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Abstract. Accurately capturing cloud condensation nu-
clei (CCN) concentrations is key to understanding the
aerosol–cloud interactions that continue to feature the high-
est uncertainty amongst numerous climate forcings. In situ
CCN observations are sparse, and most non-polarimetric
passive remote sensing techniques are limited to providing
column-effective CCN proxies such as total aerosol optical
depth (AOD). Lidar measurements, on the other hand, re-
solve profiles of aerosol extinction and/or backscatter coef-
ficients that are better suited for constraining vertically re-
solved aerosol optical and microphysical properties. Here we
present relationships between aerosol backscatter and extinc-
tion coefficients measured by the airborne High Spectral Res-
olution Lidar 2 (HSRL-2) and in situ measurements of CCN
concentrations. The data were obtained during three deploy-
ments in the NASA ObseRvations of Aerosols above CLouds

and their intEractionS (ORACLES) project, which took place
over the southeast Atlantic (SEA) during September 2016,
August 2017, and September–October 2018.

Our analysis of spatiotemporally collocated in situ CCN
concentrations and HSRL-2 measurements indicates strong
linear relationships between both data sets. The correlation is
strongest for supersaturations (S) greater than 0.25 % and dry
ambient conditions above the stratocumulus deck, where rel-
ative humidity (RH) is less than 50 %. We find CCN–HSRL-
2 Pearson correlation coefficients between 0.95–0.97 for dif-
ferent parts of the seasonal burning cycle that suggest fun-
damental similarities in biomass burning aerosol (BBA) mi-
crophysical properties. We find that ORACLES campaign-
average values of in situ CCN and in situ extinction co-
efficients are qualitatively similar to those from other re-
gions and aerosol types, demonstrating overall represen-
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tativeness of our data set. We compute CCN–backscatter
and CCN–extinction regressions that can be used to resolve
vertical CCN concentrations across entire above-cloud li-
dar curtains. These lidar-derived CCN concentrations can
be used to evaluate model performance, which we illus-
trate using an example CCN concentration curtain from
the Weather Research and Forecasting Model coupled with
physics packages from the Community Atmosphere Model
version 5 (WRF-CAM5). These results demonstrate the util-
ity of deriving vertically resolved CCN concentrations from
lidar observations to expand the spatiotemporal coverage of
limited or unavailable in situ observations.

1 Introduction

One of the most pressing environmental questions is how
Earth’s climate will respond to anthropogenic emissions
and associated radiative forcings. Natural and anthropogenic
aerosols and their interactions with radiation and clouds
play a key role in climate change and its uncertainty. Ef-
fective radiative forcing due to direct aerosol–radiation in-
teractions (ERFari) includes scattering and absorption of in-
coming solar radiation, while effective radiative forcing due
to interactions between aerosols and clouds (ERFaci) is de-
fined by the way that aerosols interact with clouds and, con-
sequently, how clouds interact with radiation (Lohmann and
Feichter, 2005; Andreae and Rosenfeld, 2008). These indi-
rect effects include changes in cloud albedo and cloud life-
time, whose impacts on incoming solar energy can be signif-
icant in terms of temperature change at the surface and in the
atmosphere (Budyko, 1969; Twomey, 1974; Albrecht, 1989;
Andreae, 2009). Such aerosol–cloud interactions may have a
large, but highly uncertain, cooling effect, as defined by the
Intergovernmental Panel on Climate Change (IPCC) (Forster
et al., 2021).

Uncertainty of aerosol–cloud interactions is especially
high compared to other radiative forcings due in part to poor
process-level understanding (Boucher et al., 2013). While the
uncertainty remains high, estimates of ERFaci from obser-
vational and modeling studies have become more similar in
the Sixth Assessment Report (AR6) than the Fifth Assess-
ment Report (AR5), which resulted in a higher (negative)
ERFaci magnitude (Forster et al., 2021). Factors that compli-
cate observations of aerosol–cloud interactions include lim-
ited ability of non-polarimetric, passive satellite techniques
to retrieve cloud and aerosol properties simultaneously in
the same location, swelling of hygroscopic aerosols in high-
relative-humidity (RH)/near-cloud environments, and effects
of observational scale and meteorological context buffer-
ing responses of clouds to aerosol perturbations (Rosen-
feld et al., 2014; Stevens and Feingold, 2009). High-RH-
induced swelling introduces artifacts into retrieval products,
and cloud responses to aerosol perturbations are difficult to

untangle using observations alone. Gaps in fundamental un-
derstanding and sparse observations can also result in mis-
representation of aerosols in large-scale models (Boucher et
al., 2013).

To better understand aerosol–cloud interactions, one key
task is to improve the representation of cloud condensation
nuclei (CCN) in forecasting models. CCN are the subset of
aerosol particles that activate into droplets in ambient clouds.
Their modulation can have a profound impact on cloud opti-
cal properties, microphysical evolution, and impacts on pre-
cipitation and climate (Andreae and Rosenfeld, 2008; Sein-
feld et al., 2016). While in situ measurements of aerosols and
CCN are critically important because they constrain aerosol
properties at cloud top and base, they are most often limited
to a small spatiotemporal scale (Prather et al., 2008; Choud-
hury and Tesche, 2022b). Since aerosols affect the planetary
radiative balance on a global scale, we need other ways to
obtain information about their concentrations and character-
istics at greater spatial and temporal scales. One established
approach to address this limitation is the usage of satellite
and, to some extent, airborne in situ and remote sensing mea-
surements of aerosol optical properties to constrain global
aerosol distributions (Seinfeld et al., 2016). Although air-
borne measurements are generally limited to a small spa-
tiotemporal domain, they can better constrain aerosol and
CCN distributions and, in combination with models and
satellite observations, are a valuable constraint for aerosol
distributions (Prather et al., 2008; Shinozuka et al., 2020).

Many studies have used remote sensing of aerosol optical
properties to glean information about aerosol and CCN con-
centrations in different regions of interest (Ghan and Collins,
2004; Kapustin et al., 2006; Shinozuka et al., 2009; Shi-
nozuka et al., 2015; Lv et al., 2018; Kacarab et al., 2020).
While a significant amount of information can be obtained
from past remote sensing approaches, there are also limita-
tions. For example, retrieving CCN concentration requires
supplemental information, such as chemical composition
(Petters and Kreidenweis, 2007), that is not always avail-
able or sufficiently accurate from remote sensing measure-
ments (Kapustin et al., 2006; Shinozuka et al., 2009). One
technical limitation is associated with hygroscopic uptake of
water (and swelling) of aerosols, which increases satellite-
retrieved aerosol optical depth (AOD) but may not corre-
spond to an increase in aerosol and/or CCN concentration,
thus weakening the relationship between both variables, as
noted by Hasekamp et al. (2019). More reliable information
about aerosol hygroscopicity and RH could improve CCN
retrievals from satellite measurements (Kapustin et al., 2006;
Jeong et al., 2007; Liu et al., 2007; Shinozuka et al., 2009).

Other CCN retrieval limitations lie in instrument capabil-
ities and the relative size of CCN compared to the full spec-
trum of atmospheric aerosols. For example, while a large
fraction of CCN should be captured by instruments with
channels in the visible and near-infrared part of the spectrum
that can observe fine-mode aerosols, CCN at smaller ranges
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of the aerosol size distribution (i.e., 50–100 nm in diame-
ter) (Meng et al., 2014) may be easier to capture using UV
channels. Another common issue arises from heterogeneities
of the aerosol vertical distribution profile, as passive remote
sensing instruments (e.g., polarimeter, radiometer) provide
column-effective products that cannot resolve vertical varia-
tions in aerosol or CCN properties, though polarimeters do
have coarse sensitivity to aerosol location and can resolve
aerosol size distribution properties of fine- and coarse-mode
aerosols. Active sensors, on the other hand, such as lidar, or
combined lidar and polarimeter data sets have increased ca-
pability in measuring vertical profiles and have been used to
derive aerosol number concentrations (Schlosser et al., 2022)
but are still subject to uncertainties and errors. For exam-
ple, in Ghan et al. (2006), extinction and backscatter coeffi-
cients from Raman and micropulse lidar were used to retrieve
CCN profiles, and the vertical heterogeneities in aerosol size
distribution and composition were found to be the domi-
nant source of error in retrievals. A similar study by Lv et
al. (2018) found that temporal heterogeneity of the atmo-
sphere caused errors in CCN retrievals. Although some pi-
oneering studies have applied ground-based Raman and mi-
cropulse lidars (Ghan and Collins, 2004; Ghan et al., 2006;
Mamouri and Ansmann, 2016; Tsekeri et al., 2017; Marinou
et al., 2019), the satellite-based Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) (Choudhury and Tesche,
2022a, b; Choudhury et al., 2022), and the airborne HSRL
(Lv et al., 2018) to retrieve aerosol, CCN, and/or ice nucle-
ating particle (INP) concentrations, significant assumptions
have been made to mitigate inadequate information content
from lidar alone for constraining aerosol properties, such as
humidification factor remaining constant with height and ver-
tical distribution of extinction and backscatter coefficients
being identical to the vertical distribution of CCN.

We use observations made during the NASA ObseRva-
tions of Aerosols above CLouds and their intEractionS (OR-
ACLES) campaign that took place between 2016 and 2018
over the southeast Atlantic (SEA) (Redemann et al., 2021).
This region is of particular interest and importance due to
a seasonal cycle from July to October of biomass burning
emissions that are advected westward atop a semi-permanent
deck of marine stratocumulus clouds. Most of these smoke
aerosols are lofted above and separated from a large stra-
tocumulus deck. At different times and locations they can be
entrained into the boundary layer, directly interacting with
clouds (Kaufman et al., 2003; Ross et al., 2003; Adebiyi
et al., 2015; Zuidema et al., 2016). Moreover, stratocumu-
lus clouds have a significant impact on global climate and
are poorly represented in climate models as being too few in
quantity and too bright (Bony and Dufresne, 2005; Nam et
al., 2012), although some recently developed models do now
appear to represent both the distribution of these clouds and
their response to temperature change more realistically (Ce-
sana et al., 2019; Tselioudis et al., 2021). Non-polarimetric
passive remote sensing of aerosols also becomes more diffi-

cult in the presence of low stratocumulus clouds (Coddington
et al., 2010; Chang et al., 2021). For these reasons, our ability
to accurately predict CCN concentrations and represent them
in models becomes more important for the SEA. One major
objective of ORACLES was to obtain the observational con-
straints and test bed for future climate model and biomass
burning aerosol (BBA) remote sensing algorithm develop-
ment (e.g., Mallet et al., 2019; Xu et al., 2021; Doherty et
al., 2022; among others). The goal of this study is to use
the unique and novel ORACLES data set to develop relation-
ships between HSRL-2 observables and in situ CCN concen-
trations within the smoke plume to obtain vertically resolved
CCN concentrations throughout a region dominated by BBA.

Developing a method to obtain accurate CCN concentra-
tions from lidar observables could greatly aid in evaluating
CCN concentration in global and regional climate models,
which is a key variable for determining aerosol–cloud inter-
action mediated radiative forcing. In addition, this study is
relevant to the National Aeronautics and Space Administra-
tion (NASA) Atmosphere Observing System (AOS) and Eu-
ropean Space Agency EarthCARE (Gross et al., 2015) mis-
sions regarding the improvement of retrievals of CCN con-
centration to reduce indirect forcing uncertainties in climate
models. With plans for a future spaceborne HSRL in AOS
and EarthCARE, it is highly beneficial to develop methods
to enable future use of a satellite-based HSRL to infer ver-
tically resolved CCN concentrations. The methodology de-
scribed here, while specific to BBA in the SEA, will lay the
groundwork for future analyses to determine relationships to
derive CCN for additional aerosol types. The paper is orga-
nized as follows: in Sect. 2 we discuss data collocation and
filtering techniques. In Sect. 3 we investigate the relation-
ships between CCN concentration and HSRL observables.
Comparison of the results to a previous study and discus-
sion about the applicability of the method is given in Sect. 4,
followed by a further comparison of resultant estimates of
CCN concentrations to WRF-CAM5 (Weather Research and
Forecasting Model coupled with physics packages from the
Community Atmosphere Model version 5) model output.

2 Data and methods

ORACLES focused on filling an observational gap regarding
aerosol and cloud properties to improve climate model rep-
resentation of aerosol–cloud interactions. These observations
were made using a combination of remote sensing and in situ
instruments located on the NASA P-3 (2016–2018) and ER-
2 (2016 only) aircraft. As indicated by the flight tracks in
Fig. 1, deployments were based in Walvis Bay, Namibia, in
September 2016 and São Tomé and Príncipe in August 2017
and September–October 2018. The methodology proposed
here, as well as the resultant parameterized equations, can
be further used to produce CCN profiles from lidar observa-
tions.
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Figure 1. Adapted from Redemann et al. (2021), ORACLES flight
tracks over the southeast Atlantic are color-coded by year and air-
craft.

The three primary observations of interest in this study
include in situ-measured CCN concentration and HSRL-2
backscatter and extinction. In total there are 10 campaign
days where all data sets overlap under our collocation cri-
teria constraints described in Sect. 2.2. Instrument details are
given in Sect. 2.1 and summarized in Table 1.

2.1 Instrumentation

2.1.1 HSRL-2

The NASA Langley Research Center HSRL-2 measures
aerosol backscatter and depolarization at 355, 532, and
1064 nm and aerosol extinction via the HSRL technique at
355 and 532 nm (Shipley et al., 1983; Burton et al., 2018).
Aerosol extinction is also provided at 1064 nm from the prod-
uct of aerosol backscatter at 1064 nm and an inferred lidar
ratio at 1064 nm. The HSRL-2 measurement technique uses
the spectral distribution of the return signal to distinguish be-
tween aerosol and molecular returns. This means that aerosol
backscatter and extinction coefficients are determined inde-
pendently as opposed to being determined based on a lidar
ratio assumption typically used in elastic backscatter lidar
retrievals (Hair et al., 2008). We utilize HSRL-2’s products
of particulate backscatter and extinction at 355 and 532 nm.
Compared to HSRL-1, HSRL-2’s additional measurement
channel at 355 nm may theoretically be expected to have
higher sensitivity to smaller particles, such as CCN, that are
especially relevant in aerosol–cloud interactions (Burton et
al., 2018). The horizontal and vertical resolutions of aerosol

backscatter and depolarization are approximately 2 km and
15 m, respectively. The horizontal and vertical resolutions of
aerosol extinction coefficients are approximately 12 km and
300 m, respectively, but extinction profiles are interpolated to
match the finer resolutions of backscatter and depolarization.
The temporal resolutions of aerosol backscatter and extinc-
tion coefficients are approximately 10 and 60 s, respectively.
Uncertainty in the lidar observables depends on contrast ratio
and aerosol loading, among other factors, but uncertainties
within 5 % can be achieved under certain conditions (Burton
et al., 2018). HSRL-2 uncertainty is discussed in more depth
in Sects. 2.3 and 4.3.

Another way of using the HSRL-2 extinction coefficient is
through calculation of the aerosol index (AI). AI is the prod-
uct of the Ångström exponent (α), and AOD and is a column-
effective parameter commonly used as a proxy for CCN con-
centration (Liu and Li, 2014; Rosenfeld et al., 2014; Stier,
2016). AI is typically thought to represent concentrations of
small particles better than other optical properties due to the
Ångström exponent containing information on particle size
(Bréon, 2002; Liu et al., 2007). We calculate an AI by first
calculating the Ångström exponent via Eq. (1),

α =−
ln

[
EXT(λ1)/EXT(λ2)

]
ln(λ1/λ2)

, (1)

and then multiplying it by HSRL-2 extinction (EXT) at both
355 and 532 nm via Eq. (2),

AI= α ·EXT, (2)

resulting in one AI value for each of these two channels with
HSRL capability. Each AI value is then multiplied by the ver-
tical collocation bin depth for the respective year (Table 2).
This calculation is performed for each individual HSRL-2
profile, and values used for analysis are averages that result
from the data collocation process.

2.1.2 Georgia Institute of Technology (GIT) CCN
instrument

The other primary instrument and data set used in this study
is the Georgia Institute of Technology (GIT) Droplet Mea-
surement Technologies (DMT) CCN counter (CCN-100). It
measures in situ CCN concentration at various levels of wa-
ter vapor supersaturation (S), here between 0.1 % and 0.4 %
(Kacarab et al., 2020; Redemann et al., 2021). The instru-
ment is designed as a continuous-flow streamwise thermal-
gradient chamber (CFSTGC; Roberts and Nenes, 2005). In
this type of system, quasi-uniform supersaturation is gener-
ated at the centerline of a cylindrical flow chamber, owing
to the continuous transport of heat and water vapor from
wetted walls subject to a temperature gradient. The differ-
ence in heat and water vapor diffusivity in the radial di-
rection ensures that supersaturation is generated, with lev-
els that depend on the flow rate and temperature gradient.
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Table 1. List of instruments and data sets used in this study, as well as their respective resolution, measurement type, and aircraft location.

Instrument Variables Resolution Measurement Aircraft
(temporal/ type
vertical)

High Spectral Resolution Aerosol backscatter 2016–2017: Remote sensing ER-2 (2016)
Lidar 2 (HSRL-2) coefficient (355 10 s/15 m for P-3 (2017–2018)

and 532 nm), backscatter; 60 s/
extinction 315 m for
coefficient (355 extinction (reported
and 532 nm) at 15 m)

2018:
10 s/15 m for
backscatter; 60 s/
150 m for
extinction (reported
at 15 m)

Cloud condensation nuclei CCN number 1 s In situ P-3
(CCN) counter (DMT concentration at
CCN-100) different

supersaturations (S)

HiGEAR particle soot Absorption (470, 1 s In situ P-3
absorption photometer 530, 660 nm) and
(PSAP) and nephelometer scattering

coefficients (450,
550, 700 nm)

Edgetech three-stage Ambient relative 1 s In situ P-3
hygrometer humidity (RH)

HiGEAR Aerodyne Mass-to-charge 1 s In situ P-3
HR-ToF aerosol mass ratio m/z 44
spectrometer (AMS) relative to total

organics (f44)

The continuous-flow feature allows for quick sampling, with
roughly 1 Hz frequency (Roberts and Nenes, 2005), which is
critical for rapidly changing environments such as those en-
countered in airborne sampling. Aerosols that activate into
droplets with a radius greater than 0.5 µm are counted as
CCN at the end of the growth chamber. During ORACLES
the horizontal resolution of in situ observations depends
on aircraft speed. Uncertainty associated with CCN number
concentration is ±10 % at high signal-to-noise ratio (S/N).
Supersaturation uncertainty is ±0.04 % (Rose et al., 2008).

2.1.3 HiGEAR instrument suite

Dry extinction coefficients and observations of f44, the frac-
tion of organic aerosol measured at a mass-to-charge (m/z)
ratio of 44 relative to total organic aerosol concentration,
come from the Hawaii Group for Experimental Aerosol
Research (HiGEAR) instrument suite. In situ dry extinc-
tion coefficients are calculated using data measured by two
TSI 3653 nephelometers and two Radiance Research parti-
cle soot absorption photometers (PSAPs) (Shinozuka et al.,

2020; Redemann et al., 2021). Aerosol light scattering co-
efficients are measured by nephelometers at 450, 550, and
700 nm and then interpolated to and reported at the PSAP
light absorption wavelengths of 470, 530, and 660 nm. Dry
extinction is calculated using the sum of scattering and ab-
sorption coefficients. The resulting extinction coefficients are
then linearly interpolated to 500 nm to compare ORACLES
campaign-average results against results from Shinozuka et
al. (2015) in Sect. 4.

The f44 data are measured using the Aerodyne high-
resolution time-of-flight (HR-ToF) aerosol mass spectrome-
ter (AMS) and can be used to estimate aerosol age (Cubison
et al., 2011; Dobracki et al., 2022). This instrument provides
quantitative size and chemical mass loading information for
non-refractory sub-micron aerosol particles. The f44 data set
is available for all days of overlap between CCN and HSRL-
2 observations except for 20170812 and 20170828, where
there are no salvageable AMS data.
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Table 2. Collocation criteria, relative humidity, and supersaturation thresholds chosen to analyze each year of ORACLES. The percentage of
the entire data set represented by each relative humidity threshold, percentage of the collocated data set represented by each supersaturation
threshold, and final dates and quantity of data points are also listed.

2016 2017 2018

Horizontal criteria (dd) ±0.01◦ ±0.01◦ ±0.01◦

Vertical bin size (dh) 45 m 60 m 75 m

Time criteria (dt) ±0.1 h ±0.3 h ±0.2 h

Relative humidity (RH) RH≤ 40 % RH≤ 40 % RH≤ 50 %

Supersaturation (S) S = 0.30 % 0.22 %≤ S ≤ 0.34 % 0.23 %≤ S ≤ 0.40 %

Percent of data measured 75 % 60 % 52 %
below RH threshold (with
CCN available)

Percent of collocated data set in 76 % 72 % 66 %
S range

Number of days represented in 1 (20160912) 3 (20170812, 20170815, 6 (20180927, 20181002,
collocated data set (after 20170828) 20181007, 20181010,
RH and S filtering) 20181019, 20181023)

Number of data points (after RH 40 13 27
and S filtering)

2.2 Data collocation and filtering

During the ORACLES campaign, HSRL-2 profiles were ob-
served at high-altitude, above-plume flights legs, and CCN
concentration was measured in situ at lower altitudes in and
around the smoke plume. Each data set has a different spa-
tial and temporal resolution, so collocation in time and space
is necessary before correlation analysis can be performed.
One important consideration here is the difference in aircraft
setup between 2016 and 2017–2018. In September 2016 the
ER-2 flew high-altitude legs and carried the HSRL-2 while
in situ instruments were located on the P-3, which flew at
lower altitudes. However, in August 2017 and September–
October 2018 both HSRL-2 and the in situ instruments were
deployed on the P-3. In these the deployments, the P-3 of-
ten flew at above-plume altitudes to optimize sampling by
the HSRL-2 and other remote sensing instruments and later
sampled at lower altitudes for in situ observations. Therefore,
there is a slightly longer time gap between observations from
these instruments in the 2017 and 2018 deployment years.

The result of our data collocation technique is a one-to-one
comparison between averaged CCN concentration values and
averaged HSRL-2 observations, both observed in approxi-
mately the same time and space defined using three indepen-
dent collocation criteria, as follows. For any given HSRL-
2 profile, the collocation method finds CCN concentration
measurements that fall within a set amount of time (dt) from
when the HSRL-2 profile was measured, within a set hori-
zontal distance (dd) from the profile, and within set vertical

bins (dh). Observations that remain after each of these crite-
ria have been applied are then averaged to allow for a one-
to-one comparison. A schematic of this process is shown in
Fig. 2. Note that while each year uses the same collocation
method, 2017 and 2018 have a different aircraft setup that
results in a longer time gap between measurements (denoted
by t +1t).

Different collocation criteria values were sensitivity tested
to minimize the effects of spatiotemporal variability on the
correlation between HSRL-2 observables and in situ CCN
concentrations while also selecting a representative portion
of the data set to analyze. These sensitivity tests were per-
formed by varying the horizontal, vertical, and temporal cri-
teria one at a time and evaluating their impacts on correla-
tions between CCN–HSRL-2 backscatter and extinction. The
final chosen values are given in Table 2 and will be used for
all subsequent results. We hold horizontal distance constant
at ±1.1 km for all years to approximately correspond to the
horizontal distance over which the HSRL-2 products are ag-
gregated and to avoid averaging multiple HSRL-2 profiles in
the horizontal. As a result, each average in situ CCN con-
centration value corresponds to a vertical average of HSRL
backscatter and extinction coefficients from a single profile.
Vertical bin sizes vary between years due to slight adjust-
ments made to optimize the correlation, and temporal col-
location allowances are increased for 2017 and 2018 due to
the instruments’ deployment on the same aircraft, resulting
in a longer time gap between high-altitude remote sensing
and low-altitude in situ observations.
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Figure 2. Graphic depicting data collocation process for (a) 2016 and (b) 2017–2018. CCN concentration measurements that fall within the
time (dt), horizontal distance (dd), and vertical bin (dh) criteria (green points) are averaged to compare to the average HSRL-2 backscatter and
extinction coefficients that fall within the same vertical bin. In panel (b) t and1t represent the longer time difference between measurements
that must be considered for the 2017 and 2018 aircraft setups.

Another pre-analysis step is filtering the collocated data
set by RH and S thresholds. While one goal of the data fil-
tering step is consistency between each year of the analysis,
a few differences in instrument settings and data availability
make it necessary to slightly alter the RH and S thresholds
between each year. We performed sensitivity tests for dif-
ferent values and ranges of RH and S, and final values are
given in Table 2. In general, the sensitivity tests suggest that
observations made at high ambient RH tend to weaken the
CCN versus backscatter and extinction relationships due to
swelling of highly hygroscopic aerosols that causes an in-
crease in backscatter and extinction without a corresponding
increase in CCN concentration. Testing of different thresh-
olds suggests that we can mostly avoid this hygroscopic ef-
fect by filtering out observations made at RH> 40 %. Due to
a limited amount of collocated data points in 2018, caused
primarily by remote sensing and in situ observations from
a single aircraft, the RH threshold is increased to 50% for
2018 only. A threshold of 40 % resulted in a very small re-
sultant RH range (34 %–39 %) that corresponded only to low
CCN concentrations. Therefore, the threshold was increased
to 50 % to allow for more data points and a relationship
over a range of CCN concentrations more like that for 2016
and 2017. Importantly, since our focus is on CCN within the
smoke plume, this constraint still retains most of the data set
(Table 2). However, for future analyses focused on bound-
ary layer (relatively high ambient RH) CCN, it will be im-
portant to correct lidar measurements made at higher RH to
avoid eliminating those CCN concentrations most relevant
for aerosol–cloud interaction studies. In terms of S, Köhler
theory (Köhler, 1936) suggests that higher S values allow for
more aerosols to activate into cloud droplets. Therefore, at
lower S values there may be high aerosol concentrations and

lidar backscatter and extinction coefficients but decreased in
situ CCN concentrations. Since slightly different values and
ranges of S were used by the CCN counter each year, the
resultant filtering thresholds also vary accordingly.

Another goal of data collocation and filtering steps is to
maintain as representative a collocated data set as possible.
As shown in Table 2, our RH and S thresholds represent be-
tween 52 %–76 % of the total collocated data set. Amidst data
limitations, accounting for two different aircraft setups, and
working to maximize correlations, these percentages are rea-
sonably representative of the total data set. Another impor-
tant note in relation to both the location of our collocated
data points within the smoke plume and the RH filtering
is the inherent exclusion of marine boundary layer (MBL)
CCN concentrations. This is in part due to the nature of
the SEA environment and the limitation of having few lidar
observations below the semi-permanent stratocumulus deck.
We thus focus on developing a relationship specifically for
HSRL-2 observables and BBA above-cloud within this re-
gion. Though below-cloud CCN concentrations are of most
interest in terms of aerosol–cloud interaction studies, links
have also been found between above-cloud aerosol and cloud
microphysical properties (Gupta et al., 2021), validating the
need for increased information about above-cloud CCN con-
centrations as well. Furthermore, CCN concentrations were
found to be significantly higher above cloud in the free tropo-
sphere than those in the MBL (Redemann et al., 2021), again
validating a focus on analyzing above-cloud CCN concentra-
tions using HSRL-2 observables.
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Table 3. Comparison of HSRL-2 reported uncertainty to uncertainties calculated using a spatial variability method for September 2016.

HSRL-2 uncertainty calculated from
Reported HSRL-2 uncertainty spatial variability method

Range Mean Range Mean

BSC355 (km−1 sr−1) 5.5× 10−5–2.1× 10−4 1.5× 10−4 6.3× 10−5–4.17× 10−4 1.4× 10−4

BSC532 (km−1 sr−1) 3.2× 10−5–7.3× 10−5 6.2× 10−5 2.9× 10−5–2.1× 10−4 7.0× 10−5

EXT355 (km−1) 4.7× 10−3–1.2× 10−2 8.8× 10−3 2.1× 10−3–1.5× 10−2 7.6× 10−3

EXT532 (km−1) 3.8× 10−3–5.6× 10−3 4.9× 10−3 1.9× 10−3–1.7× 10−2 6.4× 10−3

2.3 HSRL-2 uncertainty calculations

The forthcoming analysis develops a regression between
HSRL-2 observables and CCN concentration, both of which
are observed quantities measured with uncertainty. There-
fore, we consider uncertainties associated with both measure-
ments and with the slope of each regression. At the time of
this analysis, reported HSRL-2 uncertainties were only avail-
able for September 2016. Therefore, we have taken a spa-
tial variability approach to estimate uncertainties for HSRL-
2 data from August 2017 and September–October 2018. This
method uses backscatter and extinction coefficients in the
same vertical bin from five profiles before and five profiles
after the HSRL-2 profile associated with each collocated data
point. We analyze the distributions of backscatter and extinc-
tion across these profiles to ensure no large variations in ei-
ther coefficient, i.e., that we are accurately estimating instru-
ment uncertainty and not including a large gradient due to
aerosol spatial inhomogeneity. After this step we calculate
the standard deviation across all 11 profiles to use as a mea-
sure of uncertainty.

In Table 3 we present a comparison between HSRL-2 un-
certainties calculated using this spatial variability method
to the reported HSRL-2 uncertainties available for Septem-
ber 2016. In general, the mean uncertainties from both
methods are on the same order of magnitude and very
close in value. However, our calculated uncertainties span a
wider range than reported uncertainties, suggesting that this
method captures a possible upper bound to HSRL-2 uncer-
tainties. While this method only accounts for random un-
certainties in backscatter and extinction measurements, sys-
tematic uncertainty for backscatter is reported as 5 % for
355 nm and 4.1 % for 532 nm, while extinction is dominated
by random error and has a small systematic error (Burton
et al., 2015). Given the similar mean uncertainties and pos-
sible slight overestimation of HSRL-2 reported uncertainty
(rather than consistent underestimation of error) using our
spatial variability method, we use these values when con-
sidering uncertainty impacting the forthcoming regressions.
Furthermore, we present this spatial variability method as a
reasonable way to estimate HSRL-2 uncertainties in future
studies.

3 Results

3.1 CCN versus HSRL-2 extinction and backscatter

Following the data collocation and filtering, we analyze the
correlation between CCN concentration and HSRL-2 observ-
ables. Year-by-year analyses were done to determine ideal
collocation criteria, as described in Sect. 2.2. However, the
primary goal of this study is to develop a relationship be-
tween CCN and HSRL-2 backscatter and extinction coeffi-
cients. Therefore, we need to show that year-by-year anal-
yses can be combined in a way that maintains the overall
strength of the linear relationships. After analyzing year-by-
year relationships and finding similar fit line slopes for any
given HSRL-2 coefficient and wavelength, we consider all
collocated data points in Fig. 3. Data from September 2016,
August 2017, and September–October 2018 are combined to
fit a relationship between CCN concentration and HSRL-
2 backscatter and extinction at 355 and 532 nm. All rela-
tionships are fit using a bisector regression to account for
both variables being measured with uncertainty. The com-
plete data set is represented by 80 total data points spanning
10 d.

We show the Pearson correlation coefficient (R), Spear-
man rank correlation coefficient (in parentheses), root mean
square error (RMSE), percentage of data within±10 % of the
linear regression line, and relative uncertainty of the slope.
In addition, we plot error bars representing relative CCN
uncertainty (vertical) and calculated HSRL-2 uncertainties
(horizontal). The combination of data from different mea-
surement periods across 3 years results in strong correlations
(0.95–0.97) between both variables. This result suggests that
our collocation and filtering methodology is reasonable and
holds well for multiple observational periods. In addition,
different symbols designating different years support the rep-
resentativeness of the collocated data set, as no one period of
observations completely stands out from another. RMSE is
on the order of 100 cm−3. With a relative CCN uncertainty
of 10 %, RMSE is of the same order of magnitude as a me-
dian CCN uncertainty for this data set. The amount of data
within±10 % of each respective linear regression line ranges
from 38 %–51 %. These values, together with RMSE, sug-
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Figure 3. CCN concentration versus HSRL-2 (a) backscatter and (b) extinction coefficients with blue scatter points representing 355 nm
and red scatter points representing 532 nm. This combined data set represents 10 d of observations and 80 total collocated data points (per
coefficient), covering all 3 years of ORACLES. Supersaturation for these observations ranges between 0.22 %–0.4 %. The Pearson correlation
coefficient is shown, with the Spearman rank correlation coefficient given in parentheses. Error bars are given for a CCN relative uncertainty
of 10 % and for calculated HSRL-2 uncertainties. Lines of best fit are forced through the origin to represent the practicality of using linear
regression equations to quantitatively obtain CCN concentrations using HSRL-2 observables.

gest a relatively low amount of scatter around the regression
line for both wavelengths and coefficients. Using Eq. (3),

EXT=QeNπr
2, (3)

where Qe is extinction efficiency (approximated as 2), N is
number concentration, r is radius, and EXT/N is found using
the regression slopes in Fig. 3; an approximate CCN radius
is calculated to be about 0.15 µm, with an effective cross sec-
tion of around 0.1 µm. These values are on the order of what
is physically expected for smoke aerosols.

3.2 CCN versus aerosol index

Another parameter that we explore in relation to CCN con-
centration is AI, calculated using HSRL-2 extinction coef-
ficients as described in Sect. 2. Results found using AI for
the 3-year combined data set are shown in Fig. 4. Overall,
the general trends found in these results match those seen
in Fig. 3 for the CCN concentration versus HSRL-2 correla-
tion. Again, these relationships hold for the 3-year combined
data set without any one year appearing as an outlier. We
again show the Pearson correlation coefficient (R), Spear-
man rank correlation coefficient (in parentheses), root mean
square error (RMSE), and amount of data within ±10 % of
the linear regression line. AI calculated using extinction at
532 nm relates slightly more strongly with CCN concentra-
tion than does AI calculated using the 355 nm coefficient.
This difference could be due to slightly higher uncertainty
of HSRL-2 extinction at 355 nm than 532 nm (Burton et al.,
2018). RMSE is slightly higher than in Fig. 3, and the amount

of data within ±10 % of the linear regression line ranges
from 25 %–29 %, indicating slightly more scatter than when
using HSRL-2 backscatter and extinction coefficients alone.
This could, in part, be due to the very small range of AI val-
ues present in the comparison. Nevertheless, the relationships
given in Figs. 3 and 4 are comparable and serve as good in-
dicators for representing CCN concentration.

The singular difference between the extinction coefficient
and AI is multiplication by the Ångström exponent, an indi-
cator of particle size. There is almost no difference found be-
tween how well extinction and AI relate to CCN concentra-
tion. The fundamental similarities in both relationships sug-
gest that there is very little variation in the range of Ångström
exponents that multiply the aerosol extinction coefficient.
Therefore, there is likely only small variation in the size of
aerosol being measured. Since observations included in this
analysis focus on those made in the smoke plume, this re-
sult is reasonable. We are not performing this analysis for a
variety of aerosol types and different sizes, but instead we fo-
cus on the small range of BBA properties within the smoke
plume.

4 Discussion

Section 3 focused on the linear relationships between CCN
concentrations and HSRL-2 backscatter and extinction coef-
ficients over the BBA-dominated SEA. We also investigated
the possibility of using AI as an additional parameter of com-
parison. In Section 4, we use in situ dry extinction coeffi-
cients to explore the overlap between our campaign-averaged
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Figure 4. CCN concentration versus aerosol index is given for the
combined 3-year data set. Blue scatter points show results calcu-
lated using extinction at 355 nm, and red scatter points show results
calculated using extinction at 532 nm. Supersaturation for these ob-
servations ranges between 0.22 %–0.4 %. The Pearson correlation
coefficient is shown, with the Spearman rank correlation coefficient
given in parentheses. Error bars are given for a CCN relative uncer-
tainty of 10 %. Uncertainty for the aerosol index is not given due to
the nature of the extinction and Ångström exponent not being inde-
pendent of each other, as required for error propagation equations.
Lines of best fit are forced through the origin to represent the prac-
ticality of using linear regression equations to quantitatively obtain
CCN concentrations using HSRL-2 observables.

values with those from other regions and aerosol types (Shi-
nozuka et al., 2015), and we analyze some large-scale impli-
cations and applications of this work.

4.1 Observed relationships

Overall, data collocation and filtering methods suggest that
for time intervals between ±6–18 min, horizontal distance
separations within about 2 km, and low ambient RH, CCN
concentration relates very strongly with lidar observables,
with Pearson correlation coefficients of 0.95 to 0.97. The re-
lationship between in situ CCN concentrations and HSRL-2
backscatter coefficients is slightly stronger than that using
extinction coefficients, which could be due to higher uncer-
tainties associated with the extinction coefficient (Burton et
al., 2016). Nevertheless, we find that both backscatter and
extinction are positively and linearly correlated with in situ
CCN concentrations. Resultant regression equations allow us
to use lidar observables alone to estimate CCN concentra-
tions for this aerosol type, as further illustrated in Sect. 4.3.

We also considered AI, as calculated from HSRL-2 ex-
tinction coefficients, with the expectation that an aerosol
property that implicitly contains information on aerosol size
may correlate better with CCN concentrations than an opti-

cal coefficient alone. However, relationships between in situ
CCN concentration and AI were similar to those found us-
ing HSRL-2 coefficients alone. Hence, we do not find in this
study that AI is a better parameter to represent CCN concen-
tration than other optical properties as other studies have sug-
gested (Liu and Li, 2014; Rosenfeld et al., 2014; Stier, 2016).
Rather, we find relationships between CCN and AI are nearly
identical to those of the HSRL-2 observables. This finding
suggests minimal variation in the Ångström exponent and
implies that our analysis focuses on a small size range of
aerosol observed within the smoke plume.

We hypothesized that HSRL-2 observables at 355 nm
would be more strongly related to observed CCN concen-
trations due to a smaller wavelength interacting with smaller
aerosols. However, this was largely not the case. Many of our
year-by-year analyses resulted in a slightly stronger relation-
ship between CCN concentration and HSRL-2 backscatter
and extinction at 532 nm. For looking at the 3-year combined
data set, both wavelengths result in an identical correlation
coefficient (Fig. 3). This discrepancy will be explored in fu-
ture analyses using theoretical calculations of optical proper-
ties from Mie theory and CCN concentrations derived from
κ–Köhler theory (Petters and Kreidenweis, 2007). However,
results from Burton et al. (2016) in relation to the informa-
tion content and sensitivity of a 3β+2α lidar such as HSRL-
2 suggest a very minor difference in the sensitivity of each
wavelength to aerosols with small radii, such as CCN. There-
fore, our preliminary literature search into this discrepancy
suggests that it may be reasonable to find little variability in
the strength of the relationships between lidar observables at
both wavelengths and observed CCN concentrations.

4.2 Representativeness of collocated data set

In Fig. 3, relationships between in situ CCN concentration
and HSRL-2 backscatter and extinction coefficients were
shown for the 3-year combined data set. While the strength
of these relationships for the multi-year data set suggests that
we can use this method to analyze BBA found in the ORA-
CLES data, it is important also to recognize inherent envi-
ronmental differences for each of these years. First, for each
of the 3 years of this campaign, observations were made dur-
ing different parts of the seasonal biomass burning cycle that
occurs between June and October (Redemann et al., 2021).
This difference primarily impacts the age of aerosols ob-
served during each year, therefore potentially affecting CCN
activity. Secondly, observations were made in different re-
gions of the SEA each year. While we have shown that these
differences do not appear to significantly hinder the construc-
tion of a 3-year combined data set for BBA, we will examine
these differences in aerosol age and location of measurement
to understand the extent of data considered when all 3 years
are analyzed together.

One commonly occurring trajectory for BBA in this region
suggests that the plume core is lofted over the SEA between
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Figure 5. Adapted from Redemann et al. (2021), this schematic
shows the commonly occurring trajectory of smoke aerosols ejected
over the southeast Atlantic. Overlaid are approximate locations
of collocated observations from 2016 (green), 2017 (purple), and
2018 (orange). By comparing their locations to the schematic, we
hypothesize that the collocated observations made in 2016 are
older aerosols, while collocated observations of aerosols in 2017
and 2018 are likely fresher and more recently ejected from the
smoke plume.

5–15◦ S, whereby the aerosols move westward, following a
spiral path, and later descend into the boundary layer near
20◦ S and close to the coast (Adebiyi and Zuidema, 2016; Re-
demann et al., 2021; Ryoo et al., 2021). Though the exact tra-
jectory changes based on month within the seasonal burning
cycle, the overall pattern implies that aerosols measured far-
ther north within the SEA domain are likely younger, while
aerosols observed farther west and south tend to have trav-
eled longer along the spiral pathway and are older aerosols.
Comparing this conceptual model with the approximate loca-
tions of our collocated data points (Fig. 5) suggests that ob-
servations from 2017 and 2018 that lie farther north and west
within the domain were likely measured closer to the time
they were ejected from the smoke plume. In contrast, obser-
vations from 2016 lie farther south and closer to the coast,
suggesting that they may be older. This conceptual model can
be evaluated using measurements of f44. Higher values indi-
cate increased amounts of carboxylic acids and imply that
measured aerosols are relatively old. Using 3-year combined
CCN concentration versus extinction at 355 nm as an exam-
ple, we color-code data by values of f44 (Fig. 6). In general,
2017 and 2018 have lower f44 values ranging from 0.17–
0.21, indicating slightly younger aerosols. Data from 2016
have a wider range of f44 values between 0.2–0.27, indicat-
ing some ages close to those from 2017 and 2018 and some
that are older. The f44 data suggest that determinations of
aerosol age may not always be as straightforward as depicted
by the expected trajectory pathway (Fig. 5). Furthermore,
though a complete f44 data set is not available for every point
in our collocated data set, the values that are available sug-

Figure 6. CCN concentration versus HSRL-2 extinction coeffi-
cient at 355 nm for 2016 (circles), 2017 (squares), and 2018 (dia-
monds) collocated data sets. Supersaturation for these observations
ranges between 0.22 %–0.4 %. The scatter points are color-coded by
f44 value. Data without an f44 value available are filled with gray
due to missing data. The f44 values range from 0.2–0.27 for 2016,
0.17 for 2017, and 0.19–0.21 for 2018. Error bars are given for a
CCN relative uncertainty of 10 % and for calculated HSRL-2 uncer-
tainties. Lines of best fit are forced through the origin to represent
the practicality of using linear regression equations to quantitatively
obtain CCN concentrations using HSRL-2 observables.

gest that we consider a wide range of aerosol ages in this
analysis with no singular age breaking down the strength of
the regression (Fig. 6).

Lastly, we look at observations from ORACLES in the
context of other regions and aerosol types to explore the rep-
resentativeness of our collocated data set. Specifically, we
compare our results to those from Shinozuka et al. (2015),
a study focusing on similar relationships between CCN con-
centration and in situ aerosol extinction coefficient of dried
particles. To compare our results most accurately with those
from Shinozuka et al. (2015), we use a campaign-average
value for CCN concentration and in situ dry extinction co-
efficient at 500 nm, as calculated from in situ-measured par-
ticle scattering and absorption coefficients. These observa-
tions were made on the same instrument rack as CCN con-
centration and represent the extinction coefficient for dried
particles pumped into aircraft instrumentation and unaffected
by ambient RH, unlike observations made by HSRL-2. This
comparison is given in Fig. 7, which is modified from Fig. 6
in Shinozuka et al. (2015), with results from the current study
added and labeled as “Southeast Atlantic”. We overlay the
campaign-average CCN concentration and 500 nm dry ex-
tinction coefficient as a scatter point, without altering the
original regression lines. Campaign-average values were cal-
culated using the entirety of the ORACLES in situ dry ex-
tinction and CCN concentration data sets (not limited by our
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Figure 7. Adapted from Fig. 6 in Shinozuka et al. (2015),
campaign-average in situ CCN concentration and in situ dry extinc-
tion at 500 nm are overlaid, using the label “Southeast Atlantic”.
The error bars are calculated using standard deviation, and the origi-
nal best-fit lines have not been altered. The supersaturation for these
observations ranges from 0.3 %–0.5 % to match the analysis done in
Shinozuka et al. (2015).

collocation technique). The data were only filtered to exclude
low CCN concentrations (CCN< 100 cm−3) collocated with
low extinction coefficients (in situ extinction< 0.02 km−1)
characteristic of a gap region and to match the S range
(0.3 %–0.5 %) from Shinozuka et al. (2015). This filtering
was performed to provide as close of a comparison as pos-
sible. Horizontal and vertical bars for each point represent
the standard deviation. Overall, we find that our campaign-
average CCN and in situ dry extinction values, specifically
for the BBA-dominated SEA region, compare well with the
relationships given for other regions and aerosol types. This
comparison serves as another source of validation for the
methodology of this study and suggests that performing a
similar CCN concentration versus HSRL-2 observable rela-
tionship analysis for other regions and campaigns with dif-
ferent dominant aerosol types would be feasible.

Therefore, while the observations used in this study do not
span the entire SEA, we have reason to believe that they ac-
count for different parts and ages of the smoke plume as it is
advected westward. Since the in situ and lidar observations
can be combined in a 3-year data set that maintains a strong
linear relationship between CCN concentrations and HSRL-
2 observables, we believe that these results are representative
of BBA in the SEA.

4.3 Sources of uncertainty

As previously mentioned and taken into consideration via bi-
sector regression, both CCN and HSRL-2 are observations
made with uncertainty. Relative CCN uncertainty is 10 %,
and our spatial variability method of calculating HSRL-
2 uncertainties resulted in mean values of 1.4× 10−4 and

7.0× 10−5 km−1 sr−1 for backscatter at 355 and 532 nm, re-
spectively, and 0.0076 and 0.0064 km−1 for extinction at
355 and 532 nm, respectively (Table 3). In addition, uncer-
tainty is introduced as a result of the regression itself. Rela-
tive slope uncertainties range from 3.0 %–3.6 % (Fig. 3). We
discuss each of these sources of error separately due to their
dependence on one another. Uncertainties in both CCN con-
centration and HSRL-2 observations will impact uncertainty
in the slope of each regression. Therefore, the assumption
of each source of error being independent that is required
for error propagation calculations does not hold. Rather, we
present our method of deriving CCN concentration from li-
dar observables with such explanation of the various sources
of error that will impact results.

In addition to observational and regression-based uncer-
tainties, another possible source of error when applying this
method stems from the specific characteristics of the data set
used to develop the regression equations. The relationships
analyzed in this study are specific to BBA in the SEA. Addi-
tionally, they are specific to ambient conditions with low RH
(≤ 40 %–50 %), S ≥ 0.2 %, and aerosol ages represented by
f44 values between about 0.17–0.27. While these conditions
are characteristic of the high-altitude SEA smoke plume, they
will not hold in all regions and for all aerosol types. There-
fore, without careful consideration of the ambient conditions
and aerosol types to which the regressions derived here are
applied, increased uncertainty will be introduced in lidar-
derived CCN concentrations. Despite the strict conditions
under which our regressions are applicable, we will explore
their performance on a larger portion of the collocated data
set in the following section.

4.4 Application and future work

In addition to showing the representativeness of our lidar-
derived CCN method in the context of additional aerosol
types and data sets, we expand our data collocation criteria
to analyze the applicability of our regression equations to a
larger subset of the data collected in ORACLES. In Fig. 9, the
relationship between lidar-derived CCN concentration (us-
ing the regression equation for backscatter at 532 nm from
Fig. 3) and in situ CCN concentration is shown. This ex-
panded collocated data set of 460 points is attained by in-
creasing the horizontal distance criterion to±4.4 km for each
year and leaving vertical bin size and time criteria the same
(Table 2). Our sensitivity testing revealed that using a larger
horizontal distance results in more scatter and noise within
the in situ CCN–HSRL-2 observable linear relationship, so
while this value was not used to derive the regression equa-
tions, it is used here solely to test our regression method
on a larger subset of the data across September 2016, Au-
gust 2017, and September/October 2018. A correlation co-
efficient of 0.85 for this expanded data set shows the gen-
eral applicability of our regression equations to a larger data
set, demonstrating that our regression equations are not over-
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fitted to the smaller original set of collocated data points.
Comparing this to a correlation coefficient of 0.97 for the
original data set also supports our original decision to limit
the collocation criteria to relatively small spatiotemporal ex-
tents when developing the regressions to avoid the effects of
larger spatial variability in CCN concentrations. Therefore,
while our original data collocation criteria served to optimize
the strength of these linear relationships, the expanded crite-
ria are used to show the applicability of the method to a larger
portion of the data.

Additionally, a primary goal of this work is the develop-
ment of a method to derive CCN concentrations using HSRL-
2 observations alone and particularly to increase knowledge
of the vertical distribution and variation of CCN. Below, we
demonstrate this ability for one ORACLES flight leg, where
we derive CCN concentrations for an entire HSRL-2 curtain
using the regression equation derived from the 3-year com-
bined data set of in situ CCN concentration versus backscat-
ter at 532 nm developed using a supersaturation range of
0.22 %–0.4 % (Fig. 3). Figure 9a shows calculated CCN con-
centrations from an above-cloud 15 August 2017 flight leg.
Figure 9b shows CCN concentrations for this same flight leg
simulated by simulated by WRF-CAM5 (Shinozuka et al.,
2020) at 0.5 % supersaturation. Some features of our derived
CCN concentrations agree reasonably well with the corre-
sponding WRF-CAM5 output. However, our lidar-derived
method results in a better estimate of smoke plume depth
and altitude, cloud top heights, and small-scale variation of
CCN concentrations. This is likely due to our lidar-derived
method having a higher horizontal resolution (2 km from
HSRL-2 compared to 36 km from WRF-CAM5), as well as
the depiction of possible turbulence and entrainment effects
that are not currently captured by the model. Other model–
observation comparison studies have shown that models such
as WRF-CAM5 (and others) also tend to underestimate the
altitude of the smoke plume (Shinozuka et al., 2020; Doherty
et al., 2022).

One potential reason for differences in the magnitude of
CCN concentrations between WRF-CAM5 and our lidar-
derived method includes the tendency of WRF-CAM5 and
other models to represent the plume as more vertically dif-
fuse than is generally observed (Doherty et al., 2022). This
overly diffuse representation of the smoke plume can also re-
sult in an overestimation of aerosols lying above the stratocu-
mulus deck and that get mixed into clouds, further promoting
an overestimate of CCN concentration (Doherty et al., 2022).
Other factors causing differences in magnitude of CCN con-
centration and smoke plume placement between our lidar-
derived CCN concentrations and WRF-CAM5 CCN concen-
trations are outside the scope of this study but remain an area
of future research. Rather, we use this example flight path
as an illustration of a way that the lidar-derived CCN can be
used to evaluate and potentially improve model performance
moving forward. In addition to model performance of CCN
concentration in the SEA, this same methodology of using

Figure 8. In situ CCN concentration versus HSRL-2-derived CCN
concentration is given for an expanded 3-year data set (using dd =
±4.4 km and original time criteria and vertical bin sizes as given
in Table 2). Supersaturation in the expanded data set ranges from
0.15 %–0.4 % compared to a range of 0.22 %–0.4 % for the origi-
nal collocated data set. The points with a black outline designate
those included in the original collocated data set that was used to
develop the lidar-derived CCN concentration regression equation.
The dashed line represents the 1 : 1 line, and for each data set the
Pearson correlation coefficient is shown, with the Spearman rank
correlation coefficient given in parentheses. This comparison shows
the general applicability of our regression equations to derive CCN
concentrations using HSRL-2 observables over a larger subset of
the ORACLES observations.

collocated data to develop linear regressions between in situ
CCN concentrations and HSRL-2 observables can be applied
in the future to allow for lidar-derived CCN concentrations
specific to different aerosol types and locations.

5 Conclusion

To improve our understanding of aerosol–cloud interactions
and aerosol-induced radiative effects, knowledge of aerosol
concentrations, sizes, and spatial distributions is essential.
Several studies have used remote sensing techniques to glean
such information. However, many studies rely on the use
of column-effective products from passive remote sensing
such as AOD as a proxy for aerosol or CCN concentration.
This approach requires significant assumptions and results
in a lack of information about vertical distributions, which
are critical in evaluating the aerosol indirect effect. In this
study, we investigate correlations between in situ-measured
CCN concentrations and vertically resolved HSRL-2 mea-
surements in the ORACLES campaign, and we use them to
derive vertically resolved CCN concentrations of BBA.

We find that CCN concentrations and HSRL-2 backscat-
ter and extinction coefficients are positively and linearly cor-
related over the SEA BBA-dominated region when obser-
vations are restricted to low RH. We find an optimum be-
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Figure 9. (a) Derived curtain of CCN concentrations from the HSRL-2 backscatter coefficient at 532 nm for an ORACLES P-3 track on
15 August 2017. The black line corresponds to HSRL-2 cloud top height altitudes. (b) WRF-CAM5 model CCN curtain corresponding to
the same P-3 track. The black line corresponds to the nearest HSRL-2-interpolated altitude at WRF-estimated cloud top height.

tween data availability and correlation strength when aver-
aging over a horizontal separation distance of 2 km, a tem-
poral separation between observations of ±6 to 18 min, and
vertical bins of 45–75 m. Even with these strict data colloca-
tion constraints, we find that the collocated data set are suffi-
ciently representative of the total data set.

After data collocation, we analyze the relationships be-
tween in situ CCN concentrations and HSRL-2 backscat-
ter and extinction coefficients for all 3 years of ORACLES.
When analyzed together, this combined data set results in
correlation coefficients between 0.95–0.97 between CCN
concentrations and HSRL-2 backscatter and extinction co-
efficients, respectively. In addition, there is no difference in
correlation between 355 and 532 nm wavelengths for this
combined data set. When using AI calculated from HSRL-2
extinction, similar relationships appear, with AI from extinc-
tion at 532 nm having a slightly stronger relationship with
CCN concentration than the 355 nm counterpart. We do not
find that AI was significantly better at representing small
CCN aerosols than extinction alone. One important caveat
is that these relationships work well only for conditions with
low ambient RH. For future analyses performed over a wider
range of RH (e.g., estimating CCN concentrations in the ma-
rine boundary layer), AI may prove more beneficial.

When looking at the representativeness and applications
of this work, we find that observations from 3 years of ORA-
CLES account for multiple different measurement locations
and aerosol ages relative to the commonly occurring trajec-
tory of the seasonal biomass burning plume. While our col-
located data set does not account for the entirety of the SEA,
the range that is represented can be analyzed collectively in
that the strong linear relationships between CCN concentra-
tions and HSRL-2 observables are robust. Additionally, we
find that there are minimal differences caused by sampling
location and aerosol age. These two findings suggest that

the collocated data set is well representative of the BBA-
dominated SEA. Lastly, we compare campaign-average val-
ues of CCN concentrations and in situ (dry) extinction coef-
ficients to results from Shinozuka et al. (2015) and find that
our BBA-dominant results from ORACLES are comparable
to those from other regions with different dominant aerosol
types. This finding suggests that a similar analysis using in
situ CCN and HSRL-2 observations from other campaigns
and regions could be feasible, allowing for an extension of
the lidar-derived CCN concentrations to other locations and
aerosol types. A case study for a specific HSRL-2 curtain in
2017 points to a few important differences between the lidar-
derived and WRF-CAM5 modeled CCN concentrations.

Overall, these results support the plausibility and repro-
ducibility of using HSRL-2 observables to quantitatively ob-
tain CCN concentrations in BBA-dominated air masses. In
light of a potential future spaceborne HSRL, as outlined by
the NASA AOS and European Space Agency’s EarthCARE
(Gross et al., 2015) missions, it is highly beneficial to de-
velop methods to enable future use of such a system to ad-
dress AOS and EarthCARE goals related to improving infor-
mation about vertically resolved aerosol and CCN concentra-
tions. For example, Stier (2016) suggested that a spaceborne
HSRL could advance observational constraints on CCN, and
this study acts as an attempt to study this constraint. More
widely available and easily accessible CCN concentration
data would aid in further studies of aerosol–cloud interac-
tions, ultimately reducing the uncertainty of their contribu-
tion to aerosol radiative forcing of climate.

Data availability. The ER-2 and P-3 data
sets are available at the following links:
https://doi.org/10.5067/Suborbital/ORACLES/P3/2016_V3
(ORACLES Science Team, 2021a),
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https://doi.org/10.5067/Suborbital/ORACLES/ER2/2016_V3
(ORACLES Science Team, 2021b),
https://doi.org/10.5067/Suborbital/ORACLES/P3/2017_V3
(ORACLES Science Team, 2021c), and
https://doi.org/10.5067/Suborbital/ORACLES/P3/2018_V3
(ORACLES Science Team, 2021d).
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