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Abstract. Multi-angle polarimetric (MAP) measurements
contain rich information for characterization of aerosol mi-
crophysical and optical properties that can be used to im-
prove atmospheric correction in ocean color remote sens-
ing. Advanced retrieval algorithms have been developed to
obtain multiple geophysical parameters in the atmosphere–
ocean system, although uncertainty correlation among mea-
surements is generally ignored due to lack of knowledge
on its strength and characterization. In this work, we pro-
vide a practical framework to evaluate the impact of the
angular uncertainty correlation from retrieval results and a
method to estimate correlation strength from retrieval fitting
residuals. The Fast Multi-Angular Polarimetric Ocean coLor
(FastMAPOL) retrieval algorithm, based on neural-network
forward models, is used to conduct the retrievals and un-
certainty quantification. In addition, we also discuss a flex-
ible approach to include a correlated uncertainty model in
the retrieval algorithm. The impact of angular correlation on
retrieval uncertainties is discussed based on synthetic Air-
borne Hyper-Angular Rainbow Polarimeter (AirHARP) and
Hyper-Angular Rainbow Polarimeter 2 (HARP2) measure-
ments using a Monte Carlo uncertainty estimation method.
Correlation properties are estimated using autocorrelation
functions based on the fitting residuals from both synthetic
AirHARP and HARP2 data and real AirHARP measurement,
with the resulting angular correlation parameters found to be
larger than 0.9 and 0.8 for reflectance and degree of linear
polarization (DoLP), respectively, which correspond to cor-

relation angles of 10 and 5◦. Although this study focuses on
angular correlation from HARP instruments, the methodol-
ogy to study and quantify uncertainty correlation is also ap-
plicable to other instruments with angular, spectral, or spatial
correlations and can help inform laboratory calibration and
characterization of the instrument uncertainty structure.

1 Introduction

Satellite remote sensing is important for the study of the
earth system at a global scale (National Academies of Sci-
ences, Engineering, and Medicine, 2018). Remote sensing
instruments are evolving rapidly, with increasing accuracy
and spatial, spectral, and angular resolutions (Kokhanovsky
et al., 2015; Dubovik et al., 2019). Multi-angle polarimeters
(MAPs), measuring polarization states at multiple spectral
bands and viewing angles, contain high information content
for the study of aerosol and cloud optical and microphysi-
cal properties (Mishchenko and Travis, 1997; Chowdhary et
al., 2001; Hasekamp and Landgraf, 2007; Knobelspiesse et
al., 2012). The aerosol properties derived from MAP instru-
ments can be used to assist atmospheric correction for ocean
color remote sensing (Frouin et al., 2019; Gao et al., 2020;
Hannadige et al., 2021).

Uncertainty quantification from MAP retrievals provides
information on the quality of the data products and improves
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Figure 1. Current MAPs in terms of the number of spectral bands
and total number of viewing angles as summarized in Gao et al.
(2021b). The bubble size for each instrument corresponds to the
total number of measurements as indicated next to the instrument
name. The full name and reference of the instruments are provided
in Table 1. POLDER-1, 2, and 3 refer to the instruments on the
ADEOS-I, ADEOS-II, and PARASOL missions. Note that MISR
conducts multi-angle measurements without considering polariza-
tion.

our understanding of retrieval sensitivities. These uncertain-
ties depend on the retrieval algorithm as well as the instru-
ment characterization, including the spectral bands, view-
ing angles, and polarization capability and the measurement
accuracy. As shown in Fig. 1 and Table 1, MAP instru-
ments collect a large number of high-quality measurements
with differing numbers of spectral bands and viewing an-
gles (Gao et al., 2021b). The number of spectral bands are
mostly within 4–14 for MAP instruments. An exception is
the SPEX sensors (SPEX airborne and SPEXone, Smit et al.,
2019; Hasekamp et al., 2019), which acquire up to 400 spec-
tral bands. The number of viewing angles for many instru-
ments vary between 5 and 16 (e.g., 5 for SPEXone and 9 for
SPEX airborne and MISR) but can be on the order of 100
for several hyper-angular instruments (90 for HARP2, 120
for AirHARP, 152 for RSP, and 250 for APS). More viewing
angles are preferred for the observation of clouds (Waquet et
al., 2009; McBride et al., 2020), and they can also be used
to conduct multi-angle cloud masking and data screening to
increase aerosol retrieval accuracy and coverage (Gao et al.,
2021b).

To understand the retrieval uncertainties, an uncertainty
model is required to describe the combined uncertainties
from the MAP measurements, forward model, and a priori
assumptions. These combined uncertainty sources are often
assumed to be independent and without correlations; how-
ever, measurements with high angular or spectral resolution

are likely to have correlated uncertainty, depending on in-
strument design. For example, a sensor may use the same
detector to scan through all measurement view angles (e.g.
the Research Scanning Polarimeter, RSP, Cairns et al., 1999),
and thus the systematic errors due to calibration will be corre-
lated for different measurement angles. The correlation prop-
erty should be part of the MAP uncertainty model, but often
it has not been sufficiently characterized. The characteriza-
tion of measurement uncertainty correlation is affected by
instrument calibration and data processing protocols, which
is challenging to quantify. A sensitivity study considering
the angular uncertainty correlation of the RSP data was con-
ducted by Knobelspiesse et al. (2012), which showed that
information content is affected by correlation strength. How-
ever, the actual impacts of uncertainty correlation in a re-
trieval algorithm have not been well explored, as this requires
better understanding of the correlation characteristics and ef-
ficient implementation in a retrieval algorithm.

Retrieval algorithms that exploit correlation information
in retrieval parameters and measurement uncertainties have
shown benefits in improving remote sensing capabilities.
The Generalized Retrieval of Aerosol and Surface Proper-
ties (GRASP) algorithm retrieves multiple pixels simulta-
neously while considering the spatial correlation of the re-
trieval parameters (Dubovik et al., 2014, 2021). Xu et al.
(2019) developed a correlated multi-pixel inversion approach
(CIMAP), which further considers the correlation between
different retrieval parameters. Theys et al. (2021) developed
a Covariance-Based Retrieval Algorithm (COBRA) based
on an error covariance matrix estimated from measurements
with spectral correlation, applied their approach to sulfur
dioxide (SO2) retrievals from the TROPOspheric Monitoring
Instrument (TROPOMI) data, and demonstrated improved
retrieval performance. To accurately evaluate pixel-level un-
certainty in ocean color retrievals, spectral correlations asso-
ciated with the uncertainties in top-of-atmosphere reflectance
are also accounted for OLCI (Lamquin et al., 2013) and
MODIS (Zhang et al., 2022) in the uncertainty propagation.

In this study, we provide a practical framework to under-
stand the measurement uncertainty structure, study the im-
pact of correlation in MAP retrievals, and demonstrate the
potential for improvement in geophysical retrieval perfor-
mance when proper correlation information is incorporated
into the retrieval algorithm. Angular uncertainty correlations
in measurements from the AirHARP and HARP2 instru-
ments are studied as examples. Both instruments measure 60
angles at 670 nm. AirHARP measures 20 angles for the 440,
550, and 870 nm bands, while HARP2 measures at 10 an-
gles for these bands. Angular correlation within each band
is considered and modeled separately. Two methods are used
to evaluate the retrieval uncertainties under different corre-
lation strengths: (1) the error propagation method is used
to evaluate the optimal retrieval uncertainties, by mapping
the input uncertainty model describing the total uncertainty
of the measurement and forward model to the retrieval pa-
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Table 1. Acronyms and their full name for the MAP instruments plotted in Fig. 1. The number of angles and spectral bands are summarized
in Gao et al. (2021b). Details in the instrument characteristics are available in Dubovik et al. (2019).

Instruments Full name Reference

POLDER/ADEOS I and II Polarization and Directionality of the Earth’s Reflectances on Deschamps et al. (1994)
Advanced Earth Observing Satellite missions I and II

POLDER/PARASOL POLDER on Polarization and Anisotropy of Reflectances for Atmospheric Tanré et al. (2011)
Sciences coupled with Observations from a Lidar mission

3MI/MetOp-SG Multi-Viewing Multi-Channel Multi-Polarisation Imaging instrument Fougnie et al. (2018)
on Meteorological Operational Satellite – Second Generation mission

MISR/Terra Multi-angle Imaging SpectroRadiometer on Terra mission Diner et al. (1998)
AirMSPI Airborne Multiangle SpectroPolarimetric Imager Diner et al. (2013)
MAIA Multi-Angle Imager for Aerosols Diner et al. (2018)

RSP Research Scanning Polarimeter Cairns et al. (1999)
APS/Glory Aerosol Polarimetry Sensor on Glory mission Mishchenko et al. (2007)

AirHARP Airborne Hyper-Angular Rainbow Polarimeter Martins et al. (2018)
HARP2/PACE Space-borne version of AirHARP on PACE mission Martins et al. (2018)

SPEX Airborne Spectropolarimeter for Planetary EXploration Airborne Smit et al. (2019)
SPEXone/PACE Space-borne version of SPEX on PACE mission Hasekamp et al. (2019)

rameter domain, and (2) comparative analyses are performed
between the retrieval results from synthetic MAP measure-
ments and the “truth data” that were assumed in the gen-
eration of that synthetic MAP data. The Monte Carlo error
propagation method (MCEP) is adopted to compare the re-
trieval uncertainties from these two methods. To efficiently
conduct retrieval and uncertainty analysis, the FastMAPOL
retrieval algorithm is employed in this study, which uses
neural-network forward models for coupled atmosphere and
ocean systems (Gao et al., 2021a). Analytical Jacobian ma-
trices are derived based on the neural network and used to
improve the efficiency of the retrieval (Gao et al., 2021b) and
uncertainty quantification (Gao et al., 2022). To accurately
evaluate the retrieval uncertainties of real measurements, an
adaptive data screening approach is employed (Gao et al.,
2021b). This ensures that only those measurements that can
be sufficiently described by the forward model are used in
this study, by avoiding uncharacterized uncertainty contribu-
tions due to contamination by cirrus clouds and other anoma-
lies.

Furthermore, we study the angular uncertainty correla-
tion in the measurements and demonstrate that the correla-
tion property can be derived using the autocorrelation func-
tion from the retrieval fitting residuals. Studies on both syn-
thetic data with various correlation strengths are conducted
with results applied to the real measurement retrievals from
AirHARP over multiple ocean scenes. Useful tools are pro-
vided to understand and analyze the angular correlated uncer-
tainty structure and models. Note that autocorrelation analy-
sis based on fitting residuals has been found useful in analyz-
ing performance of machine learning algorithms such as us-
ing the Durbin–Watson test (Chatterjee and Simonoff, 2012).

In the following sections, we will discuss how to conve-
niently include an angular correlated uncertainty model in the
retrieval algorithm (Sect. 2), evaluate the impact of correlated
measurement uncertainty in retrieval uncertainties (Sect. 3),
and estimate correlation strength by fitting residual analy-
sis from both synthetic AirHARP and HARP2 data and real
AirHARP measurements (Sect. 4). Discussion and conclu-
sions are provided in Sect. 5. Although this study focuses
on angular noise correlation, the conclusions on the impacts
of correlations are also applicable to other instruments such
as the hyperspectral measurements from both the SPEXone
and the Ocean Color Instrument (OCI) that will be carried on
NASA’s upcoming Plankton, Aerosol, Cloud, ocean Ecosys-
tem (PACE) mission (Werdell et al., 2019).

2 Algorithm and methodology

2.1 FastMAPOL retrieval algorithm

In this study, the FastMAPOL algorithm is used to re-
trieve aerosol and ocean optical properties from HARP mea-
surements. The algorithm includes three main components:
(1) a set of neural-network-based radiative transfer forward
models of the coupled atmosphere and ocean system (Gao
et al., 2021a) and the corresponding analytical Jacobian ma-
trix based on automatic differentiations derived from these
neural networks (Gao et al., 2021b), (2) a multi-angle cloud
masking and data screening module (Gao et al., 2021b), and
(3) an efficient uncertainty quantification component (Gao
et al., 2022). Water-leaving signals in terms of remote sens-
ing reflectance are derived with an additional neural network
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trained for the atmospheric correction process (Gao et al.,
2021a).

The neural-network forward models are trained for both
reflectance and degree of linear polarization (DoLP) based
on simulations from the successive orders of scattering ra-
diative transfer model (RTSOS) developed by Zhai et al.
(2009, 2010) and Zhai and Hu (2022). The atmosphere and
ocean system is assumed to be a four-layer system, and the
radiative transfer interactions among them are fully consid-
ered in the RTSOS model. The bottom layer is the ocean wa-
ter body in which an open-ocean bio-optical model is used to
parameterize scattering and absorption of ocean constituents
based on the chlorophyll a concentration (Chl a; mg m−3)
(Gao et al., 2019, 2021a). The second layer is the ocean sur-
face with its roughness parameterized by wind speed through
a scalar Cox–Munk model (Cox and Munk, 1954). The third
layer is an aerosol layer mixed with Rayleigh scattering. This
layer extends from ocean surface to a height of 2 km with a
uniform aerosol vertical distribution. The last layer contains
atmospheric molecules from 2 km to the top of the atmo-
sphere. The US standard atmospheric constituent profile is
used to describe the molecular distributions (Anderson et al.,
1986).

A total of nine parameters are used to describe the aerosol
microphysical properties. There are four parameters for the
complex refractive index of fine and coarse mode. Aerosol
size distributions are parameterized by five volume densities
for five size submodes with fixed effective radius and vari-
ance (Dubovik et al., 2006; Xu et al., 2016; Gao et al., 2018).
Absorption by atmospheric gases is considered in the RTSOS
simulation, with ozone density as the only variable. The radi-
ant path geometries are represented by the solar and viewing
zenith angles and the viewing azimuth angle relative to the
solar direction. Therefore, a total of 15 parameters are used
as forward-model input, with 11 of them defined as retriev-
able parameters. Details of the parameter ranges are listed in
Appendix A and discussed in Gao et al. (2021a, 2022). To
represent the forward model accurately and efficiently, the
neural-network (NN) architecture is optimized with an in-
put layer of 15 parameters, followed by three hidden layers
with 1024, 256, and 128 nodes and a final output layer with
4 nodes for each HARP band. The deep-learning Python li-
brary PyTorch is used for the training the NN (Paszke et al.,
2019). The accuracy of the NN forward model is examined
with an independent synthetic measurement dataset not used
in training. An accuracy of better than 1 % for reflectance and
better than 0.003 for DoLP has been achieved (Gao et al.,
2021a). The uncertainties of the NN forward model are less
than the instrument uncertainties of AirHARP and HARP2
(3 % in reflectance, 0.01 in DoLP for AirHARP, and 0.005 in
DoLP for HARP2).

In this study, we will discuss the retrieval uncertainty and
performance in aerosol properties, ocean surface wind speed,
and Chl a in the ocean, as well as water-leaving signals based
on the retrieval parameters. The water-leaving signal refers to

the remote sensing reflectance (Rrs), which is the ratio of the
upwelling water-leaving radiance and the downwelling so-
lar irradiance just above the ocean surface (Mobley, 2022).
Rrs can be estimated through the atmospheric correction pro-
cess, which removes the contribution from the atmosphere
and ocean surface from the total measurements at the sensor,
and the additional BRDF (bidirectional reflectance distribu-
tion function) correction to reduce the dependency on the so-
lar and viewing directions. Both atmospheric and BRDF cor-
rections with their associated uncertainties are implemented
using neural networks as discussed in Gao et al. (2021a, b)
and followed by this study.

2.2 Retrieval cost function and uncertainty
quantification

The maximum likelihood approach is used to retrieve the
state parameters in FastMAPOL by minimizing a cost func-
tion that represents the difference between the measurements
and the forward-model fitting (Rodgers, 2000)

χ2
=

1
N

yT S−1
ε y , (1)

where y =m−f (x ) is the residual vector between mea-
surement m and forward model f under retrieval parame-
ters of x. Measurement vector m includes both reflectance
(ρt) and DoLP (Pt), where the subscript t indicates the to-
tal signal measured by the instrument. The total number of
measurements, N , at each pixel includes contributions from
both reflectance and DoLP, which has been used in previous
studies (Gao et al., 2021a, b).

The error covariance matrix Sε in Eq. (1) specifies the un-
certainties of each measurement and the correlation between
different measurements at the same pixel, which is a sym-
metric matrix defined as

Sε;i,j = E
[
(yi −E[yi])

(
yj −E[yj ]

)]
, (2)

where i and j indicate the measurement at different angles
and bands, and E indicate the expectation values. To capture
the angular uncertainty correlation, the autoregressive model
of order of 1 (denoted as AR(1)) is used in the study of RSP
data (Knobelspiesse et al., 2012) and adopted in this study
for HARP data. AR(1) represents a linear Markov process
with the error covariance matrix specified as

Sε,i,j =


σ 2
t,i

if i = j
σc,iσc,j r

1θ |i−j | if i 6= j but at the same band and
polarization state

0 otherwise,

(3)

where σt is the total uncertainty, which includes both random
noise and calibration uncertainty (σc). Only σc is assumed
to be correlated between measurements at different viewing
angles.

The ratios between random and calibration uncertainties
may be different for reflectance and polarized signals (Kno-
belspiesse et al., 2019). The synthetic data are generated di-
rectly using the forward model; therefore, the contribution of

Atmos. Meas. Tech., 16, 2067–2087, 2023 https://doi.org/10.5194/amt-16-2067-2023



M. Gao et al.: Uncertainty correlation 2071

forward-modeling uncertainty is not considered for the syn-
thetic data study. 1θ is the average angular grid size, which
depends on the spectral bands. We model the correlation
properties using the 1θ estimated from the viewing angles
in the along-track direction to better represent the stripe filter
characteristics used to conduct HARP angular measurement.
The averaged 1θ is approximately 6.0◦ for AirHARP and
12◦ for HARP2 at 440, 550, and 870 nm bands and 2.0◦ for
the 670 nm bands for both HARP instruments. r in Eq. (3)
is the correlation parameter with a value between 0 and 1.
For uncertainties with more complex structures, a general
autoregression and moving average (ARMA) model can be
used (Priestley, 1983; Brockwell and Davis, 1991). How-
ever, from our analysis based on the retrieval results from real
AirHARP measurements, AR(1) works well for most cases.
Detailed analysis can be found in Sect. 2.5 for theoretical ba-
sis, Sect. 4.3 for real data applications, and Sect. 5 for general
discussions.

To better represent stronger correlations when it is close to
1, we define the correlation angles θc based on the correlation
parameter r as

r1θ |i−j | = e−1θ |i−j |/θc . (4)

Therefore, θc indicates the angular range where magnitude
in the correlation between angles is reduced by a factor of e.
Similarly, correlation angles can be derived from r as

θc =−1/ lnr. (5)

2.3 Uncertainty quantification

The pixel-wise retrieval uncertainty can be quantified by
mapping the measurement and forward-model uncertainties
into retrieval parameter space (Rodgers, 2000):

S−1
=KT S−1

ε K+Sa
−1, (6)

where the Jacobian matrix K represents the partial deriva-
tives of the measurements with respect to all the retrieval
parameters. In this study, each retrieval parameter can only
vary in a limited range, which imposes an implicit a priori
constraint on the retrieval parameters. To capture its influ-
ence on retrieval uncertainties, we assume the a priori error
matrix Sa in Eq. (6) to be diagonal with the a prior uncer-
tainty for each state parameter approximated by its permit-
ted range in retrievals (Gao et al., 2022). Both the parameter
ranges and a priori values are listed in Table A1. The un-
certainties are defined as the standard deviation (1σ ) around
the retrieval solution, which is estimated by the square roots
of the diagonal elements of S. The uncertainties of variables
which are a function of the retrieval parameters can also be
derived from S and their derivatives. Due to the large number
of retrieval parameters used in the retrieval, the evaluation of
the retrieval uncertainties can be time consuming. The speed
to compute uncertainties is improved using automatic differ-
entiations based on neural-network forward models (Gao et

al., 2022). For example, the uncertainty of remote sensing
reflectance (Rrs) can be derived using the automatic differen-
tiation applied on the neural networks for BRDF correction
and atmospheric correction components as discussed in Ap-
pendix A from Gao et al. (2021b).

The retrieval uncertainties estimated by error propagation
(hereafter called theoretical retrieval uncertainty) as shown
in Eq. (6) represent the optimal scenarios, with limitations
such as the assumption that the retrieval parameters success-
fully converged to the global minima (more discussions in
Sayer et al., 2020; Gao et al., 2022). When the retrievals con-
verge to a local minimum, both the retrieval results and asso-
ciated Jacobians can be less representative of the truth values
and therefore lead to inaccurate error propagation and un-
certainty estimation. To quantify the retrieval uncertainties
based on actual retrieval results, the retrieval errors are de-
fined as the difference between the retrieval results and the
truth from synthetic data, which are then used to compute
the retrieval uncertainty (hereafter called real retrieval un-
certainty). The comparison between the theoretical and real
uncertainties is useful to assess the optimal and actual per-
formance of a retrieval algorithm. The Monte Carlo error
propagation (MCEP) method is used in this study to conduct
such comparison (Gao et al., 2022). MCEP samples the re-
trieval errors from theoretical retrieval uncertainties and then
directly compares the error distributions between theoretical
estimation and real retrievals. This method provides addi-
tional flexibility in analyzing their statistics. Multiple sets of
random samples are generated from the theoretical uncertain-
ties with their variations analyzed, which therefore provides
a way to evaluate the impact of sample size in estimating un-
certainties (Gao et al., 2022). This method is used to quantify
the retrieval uncertainties with various correlation strengths
in the next section. A summary of the terminology used for
the error and uncertainties for measurement and retrieval re-
sults is provided in Table 2.

2.4 Eigenvector decomposition on error covariance
matrix

The error covariance matrix with non-diagonal terms is chal-
lenging to implement efficiently in optimization algorithms,
which typically operate in diagonal space with no corre-
lation between measurements. The error covariance matrix
also creates barriers to understand the retrieval uncertainties,
as the input uncertainties are not for a single measurement
but rather related to multiple measurements. To overcome
these issues, we convert the measurements into a new space
where the error covariance matrix is diagonalized. Therefore,
conventional optimization and error analysis techniques can
be readily used.

To achieve this goal, eigenvector decomposition is applied
on the error covariance matrix (Rodgers, 2000) as

Sε = UTDεU, (7)
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Table 2. Error and uncertainty definitions.

Term Definition

Measurement error Difference between the real measurement and the physical quantity to be measured
Measurement uncertainty The statistical variation of the measurement errors
Retrieval error Difference between the truth and the retrieval results
Retrieval uncertainty The statistical variation of the retrieval errors around retrieval solution
Retrieval fitting residual Difference between the measurements and the forward-model fitting

where Dε is a positive diagonal matrix defined by the eigen-
values of Sε and U is a unitary matrix. Examples of how
the eigenvalues vary with correlation strength and the associ-
ated impact of those variations on Shannon information con-
tent and retrieval uncertainties are discussed in Appendix B.
Based on Eq. (7), the cost function in Eq. (1) and the error
propagation in Eq. (6) can be written as

χ2
=

1
N

y′TD−1
ε y′, (8)

S−1
=K′TD−1

ε K′+S−1
a , (9)

where the original set of measurements, y, are converted to a
new set of measurements, y′, without any correlation, along
with the respective Jacobian matrices:

y′ = Uy, (10)
K′ = UK. (11)

Equations (8) and (9) are mathematical transformations
that conveniently allow for working with diagonal matrices,
with advantages and applications summarized below.

– A clear expression of measurement uncertainty. The di-
agonal terms in matrix Dε represent the uncertainties for
the new measurement y′, therefore providing insights
on the accuracy of the measurements impacted by cor-
relation. An example of this is shown in Appendix B.

– Conducting minimization on the retrieval cost func-
tion. Equation (8) represents the cost function for non-
correlated measurement y′ and therefore can be used for
conventional optimization algorithms such as the sub-
space trust-region interior reflective (STIR) algorithm
(Branch et al., 1999) as used in current FastMAPOL al-
gorithm (Gao et al., 2021a, b, 2022).

– Generating correlated errors. To study and visualize an-
gular uncertainty correlations, correlated errors need to
be generated and then added to the synthetic data. To
achieve this goal, we generated the errors in the space
for y′ with random parameters sampled from a normal
distribution assuming the eigenvalues in Dε as its vari-
ance. These errors in y′ are then transformed back to
the original space y through y = UT y′. To demonstrate
how angular correlations impact the errors, the corre-
lated error samples with a correlation angle of θc = 10◦

(r = 0.9) and correlation angle of θc = 60◦ (r = 0.98)
are shown in Fig. 2a and c. A value of r = 0.9 has
been assumed in the study of RSP angular correlation by
Knobelspiesse et al. (2012). With a larger θc the errors
start to form a longer range of correlation with smoother
variations. Note that the overall magnitude of the errors
can vary within the full range as described by the cal-
ibration uncertainties. These errors are then added to
the synthetic data and used to study retrieval. The fit-
ting residuals from retrievals on the synthetic data with
the added correlated errors are shown in Fig. 2c and d
and discussed in the next section.

2.5 Correlation strength estimation using
autocorrelation

Autocorrelation is a useful function to quantify correlation in
a discrete data sequence and is defined as (Priestley, 1983)

Ri,j = E
[
yiyj

]
, (12)

where i and j are two indices of the datasets. Comparing with
Eq. (2), the autocorrelation is equivalent to the autocovari-
ance when E[yi] = 0. This method can be applied to the sim-
ulated noise generated in Sect. 2.4 and used to analyze the fit-
ting residuals. However, the mean values and variance in the
fitting residuals often vary with respect to the angular grids.
This type of signal is classified as non-stationary and diffi-
cult to study by the AR models (Priestley, 1983). To over-
come this issue, the original residual data y are processed
by removing their mean and normalizing by their standard
deviation. These normalized data are denoted as ỹ. For the
data within the same band and polarization state, the auto-
correlation function on the normalized data is equal to their
covariance as defined in Eq. (3),

R̃k = E
[
ỹi ỹi+k

]
= r1θ k. (13)
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Figure 2. Examples of simulated measurement errors generated for reflectance at the 660 nm band with a correlation angle of 10◦ (a) and
60◦ (b), respectively. The fitting residuals are shown in panels (c) and (d). A total of 1000 sets of errors are generated and added to the
simulation data. Three sets of error examples are shown in different colors. The right side of viewing angle ends around 25◦ due to the
removal of sunglint as shown in Fig. 4.

We can estimate the correlation by analyzing the residuals
between the measurement and forward model. The autocor-
relation function is averaged over multiple pixels to reduce
uncertainties for the analysis in both synthetic data and real
retrieval residuals. The correlation parameter can then be de-
rived as

r = (R̃1)
1/1θ . (14)

Correlation angles, θc, are then computed based on r fol-
lowing the formula in Eq. (5). Furthermore, a partial auto-
correlation function from a sequence of data can be com-
puted, which removes the correlation due to lags higher than
1 (Priestley, 1983). If the AR(1) model is sufficient to de-
scribe the noise structure, only one additional term would
be left besides the zero-order term in the partial autocorre-
lation results. Therefore, partial autocorrelation can be used
to validate our assumption in the uncertainty model. The
Python packages, statsmodels (Seabold and Perktold, 2010)
and SciPy (Virtanen et al., 2018), are used to conduct the au-
tocorrelation analysis.

An example is shown in Fig. 3; the autocorrelation func-
tion and partial autocorrelation function are applied on the
simulated errors and the retrieval residuals with examples
from Fig. 2b and d. The autocorrelations are shown in Fig. 3a
and c for the simulated errors and retrieval residuals in re-
flectance data. The partial autocorrelations for Fig. 3a and c
are shown in Fig. 3b and d, respectively. For both cases in
Fig. 3b and d, only the first order of data are prominent,
which confirms that the data can be represented by the AR(1)
process. If higher orders in the AR process are presented,
more prominent data points will appear in Fig. 3b and d. The

estimated correlation angles for the errors in Fig. 3a and b
and residuals in Fig. 3c and d are approximately 30 and 15◦,
respectively, after converting correlation parameters to cor-
relation angles but less than the actual correlation angle of
60◦. The results show that autocorrelation can be a useful
way to estimate correlation strength but with a tendency to
underestimate due to the finite length of the data and over-
fitting of the retrievals (more discussion in the Sect. 4). Note
that the Bartlett confidence interval that corresponds the au-
tocorrelation of uncorrelated white noise can be calculated
but is found to be much smaller than the results in Fig. 3 and
is therefore not shown in the figure (Brockwell and Davis,
1991).

3 Retrieval uncertainties for AirHARP and HARP2

3.1 Synthetic data generated using the NN forward
model

The neural-network forward model discussed in Sect. 2.1 is
used to generate 1000 sets of synthetic AirHARP data, and
then the number of viewing angles at 440, 550 and 870 nm
are downsampled to 10 to represent HARP2 data. A fixed so-
lar zenith angle of 50◦ is used to represent the solar geome-
tries of the AirHARP scenes over ocean from the ACEPOL
field campaign (more information in Sect. 4.3). The aerosol
properties, wind speed, and Chl a values are randomly sam-
pled based on their allowed range, as discussed in Sect. 2
and Appendix A. The same sampling approach discussed in
Gao et al. (2022) is conducted assuming that the aerosol op-
tical depth (AOD) and fine-mode volume fraction are uni-
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Figure 3. The autocorrelation and partial autocorrelation on the
1000 sets of simulated errors with a correlation angle of 60◦ and
its corresponding fitting residuals as shown in Fig. 2b and d for
the 670 nm band. The maximum value in the curve is normalized
to 1. The horizontal axis indicates the angular step k as defined
in Eq. (13). The Bartlett confidence interval on white noise is not
shown due to its small value.

Figure 4. Example viewing zenith (θv) and relative azimuth (φv)
in a polar plot at 550 nm for AirHARP (20 angles) and HARP2
(10 angles). Five sets of examples are provided in different colored
dots. The 440 and 870 nm bands are similar. At 670 nm, there is
a total of 60 angles for both instruments. The anti-solar point is
indicated by the red asterisk. The viewing angles within the sunglint
region indicated by the blue shaded area are removed. Note that the
viewing angles from HARP2 are downsampled from AirHARP.

formly distributed within [0.01,0.5] and [0,1], respectively.
A larger range of AOD values will be needed for applying
this algorithm to cases of smoke and plume events. Realistic
HARP-like viewing geometries are constructed by sampling
the along-track and cross-track viewing angles randomly and
then converting to the actual viewing zenith and azimuth an-
gles following the formulas provided in Gao et al. (2021b).
Example viewing geometries for AirHARP and HARP2 for
bands at 550 nm are provided in Fig. 4, with geometries at
other bands constructed similarly.

To generate realistic measurements, correlated uncertain-
ties with a correlation angle (θc) from 0, 1, 2, 5, 10, 20, 30,

60, and 120◦ are considered in this study, with correspond-
ing correlation parameters of 0, 0.368, 0.607, 0.819, 0.905,
0.951, 0.967, 0.983, and 0.992, respectively. The correspond-
ing correlated error samples are generated based on the error
covariance matrix using the method discussed in Sect. 2.4.
Examples of the correlated errors are already shown in Fig. 2
for AirHARP at 660 nm, with correlation angles of 10 and
60◦, respectively.

Correlated errors for both the AirHARP and HARP2 in-
struments are generated according to the same 3 % uncer-
tainty for reflectance but 0.01 in DoLP for AirHARP and
0.005 in DoLP for HARP2. These errors are added to the cor-
responding simulated reflectance and DoLP (

√
Q2+U2/I )

for further studies. The reflectance is more likely to be dom-
inated by systematic uncertainty like calibration (possibly
correlated), while DoLP defined as the ratio between two
measurements is more likely dominated by randomly gen-
erated uncertainty like shot noise (probably less correlated)
(Knobelspiesse et al., 2012). Therefore, we assume two sce-
narios: (1) angular correlation only existed in reflectance
measurement, not in DoLP measurement, and (2) both re-
flectance and DoLP have angular correlations with the same
strength. Since the actual amount of correlation is not known,
we designed our studies with the assumed correlation in the
synthetic measurement but with either no information or full
information on the correlation angle in the retrieval cost func-
tions. Therefore, four scenarios are discussed in this study as
summarized in Table 3 denoted by C1 to C4. We will discuss
whether better retrieval results can be obtained if accurate
correlation angles are considered in the retrieval cost func-
tion and whether we can estimate correlation from retrieval
residuals in Sect. 4.

3.2 Retrieval uncertainties impacted by uncertainty
correlation

Using the Monte Carlo error propagation (MCEP) method
discussed in Gao et al. (2022), we compared both real and
theoretical retrieval uncertainties with different correlation
angle and testing scenarios as summarized in Table 3 for
both synthetic AirHARP and HARP2 measurements. Fig-
ure 5 demonstrates the basic approach in MCEP by compar-
ing the AirHARP retrieval results with θc = 60◦ for scenarios
C3 and C4, where the real retrieval errors are sampled based
on their retrieval uncertainties. The real uncertainties in both
the root mean square error (RMSE) and the mean average er-
ror (MAE) are mostly larger when uncertainty is correlated
(comparing b and a), with exceptions possibly due to statis-
tical fluctuations in the Monte Carlo sampling. The theoreti-
cal uncertainties are similar because in both cases the corre-
lation angles are assumed to be zero. After considering the
same correlation angle in the retrieval cost function model as
shown in Fig. 5c, both theoretical and real uncertainties are
reduced. The real and theoretical uncertainties are similar to
each other as shown in Fig. 5a, but the agreement degrades
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Table 3. Four scenarios of simulated uncertainties are considered in the synthetic data and retrievals. C1 and C2 indicate simulated errors
with a correlation angle of θc added to synthetic reflectance data. C1 assumes the correlation property is unknown and no correlation is
considered in the cost function model, but C2 assumes the correlation as in the simulated errors is known. This is also the case for C3 and
C4, which considered correlated uncertainty in both reflectance and DoLP.

Scenario Reflectance DoLP Reflectance DoLP
(measurement) (measurement) (retrieval) (retrieval)

C1 θc 0 0 0
C2 θc 0 θc 0
C3 θc θc 0 0
C4 θc θc θc θc

when correlation is considered (Fig. 5b, c). There are more
real retrieval errors in the negative side as shown in Fig. 5c.
This may be related to the convergence for cases with small
AOD values as discussed in Gao et al. (2022). Although real
uncertainties are generally larger than theoretical uncertain-
ties, the differences are mostly associated with cases where
AODs are small and underestimated relative to the truth val-
ues.

Both real errors and theoretical uncertainties have occa-
sional outliers with large values possibly due to convergence
to local minima instead of global minima, and this has large
impacts on the RMSE values. For example, in Fig. 5b there
are a few large estimated uncertainty values outside of the
plot range that result in large RMSE for the theoretical error,
almost comparable to the real uncertainty. Comparing MAE,
however, shows that the theoretical value is much smaller
than the real error, consistent with the histogram shape where
the theoretical curve is narrower than the real curve. Given its
robustness to outliers, MAE is used as the primary metric in
this study.

Based on the MCEP method, we analyzed the retrieval un-
certainties for synthetic AirHARP measurements from real
errors and theoretical errors for various properties in Fig. 6,
including the AOD, single scattering albedo (SSA), the real
part of the refractive index (mr), effective radius (reff), and
effective variance (veff) for both fine and coarse modes and
their combinations. fvf is the fine-mode volume fraction.
Ocean surface wind speed and Chl a concentration are also
retrieved. As recommended by Seegers et al. (2018), the un-
certainty of Chl a is represented by a log-transformed metric:

MAE(log)= 10Y (15)

Y =
1
M

M∑
i

[
log10

(
Chl ai,retrieval

)
− log10

(
Chl ai,truth

)]
, (16)

where M is the total number of samples, which equals to the
total number of synthetic measurement cases. The values of
log10(Chl ai,retrieval)−log10(Chl ai,truth) are sampled for both
the real and theoretical uncertainties similar to Fig. 5, with
detailed discussions provided in Gao et al. (2022). Further-
more, remote sensing reflectance at the four HARP wave-
lengths is derived after conducting the atmospheric correc-

tion using the retrieved aerosol and ocean properties (Gao et
al., 2021a). Multiple sets of random errors are sampled and
averaged to estimate the impact of sample size in estimating
retrieval uncertainties and are shown in Fig. 6.

The real retrieval uncertainties for Scenario C3, in which
correlation is considered in the simulated errors but not in
the retrieval cost function, are found to be always increasing
with the correlation angle. When the correct correlation an-
gle is considered in the retrieval cost function (C4), the real
retrieval uncertainty increases until θc, reaching 10 to 20◦,
and then slightly decreases at higher correlation angles, for
most retrieval parameters. Similar behavior of the informa-
tion content has been reported by Knobelspiesse et al. (2012)
on the study of error correlation in RSP measurements. To
understand how the correlation influences retrieval accuracy,
we further analyze its impacts on the eigenvalues of the er-
ror covariance matrix with details discussed in Appendix B.
The theoretical uncertainties for Scenario C4 are similar to
the real uncertainties for θc < 10◦ except for refractive in-
dex, for which the theoretical values are almost half that of
the real uncertainties. When θc > 10◦, the theoretical uncer-
tainties then decrease much faster than the real uncertainties
as θc increases. The difference mostly comes from the re-
trieval cases which underestimate the truth values as shown
in Fig. 5. Note that the real retrieval uncertainties are mostly
larger than the theoretical uncertainties without any corre-
lation within the range of θc < 120◦. However, theoretical
uncertainties predict that the retrieval uncertainties increase
slightly with θc around 10◦ (or r = 0.9) and then decrease. Its
values can be smaller than those with zero correlation when
θc is larger than around 20◦.

The results for HARP2 are similar to that of AirHARP as
shown in Fig. 7. The overall HARP2 retrieval uncertainties
are slightly smaller than AirHARP retrieval uncertainties,
but the difference is mostly within 20 % for the theoretical
uncertainties and mostly within 10 % for the real uncertain-
ties as shown in Fig. 7 for both θc = 60◦ and θc = 60◦. Al-
though HARP2 measures fewer viewing angles at 440, 550,
and 870 nm bands, its better DoLP accuracy still results in
slightly smaller uncertainties in most cases. Note that the re-
trieval accuracies also depend on the total number of viewing
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Figure 5. The histogram of the AirHARP retrieval errors for the fine-mode AOD from theoretical and real uncertainty estimations based on
the MCEP method. (a) For the case without any correlation in the uncertainty; (b) for the cases with correlation only in the synthetic data
(C3) and (c) also in the retrieval cost function (C4) with a correlation angle of θc = 60◦. Both mean average error (MAE) and root mean
square error (RMSE) are computed for the theoretical and real errors indicated in red and blue text, respectively.

Figure 6. Retrieval uncertainties averaged for the AOD within [0.01,0.5] based on the MCEP method for synthetic AirHARP measurements.
Ten sets of random samples are conducted, with the mean values shown in the plot and standard deviation indicated by the width of the
shaded lines. The blue lines indicate the real uncertainty for Scenario C3 and Scenario C4 (Table 3), and the red line indicates the theoretical
uncertainty for Scenario C4.

angles used and the range of scattering angles as discussed in
Gao et al. (2021b).

To understand more quantitatively how the correlation an-
gle impacts both AirHARP and HARP2 retrievals, the ratios
of the real uncertainties between scenarios C3 and C4 are
represented as R(C4)/R(C3) for each retrieval quantity as
shown in Fig. 8. Note that both C3 and C4 considered uncer-

tainty correlations in both reflectance and DoLP, but only C4
considered the same correlation in its retrieval cost function,
and C3 assumes no correlation in its retrievals. Therefore, the
ratio R(C4)/R(C3) represents how much retrieval uncertain-
ties can be reduced if the correct amount of correlations are
known in the retrieval process. As shown in Fig. 8, the ratio
is close to 1 for most parameters for θc = 10◦, with slightly
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Figure 7. The ratio of the real (R) and theoretical (T ) retrieval uncertainties between the AirHARP and HARP2 measurements for correlation
angles equal to 0 and 60◦. In the legend, R(HARP2)/R(AirHARP) denotes the ratio of real retrieval uncertainties between HARP2 and
AirHARP, and T (HARP2)/T (AirHARP) denotes the ratio of theoretical uncertainties.

larger impacts for effective variance for both fine and coarse
mode as well as for wind speed uncertainty. Such ratios al-
most double for θc = 60◦ for both AirHARP and HARP2
measurements. Note that sunglint has been removed in the
retrieval as shown in Fig. 4, which may contribute to a larger
wind speed retrieval uncertainty. When comparing the the-
oretical uncertainty T (C4) with R(C3), their ratio reduces
to a value of 0.5 to 0.7 for θc = 10◦ for aerosol properties
and further decreases to a value of 0.3 to 0.5 with θc = 60◦.
The impacts on the remote sensing reflectance are generally
smaller for θc = 10◦ but more significant for θc = 60◦. This
is because the theoretical uncertainty with a correlation an-
gle decreases faster than the real uncertainties (see Fig. 6).
These results demonstrate that there is potentially more room
to reduce the retrieval uncertainty as predicted by the error
propagation theory represented by Eq. (6), which warrants
future investigations. The largest gap between the real and
theoretical uncertainties is still for refractive index in both
fine mode and coarse mode, which is the same as observed
in Gao et al. (2022). The gaps between the real and theoreti-
cal uncertainties increase with increasing θc, which indicates
degrading retrieval performance in the presence of correlated
uncertainties.

To understand retrieval performance when the uncertainty
correlation is only in reflectance for scenarios C1 and C2,
similar ratios to Fig. 8 are plotted in Fig. 9. The ratios be-
tween the real uncertainties are almost always equal to a
value of 1, with slightly larger impacts (less than 10 %) for
θc = 60◦. However, the theoretical errors are much smaller,
with values ranging from approximately 0.75 for θc = 10◦ to

0.5 for θc = 60◦ and with even smaller values observed for
refractive index. This suggest that correlation in reflectance
alone has the potential to be harvested to improve retrieval
performance but is even harder to realize in real retrievals
from current algorithms.

4 Estimating correlation from residual analysis

4.1 Cost function and fitting performance

As discussed in Gao et al. (2021b), the retrieval cost function
can be characterized well by the χ2 distribution for synthetic
data and for real data after removing anomalies such as cir-
rus cloud. Note that the cost function in Eq. (1) is called a
χ2 function, but its histogram may not always follow a χ2

statistical distribution, which depends on how well the fitting
residuals can represent the real uncertainty and the degree of
freedom of the χ2 distribution (Gao et al., 2021a). Therefore,
the histogram of successful retrievals is a useful indicator on
how well the retrieval residuals compare with the assumed
input uncertainty model (Rodgers, 2000). In this study, we
found that the retrieval residuals can be represented well by
the χ2 distribution with a degree of freedom equal to the total
number of measurements used (N ), which is twice that of the
total number of viewing angles (Nv) when there is no corre-
lation, as shown in Fig. 10. Note that the degree of freedom
is defined for the χ2 distribution (Gao et al., 2021b).

However, the cost function histogram shifts to a smaller
value for Scenario C3 (Fig. 10a), where correlated uncer-
tainty is included in the synthetic data but no correlation is
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Figure 8. The ratio of real retrieval uncertainties between scenarios C4 and C3 as denoted in the legend by R(C4)/R(C3) for AirHARP and
HARP2 measurements with a correlation angle equal to 10 and 60◦; similarly, the real and theoretical uncertainties for C4 are compared with
the real uncertainties for C3 denoted as T (C4)/R(C3).

Figure 9. Similar to Fig. 8 but for the scenarios of C1 and C2 when correlations are only in reflectance uncertainties.

considered in the retrieval cost function. Smaller cost func-
tion values indicate smaller retrieval residual, which may be
caused by overfitting of the data and also possibly lead to the
larger real retrieval uncertainties as shown in Fig. 6. When
the correct value of correlation is considered in the retrieval
cost function as shown in Fig. 10b for Scenario C4, the his-
togram better approaches a χ2 distribution. For example, in
the right panel in Fig. 10, the χ2 distributions with degrees of
freedom of 40 and 20 is found to better fit the cost function

histogram with θc = 10◦ and θc = 60◦, which compares to
results using all the measurement degrees of freedom (150).
This suggests that the correlation in the uncertainty reduces
its degree of freedom.

To understand how much overfitting impacts retrievals un-
der a different strength of correlations, we compare the stan-
dard deviation of the retrieval residuals with the original sim-
ulated uncertainty for all 1000 cases. For reflectance, we con-
sider the ratio between the simulated uncertainty and the re-
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Figure 10. Cost function histogram with a correlation angle of 0, 10, and 60◦ for scenarios C3 (a) and C4 (b). The average number of
viewing angles from the 1000 simulation cases, after removing sunglint, is Nv = 75 for the AirHARP measurement. The red line indicates
the χ2 distribution with a degree of freedom of 2Nv = 150. The green and blue lines indicate the χ2 distribution with a reduced degree of
freedom of 40 and 20 fitted to the corresponding histogram.

flectance as a convenient way to compare with the 3 % (or
0.03) uncertainty model for reflectance (Fig. 11). For the sim-
ulated uncertainty, the value of 0.03 is confirmed; however,
the retrieval residuals become smaller with increasing θc for
C3. The 670 nm band shows the largest reduction, where a
ratio of 0.025 is observed for θc = 10◦, reaching 0.015 for
θc = 120◦, which may be due to the large number of an-
gles (60) in the 670 nm bands versus the other bands (10
or 20). This behavior indicates overfitting, where the uncer-
tainties are partially removed as real signals and lead to re-
duced residuals. When the correct correlation is considered
in the model, the result is much like the assumption, with
a very slight indication of overfitting (within 0.005 in most
cases). Similarly for DoLP, the standard deviations of the fit-
ting residuals at the 670 nm band are smaller than other bands
for C3, which indicate larger overfitting at the 670 nm band
(Fig. 11c). The overfitting is much reduced for C4 with a
standard deviation close to 0.01 (Fig. 11d). The results for
HARP2 are very similar, but with the assumed uncertainty
for DoLP of 0.005 (not shown).

4.2 Correlation estimation results with synthetic data

Different amount of over fitting also partially removed the
correlation in the fitting residuals. As shown in Fig. 12a
and b, the estimated correlation is smaller than the truth. The
estimated θc for 670 nm bands are smaller than other bands,
which is consistent with previous studies where these bands
overfit the data the most. Green bands seem to show the best
results, which estimate θc < 10◦ (r = 0.90) well but under-
estimate true θc = 60◦ (r = 0.983) as 20◦ (r = 0.951) and
θc = 120◦ (r = 0.992) as 30◦ (r = 0.967). Note that the value
of correlation parameter r asymptotically approaches 1 and
becomes harder to distinguish with a finite length of data.
Meanwhile, we also computed the correlation angles from
the added simulated errors, which also resulted in a smaller
correlation angle compared to the truth but much closer than
using the residual data. This may due to the finite length of

Figure 11. The standard deviation of simulated measurement errors
and fitting residual for cases C3 and C4. The model uncertainty of
3 % for reflectance and 0.01 for DoLP are indicated by dashed lines.
Results of scenarios C1 and C2 for reflectance are similar, but with
estimated DoLP uncertainties closer to the 0.01 line.

the measurement, which is 90◦ after the glint is removed (to-
tal 120◦). When the true correlation angle is considered in
the model (C4), the estimated correlation angle is improved.
The results of DoLP are slightly better where the retrieval
residuals seem to estimate the results from simulated errors
in a similar way for both C3 and C4 as shown in Fig. 12c
and d. In real data, the correlation strength may be different
for reflectance and DoLP; it would be useful to estimate the
correlation angles for all the four bands and both reflectance
and DoLP and analyze the difference by comparing it with
the synthetic data study.
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Figure 12. The estimated correlation angle θc for scenarios C3
and C4 from the simulated measurement errors and fitting residu-
als for reflectance and DoLP are compared with the truth values.
The dashed line indicates the one-to-one line. Results of scenarios
C1 and C2 for reflectance are similar, but with the estimated corre-
lation angle close to zero since no correlation is considered in DoLP
(not shown).

4.3 Correlation estimation results with real AirHARP
data

The Aerosol Characterization from Polarimeter and Lidar
(ACEPOL) field campaign was conducted from October to
November of 2017 with the NASA’s ER-2 aircraft at a high
altitude of approximately 20 km (Knobelspiesse et al., 2020).
Measurements over a variety of scenes are conducted from
four MAPs – AirHARP, AirMSPI, SPEX airborne, and RSP
– and two lidar sensors – HSRL-2 (Burton et al., 2015) and
CPL (the Cloud Physics Lidar) (McGill et al., 2002). There is
a total of five AirHARP ocean scenes available in the ACE-
POL measurements with retrieval uncertainties studied by
Gao et al. (2022) without considering angular uncertainty
correlation. Gao et al. (2021a) reported that the retrieval re-
sults of both aerosol and ocean color signals have been found
to be in good agreement with the AERONET Ocean Color
site (Zibordi et al., 2009). However, the cost function his-
togram was much wider than expected due to the impacts
of cirrus clouds. After removing the cirrus cloud impacts
from the multiple-angle measurement using an adaptive data
screening method, the cost function histogram improved sig-
nificantly, with much higher similarity with a χ2 distribu-
tion (Gao et al., 2021b). In this study, the same adaptive data
screening methods are applied on all the five AirHARP ocean

scenes, which removes cirrus clouds and other anomalies that
could not be represented adequately by the current forward
model. The resulting total number of measurements, includ-
ing both reflectance and DoLP, are shown in Fig. 13, where
the spatial distribution of pixels with many valid viewing an-
gles is not uniform.

Correlation properties from real measurements are diffi-
cult to quantity. However, we show in Sect. 2.5 that, as also
demonstrated by Sect. 4.2, the autocorrelation analysis on the
retrieval residual can be used as a good estimator when cor-
relation is not too strong with consistent behaviors to derive
the correlation parameters. Therefore, using the ACEPOL
data, we can estimate angular uncertainty correlation from
retrieval residuals. From each scene we selected 200 pixels
with the most available number of angles, which are clus-
tered together around the region with the maximum number
of measurements as shown in Fig. 14. The retrieval residual
data were then normalized as discussed in Sect. 2.5 to re-
move impacts by the non-uniform mean and variance, which
are often observed from the real data residuals. The autocor-
relation and partial autocorrelation are calculated to assess
whether the AR(1) model is sufficient, with examples shown
in Fig. 14, for the fitting residuals of reflectance and DoLP
from Scene 3 at the 670 nm band. Partial autocorrelation for
reflectance showed similar results for the synthetic data in
Fig. 3b, with only the first-order term prominent, which sug-
gests that the AR(1) model is sufficient to describe the fitting
residual for reflectance, with higher-order contributions neg-
ligible. Figure 3d for DoLP shows that higher-order terms
may also contribute to the uncertainty model; however, the
overall correlation strength is small. From these plots, we
can estimate the correlation parameters r following Eq. (14),
where R̃1 corresponds to the first-order point in the auto-
correlation plots. The values of r are approximately 0.9 and
0.7 for reflectance and DoLP, respectively, corresponding to
correlation angles of approximately 10 and 15◦ following
Eq. (5).

We analyzed the fitting residuals for all the five AirHARP
scenes at the four bands with results summarized in Fig. 15.
The minimal number of available angles used in the correla-
tion estimation at each band are shown in Fig. 15a. Note that
different scenes have various numbers of angles removed due
to the impacts of cirrus cloud or other anomalies. Those val-
ues are filled with zeros, which may reduce the strength of
angular correlation. Therefore, the real correlation angle is
likely larger than these values because only a subset of the to-
tal measurement data are used to estimate these angles. The
estimated correlation angles for reflectance and DoLP vary
mostly between 5 and 20◦. The correlation angles are smaller
for the 670 nm band, probably due to overfitting that partially
removes the correlated errors as real retrieval signals, consis-
tent with our observations based on synthetic data (Fig. 12).
The correlation angles for the 440 and 550 nm bands are
largest, which may be mostly close to the truth. The corre-
lation angles are generally larger for reflectance, with a value
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Figure 13. The number of total viewing angles (N ) considering both reflectance and DoLP for the five AirHARP ocean scenes from ACE-
POL.

Figure 14. Autocorrelation (a, c) and partial autocorrelation (b, d)
for the fitting residuals of reflectance and DoLP from Scene 3 at
670 nm bands.

between 10 and 20◦ compared to DoLP with a value between
5 and 15◦, which suggests different amounts of correlation in
the reflectance and DoLP data. Comparing the retrieval un-
certainties for θc around 10 to 20◦ as shown in Fig. 6, the
impact of the correlation to the real retrieval is small, but
there is potential for large reduction of theoretical uncertain-
ties by 25 % to 50 % if the correct correlation is considered
in the retrieval cost function. This requires, however, that the
retrieval algorithm is capable of achieving its optimal perfor-
mance as described by its theoretical uncertainties. Further-
more, the information on the correlation properties is useful
to parameterize realistic measurement uncertainties into syn-
thetic data. The correlation angles for reflectance and DoLP
are likely larger than 10 and 5◦, respectively, which corre-
spond to an estimated correlation parameter of 0.9 and 0.8.

5 Discussions and conclusions

In this study, we evaluate the impacts of angular correla-
tion on the retrieval uncertainties for various aerosol mi-
crophysical and optical properties, ocean surface properties,
and water-leaving signals. Theoretical uncertainties are de-
rived based on error propagation, and the real uncertainties
are obtained through the comparison of retrieved and true
values. The theoretical and real uncertainties are compared
and discussed. Only small angular correlation impacts are
found on the real retrieval uncertainties unless the correla-
tion strength is large (such as with a correlation angle larger
than θc > 10◦). The impacts vary with different retrieval pa-
rameters. Theoretical uncertainties are more impacted by an-
gular correlation, which suggests the retrieval algorithm may
not always converge to the global minima and that there is
potential room for algorithm improvement.

Studies on the fitting residuals from both synthetic data
and real AirHARP measurements were conducted. Autocor-
relation is useful to estimate the angular correlation, though
it tends to underestimate when the correlation strength is
strong, and thus overfitting of the measurements is likely.
Analysis on the real data showed that the angular correlation
is stronger in the reflectance data than DoLP, which makes
sense because we expect that DoLP is less sensitive to sys-
tematic uncertainties that are more likely to be correlated.
Partial autocorrelation analysis suggests that the uncertainty
model considering a linear Markov process (AR(1)) is suffi-
cient for reflectance but may need to be further studied for
DoLP. From AirHARP retrieval residual analysis, the corre-
lation angles for reflectance and DoLP are estimated to be
larger than 10 and 5◦, corresponding to correlation parame-
ters larger than 0.9 and 0.8, respectively.
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Figure 15. (a) The minimal number of angles used to estimate correlation parameters from each scene and wavelength; (b, c) the estimated
correlation angles.

This work intends to provide basic methodology to an-
alyze the measurement uncertainties with angular correla-
tions, but the methods can also be applied in the spatial and
spectral domains that may be more appropriate for other in-
struments. There are several remaining issues that need dis-
cussion in future works.

– Application to real data. It is complex to analyze real
data as we discussed in previous sections. The major
challenges and possible issues that may impact uncer-
tainty correlation estimation are summarized below.

1. The retrieval is based on a forward model which
also has uncertainties, a portion of which may be
correlated. This uncertainty will contribute to the
fitting residuals and may impact correlation analy-
sis, but it is difficult to quantify.

2. The fitting residuals are often not stationary with
uniform mean and variance. To reduce this issue,
the residuals are normalized, but it would be valu-
able to analyze how the mean value and variance
depend on the angle, as this may provide insight
into the modeling uncertainties.

3. Some residuals are not continuous with angle due to
removed cirrus clouds, which may reduce the cor-
relation.

4. Synthetic data analysis has demonstrated that the
retrieval is likely to overfit the data when the corre-
lation is strong.

5. The angular grids for HARP measurements are
slightly non-uniform, which is likely to further re-
duce the correlation strength from autocorrelation
analysis. To evaluate impacts of this feature, an un-
certainty model considering the impact of the real
angular grids needs to be built. But the variation of
the angular grids is less than 1◦ (670 nm band) or
2◦ (other bands), which may impact more the cases
with small correlation angles.

– Lab calibration. Although the correlation strength is es-
timated from fitting residuals from real AirHARP mea-
surements, it may be only used for qualitative discus-
sions due to various issues discussed above. To obtain
the actual correlation properties, lab characterizations
are desired to separate measurement characteristics. Lab
measurement signals may also be evaluated through au-
tocorrelation and partial correlation functions, or more
general ARMA models. It is also interesting to discuss
the possible impacts in the uncertainty model due to the
binning and collocation that happen in later processing
steps.

– Correlation strength as a fitting metric. Due to the limi-
tation discussed above, our analysis on the fitting resid-
uals may only provide the lower boundary for the cor-
relation strength in terms of correlation parameter (r)
or correlation angle (θc). Since the correlation strength
represents properties of the fitting residuals, it can be
also used as a metric to represent retrieval fitting perfor-
mance, together with the cost function χ2 and variance
of the fitting residuals as discussed in Sect. 4.1.

– Signal correlation vs. uncertainty correlation. Nature as
measured by the instrument and expressed in the for-
ward model has inherent correlation, which becomes
part of the retrieval process. The phenomena we observe
tend to be only slowly changing with respect to view an-
gle, and thus measurements at different view angles do
not necessarily express retrieved parameters indepen-
dently. This correlation is related to the actual signal in
the measurement rather than its uncertainties. This type
of correlation is captured by the Jacobian matrix. The
overall information content of the measurements with
respect to the set of retrieval parameters is determined
by both the Jacobian matrix and the correlated uncer-
tainty model as further discussed in Appendix B.

– Future retrieval algorithm development. The pixel-wise
theoretical uncertainties achieve a reasonably good per-
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formance to represent real retrievals when no correla-
tion is presented. Their performances on various re-
trieved geophysical properties are quantified by compar-
ing with the real retrieval errors. The difference grows
bigger when the angular correlation is stronger, which
suggests convergence to local minima and indicates
that more development is needed to improve the re-
trieval optimization. For the development of future algo-
rithms with more retrieval parameters, such as aerosols
with more complex shape and absorption properties and
coastal waters with more complex bio-optical proper-
ties, a better characterized error model, such as the
one considering angular or spectral correlations, will be
helpful to identify information useful for the retrievals
and therefore improve retrieval performance and uncer-
tainty assessment.

Appendix A: Input parameters of the neural-network
forward model

A total of 15 parameters are used as input of the forward
model as discussed in Sect. 2.1 as listed in Table A1. The
solar zenith (θ0), viewing zenith angle (θv), viewing azimuth
angle relative to solar direction (φv), and ozone density (nO3 )
are assumed to be known input. All the other 11 parame-
ters are retrieval parameters in the FastMAPOL algorithm,
including the aerosol volume density for each sub-mode (Vi),
the real (mr) and imaginary parts (mi) of the refractive index
for fine- and coarse-mode aerosols, ocean surface wind speed
(w), and chlorophyll a concentration (Chl a).

Table A1. Parameters used to train the FastMAPOL forward model.
The minimum (min) and maximum (max) values of each parame-
ter are also shown. The a priori uncertainties (σa) are estimated as
the difference between the maximum and minimum values for the
study, except the four parameters as indicated, which are assumed
to be known input.

Parameters Unit Min Max σa

θ0
◦ 0 70 [input]

θv
◦ 0 60 [input]

φv
◦ 0 180 [input]

nO3 DU 150 450 [input]
V1 µm3 µm−2 0 0.11 0.11
V2 µm3 µm−2 0 0.05 0.05
V3 µm3 µm−2 0 0.05 0.05
V4 µm3 µm−2 0 0.19 0.19
V5 µm3 µm−2 0 0.58 0.58
mr,f (none) 1.3 1.65 0.35
mr,c (none) 1.3 1.65 0.35
mi,f (none) 0 0.03 0.03
mi,c (none) 0 0.03 0.03
w m s−1 0.5 10 9.5
Chl a mg m−3 0.01 10 10

Appendix B: Eigenvector decomposition in the error
covariance matrix

Section 2.4 discussed that the error covariance matrix with
non-diagonal terms can be diagonalized through eigen-
decomposition as shown in Eq. (7). The original measure-
ments can be transformed into a new space without correla-
tions, with uncertainty variance described by the eigenvalues
in the diagonal matrix Dε denoted as d2

i . To understand how
the uncertainties vary with different correlation strength, the
square root of the diagonal term in Dε is used to represent the
new measurement uncertainties. Results for different corre-
lation angles are shown in Fig. B1.

The uncertainties in the new measurement space (y′) show
components both larger and smaller than the original uncer-
tainties from different combinations of measurements. The
corresponding Shannon information content (SIC) (Rodgers,
2000) is defined as

SIC=
1
2

ln |S−1Sa|, (B1)

=
1
2

ln |Sa
1/2K′TD−1

ε K′Sa
1/2
+ I|, (B2)

where the error covariance matrix S and the a priori matrix
Sa in Fig. B2 are from Eq. (6). The Jacobian matrix and the
error covariance matrix are converted into the diagonal space
as shown in Sect. 2.4 and are used to represent the SIC in
Eq. (B1). Different correlation strength will lead to a differ-
ent unitary matrix, which is used to transform the Jacobian
and error covariance matrix (Eq. 7). We analyzed the SIC
and retrieval uncertainties for a sequence of correlation an-
gles from 0 to 120◦. As shown in Fig. B2, when the corre-
lation strength is strong, the SIC is increasing with respect
to correlation, and the theoretical retrieval uncertainties es-
timated from error propagation are decreasing, such as for
fine-mode refractive index, wind speed, and Chl a. However,
when the correlation is relatively weak, SIC decreases and
uncertainties increase with the correlations. The correlation
angles with maximum uncertainties are different with differ-
ent retrieval parameters but generally fall within 30◦. This
behavior may relate how the measurement uncertainties are
mapped to the retrieval parameters space through the Jaco-
bian matrix. Similar behavior of the SIC has been reported
by Knobelspiesse et al. (2012) for the RSP measurement.
Understanding of the uncertainty properties such as corre-
lation strength is useful to further exploit the information in
the measurements.
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Figure B1. The uncertainties for reflectance and DoLP of the error covariance matrix at the 670 nm band after eigenvector decomposition as
discussed in Sect. 2.4. These values correspond to the square root of the diagonal values in matrix Dε from Eq. (7).

Figure B2. The Shannon information content (SIC) and corre-
sponding theoretical retrieval uncertainties for refractive index
(mr,f), wind speed (w) and Chl a with respect to various corre-
lation angles. The results are for one example case with Chl a=
0.1 mg m−3, w = 3.0 m s−1, mr,f = 1.55 and AOD (550 nm)= 0.2
– the same as the case discussed in Gao et al. (2022) (ID: 201).
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