for the forward-
model derivatives which form the elements of the Jacobian
matrix as follows:

∂Fi,n(a)

∂aj
=

〈
pi,

∂I d

∂aj

〉
Dn×S2

+

〈
qi,1,

∂I d

∂aj

〉
0+n

=

〈
Q†I

†
i (r,−�) ,1f j

〉
Dn×S2

+

〈
Q†I

†
i (r,−�) ,1gj

〉
0+n

. (63)

The spatial variations in the forward-model derivatives are
controlled by the optical distance to the sensor, through I †

i ,
and also by optical distance to the solar source, through1f j .
Given the singular form of the sensor response functions,
the RTE problem for the pseudo-forward radiance is a pencil
beam illumination problem. This is a well-studied RT prob-
lem (Doicu et al., 2020; Liemert and Kienle, 2013; Martelli
et al., 2016), as its solution is Green’s function for 3D RT.
The approximate Jacobian in the 3D RT domain is equivalent
to approximating the pseudo-forward solution by its direct-
beam solution.〈
pi,T

[
1g0

j (r,�)|0−1

]
(r,�)+S

[
1f j

∣∣
D1×S2

]〉
D1×S2

+

〈
qi,T

[
1g0

j (r,�)|0−1

]
(r,�)+S

[
1f j
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D1×S2

]〉
0+1

=

〈
Q†T [p†

i ](r,−�),1f j

〉
D1×S2

+

〈
Q†T [q†

i ](r,−�),1g
0
j

〉
0+1

(64)

With the forward-adjoint formulation described above, each
of the columns of the Jacobian matrix corresponds to a dif-
ferent observing geometry and therefore to a different pencil
beam pseudo-forward RTE solution. We can use this to ex-
press the independence of columns in the Jacobian matrix in
terms of the independence of the pseudo-forward-radiance
fields, weighted by the radiance derivative source vectors
1f j and1gj . In this way, we link the properties of the Jaco-
bian matrix, such as its condition number, which controls the
difficulty of the retrieval problem, to the optical properties of
the medium using arguments from RT theory. To be clear, we
use the linearized framework to classify the difficulty of the
iterative optimization process based on the current state vec-
tor. The linearization around the ground truth does provide
some information on the difficulty of the inverse problem, but
we must bear in mind that, given the non-convex nature of the
inversion, the iterative retrieval may encounter a difficult cost
function structure far from the ground truth, depending on the
optimization trajectory. This linearized framework provides
us with some hypotheses about the behavior of AT3D’s to-
mographic retrieval that can be used to explain the behavior
of fully nonlinear retrievals in terms of physical principles.

4.1 Numerically evaluating the Jacobian matrix

We support the physical arguments presented in this sec-
tion with quantitative evidence from numerical experiments.
The quantitative evidence is produced through the numeri-
cal calculation of reference Jacobian matrices using a two-
point central difference around a wide range of media or
base states. These reference Jacobian matrices are also used
to quantitatively evaluate the approximate Jacobian calcula-
tion in Sect. 5. The numerical experiments that we use are as
follows.

Each Jacobian matrix is calculated around a reference con-
figuration of the state vector, which is referred to as a base
state. Each base state is a 3D Gaussian extinction field em-
bedded in a uniform extinction field evaluated on a grid
with 50 m resolution and 21 grid points in each direction,
hence primary domain dimensions Lx = Ly = Lz = 1 km.
Open horizontal BCs are used. This configuration is chosen
as a simple analogue of an isolated cloud with a sufficiently
high resolution so that we can study how the elements of
Jacobian matrix vary with position within the cloud. The ex-
tinction field at each grid point is given by the following:

σ(x,y,z)= σbg+Aexp

(
(x− x0)

2
+ (y− y0)

2
+ (z− z0)

2

r2

)
, (65)

where σbg = 0.1 km−1 is a uniform background extinction,
(x0,y0,z0)= (Lx,Ly,Lz)/2 is the center of the computa-
tional domain, and r = 0.2 km (i.e., four grid cells= Lz/5).
The constant A (in km−1) is varied so that the maximum
vertical optical path of the Gaussian is 0.1, 5.0, 40.0, and
100.0. When we include the uniform background, which con-
tributes an optical depth of σbgLz, the maximum vertical op-
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tical paths of the medium τmax =
∫ Lz

0 σ (x0,y0,z)dz are 0.2,
5.1, 40.1, and 100.1. But, in the following results, we label
our base states by the maximum optical path of the Gaussian.

Each base state has a spatially uniform single-scattering
albedo and phase function and a uniform Lambertian surface
albedo. The single-scattering albedos of the base states are
0.9, 0.99, and 1.0, and the surface albedos are 0.0, 0.2, and
0.7. Three different combinations of phase function and an-
gular resolution are tested. The first uses an isotropic phase
function with 16 zenith discrete ordinate bins and 32 az-
imuthal discrete ordinate bins. The second uses a Mie phase
function equivalent to a gamma droplet size distribution with
effective radius re = 10 µm and effective variance ve = 0.1
evaluated at a wavelength of 0.86 µm at the same angular
resolution. The third configuration also uses the Mie phase
function but uses a reduced angular resolution of only two
zenith discrete ordinate bins and four azimuthal discrete or-
dinate bins. The different combinations of these parameters
give a total of 108 different base states.

For each base state, we numerically evaluate the Ja-
cobian matrix. We choose the observational sampling to
consist of 33 different imaging sensors described by per-
spective projections that image the domain simultaneously
from nadir and also 32 combinations of four zenith an-
gles [75.0◦,60.0◦,45.6◦,26.1◦] and eight relative azimuthal
angles [0◦,±45◦,±90◦,±135◦,180◦]. Each imaging sensor
has a field of view of 6◦ and 26× 26 pixels and points at the
center of the domain from a distance of 10 km. The cosine of
the solar zenith angle is set to 0.3 for all simulations. These
observations thus capture both the diffuse radiance escaping
the shadowed side of the cloud and the backscattering radi-
ance from its illuminated side. We choose the state vector
to be the extinction at every second grid point in each di-
mension to reduce the computational expense in the finite-
differencing calculations. We also exclude the grid points
at the domain boundaries that parameterize the open BCs
from the state vector. The state vector is therefore of length
1100 (11× 11× 10). It is important to remember that ill-
posedness (or instability or ill-conditioning) in an inverse
problem is dependent on the choice of representation for the
retrieved quantity. Here, we tackle a fully 3D representation
with equidistant grid points throughout the cloud. We use this
setup to demonstrate the issues that arise from a generaliza-
tion of remote sensing to 3D that would not arise in, for ex-
ample, a retrieval of only optical depth using 3D RT (e.g.,
Marchand and Ackerman, 2004).

Increments to the state vector for numerical evaluation of
the Jacobian matrix are set as follows:

1aj = sgn
(
aj
)

max
(
0.01

∣∣aj ∣∣ ,0.01
)
. (66)

This decision, and other numerical considerations of the fi-
nite differencing, is described and justified in Appendix F.
We also describe our procedure for accelerating the finite-
differencing calculations, which is based on a method
discussed in Evans (1998) for accelerating multi-spectral

SHDOM solutions. This method can lead to an acceleration
of up to ∼ 100 times for finite-differencing calculations with
optically thick base states.

4.2 Results

For each of the base states, we evaluate the condition number
(Eq. 6) of the reference Jacobian, which is shown in Fig. 5.
We see increasing condition numbers with larger optical
thickness and with a reduced phase function anisotropy and
higher angular resolution. Larger condition numbers indi-
cate the increasing instability of the linearized inverse prob-
lem. There is little variation in the condition number with
single-scattering albedo over this range and almost no de-
pendence on surface albedo. The condition number ranges
from well conditioned κ (K)∼ 101 to very ill-conditioned
κ (K)� 105. The maximum values reached κ (K)∼ 1016,
which is extremely ill-posed, likely due to noise from the
finite differencing. This transition towards ill-posedness is
not a deficiency of the observing geometries, which can oc-
cur and have been documented elsewhere (Holodovsky et
al., 2016), or resolution. The problem setting employed here
has hemispherical observations, so all of the cloud is well
observed. This is confirmed by the low condition number
in the optically thin setting. Instead, the cause of the larger
condition numbers is traceable to the nature of the radiation
transport itself; i.e., it is largely inherited from the continu-
ous RTE problem (Bal and Jollivet, 2008; Chen et al., 2018;
Zhao and Zhong, 2019). As we increase the order of scatter-
ing, we increase the spatio-angular smoothness of the radia-
tion field, and it therefore loses information about the spatial
detail of the extinction field. This smoothing operation of the
scattering leads to increasing ill-posedness under inversion,
as quantified by the condition number.

Since the condition number of the Jacobian is expected to
affect the accuracy and convergence rate of the tomographic
retrievals (Sect. 3), it is important to understand the physi-
cal and numerical principles that lead to this behavior. We
can explain the results in Fig. 5, using the forward-adjoint
framework, by considering both the structure of the reference
RTE solutions used to calculate1f j and the pseudo-forward
RTE solutions, which together form the Jacobian elements.
To characterize the reference and pseudo-forward RTE solu-
tions, we will make use of the Knudsen number (Kn), which
is the ratio of the mean free path (Davis and Marshak, 2004)
to the domain length scale. This quantity can be used to de-
fine the ballistic (Kn� 1) and diffusion (Kn� 1) regimes
of transport. In a homogeneous medium, Kn is simply the
reciprocal of the optical depth but tends to be larger in a het-
erogeneous medium as transmission becomes more efficient
(Davis and Marshak, 2004). Our explanations in the follow-
ing paragraphs are simply descriptions of the qualitative be-
havior of scattering, supported by rigorous mathematical or
numerical results where appropriate.
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Figure 5. The condition number (see text for details) of the finite-
differenced Jacobian for 3D Gaussian clouds with different combi-
nations of single-scattering albedo and maximum optical path. Pan-
els (a), (b), and (c) have isotropic phase functions. Panels (d), (e),
and (f) have Mie phase functions, and panels (g), (h), and (i) have
Mie phase functions with a reduced angular resolution (see text for
details). Panels (a), (d), and (g) have a black surface. Panels (b), (e),
and (h) have Lambertian surface albedos of 0.2, while panels (c),
(f), and (i) have Lambertian surface albedos of 0.7. The crimson
squares exceeding the color scale reach 1016.

The Knudsen number depends on the definition of the sys-
tem. In any partly cloudy system, we will have Kn∼ 1, due
to the dominance of ballistic trajectories from the Sun to the
surface. On the other hand, within individual clouds, we may
have Kn� 1. We consider individual clouds as the system
under consideration, and the mean free path used in the def-
inition of the Kn is the domain average rather than at any
particular position (Davis and Marshak, 2004). Kn is a clas-
sification of the optical properties, not of the transport, so it is
common to both the reference and the pseudo-forward RTE
and can be used to describe both. Kn� 1 does not guarantee
that the diffusion approximation for radiative transport holds
everywhere in the system but rather that there is an interior
region where it holds to order Kn in the appropriately non-
dimensionalized RTE problem (Chen et al., 2018).

In the ballistic limit (Kn� 1), both the reference RT prob-
lem, which controls the radiance derivative source vector
1f j , and the pseudo-forward problems, which sample 1f j
to calculate the elements of the Jacobian matrix in Eq. (63),
are dominated by their direct beams. The scattering is limited
to low order. This means that 1f j does not have a strong
spatial dependence, as the optical paths are small enough
that the exponential nature of transmission has not yet come
into play. The pseudo-forward radiance, which has a pencil
beam source, has a highly singular spatial distribution that is
largely restricted to the line of sight of each sensor pixel. Be-

Figure 6. A conceptual diagram illustrating the decrease in magni-
tude of the Jacobian elements in the solar direction through a cross
section of a homogeneous spherical cloud. The mismatch in the
magnitude of the Jacobian elements between the illuminated and
shadowed sides increases as the optical depth increases.

cause of this, the overlapping spatial support between 1f j
and the pseudo-forward radiance is highly localized in space.
This means that the pseudo-forward radiances corresponding
to different sensor pixels are highly independent and so are
the columns of the Jacobian matrix. As a result, the measure-
ments can resolve spatial variability at the pixel scale. This
leads to the low condition numbers in the optically thinnest
base states in Fig. 5, as the measurement resolution and the
grid resolution are similar.

The pseudo-forward radiances and 1f j are also highly
anisotropic. The angular variation in the measurements there-
fore contains information about both the 3D variation in the
phase matrix and also the 3D variation in the scattering coef-
ficient. In the continuous inverse transport problem, this high
degree of spatio-angular singularity in the pseudo-forward
radiances in the ballistic limit enables the unique and stable
inversion of both quantities simultaneously (Bal, 2009; Bal
and Jollivet, 2008). The downside of the ballistic regime is
that the scattering coefficient and phase matrix are not sep-
arable, and even high angular moments of the phase matrix
must be retrieved to avoid errors in the retrieval of the scat-
tering coefficient.

On the other hand, in the limit of Kn� 1, the radia-
tion transport degenerates to a diffusion problem (Chen et
al., 2018; Davis and Marshak, 2001). The radiance deriva-
tive sources1f j now span several orders of magnitude, with
large values optically close to the Sun and much smaller val-
ues optically far from the Sun. In a homogeneous medium,
the behavior in the diffuse limit is an exponential decay of
the actinic flux as a function of the diffusion length from the
source (Davis and Marshak, 2001). This leads to a scale mis-
match in the magnitude of the Jacobian elements between
the illuminated and shadowed sides of a cloud, as illustrated
in Fig. 6. There is a corresponding trend towards decreasing
anisotropy of1f j , with increasing optical distance from the
Sun.

An example of the pseudo-forward-radiance solution for
one of the optically thick base states examined here is shown
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Figure 7. Cross sections of the angularly averaged intensity (ac-
tinic flux) for a pencil beam problem. The medium is the Gaus-
sian extinction field with the maximal optical depth of 40.0, single-
scattering albedo of 1.0, and the Mie phase function with full an-
gular accuracy (see text for details). This simulation is done with
SHDOM using an increased 101 points in each dimension (10 m
resolution) to resolve the volumetric radiance field. The pencil beam
source is located at the top of the center of the domain (x = 0.5,
y = 0.5, and z= 1.0) and pointed at nadir. Each colored line shows
a single transect of the angularly averaged intensity at a different
altitude.

in Fig. 7. For the pseudo-forward-radiance fields, near the
pencil beam sources, the direct beam still dominates. With
increasing optical depth from the source, the diffuse pseudo-
forward radiance, which has undergone many more scatter-
ing events, begins to dominate. The diffuse radiance field is
angularly smoothed, through repeated convolution with the
phase matrix, and spatially smoothed through the stream-
ing of the angularly smooth source fields. In a homogeneous
medium, this manifests itself as an exponential decay of the
angularly averaged intensity with distance from the source,
which also causes a scale mismatch in the Jacobian elements,
though this time between regions optically close and opti-
cally far from the sensors. The increasing spatial smoothness
of the pseudo-forward radiance with optical depth indicates
that the measurements become sensitive to only increasingly
wide averages of the optical properties with increasing op-
tical distance from the sensor. This causes ill-conditioning
under inversion (Chen et al., 2018; Zhao and Zhong, 2019).
The spatial smoothing effect of the wide pseudo-forward ra-
diance is the three-dimensional or depth-resolved manifesta-
tion of the 2D radiative smoothing effect that has been widely
studied, based on the consideration of a plane-parallel, homo-
geneous base state (Marshak et al., 1995; Davis et al., 1997).

The exponential decay of the pseudo-forward radiance is
a feature that is unique to the tomographic problem of re-
trieving three-dimensional or depth-resolved spatial variabil-
ity. This feature has been recognized in other tomographic
applications utilizing diffuse light (Tian et al., 2010; Niu et
al., 2010). This feature means that the sensitivity of measure-
ments to changes in optical properties is rapidly lost with in-
creasing optical distance from the sensor. While the pseudo-

Figure 8. A conceptual diagram illustrating the decrease in mag-
nitude of the Jacobian elements with distance from the sensors
through a transect through a homogeneous spherical cloud. The
mismatch in the magnitude of the Jacobian elements between the
outer edges and the interior of the cloud increases as the optical
dimension of the cloud increases.

forward radiances corresponding to adjacent sensor pixels re-
main quite independent in the region optically close to the
sensors where the radiance fields are localized, they become
indistinguishable in the region optically far from the sensors
due to smoothing and their decay to zero. The condition num-
ber measures this worst-case loss of independence (Chen et
al., 2018), which occurs in the region which is optically far
from the sensors and also from the Sun (through 1f j ). As
the optical dimension of the medium increases, this worst-
case loss of independence is exacerbated, causing the rapid
growth of the condition number (Fig. 5). The exponential de-
cay to zero of optical depth sensitivity causes a scale mis-
match in the Jacobian elements between regions optically
close and optically far from the sensors, similar to that which
occurs in the forward problem, as illustrated in Fig. 8.

The two scale mismatches related to the sensors and the
Sun that develop in the Jacobian matrix as the medium be-
comes optically thick are a significant source of instability
in the Jacobian, as measurements will be orders of magni-
tude more sensitive to changes in optical properties in re-
gions close to the Sun and sensors than those further away.
This can be seen quantitatively by binning the absolute mag-
nitude of elements of the reference Jacobian matrices by the
solar delta-M transmission to each grid point and the delta-
M transmission of the minimum optical path from all sensors
to each grid point (Fig. 9). This latter quantity is referred to
as the minimum sensor transmission. The delta-M transmis-
sion is derived from the path integral of the delta-M-scaled
extinction, consistent with the calculation of direct transmis-
sion used in the SHDOM solver. This latter metric is a mea-
sure of overall optical distance from the sensors to each point
in the cloud.

The optical path has also been used similarly to define a
region of the cloud in which measurements are no longer
sensitive to rearrangements of the small-scale features of the
extinction field, known as the “veiled core” of the cloud
(Forster et al., 2020). Forster et al. (2020) used a threshold
of at least τ > 5 along the line of sight of all sensors inter-
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secting each volume element to define the volumetric extent
of the veiled core of the cloud. This optical depth thresh-
old is roughly equivalent to Delta-M-scaled minimum sensor
transmissions of less than 0.1 for the simulations employed
here using the Mie phase function and full angular accuracy.
Given that the set of sensors covers the upper hemisphere, the
minimum sensor transmission is loosely equivalent to mini-
mum transmission to the edge of the domain. Figure 9 shows
the increasing scale mismatch in derivative magnitudes be-
tween the optical interior and exterior as the total optical
depth of the medium increases and the Knudsen number de-
creases. Figure 9d, h, and l show that derivatives of radiances
with respect to changes in extinction within the veiled core
can be almost 2 orders of magnitude smaller than those with
respect to extinction changes in the exterior.

Note that it is the mismatch of scales between sensitiv-
ity to the interior and exterior that is important here, not
the absolute smallness of the pseudo-forward radiance in
the veiled core of the cloud (up to numerical precision). If
the state vector were restricted to describing a region that
only included similar transmissions from all sensors, then the
problem of ill-conditioning would be much reduced. Such a
partitioning is not generally available. The interior regions
must be optically thin enough that the nonlinearity of the
transmission causing the scale mismatch is small. In an op-
tically thick cloud, this would require extremely detailed
knowledge about the extinction field in the edge regions of
the cloud, which is not generally available. For moderately
opaque clouds, lidar may provide valuable information to
constrain the outer portions of the cloud and thereby mitigate
this issue.

The arguments presented so far explain the dependence
of the difficulty of the inverse problem (measured by condi-
tion number of the Jacobian matrix) on the extinction field.
They also explain the sensitivity of the condition number to
low-order single-scattering properties such as the asymmetry
parameter and single-scattering albedo, which modulates the
diffusion lengths and transport mean free paths that control
the spatial smoothing and exponential decay in the diffuse
limit (Davis et al., 2021). They do not, however, explain the
strong sensitivity of the condition number or spatial struc-
ture of the Jacobian matrix to the angular resolution of the
SHDOM solver present in Figs. 5 and 9, respectively. We
now consider this behavior.

In the diffusion limit, Davis et al. (2021) investigate the
role of the asymmetry parameter in controlling the spatial
smoothing and exponential decay of the forward and pseudo-
forward problems using the theory of random walks. We can
see from our results, which show the sensitivity of the Jaco-
bian to angular resolution in Figs. 5 and 9, that, in addition to
what is discussed in Davis et al. (2021), there is also a role for
the higher-order moments of the phase function beyond the
asymmetry parameter and that these interact with the spatial
moments of the pseudo-forward radiance. In particular, we
know that, in a medium with a large forward-scattering peak,

more radiance will stay angularly close to the direct beam af-
ter several scattering events, even if the average direction of
propagation is lost rapidly due to backscattering. We can hy-
pothesize that, even if the asymmetry parameter remains un-
changed, a larger forward peak will skew the pseudo-forward
radiance near to the direct beam, increasing its localization
property and thereby reducing ill-conditioning.

This hypothesis is borne out in the approximate numerical
framework of SHDOM, where the forward-scattering peak of
a phase function is treated by the delta-M approximation. The
larger the forward-scattering peak and the lower the angular
resolution of the SHDOM solver, the more of the phase func-
tion is angularly unresolved by the model and is lumped to-
gether into the direct transmission. As such, a larger forward-
scattering peak or lower angular resolution act to transform
the medium to one with a higher effective Knudsen num-
ber and thereby improve its conditioning. For the Mie phase
function considered here, the use of low angular accuracy
causes an almost halving of the extinction compared to the
high angular accuracy, which is itself also roughly a halving
of the true extinction. The change in the condition number
with a change in angular resolution of the SHDOM solver
is substantial and indicates that the stability of the inverse
problem depends on the discretization of the system.

4.3 Discussion

4.3.1 Physical implications

In Sect. 4, we have documented the behavior of a linearized
tomography problem. A number of these results have general
implications that are not specific to the SHDOM model or
the use of the approximate Jacobian described here. We now
take the time to consider the wider implications of these re-
sults. We have shown that the condition number of the inverse
problem largely depends on the Knudsen number or optical
size of the medium, as supported by theory. We should there-
fore expect the convergence rate of an iterative retrieval to
decrease in optically thicker media, as discussed in Sect. 3.
As such, the tomographic retrieval of optically thicker me-
dia is expected to be computationally more expensive due
to both RTE solutions becoming more expensive in optically
thicker media and the need for more iterations of optimiza-
tion to achieve a user-specified level of accuracy. High levels
of retrieval accuracy may not be obtainable in optically thick
media due to the extreme ill-conditioning, possibly causing
slower convergence than the stopping condition of an opti-
mization procedure, while still far from the optimal solution.

We have also shown the existence of substantial spatial
variability in the linear sensitivity of radiances to changes
in the extinction field in optically thick clouds. In particular,
linear sensitivity decreases exponentially with optical depth
from the Sun and from the sensors, likely causing slow con-
vergence of the extinction field in these regions. This fea-
ture was also noted in Levis et al. (2015). We have shown
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Figure 9. The mean absolute magnitude of finite-difference Jacobian for 3D Gaussian clouds in each bin of solar and minimum sensor delta-
M transmission. Each column corresponds to a base state, with a maximum cloud optical depth from 0.1, 5.0, 40.0, and 100.0, increasing
from left to right. Each row corresponds to a different combination of phase function and angular accuracy with isotropic phase function,
Mie with full angular accuracy, and Mie with a reduced angular accuracy in descending order. All base states have a black surface with
conservative scattering.

here that it is, at least in part, a result of a physical limita-
tion and not just the approximations used within their pa-
per. The fastest way to decrease the misfit with the measure-
ments will be to change the extinction field optically close
to the sensors and also the Sun. If iterative retrievals of op-
tically thick clouds are unconstrained apart from measure-
ments, then the retrieved extinction field may approach a lo-
cal minimum with little change from the initialization in the
cloud center and on the shadowed side of the cloud. This be-
havior may introduce a solar-zenith-angle dependence to the
retrieval error, despite the use of 3D radiative transfer.

The issues apparent in optically thick clouds appear to
substantially limit the applicability of the method, but we
must bear in mind that, in terms of both number and area,
a large portion of trade cumulus cover comes from small
clouds (Zhao and Di Girolamo, 2007). Many trade cumulus
tend to be smaller than 800 m in geometric depth (Chazette
et al., 2020; Guillaume et al., 2018), and the average adia-
batic fractions for these clouds can be significantly less than
unity (Eytan et al., 2022). Most of these clouds will have
maximum optical depths less than 40, which suggests that
prior information or regularization will not be essential for
ensuring high-fidelity retrievals of these clouds. We have not
so far considered the feasibility of tomography in other, more
stratiform, cloud types. We explore the sensitivity to such dif-
ferences in Sect. 6, using the more computationally efficient
approximate Jacobian calculation.

4.3.2 Numerical implications

We have also identified an important sensitivity of the ill-
conditioning of the retrieval to the numerical discretization
of the method. Of course, ill-conditioning is always sensi-
tivity to discretization choices. For example, if we were to
only retrieve a single unknown per column with parameter-
ized vertical variability, then the condition number of the cor-
responding Jacobian matrices in the optically thickest cases
considered here would be of the order of 10, which is the
same as the optically thinnest tomography problems. This
distinction is not unique to our study.

The important behavior that we have documented here for
the first time is the importance of the angular discretization
of the forward model for determining the conditioning of the
model, rather than standard properties such as the number
and spacing of measurements or the spatial resolution. The
sensitivity of ill-conditioning to angular discretization arises
from the presence of strongly peaked phase functions and the
use of the delta-M approximation, which reduces the effec-
tive optical depth of the medium to account for strong for-
ward scattering that is unresolved by the angular discretiza-
tion.

The large decrease in condition number observed when
decreasing angular accuracy suggests that using low angu-
lar resolution may be beneficial in inversions. The tradeoff
for forming a better-conditioned inverse problem in this way
is that the forward model is a poorer approximation for re-
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ality and may in fact have significant biases (Evans, 1998).
Even if a benefit in the convergence rate is not apparent, then
these results indicate that retrieval results should not be ex-
pected to generalize to other angular resolutions, even when
the angular resolution is high enough that the forward model
has converged in accuracy. In particular, inversions may actu-
ally decrease in fidelity as the angular resolution is increased.
Additionally, results should not be expected to generalize be-
tween phase functions with substantially different forward-
scattering peaks such as Mie vs. Henyey–Greenstein phase
functions, even if they have the same asymmetry parameter.

The conditioning results presented here are likely only rep-
resentative of other explicit RTE solvers like SHDOM uti-
lizing the delta-M approximation. It is unclear how the re-
sults will generalize to other widely used methods of solving
the RTE, such as Monte Carlo. Those state-of-the-art Monte
Carlo solvers in atmospheric radiative transfer that do use
the delta-M or phase function truncation approximations may
have some similar dependence of their conditioning on the
truncation fraction, as documented here for SHDOM. How-
ever, modern implementations of phase function truncation
tend to be dependent on scattering order (Wang et al., 2017)
to avoid strong bias and so may not express the behavior
demonstrated by SHDOM.

5 Validating the approximate Jacobian calculation

With the theory introduced in the previous section in place,
we can examine the consequences of the approximation to
the Jacobian (Eq. 58) used in AT3D and how that approxi-
mation exhibits itself as quantitative errors. We examine how
well the approximate Jacobian reproduces the behavior de-
scribed in Sect. 4. As described in Sect. 3.3, we are ap-
proximating the pseudo-forward radiance by its direct beam
(Eq. 61). In this case, we can see that the entire diffuse
pseudo-forward-radiance profile (Fig. 7) will be neglected.
This means that the approximate Jacobian does not repre-
sent the non-local sensitivity of measurements to changes in
optical properties outside of their field of view, other than
through changes to the direct solar transmission. This may
seem a rather extreme approximation, but we must bear in
mind that the most stable information to extract is contained
in the highly localized direct-beam component (Bal and Jol-
livet, 2008). The success of the approximation requires that
the pixel-to-pixel smoothing only becomes important and
significant when the medium is optically thick enough so
that there will be significant decay in the sensitivity with dis-
tance from the sensor. In this case, the loss of sensitivity to
the cloud interior from all pixels (in the linearized setting)
is much more important than neglecting the pixel-to-pixel
smoothing. In this section, we test the extent to which this
is true quantitatively.

From the theory developed in the previous section, we
also expect a sensitivity of the approximate Jacobian to

the dimensionality of the RT problem. In 3D, the pseudo-
forward-radiance field is highly singular in space (Fig. 7)
and anisotropic. On the other hand, as the dimensionality
of the transport decreases, the pseudo-forward solution will
become increasingly less singular. For example, in 1D, the
pseudo-forward source is a plane illumination, just like the
Sun (Hasekamp and Landgraf, 2005). The symmetry of the
source means that the pseudo-forward radiance does not dis-
perse perpendicular to the collimated source, but instead, it
substantially modifies the depth dependence of the pseudo-
forward-radiance field and reduces its anisotropy. This means
that the direct-beam approximation will perform worse, and
the performance of the approximation to the Jacobian cal-
culation adopted here cannot be expected to generalize from
3D to 2D or, especially, 1D problems. This has an important
implication for our extension of the approximate Jacobian to
the linearization of the system of RTEs described in Sect. 3
to model a 3D domain embedded in a plane-parallel atmo-
sphere. As such, we separate our error analysis between the
elements of the approximate Jacobian corresponding to the
primary 3D domain D1 (Fig. 2) and the other elements con-
trolling the boundary radiances through the auxiliary RTE
problems.

Note that, in the following analysis, we quantitatively
validate derivatives of radiances only with respect to vol-
ume extinction coefficient at different grid points rather than
other optical properties such as the single-scattering albedo
or components of the phase matrix. The approximation to
the Jacobian only approximates the pseudo-forward radiance
and therefore is common to derivatives of radiances with re-
spect to all optical properties. However, each optical property
interacts differently with the pseudo-forward-radiance field.
For example, the single-scattering albedo interacts with all
spherical harmonics of the radiance field, while the extinc-
tion coefficient interacts with all except the isotropic compo-
nent. As such, errors in radiance derivatives with respect to
single-scattering albedo may be disproportionately affected
by error in the pseudo-forward radiance that occur optically
far from the sensors compared to derivatives with respect
to extinction. In contrast, the higher-order expansion coef-
ficients of the phase matrix are only sensitive to the high-
order spherical harmonics of the radiance field and will there-
fore be disproportionately affected by errors in the pseudo-
forward radiance that occur optically close to sources. As a
result, Jacobian errors may be distributed slightly differently
in space and observation angle as the angular structure of
1f j changes with the nature of the optical (or microphysi-
cal) unknown. We focus solely on extinction to illustrate how
errors in the approximate pseudo-forward radiance propagate
to the Jacobian as the retrieval of extinction is fundamental
for retrievals of spatial structure.

To quantify the agreement between the finite-differenced
Jacobians defined in Sect. 4.1 and the equivalent approximate
Jacobians (K̃), we use the relative Frobenius error, which is
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an element-wise relative root mean square error (RMSE):

relative Frobenius error

=

∥∥K̃−K
∥∥
F

‖K‖F
=
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K̃ij −Kij

)2√∑
ij

(
Kij

)2 . (67)

Our validation approach of comparing the approximate Jaco-
bian to the finite-differenced Jacobians measures the consis-
tency of the forward model with the approximate Jacobian.
The consistency between these two is what is important for
the robustness of the local optimization method used in the
tomographic retrieval implemented in AT3D. As such, the
relative Frobenius error includes the effects of computational
noise in the forward model that will emerge in the finite-
differenced derivatives. When evaluating derivatives calcu-
lated using a forward-adjoint principle, the relative Frobenius
error was around 0.04, reflecting uncertainties in the finite
differencing and inconsistencies between the forward and ad-
joint models (Doicu et al., 2020). We expect a similar degree
of accuracy in the optically thin limit for the approximate Ja-
cobian. We performed extensive verification of the approx-
imate Jacobian. We identified a number of instances where
the computational noise in the finite-differenced derivatives
is actually the dominant source of error, based on comparison
against an analytic solution (Appendix E). For that reason, it
is important to keep in mind that this error metric is a mea-
sure of the consistency of the approximate Jacobian with the
forward model and that the stability of the forward model
itself is also contributing.

5.1 Primary domain

For the primary domain, we are analyzing the accuracy of
the approximate Jacobian across the same base states as in
Sect. 4. We also define the state vector in the same way, so we
are not analyzing derivatives with respect to the open BCs.
We can see in Fig. 10 that the error rapidly grows beyond
a benchmark value of 0.02 as the clouds become optically
thicker, scattering is closer to conservative, and surface albe-
dos become larger. The small change in the error between a
black surface and a Lambertian surface, with an albedo of
0.2, in Fig. 10 shows that there is little sensitivity of the error
to the surface albedo when it is not too reflective. This in-
dicates good suitability of the approximate Jacobian for me-
dia over oceanic or other dark surfaces. We also see greater
agreement for more forward-scattering media, especially at
lower angular resolution. This is because the approximate Ja-
cobian treats the direct beam exactly; hence, the more energy
within the direct beam due to delta-M scaling, the more accu-
rate the approximation. A lower angular accuracy therefore
gives the benefit of more consistent derivatives with the for-
ward model, with the downside being that the forward model
will have larger errors against reality. To better understand
these systematic differences between the approximate and

Figure 10. The relative Frobenius error (Eq. 67) of the approxi-
mate Jacobian with respect to the finite-differenced Jacobian for the
same 3D Gaussian clouds, as used in Fig. 5. Panels (a), (b), and
(c) have isotropic phase functions. Panels (d), (e), and (f) have Mie
phase functions, and panels (g), (h), and (i) have Mie phase func-
tions with a reduced angular resolution (see text for details). Pan-
els (a), (d), and (g) have a black surface. Panels (b), (e), and (h)
have Lambertian surface albedos of 0.2, while panels (c), (f), and
(i) have Lambertian surface albedos of 0.7.

reference Jacobian matrices, we also calculate how the errors
are distributed in space and angle, i.e., in state and measure-
ment space.

5.1.1 Spatial variation in error

We again categorize the Jacobian elements according to the
delta-M transmission from the Sun to each grid point and
the minimum delta-M transmission from the sensors to each
grid point. For Jacobian elements in each bin, we calculate
the RMSE and normalize it by the root mean square mag-
nitude of the entire reference Jacobian matrix calculated by
finite differencing. This indicates which grid points produce
approximate Jacobian elements with errors large enough to
significantly change the overall direction of the gradient. Fi-
gure 11 shows that these errors are largest in the regions at the
exterior of the cloud close to both the sensor and Sun. These
Jacobian entries are also the largest in magnitude and have
the largest higher-order derivatives, due to the curvature of
the transmission function, and are also expected to have the
largest errors in the finite differencing.

We also show the ratio of the mean absolute magnitude
of the approximate Jacobian to the mean absolute magnitude
of the reference Jacobian in each bin (see Fig. 12). We see
that the typical magnitude of the approximate Jacobian de-
cays much quicker with optical depth from the Sun and sen-
sors than the reference. This means that the approximate Ja-
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cobian has an enhanced scale mismatch in sensitivity to the
properties of the cloud at the exterior and interior, thus ex-
acerbating the ill-conditioning problem outlined in Sect. 4.2.
Physically, this is due to the faster exponential decay of direct
transmission than diffuse radiance. We could then hypothe-
size that the condition number of the approximate Jacobian
would be higher than that of the reference in the optically
thickest cases. This is not borne out in Fig. 13, which shows
that condition numbers for the approximate Jacobian are not
appreciably larger than for the reference Jacobian (see Fig. 5)
and are actually smaller in the optically thick limit. Thus,
the condition numbers in Fig. 5 for the reference Jacobian
are likely larger in the optically thick limit due to numeri-
cal noise in the derivative calculations. The patterns of er-
ror illustrated in Figs. 11 and 12 are similar for the non-zero
surface albedos and non-conservative scattering except with
overall larger errors (not shown).

5.1.2 Angular variation in error

We also examined the sensitivity of the Jacobian errors to
the set of scattering angles in the observations. In Fig. 14,
we show the relative RMSE in the Jacobian elements corre-
sponding to each viewing angle, grouped by scattering angle.
The shape of the error depends on the phase function. In gen-
eral, the larger errors occur in the backscattering directions
for the isotropic phase functions (Fig. 14a, b, c, d). These
observation geometries also include large sensitivity to grid
points that are optically close to the Sun and therefore have
the largest truncation errors, consistent with Fig. 11. These
truncation errors may account for a substantial portion of the
scattering angle dependence. When a Mie phase function is
used (Fig. 14i, j, k, l), the error is also angularly dependent,
with a minimum around the rainbow direction and a maxi-
mum at scattering angles of around 100◦.

We performed a further investigation of these angular pat-
terns in the error using much simpler clouds with hyper angu-
lar observations. We defined cloud base states that consisted
of just a single, optically thin, cloudy grid point and obser-
vations with 1◦ zenith angle spacing both along and across
the solar plane. We confirmed that the dip in error observed
around the rainbow scattering angles in Fig. 14 is due to the
Mie phase function, as this feature does not appear when a
featureless Henyey–Greenstein phase function is used with
the same asymmetry parameter. There is further angle de-
pendence in the error that is not correlated with scattering
angle, which we can attribute to multiple-scattering effects.
We do not expect a consistent angular dependence for these
features. For example, a peak in error at scattering angles
of around 100◦ appears for our single grid point clouds, re-
gardless of the choice of a Mie or Henyey–Greenstein phase
function. Changing the solar zenith angle for our simplified
single grid point clouds revealed that this error is actually de-
pendent on zenith, peaking near nadir. We should expect the
angular dependence of the error to vary with the base state

cloud structure and that it cannot easily extrapolate from our
simplified cloud to the more complex base states quantified
in Fig. 14. However, we have identified that there are angular
features in the error that depend only on the phase function
due to the increasing relevance of single-scattered radiation
in the rainbow scattering angles. Further work with a wider
diversity of cloud base states would be needed to reliably
isolate multiple-scattering signals in the error that are inde-
pendent of the phase function details.

5.2 Auxiliary domains

Here, we assess the accuracy of derivatives of radiances with
respect to changes in the extinction fields in the auxiliary
RTE domains that control the open horizontal BCs. We use
the same set of base states and observations as in Sects. 4.1
and 5.1. However, we focus only on the appropriateness of
the approximate Jacobian for open horizontal BCs. We com-
pute derivatives with respect to extinction along the horizon-
tal boundaries for every fourth point in the vertical and every
fifth point in the horizontal. This set of base states has a low
optical depth of 0.1 in the auxiliary domains and is there-
fore analogous to the case of an optically thin embedding
medium, such as the cloud-free atmosphere.

These errors in the approximate Jacobian are displayed in
Fig. 15 and show much larger overall errors than for the in-
ternal extinction derivatives shown in Fig. 9 (note the differ-
ence in the color scale). The larger errors in the optically thin
cases, when compared to Fig. 10, are driven by the poorer ap-
plicability of the Jacobian approximation to the 2D and 1D
RT in the auxiliary domains. The much weaker dependence
of the errors in the optical thickness of the primary domain of
3D RT than in Fig. 10 indicates that the neglect of multiple
scattering within the primary domain is much less important
than the errors due to the application of the Jacobian approx-
imation to the lower-dimensional auxiliary domains. There
is a much greater sensitivity to the phase function and angu-
lar accuracy, with nearly a halving of the error when moving
from the isotropic phase function and Mie phase function to
the two-stream Mie phase function.

We also examine another set of base states which are just
plane-parallel cloud layers (Fig. 16). The domain and dis-
cretization for 3D RT are the same as in Sects. 4.1 and 5.1,
and the horizontally infinite portion is modeled using the
open horizontal BCs rather than periodic assumptions. The
extinction is distributed homogeneously within the (1 km)3

domain. These base states are analogous to stratiform clouds.
We calculate derivatives only with respect to the domain
boundary extinction to examine the appropriateness of the
approximate Jacobian for these situations. We vary the opti-
cal depth of the plane-parallel layers across the same values
used previously for the maximum optical depth in the 3D
Gaussian extinction fields. The errors in the approximate Ja-
cobian increase much faster with optical depth than for the
3D Gaussian extinction fields (Fig. 10) and are much larger.
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Figure 11. The relative RMSE error in the approximate Jacobian for 3D Gaussian clouds in each bin of solar and minimum sensor delta-M
transmission (see Fig. 9 and associated text for definitions). The normalization of the RMSE in each bin is the root mean square magnitude
of the entire Jacobian matrix (see Eq. 67). As in Fig. 9, each column corresponds to a base state with maximum cloud optical depth from 0.1,
5.0, 40.0, and 100.0, increasing from left to right. Each row corresponds to a base state with different phase function and angular resolution,
with isotropic phase function (a, b, c, d), Mie phase function with high angular resolution (e, f, g, h), and Mie phase function with low
angular resolution (i, j, k, l).

Figure 12. The ratio of the mean absolute magnitude of the approximate Jacobian to the mean absolute magnitude of the finite-difference
Jacobian in each bin of solar and minimum sensor delta-M transmission for 3D Gaussian clouds with conservative scattering over a black
surface. This figure is the same as Figs. 9 and 11. As in Fig. 9, each column corresponds to a base state, with maximum cloud optical depth
from 0.1, 5.0, 40.0, and 100.0, increasing from left to right. Each row corresponds to a base state with different phase function and angular
resolution, with isotropic phase function (a, b, c, d), Mie phase function with high angular resolution (e, f, g, h), and Mie phase function with
low angular resolution (i, j, k, l).
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Figure 13. The condition number (see text for details) of the ap-
proximate Jacobian for 3D Gaussian clouds with different combina-
tions of single-scattering albedo and maximum optical path. Same
as Fig. 5 but for the approximate Jacobian. Panels (a), (b), and (c)
have isotropic phase functions. Panels (d), (e), and (f) have Mie
phase functions, and panels (g), (h), and (i) have Mie phase func-
tions with a reduced angular resolution (see text for details). Pan-
els (a), (d), and (g) have a black surface. Panels (b), (e), and (h)
have Lambertian surface albedos of 0.2, while panels (c), (f), and
(i) have Lambertian surface albedos of 0.7.

This indicates that the approximate Jacobian has no skill for
BC optimization in conditions of stratiform cloud.

5.3 Discussion

Here, we discuss the implications of the errors in the ap-
proximate Jacobian for the iterative retrieval. The relative
Jacobian errors documented above bound the relative errors
that can occur in the calculation of cost function gradients,
which additionally depend on the structure of the measure-
ment residuals. The theoretical examination of the conse-
quences of gradient errors in the L-BFGS-B method have
been only recently investigated (Shi et al., 2021), due to the
interest in developing stochastic variants for deep learning
and other similar applications. The L-BFGS method uses fi-
nite differencing to approximate the Hessian. When there is
noise in the gradients, the approximate Hessian can become
corrupted. With bad curvature information, typically only
very small step sizes will be valid, or there may be a com-
plete failure to select a valid search direction. This would
result in the early termination of the optimization, possibly
far from a local optimum, and will become more significant
as the errors in the approximate Jacobian increase, i.e., as
clouds become optically thicker. In this sense, both the inher-
ent ill-conditioning of the inverse problem and the approxi-
mate Jacobian errors should have a similar deleterious effect
on retrieval performance. Moreover, it will not be possible to

disentangle these two effects in nonlinear retrievals without
comparison against a reference method that uses an unap-
proximated method to linearize the forward model, whether
it is a forward or forward-adjoint method. As such, we can-
not make quantitative statements about the consequences of
using the approximated Jacobian without performing the op-
timization with a known ground truth. The combined effects
of the approximate Jacobian and ill-conditioning on retrieval
accuracy can be examined in idealized circumstances where
other sources of uncertainty in the retrieval are minimized.
We perform such simulations in Part 2 of this study.

The typical solution for gradients with errors is to per-
form a step-lengthening procedure (Shi et al., 2021). How-
ever, in systems that are highly ill-conditioned, even without
noise, such as the optically thick clouds discussed here, a
step-lengthening procedure may cause significant difficulty
in the selection of an update vector satisfying the stabiliz-
ing Wolfe–Armijo line search conditions. We note that the
errors in the gradients induced by the approximate Jacobian
are deterministic, and not stochastic noise, so there is an op-
portunity for them to be highly correlated from one base
state to the next. If this occurred, then it would result in a
certain amount of cancellation of the errors and better ap-
proximation of the Hessian of the cost function through the
L-BFGS method. We have not examined this quantitatively
here due to the computational expense of numerically cal-
culating second-order derivatives, but this should be kept in
mind when considering differences in performance of the
approximate Jacobian for tomographic retrievals when used
with first-order optimization methods (e.g., gradient descent)
vs. quasi-Newton methods such as L-BFGS-B.

For the auxiliary domains, overall errors are much larger,
reaching relative Frobenius errors far in excess of 100 %,
even for optically thin atmospheres (with isotropic phase
functions). Errors are relatively independent of the scattering
regime of the internal medium but are very sensitive to the
optical depth in the auxiliary domains. These results indicate
that, while the approximate Jacobian proposed in Levis et
al. (2020) is appropriate for 3D media, it is much less so for
lower-dimensional transport. This indicates that a retrieval
of stratiform cloud properties using the approximate Jaco-
bian and open horizontal BCs is ill-advised. The ability to
optimize BCs using AT3D may still be useful for retrieving
a best-fitting cloud-free atmosphere jointly with the retrieval
of a 3D cloud field, as the cloud-free atmosphere is optically
thin.

6 The importance of heterogeneity for tomography

We can make use of the computational efficiency of the ap-
proximate Jacobian to explore the dependence of the condi-
tion number of the Jacobian on the spatial structure and opti-
cal thickness of the cloud field in more detail than in Figs. 5
and 13. In particular, we illustrate the critical importance of

https://doi.org/10.5194/amt-16-1803-2023 Atmos. Meas. Tech., 16, 1803–1847, 2023



1830 J. Loveridge et al.: Retrieving 3D distributions of atmospheric particles using AT3D

Figure 14. The dependence of the relative RMSE in the approximate Jacobian for each image on the mean scattering angle of each image
for cloud base states with conservative scattering and a black surface. As in Figs. 9, 11, and 12, each row corresponds to a base state with
different phase function and angular resolution, with isotropic phase function (a, b, c, d), Mie phase function with high angular resolution (e,
f, g, h), and Mie phase function with low angular resolution (i, j, k, l). Columns correspond to base states with maximum optical depths of
0.1 (a, e, i), 5 (b, f, j), 40 (c, g, k), and 100 (d, h, l).

the spatial structure of the extinction field for determining
the feasibility of tomography. We contrast the behavior of
plane-parallel homogeneous clouds and 3D Gaussian extinc-
tion fields, which are restricted to a (1 km)3 domain under
inversion. Note that the plane-parallel homogeneous cloud is
still resolved in 3D, and the radiation transport is in 3D. We
are examining our ability to retrieve inhomogeneities embed-
ded within the cloud. As such, the dimensionality effects de-
scribed in Sect. 5 are not at play here. We use the same hemi-
spheric set of observations and the same grid geometry used
in Sects. 4.1 and 5.1. The clouds are conservatively scattering
and use the Mie phase function with a black surface. We cal-
culate the derivatives with respect to all internal grid points
in each horizontal grid point but only every second grid point
in the vertical. This is done to avoid the need to adopt spe-
cial techniques for the singular-value decomposition (SVD)
of large matrices to calculate the condition number.

We classify the plane-parallel clouds by their vertical opti-
cal depth and the 3D Gaussian extinction fields by their verti-
cal optical depth to the center of the cloud (half of their diam-
eter). We refer to this as the “optical dimension”. This clas-
sification puts the two types of extinction field on the same
footing in terms of the minimum transmission from any sen-
sor to the grid point that is optically furthest from all sensors.
They are therefore equivalent in terms of the presence of a
veiled core, as defined by Forster et al. (2020) and investi-
gated in Sect. 4.2.

6.1 Results

In Fig. 17, we can clearly see the exponential growth of
the condition number of the approximate Jacobian at larger
optical dimensions, consistent with theory, indicating expo-
nential growth with the inverse Knudsen number (Zhao and
Zhong, 2019). The plane-parallel clouds are notable in that
the condition number increases at a faster rate. This shows
how much larger the Knudsen number (and hence mean free
path) is in a heterogeneous cloud like the 3D Gaussian ex-
tinction field and how much more information about spatial
detail is preserved for a similar optical thickness. The impor-
tance of finite cloud edges for sensing cloud vertical struc-
ture from multi-angle radiances has also been demonstrated
in nonlinear retrievals in a 2D setting (Martin and Hasekamp,
2018). The purely geometric part of this effect is partially
reflected in the use of the optical radius, rather than diame-
ter of the 3D Gaussian extinction field, when comparing to
the plane-parallel clouds. This reflects the ease with which
oblique sensors can constrain the cloud base and edges when
clouds have aspect ratios around 1, even when they have large
vertical optical depths.

In Fig. 17b, we see that the condition number of the
approximate Jacobians in the 3D Gaussian clouds remains
roughly invariant before the onset of exponential growth.
This is likely due to the fact that the Knudsen number re-
mains large enough that a diffusion regime has not developed
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Figure 15. Similar to Fig. 10 but for derivatives of radiances with
respect to the extinction within the auxiliary domains that param-
eterize the open horizontal BCs. Note the difference in color scale
from Fig. 10. Panels (a), (b), and (c) have isotropic phase functions.
Panels (d), (e), and (f) have Mie phase functions, and panels (g),
(h), and (i) have Mie phase functions with a reduced angular res-
olution (see text for details). Panels (a), (d), and (g) have a black
surface. Panels (b), (e), and (h) have Lambertian surface albedos of
0.2, while panels (c), (f), and (i) have Lambertian surface albedos
of 0.7.

within the cloud. The reduced angular accuracy results indi-
cate that the clouds are equivalent to those operating with
almost halved extinction, as expected. This includes the tran-
sition point from slow scaling to exponential scaling for the
3D Gaussian extinction field.

6.2 Discussion

The results in Fig. 17 indicate that plane-parallel clouds are
a lot more ill-posed under inversion than finite clouds and
will require stronger regularization of prior information. This
fact highlights the fact that, from a fundamental perspec-
tive, highly heterogeneous cloud fields are actually much
simpler targets for remote sensing than homogeneous, strat-
iform clouds, as the vertical variations within the cloud can
be inferred much more easily from passive imagery. Addi-
tionally, the results in Fig. 17 also indicate that tomographic
retrievals of optically thin (τ ≤ 3) stratiform media (e.g.,
cirrus) should also be effective, as these optically thin cir-
rus clouds are better conditioned than the Gaussian clouds
with optical depths typical of thin cumulus (optical dimen-
sion∼ 10). Tomographic retrievals of cumuliform clouds in
this optical depth range have already demonstrated some suc-
cess (Levis et al., 2020). This analysis alone does not demon-
strate that tomographic retrievals will be successful but does
indicate that the proposed retrieval algorithm will be most
effective for broken trade cumulus, thin cirrus, and also pos-

Figure 16. Similar to Fig. 15 but using base states that are plane-
parallel, horizontally homogeneous extinction fields. Note the dif-
ference in color scale from Figs. 10 and 15. Panels (a), (b), and
(c) have isotropic phase functions. Panels (d), (e), and (f) have Mie
phase functions, and panels (g), (h), and (i) have Mie phase func-
tions with a reduced angular resolution (see text for details). Pan-
els (a), (d), and (g) have a black surface. Panels (b), (e), and (h)
have Lambertian surface albedos of 0.2, while panels (c), (f), and
(i) have Lambertian surface albedos of 0.7.

Figure 17. The dependence of the condition number of the approxi-
mate Jacobian on the optical dimension which is the vertical optical
thickness of plane-parallel homogeneous (red lines) and the optical
radius of 3D Gaussian (blue lines) extinction fields. Panel (b) is a
magnified version of panel (a), highlighting the different behaviors
at small optical depths. The plane-parallel 16 stream curve stops at
maximum optical thickness 20, since, beyond this, it becomes truly
ill-posed (condition number tending to infinity).

sibly multi-layered combinations of them, along with their
aerosol environment. Further studies quantifying the effec-
tiveness of tomographic retrievals in these different cloud
regimes are warranted. In Part 2 of this study, we focus on cu-
muliform cloud types to test the effectiveness of the method
in filling the observational gap in operational cloud property
retrievals which do not perform well in situations with bro-
ken cumulus.
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It remains to be seen how effective tomography will be
for very thick, cumuliform clouds and for moderately thick
stratiform clouds, all of which are strongly ill-conditioned. It
also remains to be seen what regularization schemes or prior
information is required to improve retrievals in these condi-
tions. There are also methods that have been proposed to mit-
igate the ill-conditioning of the inverse problem through the
use of tailor-made preconditioning schemes (Niu et al., 2010;
Tian et al., 2010).

7 Summary

In this study, we have introduced and validated an algorithm
for retrieving the 3D volumetric properties of clouds using
multi-angle, multi-pixel radiances and 3D radiative transfer.
The retrieval utilizes an iterative, optimization-based solu-
tion to the generalized least squares problem to find a best-
fitting state vector parameterizing the atmosphere. The itera-
tive retrieval is made computationally tractable through the
use of an approximate Jacobian calculation introduced by
Levis et al. (2015, 2017, 2020) that has been extended to
accommodate open and periodic horizontal boundary con-
ditions and an improved treatment of non-black surfaces. We
implemented this retrieval in a new software package, AT3D,
which we have made publicly available.

We presented the basic physical principles of inverse ra-
diative transfer from a linearized perspective. We identified
that the iterative retrieval will tend to ill-posedness as the
optical depth of the medium increases. This is due to the
increasing smoothing effects of multiple scattering, which
are ill-conditioned under inversion. This ill-conditioning of
the inversion is also highly sensitive to the numerical treat-
ment of the forward-scattering peak for highly peaked phase
functions, such as cloud droplets at solar wavelengths. In the
SHDOM solver used in the retrieval algorithm, this manifests
as a sensitivity to both the phase function and also the an-
gular resolution used in the solver. When forward-scattering
peaks are strong and angular resolutions are low, the ill-
conditioning is mitigated.

Our linear analysis of the cloud tomography problem also
indicates that the fastest reductions in the cost function will
occur by modifying regions of the cloud optically close to
the Sun and to the sensors, where the magnitude of the el-
ements of the Jacobian matrix is the largest. As the cloud
becomes optically thick, the magnitude of the elements of
the Jacobian matrix becomes exponentially larger in the re-
gions closest to the Sun and sensors than those furthest away.
This may cause a retrieval using local optimization, such as
AT3D described here, to converge to a local minimum when
the target medium is optically thick, if no other constraints
are employed in the retrieval – other than the multi-angle ra-
diances.

We presented the derivation of the approximate Jacobian
as an approximation to an adjoint radiative transfer problem

and evaluated its accuracy. Errors in the elements of the ap-
proximate Jacobian matrix which contain derivatives of ra-
diances with respect to the 3D volume extinction coefficient
increase from 2 % to 12 % for media with cloud-like single-
scattering properties over surfaces with Lambertian albedos
less than 0.2, as the maximum optical depths of the medium
increase from 0.2 and 100. When the albedo of the Lamber-
tian surface is 0.7, then the errors are larger, reaching 20 %
for media with maximum optical depths of 100. Errors are
smaller for media with phase functions with strong forward-
scattering peaks, especially when a low angular resolution is
utilized in the SHDOM solver.

The elements of the approximate Jacobian matrix that con-
tain the derivatives of radiances with respect to the volume
extinction coefficients of the plane-parallel media that pro-
vide the open horizontal boundary conditions to the 3D ra-
diative transfer problem are very inaccurate. Errors in these
elements of the approximate Jacobian matrix exceed 50 %,
unless the plane-parallel media are optically thin (∼ 0.1).
The larger errors in the elements of the Jacobian matrix that
correspond to the horizontal boundary conditions compared
to those that correspond to the volumetric optical properties
of the medium are due to the accuracy of the approximate
calculation of the Jacobian matrix, which has lower accu-
racy in lower dimensional (2D and 1D) transport problems.
These results indicate that AT3D will likely only be useful
for jointly retrieving volumetric optical properties and hor-
izontal boundary conditions when the horizontal boundary
conditions correspond to optically thin plane-parallel media
like the clear atmosphere.

The approximate Jacobian captures the key information
content in the reference Jacobians and has a similar depen-
dence of ill-conditioning on the optical depth of the medium
as the reference. Our numerical tests using the approximate
Jacobian also indicate that the retrieval problem becomes
much more ill-posed, as measured by the condition num-
ber, when the target medium forms an infinite slab geometry
compared to when it forms a finite geometry. This difference
is due to the inability of the sensors to distinguish between
rearrangements in the extinction field at the bottom of an
optically thick plane-parallel layer and indicates that tomo-
graphic retrievals will be most beneficial in optically thinner
stratiform clouds or broken fields of cumulus.

We therefore judge that the approximate Jacobian, and by
extension the retrieval method currently available in AT3D
for tomographic retrievals, is most suitable for retrievals in
thin, cirriform clouds and trade cumulus over oceanic sur-
faces and their adjacent aerosols. The successful application
of the retrieval to a broader variety of clouds and surface
types is also possible but will likely require the incorpora-
tion of additional constraints. In Part 2 of this study, we will
examine the implications of the ill-conditioning and errors in
the approximate Jacobian in idealized tomographic retrievals
of simulated clouds. In Part 2, we focus on the retrieval of
the 3D volume extinction coefficient using monochromatic
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radiance to address these fundamental concerns. The AT3D
software is already able to examine a much wider variety of
problems and can be used to explore microphysical retrievals
using polarimetric (Levis et al., 2020) or multi-spectral mea-
surements. We hope that, in making this software package
publicly available, we will encourage the development of this
retrieval method and other next-generation remote sensing
retrievals that utilize 3D radiative transfer modeling.

Appendix A: Glossary

Table A1. Mathematical terms introduced in Sect. 3.

Variables Description Reference

a State vector Eq. (1)

ã Retrieved state vector Eq. (2)

a0 Initial value of state vector Fig. 1

1am Update to state vector at mth iteration of optimization Eq. (3)

atol Absolute error tolerance when testing for agreement between floats Eq. (C1)

B(r) Polarized volume emission source Near Eq. (13)

Bλ(T ) Planck blackbody radiance function Near Eq. (13)

b A vector of output from AT3D on which to test for accuracy Eq. (C1)

c A vector of reference output used to evaluate AT3D Eq. (C1)

D Spatial domain of RT Near Eq. (7)

∂Dn The boundary of a spatial domain Eq. (11)

D1 Spatial domain of 3D RT Eq. (7)

D2−D9 Spatial domain of 2D and 1D RT (evens 1D; odds 2D) Eq. (8)

Dn×S2 Internal set of radiative transfer (space and direction) Fig. 3

δ Dirac delta distribution Eq. (17)

F (a) Forward model Eq. (1)

Fi,n(x) The contribution of the nth RT domain to the ith component of the forward model Eq. (42)

F 0 The flux along the solar beam Eq. (17)

f (r,�) The volume source of the RTE Eq. (13)

f d(r,�) The volume source of the RTE for diffuse radiance Eq. (26)

f̂d(r,�) The effective volume source of the RTE for diffuse radiance Eq. (33)

g(r,�) The boundary source of the RTE Eq. (15)

gBOT(r,�) Boundary source at domain bottom (thermal emission) Eq. (27)

gTOP(r,�) Boundary source at domain top (isotropic emission) Eq. (27)

g�(r,�) Boundary source at domain top due to collimated solar illumination Eq. (17)

gSIDE(r,�) Boundary source on domain sides Eq. (18)

gSIDE
�

(r,�) Boundary source on domain sides due to direct, unscattered solar illumination Eq. (22)
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Table A1. Continued.

Variables Description Reference

gSIDE
d (r,�) Boundary source on domain sides not due to direct, unscattered solar illumination Eq. (22)

gd The boundary source of the RTE for diffuse radiance Eq. (27)

ĝd(r,�) The effective boundary source of the RTE for diffuse radiance Eq. (34)

0−n Incoming radiation at the boundary of the nth RT domain Eq. (11)

0+n Outgoing radiation at the boundary of the nth RT domain Eq. (11)

0S
n Incoming radiation at the horizontal sides of the nth RT domain Eq. (37)

HL(x) A Heaviside function with transition at length L Eq. (38)

i Index of forward model Eq. (5)

In(r,�)= [I,Q,U,V ]
T Stokes vector (polarized radiance field) of the nth domain Eq. (12)

I�(r,�) Direct, unscattered solar radiance Eq. (21)

Id(r,�) Diffuse radiance; all radiance that is not direct, unscattered solar radiance Eq. (21)

j Index of state vector elements Eq. (5)

k Index of sub-pixel rays in a sensor response function Eq. (32)

K Jacobian matrix containing the derivatives of the forward model with respect to Eq. (4)
elements of the state vector

κ(K) Condition number (of Jacobian matrix) Eq. (6)

l Lower bounds on state vector Eq. (2)

l Path length Eq. (24)

le Path length over a subgrid interval Eq. (D2)

Lx Length of 3D RT domain in x direction Eq. (7)

Ly Length of 3D RT domain in y direction Eq. (7)

Lz Length of 3D RT domain in z direction Eq. (7)

L[·] The transport operator of the RTE Eq. (12)

m Iteration number in L-BFGS-B optimization Eq. (2)

M The number of past L-BFGS-B iterations over which gradient information is stored to Near Eq. (3)
approximate the Hessian of the cost function

n Domain index of RT domains Eq. (11)

nn(r) Unit vector outer normal to the boundary of the nth domain Eq. (11)

Oi The polarization analyzer of the sensor response function of the ith element of the forward model Eq. (32)

� Direction of propagation Eq. (11)

�sun Direction of propagation of solar illumination Eq. (17)

�ik Propagation direction of radiance that is sampled by the kth sub-pixel ray of the sensor response Eq. (32)
function for the ith element of the forward model

ω(r) Single-scattering albedo Eq. (12)

P i Sensor response function of the ith measurement Eq. (32)

pik,n The volume response function of the kth sub-pixel ray of the sensor response function for the ith Eq. (39)
element of the forward model for the nth RT domain

qik,n The attenuated boundary response function of the kth sub-pixel ray of the sensor response Eq. (40)
function for the ith element of the forward model for the nth RT domain
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Table A1. Continued.

Variables Description Reference

r = (x,y,z)T Position vector Eq. (7)

r ik Position of the kth sub-pixel ray for the sensor response function of the ith measurement Eq. (32)

rtol Relative error tolerance when testing for agreement between floats Eq. (C1)

R(a) Regularization term in cost function Eq. (1)

R Reflection operator part of the boundary condition of the RTE Eq. (15)

R(r,�,�′) Polarized bidirectional reflectance distribution function Eq. (16)

Sε Error co-variance matrix Eq. (1)

S2 Unit sphere in 3D which is the domain of directions of RT Eq. (11)

dS� An element of surface parameterized by the propagation direction Eq. (29)

dVr An element of volume parameterized by the position vector Eq. (29)

S[·] Volume streaming operator Eq. (35)

σ(r) Volume extinction coefficient Eq. (12)

slargest Largest singular value of Jacobian matrix Eq. (6)

ssmallest Smallest singular value of Jacobian matrix Eq. (6)

T [·] Streaming operator Eq. (23)

T(r,r ′) Transmission between two positions Eq. (24)

U Solution operator of the RTE Eq. (28)

u Upper bounds on state vector Eq. (2)

v Test field Eq. (29)

w Test field Eq. (29)

wk The weights of the sub-pixel rays forming the sensor response function Eq. (32)

χ2 Cost function Eq. (1)

y Measurement vector Eq. (1)

Z(r,�,�′) Scattering-phase matrix Eq. (12)

⊕ Set union operator Near Eq. (12)

Appendix B: Modifications to the SHDOM solver

The SHDOM solver in AT3D is derived from the original
implementation of SHDOM in Fortran 77 and Fortran 90
(Evans, 1998). We have made some modifications to the
solver and optical property schemes to ensure the differentia-
bility of radiances with respect to all optical properties and
microphysical properties. The SHDOM solver uses two dif-
ferent grids, namely one to represent the optical properties,
known as the property grid, and one to solve the RT problem.
The property grid is regular. The RT grid is based on a regular
grid, but with optional local grid refinement that makes the
grid irregular, and is referred to as the adaptive grid. Specific

choices must be made to both prepare the optical properties
on the property grid and to interpolate them onto the RT grid.

The original optical property generation scheme (PROP-
GEN) prepared the optical properties through external mix-
ing of different participating particle species. This means
that the total volume extinction coefficient and single-scatter
albedo are calculated by summing the volume extinction co-
efficients and the volume scattering coefficients. The calcu-
lation of the effective phase functions of the mixture would
require calculating the weighted mean of the phase func-
tions, where the weights are the fractional contribution of
each species to the total volume scattering coefficient. This
scheme would typically produce a unique phase function for
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each point, which would cause a substantial memory burden
in the SHDOM solution, especially if polarization is consid-
ered. This is also an issue when the adaptive grid is used in
the SHDOM solution, as the number of grid points can grow,
with each one requiring a new unique phase function.

To alleviate this, the original SHDOM PROPGEN pro-
gram limited the number of unique phase function mixtures
by only adding a new phase function if a tolerance on the
phase function accuracy is not met by any of the phase func-
tions within the current set. This smaller set of unique phase
functions is then stored in a lookup table (LUT), with a cor-
responding pointer at each grid point. This scheme is non-
differentiable, as a thresholding operation is used to select
the phase functions.

When a new adaptive grid point requires new optical prop-
erties, the extinction and single-scattering albedo at each
point can be calculated with linear interpolation. To avoid
new unique phase functions, a less accurate nearest-neighbor
interpolation is used. Specifically, the new adaptive grid point
inherits the phase function of a property grid point if either
(a) the two are co-located or (b) the property grid point is the
one with the largest scattering coefficient amongst the prop-
erty grid points surrounding the new adaptive grid point. This
scheme is also not differentiable.

We have replaced the PROPGEN program and modified
the SHDOM solver used in AT3D itself to accommodate a
new scheme for representing phase functions that is differ-
entiable. Specifically, we employ an online mixing of phase
functions, when required during the SHDOM solution pro-
cedure, which is during the convolution of the phase func-
tion and the radiance field and referred to as the SOURCE
function computation. We note that the delta-M scaling oc-
curs on the RT grid, consistent with the original SHDOM im-
plementation. This operation is performed by the subroutine
COMPUTE_SOURCE in the shdomsub1.f file. In the online
mixing, we store a limited LUT for each scattering species.
We may adopt a nearest-neighbor or linear interpolation from
this LUT to define the phase function of each species at each
grid point. We then calculate the total phase function of all
species at each grid point by performing a weighted average
over the phase function of each species. This latter part of
the procedure is the exact part of the phase function calcula-
tion. The approximation can occur, depending on the choice
of phase functions within the LUT and the choice of inter-
polation rule. When the number of unique phase functions is
small, each entry in the LUT can be the species phase func-
tion. On the other hand, when the number of unique phase
functions is large, we approximate the dependence of the
phase function on the particle’s microphysical properties us-
ing linear interpolation. This approximation occurs for each
individual particle species, but the mixing is still exact. Both
the mixing and linear interpolation from the LUT are differ-
entiable. The downside of the interpolation from the LUT is
that some error will be induced compared to using the exact
Mie calculations for each phase function.

The final result of this is that we have replaced the mem-
ory burden of storing phase functions with the computational
burden or performing weighted sums of phase functions. The
computational burden is relatively low because the number of
phase function expansion coefficients that need to be mixed
for the SHDOM solution is relatively small. To be precise,
it is small compared to the total number of expansion coef-
ficients needed to store a unique phase function. It is also
small compared to the number of spherical harmonics in the
SOURCE function computation. As such, the computational
cost of the SOURCE function computation and the solver it-
self is relatively invariant, as shown in Table B1. Given that
most simulations will have, at most, cloud liquid, cloud ice,
and one or two types of aerosol, the computational expense
of performing these simulations is only around 10 % larger
for typical angular accuracies. This is relatively large because
the SOURCE computation is actually called three times dur-
ing each solution procedure to reduce the memory expense
of the SHDOM solver. Multi-species SHDOM solutions are
much more expensive for lower angular accuracies, but the
solutions are extremely fast in these cases, resulting in mini-
mal changes in wall time.

Appendix C: SHDOM solver verification

We have made substantial modifications to the implemen-
tation of the SHDOM solver in AT3D. These include the
modifications to the representation of optical properties in
the SOURCE function calculation, described above in Ap-
pendix B, and also through the Python wrapping of the
SHDOM solution procedure. Due to these changes, it is crit-
ical to perform a thorough verification of the new software
to ensure that bugs have not been introduced and that the ef-
ficacy of the translation of the algorithm into code remains
intact (Kanewala and Bieman, 2014). As such, we have per-
formed a verification of the model to ensure consistency of
the implementation of SHDOM in AT3D with the original
SHDOM implementation and with several analytic bench-
marks. The comparisons against the original SHDOM im-
plementation were the most informative, as they provided
strict bounds on the behavior of the model in complex cases,
thereby allowing us to diagnose several errors, including one
in the original SHDOM implementation. The details of all
of the tests in AT3D, including the solver verifications de-
scribed here, can be found in the AT3D test folder, including
input files for the original SHDOM code.

In our quantitative verification of the AT3D SHDOM
solver, we must compare arrays of floating-point numbers.
Given our changes to the optical property and SOURCE
function calculations in the solver, it is not possible to test for
bit-perfect reproduction of the original SHDOM solver. The
comparison of outputs is also difficult, due to the need to ver-
ify the solution when the adaptive grid is used. The adaptive
grid scheme utilizes a thresholding operation on a splitting
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Table B1. The ratio of the computational expense of the SHDOM solution procedure with the new SOURCE function computation for a
different number of particle species against the equivalent exact mixture for a varying angular resolution of the SHDOM solver. The media
used in the SHDOM solutions are generated from uniform distributions of the effective particle radius, extinction, and single-scattering
albedo. The medium has 832 radiative transfer grid points. Half of the particle species in each medium have cloud-sized effective particle
radii (10 to 30 µm), and the other half have aerosol-sized effective particle radii (0.3–0.5 µm). The timing ratios are averaged over 10 stochastic
realizations for each configuration, with the standard deviations of the ratios shown in parentheses.

Number of spherical Number of particle
harmonics species

2 4 6 8

4 1.52 (0.07) 2.16 (0.13) 2.68 (0.22) 3.42 (0.36)
16 1.24 (0.15) 1.57 (0.08) 1.94 (0.15) 2.26 (0.18)
64 1.15 (0.11) 1.39 (0.16) 1.53 (0.16) 1.66 (0.09)
256 1.06 (0.06) 1.11 (0.06) 1.18 (0.05) 1.28 (0.08)
1024 1.02 (0.1) 1.05 (0.07) 1.07 (0.07) 1.19 (0.06)

criterion, which is a floating-point number, to decide when
to refine the grid. This thresholding is very sensitive to even
small changes in the inputs or numerical operations at the
level of the numerical precision of the single precision floats.
The changes in the solution in the RT solution (e.g., fluxes
and radiances), due to one additional refinement of the grid,
can be much larger (i.e., several percent) than changes in the
inputs. As such, the adaptive grid scheme can amplify small
differences in inputs into much larger differences in the out-
puts and is numerically unstable. Care must be taken to man-
age this issue when performing the comparisons with original
SHDOM. To test for the presence of significant differences
between a vector of output from the AT3D solver, b, and a
vector of reference output (e.g., from the original SHDOM
solver), c, we test whether the absolute differences between
the N elements of the vectors exceed the sum of a prescribed
relative error, rtol, and absolute error, atol. Specifically, we
require

|bi − ci | ≤ atol+ rtol |ci | ∀ i ∈ 1, . . .,N (C1)

to hold for every element. For all tests, rtol is set to 10−5,
while atol is set according to the expected truncation er-
ror, which varies depending on the nature of the refer-
ence. When comparing between AT3D and SHDOM radi-
ances, we use output written to file with five significant fig-
ures (standard SHDOM output), and we require atol = 10−5,
as most outputs are of the order of unity. We also use a
custom, untruncated output of the SOURCE function from
SHDOM. SHDOM uses single-precision floats, and so we
expect agreement to within seven significant figures. As such,
we judge the test to be successful in cases with an untrun-
cated output if the agreement is to within atol < 10−6, though
we test as strictly as we are able by reporting the smallest
value of atol for which each test passes. For example, we
verified that the modified SOURCE function computation in
AT3D, due to the new treatment of the phase matrices, passes
the consistency test with atol = 10−8.

We proceed with our description of the verification pro-
cess in the order of increasing complexity. We begin with
the analytic benchmarks, some comparisons of AT3D against
SHDOM in plane-parallel atmospheres, and then a compari-
son against SHDOM in a complex 3D case.

C1 Analytic and numerical benchmarks for 1D RT

We compare the AT3D solver against analytic benchmarks
to ensure the absolute accuracy of the solver in simple sit-
uations (Jones and Di Girolamo, 2018). The first such sit-
uation is a non-scattering, homogeneously absorbing atmo-
sphere with a Lambertian surface, where radiances are ver-
ified with atol = 10−8. We next consider an isothermal at-
mosphere with surface reflection to verify the thermal RTE
solution. The nadir radiance is verified against an analytical
solution to 0.005 % for a Lambertian surface with an albedo
of 0.5, a surface temperature of 300 K, and an atmospheric
temperature of 288 K, with 50 optical paths ranging from
0.03 to 15. The accuracy of this result depends on the an-
gular resolution for calculating the reflected radiation at the
surface. In total, 128 zenith discrete ordinate bins and 256 az-
imuthal discrete ordinate bins are used. The analytic solution
in this case is given by Eq. (C9) in Jones and Di Girolamo
(2018). We also verified a case with a non-scattering, homo-
geneously absorbing, and isothermal atmosphere with solar
surface reflection and emission, which is a combination of
two previous cases, to the same level of accuracy.

We compare RT solutions from AT3D and SHDOM
for molecular (Rayleigh) scattering in plane-parallel atmo-
spheres over all of the surface BRDFs available in SHDOM
and AT3D with varying parameters (e.g., surface wind speed)
to verify that the surface BRDFs, the Rayleigh scatter calcu-
lations, and 1D RT are consistent between the two solvers.
The details of the comparison can be found in the AT3D
code. We compare hemispheric downwelling fluxes, hemi-
spheric upwelling fluxes, and direct fluxes at the surface,
as well as top-of-atmosphere (TOA) radiances for 20 angles
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spaced equally in cosine of zenith over the upwelling hemi-
sphere. This is done through comparison with SHDOM out-
put written to file; i.e., it is verified with atol = 10−5.

C2 Intercomparison against SHDOM

We use a 3D radiative transfer setup with three Stokes com-
ponents to compare the RTE solution between SHDOM and
AT3D for a cloud distributed with the AT3D code. This cloud
was utilized in Levis et al. (2015, 2020). Both AT3D and
SHDOM use optical properties read from a file prepared by
SHDOM’s PROPGEN program to avoid amplification of er-
rors due to the adaptive grid. In brief, the simulation uses
8 zenith discrete ordinate bins, 16 azimuthal discrete ordi-
nate bins, a splitting accuracy of 0.1, a spherical harmonic
accuracy of 0.01, and a solution accuracy of 10−4. The fi-
nal output of the SHDOM solver is the spherical harmonic
expansion of the angular convolution of the radiance field
with the phase function, denoted as the polarized SOURCE
vector, on which we perform the consistency test. When the
adaptive grid matches between AT3D and the SHDOM ref-
erence, as in our example cloud, the solutions are consistent
with atol = 5× 10−7.

Larger differences in the SOURCE vector may occur when
comparing SHDOM solutions across different machines and
compilers when the adaptive grid is used because if the adap-
tive grid splitting occurs differently, then the SOURCE vec-
tors will not have a one-to-one correspondence. The input
files and scripts to reproduce the SHDOM benchmarks used
in the test are distributed with AT3D, along with the static
SOURCE output from the original SHDOM. The static out-
put may not be consistent with other machines and may need
to be regenerated. Given the good agreement between the
solvers for the SOURCE vector when the adaptive grid split-
ting is consistent, we judge that the AT3D implementation of
the SHDOM solver is in good agreement with the original
SHDOM implementation.

We also test the radiance calculation in the complex sit-
uation of 3D RT with the adaptive grid. We find that, even
in a simplified situation where the original SOURCE func-
tion computation is used, there is substantial disagreement
in the calculated radiances, despite the good agreement of
the SOURCE function computations. We identify discrep-
ancies in the radiances that can, in rare cases, reach up to
1.5 % error in the intensity and, as such, are clearly notice-
able, even when using the truncated output of SHDOM writ-
ten to file as a reference. The root mean square errors are
much smaller, being less than 0.004 %, and are therefore are
effectively undetectable in model intercomparisons. Given
the good agreement of the SOURCE vectors, the differences
in the radiances between AT3D and the original SHDOM
were traced to differences in the subroutines used to calcu-
late the integrals for the formal solution of the RTE (Eq. 36).
The original SHDOM implementation uses the CALCU-
LATE_RADIANCE subroutine, which is used in the origi-

nal SHDOM radiance output mode. AT3D’s radiance calcu-
lation builds on the VISUALIZE_RADIANCE subroutine,
which is used in the original SHDOM visualization out-
put mode. The visualization output mode is more flexible
in accommodating a unique viewing angle for each calcu-
lated radiance.

We do not have an absolute benchmark for the radiance
calculation in such a complex situation with the adaptive grid
that is sufficiently precise. Instead, we determined the cause
of the discrepancy through code analysis and judged that the
AT3D implementation is more physically correct, based on
the following considerations. The discrepancy only occurs
when the adaptive grid is used and is due to differing imple-
mentations of the interpolation of the SOURCE extinction
product onto the characteristic of the radiance when moving
between cells with different resolution in the adaptive grid. In
SHDOM, the SOURCE extinction product at the face of the
most recently exited cell is always used as the SOURCE ex-
tinction product at the entry point of the next cell. However,
if going to a higher-resolution cell, then the SOURCE extinc-
tion product at the entry point can be estimated with higher
accuracy, using the higher-resolution grid points in the new
cell. This latter procedure is used in AT3D, which we judge
to be more accurate. We note that the significant discrepan-
cies are limited to rare cases. The errors will be largest when
there is a large SOURCE function difference between the
SOURCE function at the higher- and lower-resolution grid
points. Therefore, the errors will also be minimized when a
low value of splitting accuracy is used. Our example used a
relatively large splitting accuracy of 0.1, and even then, the
bug correction produced a very low root mean square change
in the radiance field (0.004 %). As such, the correction of this
bug will not substantially affect holistic benchmarks of radi-
ances in 3D RT, such as reciprocity (e.g., Di Girolamo,1999,
2002) or previous model intercomparisons, as intermodel dif-
ferences in radiances are much larger.

Appendix D: Implementation of the approximate
Jacobian matrix calculation

Here, we describe how the inner products used to calcu-
late the entries in the Jacobian matrix (Eq. 58) are numer-
ically evaluated. These details are relevant to the perfor-
mance of AT3D, as there are several strategies that can be
employed when performing forward-adjoint-based lineariza-
tion of a model, depending on whether adjoints are formed
from continuous, discrete, or numerical algorithms (Klose
and Hielscher, 2002). First, we consider the evaluation of the
integral involving the volume streaming operator, which is
the second term in Eq. (58). This integral is simply a line in-
tegral, as it only needs to be evaluated at the specific position
and angle (r ik�ik) corresponding to a quadrature point in the
sensor’s response function.
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This integral is approximated by dividing it into E subin-
tervals, with optical paths smaller than a specified tolerance
(default 0.1) and with the endpoints le and le+1.
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We use a formula for the integration over each subinterval
that assumes that 1f j and the extinction σ vary linearly
along the path. This formula is accurate to the second order
in the subinterval path length.∫ le+1
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This formula is approximate but consistent with the dis-
cretization of the forward model, with one exception.
Namely, the first term, 1f j , involves the radiance, which
does not actually vary linearly, since the SOURCE extinc-
tion product varies linearly in the forward model. To evaluate
Eq. (D3), all that is needed is to evaluate1f j and the extinc-
tion at the end points of each subinterval. We adopt a trilin-
ear interpolation rule from the RT grid points for the volume
extinction coefficient and all terms in 1f j , apart from the
radiance. For the radiance, we directly evaluate it at the end-
points of each subinterval by evaluating the forward model.

The remaining complication is the evaluation of 1f j in
the required direction. If the delta-M approximation and
TMS correction are not employed, then all angularly varying

quantities, including the single-scattering terms in 1f j , are
represented in a basis of (real) generalized spherical harmon-
ics as in the forward model. On the other hand, if the delta-M
approximation and TMS correction are employed, then the
single-scattering terms in 1f j are computed using a LUT
of phase functions dependent on scattering angle, which is
again consistent with the forward model.

Second, we consider the boundary integral in the radiance
derivative calculation, which is the first term in Eq. (58):

T
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]
(r ik,�ik)= T

[
R
[
∂I�

∂aj

∣∣∣∣
0n+

]

+
∂R
∂aj

[
In,�+ In,d

]
+
∂gTOP

n (r,�)

∂aj

+
∂gBOT
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Currently, in AT3D, only the first term is relevant, as all
other terms are neglected. Note that the horizontal bound-

ary derivative term, ∂g
SIDE,0
n (r,�)
∂aj

, is made up of volume and
boundary terms in other auxiliary domains so that the first
term is the only true boundary term that is considered. The
direct radiance derivative is calculated at every RT grid point,
including on the boundary. The reflection operator R in
Eq. (16) acts on these grid points. The result is then bilin-
early interpolated along the boundary to the position where
it needs to be evaluated, which is the intersection of the line
of sight of the sensor with the boundary (r ik − l�ik�ik).

Appendix E: Verification of the approximate Jacobian
matrix calculation

It is critical to perform a proper verification of the approxi-
mate calculation of the Jacobian matrix before we can draw
scientific conclusions about the behavior of the proposed al-
gorithm with numerical experiments (Kanewala and Bieman,
2014). To verify the approximate Jacobian matrix, we use
a combination of benchmarks calculated from simple sce-
narios with analytic solutions and finite-differencing bench-
marks. All of the analytic benchmarks come from consider-
ation of the non-scattering thermal emission or surface re-
flectance cases.

If we have an emissive surface and a homogeneously ab-
sorbing isothermal atmosphere, then we can easily calculate
the derivative of the measured radiance with respect to the
homogeneous extinction in terms of the black body radiances
of the atmosphere BA and the surface BS, as follows:

∂I

∂σ

∣∣∣∣
σ0

=
h

µ
eσ0h/µ (BA−BS) , (E1)

where h is the geometric thickness of the layer, and µ is the
cosine of the viewing zenith angle. This test can be used to
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determine correct discrete implementation of the derivatives
consistent with the formal, integral solution of the RTE used
to calculate the radiances in SHDOM. We compare this ana-
lytic benchmark with the approximate Jacobian and a deriva-
tive estimated from a two-point central difference. In this
simple scenario, with h= 0.4 and µ= 1.0, the relative error
in the approximate Jacobian increases abruptly from 10−6 to
5× 10−3, when σ0 = 10.0. This is due to the saturation of
the error, as many subintervals in the integration reach an op-
tical path length of 0.1. Errors are substantially reduced if a
smaller optical path length is used. The error rapidly balloons
in optically thicker scenarios (σ0 = 100) due to a rounding
error affecting the signal, as the signal is attenuated below
the precision of single-precision floats. The error in the two-
point central difference also grows as σ0 increases but is also
dependent on the step size. If a step size is chosen as the max-
imum of 1 % or 0.01, then the error is maintained below 6 %
for σ0 < 10, where the absolute error also peaks. This indi-
cates that, despite the use of the approximate integration of
the subintervals, the approximate Jacobian tends to be a bit
more accurate than the finite differencing with respect to the
analytic calculation for a case where the approximate Jaco-
bian should be exact.

In the remaining tests, we can only utilize a finite-
differencing reference, as we invoke more complex, ran-
domly generated media (white noise) to test the correct ap-
plication of the chain rule to the interpolation rules used
for the optical properties. First, we test the calculation of
the direct-beam radiance derivatives, which are verified with
atol = 10−5 in Eq. (C1) for both periodic and open BCs and
for reflective Lambertian surfaces to ensure that the surface
boundary term is correctly calculated. Second, derivatives of
measured radiances with respect to the extinction, asymme-
try parameter, and single-scatter albedo are verified in the op-
tically thin limit and achieve, respectively, atol = 9.2×10−6,
atol = 1.3× 10−6, atol = 5.3× 10−7, both with and without
delta-M scaling.

Appendix F: Calculating the Jacobian matrix by finite
differencing

Here, we describe our procedure for calculating the Jaco-
bian matrix using finite differencing, to produce the results in
Sect. 4, and the reference results, against which the approx-
imate Jacobian calculation is compared in Sect. 5. The step
size for computing the derivatives is chosen to loosely bal-
ance the truncation error and rounding error. For finite differ-
encing, the solution accuracy and step size must be chosen
so that computational noise does not dominate the deriva-
tive calculation. We choose the solution accuracy as 10−6.
We cannot perform a perfect optimization of the step size, as
the optimal step size for each element of the Jacobian ma-
trix varies with the measurement, and not just the state, so it
would require a separate derivative calculation for each ele-

ment of the Jacobian matrix. Instead, we note, from our veri-
fication of the approximate derivatives, that the dominant er-
ror contribution appears to be due to rounding error. As such,
we have chosen a relatively large step size that is still small
enough so that it does not unduly compromise accuracy for
measurements that are optically close to the sensor and Sun,
which have larger, higher-order derivatives (Box, 2002) and
therefore a larger truncation error.

To perform the numerical differentiation using the cen-
tral difference scheme, we must evaluate the forward model
twice for each element of the state vector for a total of 2201
times for each base state, which results in a total of almost
240 000 3D RTE solutions for all base states. Though they
are still each relatively small, we still accelerate these so-
lutions to reduce the computational expense by noting that
the forward- and backward-perturbed RTE solutions will be
very close to the base state RTE solution. As such, we ini-
tialize the SHDOM solution of the perturbed RTE solutions
with the RTE solution of the base state. This method is in-
spired by the acceleration method for multi-spectral SHDOM
solutions described in Evans (1998). It rapidly accelerates
the convergence of the perturbed RTE solutions, especially
in the optically thickest isotropically scattering cases, where
a reduction of ∼ 100 in the number of SHDOM solution it-
erations is achieved. This finite-differencing procedure de-
scribed above is more computationally efficient than solving
the tangent-linear model in Eq. (46) directly using SHDOM.
The tangent-linear model tends to take more iterations to
converge than a forward problem (e.g., twice as much) and
cannot be accelerated, as the tangent-linear problem is very
different from the base state RTE problem. The slower con-
vergence of a tangent-linear model is possibly due to the
inappropriateness of the initial radiance field used in the
SHDOM solution iterations, though we did not investigate
this. The adaptive grid is used in these RTE solutions with a
splitting accuracy of 0.03. The adaptive grid from the base
state RTE solution is used in the forward- and backward-
perturbation solutions without further grid splitting. This
eliminates the adaptive grid as a source of computational
noise in the finite differencing.

Appendix G: Computational cost of the approximate
linearization

We now compare the computational cost of the approximate
linearization to that of the radiance calculation, specifically
the line integrations described in Appendix D, with the for-
ward model. The timing of the SHDOM solutions is therefore
not considered, though it is documented elsewhere (Evans,
1998; Pincus and Evans, 2009). In particular, we compare
the timing of the subroutine LEVISAPPROX_GRADIENT
(in shdomsub4.f) that evaluates both the radiances and the
approximate Jacobian to the subroutine RENDER (in shdom-

Atmos. Meas. Tech., 16, 1803–1847, 2023 https://doi.org/10.5194/amt-16-1803-2023



J. Loveridge et al.: Retrieving 3D distributions of atmospheric particles using AT3D 1841

sub4.f) that only evaluates radiances. As such, we always ex-
pect the ratio of their timing to exceed unity.

The evaluation of the approximate gradient is expected
to be much more computationally expensive than REN-
DER because of the evaluation of the direct-beam derivatives
∂I�(r,�)
∂aj

in1f j , which requires its own traversal of the grid
along the solar direction from each grid point. In our case, the
implementation pre-computes the pointers to each grid point
along these solar paths and their relative contributions to the
direct-beam derivative. This pre-processing is not included
in our timings reported here, as they contributed negligibly
to the relative timing. In LEVISAPPROX_GRADIENT, op-
erations must still be performed on each property grid point
along the solar direction. This results in an overall quadratic
scaling of LEVISAPPROX_GRADIENT with the number of
property grid points. Without this calculation, we expect a
linear scaling with the number of adaptive RT grid points
for LEVISAPPROX_GRADIENT along with RENDER. To
confirm this, we compute timings both with and without this
calculation, referred to as “with exact single scatter” and
“without exact single scatter”, as this is the calculation that
ensures accuracy of the approximate Jacobian in the single-
scattering limit.

Our timing is based on a homogeneous, plane-parallel
cloud. We compute the approximate Jacobian and radiances
for a single pixel viewing at nadir repeated 10 000 times to
ensure minimal influence of overhead on the calculated time
per ray. The Sun is also at zenith. The cloud has a varying
number of grid points in the vertical, which controls compu-
tational cost, as the line integrals are vertical, and angular res-
olution. Each cell is optically thin, so that there is one subin-
terval per cell, and there is no adaptive grid splitting. This
also affects the relative timing of the approximate Jacobian
to the radiance calculation, as the quadratic cost of the exact
single-scatter equation scales with the property grid (not the
RT grid). As such, we are examining a worst-case scenario
for the relative timing of the approximate Jacobian.

The computational cost as a function of the number of
spherical harmonics varies with the number of RT grid
points, which can also vary relative to the property grid,
based on the optical depth and grid splitting of the medium.
Note that we compute only extinction derivatives, which do
not require computation of the additional angular integrals
in 1f j beyond what is already computed for the radiance
calculation. As such, the scaling of the relative timing with
the number of spherical harmonics (NSHs) is likely under-
estimated compared to derivatives with respect to the phase
function. In Fig. G1, we compare the timing ratio of LEVIS-
APPROX_GRADIENT to RENDER for each ray. Computa-
tions are performed on a 2.3 GHz Intel Core i5, and timings
are computed using the Python function time.process_time.
The larger timing ratios for lower numbers of spherical har-
monics shown in Fig. G1 are due to the larger number of
interpolation calculations required per subinterval in the ap-

Figure G1. Relative timings of the approximate Jacobian and ra-
diance calculation (LEVISAPPROX_GRADIENT) and the radi-
ance calculation only (RENDER) as a function of the number of
grid points for different numbers of spherical harmonics (NSHs).
Panel (a) shows the relative timing of the default approximate Jaco-
bian calculation, which includes a term ensuring exact single-scatter
derivatives. Panel (b) shows the relative timing without that term.
See the text for details.

proximate Jacobian calculation than in the radiance calcula-
tion. The number of spherical harmonic calculations per grid
point are common to both subroutines. As expected, the rel-
ative timing is independent of the grid size when the exact
single-scatter calculation is not performed.
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