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Abstract. This study investigated the accuracy of the ran-
dom forest (RF) model in gap filling the sensible (H ) and
latent heat (LE) fluxes, by using the observation data col-
lected at a site over rice–wheat rotation croplands in Shoux-
ian County of eastern China from 15 July 2015 to 24 April
2019. Firstly, the variable significance of the machine learn-
ing (ML) model’s five input variables, including the net radi-
ation (Rn), wind speed (WS), temperature (T ), relative hu-
midity (RH), and air pressure (P ), was examined, and it
was found that Rn accounted for 78 % and 76 % of the total
variable significance in H and LE calculating, respectively,
showing that it was the most important input variable. Sec-
ondly, the RF model’s accuracy with the five-variable (Rn,
WS, T , RH, P ) input combination was evaluated, and the
results showed that the RF model could reliably gap fill the
H and LE with mean absolute errors (MAEs) of 5.88 and
20.97 W m−2, and root mean square errors (RMSEs) of 10.67
and 29.46 W m−2, respectively. Thirdly, four-variable input
combinations were tested, and it was found that the best input
combination was (Rn, WS, T , P ) by removing RH from the
input list, and its MAE values of H and LE were reduced by
12.65 % and 7.12 %, respectively. At last, through the Taylor
diagram, H and LE gap-filling accuracies of the RF model,
the support vector machine (SVM) model, the k nearest-
neighbor (KNN) model, and the gradient boosting decision
tree (GBDT) model were intercompared, and the statistical
metrics showed that RF was the most accurate for both H

and LE gap filling, while the LR and KNN model performed
the worst for H and LE gap filling, respectively.

1 Introduction

The turbulent fluxes between the atmosphere and the ground
play a crucial role in global climate change and atmospheric
circulation, and the inaccuracy of long-term observations
of surface turbulent fluxes is a major factor in erroneous
weather predictions and climate projections. Research on the
ecological effects of urban green spaces, agricultural ecosys-
tems, and forests all use surface turbulent fluxes as key indi-
cators. Currently, the eddy covariance (EC) technique can be
used to directly measure the turbulent fluxes (Wilson et al.,
2001; Jiang et al., 2021; Wang et al., 2021). However, due
to sensor failure and adverse meteorological factors (such as
rainfall and frost), these high-frequency turbulence data are
subject to errors (Khan et al., 2018). As a result, it is diffi-
cult to obtain a continuous time series of ground-based tur-
bulent fluxes. Furthermore, quality assurance methods lead
to unavailable sections of flux datasets (Nisa et al., 2021).
Based on the above reasons, gap filling is in need of re-
trieving continuous datasets of EC-based fluxes (Alavi et al.,
2006). Researchers have developed approaches based on ex-
isting meteorological information to fill up the gaps in at-
mospheric databases, such as interpolation, nonlinear regres-
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sion, mean diurnal method, and sampling techniques from
the marginal distribution (Falge et al., 2001; Hui et al., 2004;
Stauch and Jarvis, 2006; Foltýnová et al., 2020). Further, the
machine learning (ML) technique has also become an effec-
tive method to be used in the calculation of turbulent fluxes
(Khan et al., 2021; McCandless et al., 2022).

As a result of recent developments in high computing tech-
nology, machine-learning-based algorithms have been devel-
oped and successfully used in various areas, such as natu-
ral language processing, data mining, biometrics, computer
vision, search engines, clinical applications, video games,
robots, etc. To address the missing data issue, machine-
learning-based models have recently been used to fill data
gaps in meteorological elements and turbulent fluxes (Bianco
et al., 2019; Yu et al., 2020). As a result of their reliable
and repeatable results, these models are now regarded as a
standard gap-filling algorithm (Beringer et al., 2017; Isaac et
al., 2017). ML algorithms have several deficiencies even if
they perform well in some areas. For instance, overfitting is
a major concern that can occur when the training window is
too short or the training dataset’s quality is poor. This is be-
cause the present ML approaches are not sufficiently adapt-
able to work in extreme situations with large values (Kun-
wor et al., 2017; Moffat et al., 2007). Furthermore, even with
the best technique, the model uncertainty of gap filling still
plays a role, particularly when the gaps are relatively large.
Numerous novel ML and optimization algorithms have been
created and put to use in numerous scientific domains since
the 2000s, and their superiority has been demonstrated, ei-
ther singly or as a component of a hybrid or ensemble model
(e.g., Gani et al., 2016).

Based on the need for flux dataset gap filling, and the ef-
fectivity of the ML technique, this paper aims, firstly, to in-
vestigate the performance of the random forest (RF) machine
learning algorithm trained from a dataset obtained over rice–
wheat rotation croplands in Shouxian County, eastern China,
in gap filling the sensible and latent heat fluxes; and, sec-
ondly, to analyze the RF model’s accuracy with various me-
teorological input combinations during training; and, thirdly,
to compare the performance of RF model with other four typ-
ical ML models.

2 Materials and methods

2.1 Study area

This observation was conducted at a site in Shouxian
County in the eastern Chinese province of Anhui (32.42◦ N,
116.76◦ E) (Fig. 1). The altitude of the site is 27 m, and the
annual mean air temperature and annual cumulative precip-
itation here are 16 ◦C and 1115 mm, respectively. Summer
(from June to September) precipitation accounts for nearly
60 % of the annual precipitation amount, which meets the
high water demand of rice. Drought sometimes occurs due

to lack of precipitation in the growing season of wheat. This
observation site is rather flat, with farmland accounting for
more than 90 % of the area. Winter wheat is grown here from
November until late May, while from June to November the
field is flooded, plowed, and harrowed as rice paddies (Duan
et al., 2021a, b) (Fig. 2). The subtropical northern boundary
of the monsoon humid climatic type describes the area’s cli-
mate.

2.2 Data

Over the site described above, EC sensors (EC 150; Camp-
bell Scientific Inc., Logan, UT, USA) were installed at
2.5 m above the ground, including a three-dimensional sonic
anemometer (CSAT3; Campbell Scientific Inc., Logan, UT,
USA) and a CO2/H2O open-path infrared gas analyzer. The
sensible and latent heat fluxes were computed half-hourly
using EddyPro software, with time lag compensation, dou-
ble coordinate rotation, spectrum correction, and Webb–
Pearman–Leuning density correction (Wutzler et al., 2018;
Anapalli et al., 2019). Poor-quality fluxes (Eddypro quality
check flag value of 2) were discarded. And a quality check
based on the relationship between the measured flux and fric-
tion velocity was carried out to remove the biased data (Pa-
pale et al., 2006). Then, using the marginal distribution sam-
pling technique, the flow data were gap filled (Reichstein et
al., 2005). The time series of air temperature, relative hu-
midity, wind speed, air pressure, friction velocity, and net
radiation were also subjected to quality control. The miss-
ing data which need gap filling are H and LE, with 7205
and 16 013 missing, accounting for 12.09 % and 26.87 %, re-
spectively. According to the criteria of X(h) < (X− 4σ) or
X(h) > (X+ 4σ), where X(h) indicates the time series of
the component, X is the mean across the averaging interval,
and σ is the standard deviation, noisy data were eliminated
(Gao et al., 2003). Data observed from 15 July 2015 to 24
April 2019 are used in this study, and Fig. 3 shows the daily
average data of Rn: net radiation (W m−2), u∗: friction ve-
locity (m s−1), T : air temperature (◦), RH: relative humidity
(%), P : air pressure (hPa), and WS: wind speed (m s−1).

2.3 The RF model

RF is a machine learning method that is quick, adaptable,
and frequently used to analyze classification and regression
jobs (Breiman, 2001). This model can successfully evaluate
highly dimensional and multicollinear data and is resistant
to overfitting (Belgiu and Dragut, 2016). The RF model pro-
vides a feature selection tool to assist in determining the im-
portance of the predictor. The contribution of each variable
to the model, with important variables having a higher effect
on the results of the model evaluation, is the definition of
feature significance (Liu et al., 2021). Of the data, 90 % col-
lected at the Shouxian observation site throughout the study
period were used to train the RF model, while the remaining
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Figure 1. Geographical location and land cover map of Shouxian County.

Figure 2. Crop calendars for the rice and wheat in the North Yangtze River Delta region.

10 % were used to independently validate the model (here-
after validation dataset). To lessen the overfitting in this case,
a 10-fold cross-validation (CV) procedure was used (Cai et
al., 2020). All training data used here were randomly divided
into 10 subsamples of equal size for the 10-fold CV tests.
And 9 out of the 10 subsamples were used as training data
(hereafter training dataset), while the remaining subsample
was used as testing data (hereafter testing dataset). All 10
of the subsamples were utilized as testing data exactly once
for each of the 10 iterations of the CV procedure. One es-
timate was created by averaging the 10 findings from the
folds. We modified the four RF model hyperparameters based
on Bayesian optimization to get the optimal model (Baareh

et al., 2021; Frazier, 2018): the maximum number of fea-
tures considered to split a node (max features), the maximum
number of trees to build (n estimators), the minimum sample
number placed in a node prior to the node being split (min
split), and the maximum number of levels for each decision
tree (max depth). Bayesian optimizer is used to tune parame-
ters, and you can quickly find an acceptable hyperparameter
value; compared with grid search, the advantage is that the
number of iterations is less (time saving), and the granularity
can be very small. For example, if we want to adjust the regu-
larized hyperparameters of linear regression, we set the black
box function to linear regression, the independent variable
is a hyperparameter, the dependent variable is linear regres-
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Figure 3. Daily averaged (a) Rn: net radiation (W m−2) , (b) u∗: friction velocity (m s−1), (c) T : air temperature (◦), (d) RH: relative
humidity (%), (e) P : air pressure (hPa), and (f) WS: wind speed (m s−1).

sion in the training set accuracy, then set an acceptable black
box function-dependent variable value, such as 0.95, and the
obtained hyperparameter result is a hyperparameter that can
make the linear regression accuracy exceed 0.95. The simu-
lated performance of the 10-fold CV outcomes was evaluated
using four statistical metrics: the correlation coefficient (r),
mean absolute error (MAE), root mean square error (RMSE),
and standard deviation (σn). As a result, the final RF model’s
parameters were adjusted as follows to have the best statisti-
cal metrics: n estimators is 246 min, split is 2, max features
is 10, and max depth is 35.

The four statistical metrics are calculated by

r =

N∑
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)
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Figure 4. The feature importance of the variables for (a) H and (c) LE, and the correlation coefficient between each of the input variables
for (b) H and (d) LE.

where S stands for the modeled value, O is the observation,
O is the mean observed value, and S is the mean modeled ob-
servation. σn indicates the standard deviation. The subscript
i represents the serial number of samples, and N represents
the total number of samples.

3 Results and discussion

3.1 Driving factors of H and LE on a seasonal scale

The possible driving factors of H and LE were investigated
to determine their respective contributions by the RF model,
as shown in Fig. 4. Rn, which accounted for 78 % and 76 %
of the total variable significance of H and LE, respectively,
and was the most crucial variable in regulating the heat fluxes
(Fig. 4a and c). Consistent with the high variable significance
values, H and LE also had the highest r of 0.79 and 0.75
with H and LE, respectively, as shown in Fig. 4b and d. The
other four factors contributed much less than Rn, and WS, T ,
RH, and P had importance values of 2 %, 4 %, 7 %, and 5 %
(2.2 %, 19 %, 2 %, and 0.6 %) for H (LE), respectively. All
these elements such as Rn, T , WS, RH are normalized before
the model starts training. When these elements are normal-
ized, it ensures uniformity and comparability. In general, all
of these predictors played a role in theH and LE calculation,
and for H , the sequence of importance was Rn, RH, P , T ,
and WS, while for LE, it was Rn, T , WS, RH, and P . The
most significant impact on the change of H and LE came
from Rn, which was the most important energy source of the

surface and modulated the surface temperature directly. RH
and T had a minor impact on theH and LE changes in terms
of climatic parameters, which carried the information of the
light-dependent reactions of H and LE fluxes. Particularly,
WS and P had minimal impacts on the H and LE fluxes.
The WS, T , and RH also affected H and LE according to
the Monin–Obukhov similarity theory (Monin and Obukhov,
1954), while P represented the contributions from the back-
ground weather systems.

3.2 RF model evaluation

Figures 5–6 show the comparison between the observed and
the RF-estimated H and LE, respectively. In the period of
rice, the RF model showed good performance for both the
training dataset (MAE is 8.51 and 17.89 W m−2; RMSE
is 14.11 and 29.82 W m−2, for H and LE, respectively)
and the testing dataset (MAE is 9.61 and 10.34 W m−2;
RMSE is 15.63 and 17.21 W m−2, for H and LE, respec-
tively) (Figs. 5a, b, 6a, and b). RF model also showed
high consistency with direct measurements for the validation
dataset (MAE is 5.88 and 20.97 W m−2; RMSE is 10.67 and
29.46 W m−2, forH and LE, respectively), (Figs. 5c and 6c).
In the period of wheat, the performance of the RF model
for the training, testing, and validation datasets of H and
LE was similar to that in the period of rice. For the train-
ing, testing, and validation datasets, respectively, the MAEs
are 7.18, 8.01, and 6.01 W m−2 for H , and 13.58, 8.82, and
19.93 W m−2 for LE; and the RMSEs are 12.27, 13.61, and
9.86 W m−2 for H , and 24.92, 15.17, and 28.74 W m−2 for
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Figure 5. Scatter density plots of the observed and the RF-estimated H values, (a) and (d) for the training dataset, (b) and (e) for the
validation dataset, and (c) and (f) for the testing dataset. And (a), (b), and (c) are in the period of rice, while (d), (e), and (f) are in the period
of wheat.

LE (Figs. 5d, e, f, 6d, e, f). These results demonstrate that the
RF model is capable of effectively calculating the H and LE
with input variables of Rn, WS, T , RH, and P .

3.3 Examination of input combinations

Meteorological elements may occasionally be unavailable
due to the failure of sensors, so the five-variable input com-
bination derived in Sect. 3.2 is not always applicable. There-
fore, examination of other alternative input combinations is
important to have substitute choices for data gap filling when
the five-variable input combination is unavailable. In this
subsection, we investigated the RF model’s performance un-
der the situation of lacking one element in the five-variable
input combination; i.e., we tested the four-variable input
combinations of (WS, T , RH, P ), (Rn, T , RH, P ), (Rn, WS,
RH, P ), (Rn, WS, T , P ), and (Rn, WS, T , RH), by removing
Rn, WS, T , RH, and P from the five-variable input combina-
tion, respectively. The MAEs and RMSEs for these combi-
nations are shown in Table 1, and it demonstrates that the RF
model’s accuracy may either increase or decrease as a result
of the removal of a meteorological element during the train-
ing phase. For instance, it was found that the model’s perfor-
mance greatly improved once RH was eliminated from the
input combination, with the MAE and RMSE of H decreas-
ing from 6.48 and 11.94 W m−2 to 5.66 and 11.06 W m−2,
respectively, and LE from 19.1 and 39.39 W m−2 to 17.74
and 35.27 W m−2. This outcome is logical given that RH and

H do not have a strong correlation; as a result, performance
will be enhanced if RH is not included in the gap-filling pro-
cessing pipeline. According to our findings, the RF model’s
performance may be greatly enhanced by excluding irrele-
vant meteorological elements from the study and choosing
only those that have a significant impact on the variable. Our
findings imply that in order to attain the best gap-filling accu-
racy, it is necessary to take into account both the advantages
and disadvantages of ML-based models and the ideal input
components. The results suggested that RH at a single level
was not well correlated to the fluxes as shown in Sect. 3.1,
because the one-level RH was strongly affected by the irriga-
tion activity which was an external factor of the weather sys-
tem. As a result, RF model performance was enhanced when
the irrelevant variable (i.e., RH) was removed from the in-
put list. The same condition also happened to the removal of
WS, as could be seen from Sect. 3.1, WS showed small cor-
relations with the fluxes. WS over this site was rather small,
and frequently below 2 m s−1, and under this light wind con-
dition, the fluxes were mostly driven by the buoyancy rather
than the wind shear. Figure 7 presents the MAE variation
percentage of the four-variable input combinations from the
five-variable input combination. After RH was removed from
the input list, the RF model showed favorable performance
for both H and LE, as shown in Fig. 7, with MAE values
improvements of 12.65 % and 7.12 %, respectively. Notably,
the removal of Rn from the input combination resulted in a
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considerable decline in the RF model’s performances, with
MAE degradation percentage values reaching 16.20 % and
10.73 %, respectively. This outcome makes sense, since Rn
is highly associated withH and LE; hence, performance will
be declined if Rn is left out of the input training dataset.
As a consequence, our findings demonstrated that choosing
strongly associated components could greatly increase the
gap-filling accuracy. According to our findings, the best input
combination is [Rn, WS, T , P ].

It should be noted that other variables that might have
an impact on the H and LE were not investigated here.
For example, given that our research site was over farm-
land and plants were growing, knowledge of the variations
of the leaf area index (LAI) and inclusion of it to the train-
ing dataset should also be useful to increase the accuracy of
the RF model in H and LE gap filling. The monsoonal cli-
mate here also incurred considerable precipitation variations,
which might as well potentially contribute to the RF model
accuracy improvement. However, due to the lack of LAI and
precipitation observations, the inclusion of the two variables
into the RF model training dataset was not applicable in this
study. Additionally, as shown above, more variables would
bring a higher observation demand and lead to more com-
plexity and potentially decreased results, such as the adding
variable of RH.

3.4 Comparison with other four ML methods

3.4.1 Comparison in H estimation

To further investigate the reliability of the RF model, we used
a Taylor diagram to compare its performance in H estima-
tion with the other four ML models: support vector machine
(SVM), k nearest-neighbor (KNN), gradient boosting deci-
sion tree (GBDT), and linear regression (LR). SVM is a data-
oriented classification algorithm, and the basic model is to
find the best separation hyperplane on the feature space so
that the positive and negative sample intervals on the training
set are maximum. Its advantages are that the kernel function
can be used to map to a high-dimensional space; the use of
the kernel function can solve the nonlinear classification; the
classification idea is very simple, that is, to maximize the in-
terval between the sample and the decision-making surface;
the classification effect is better; and the nonlinear relation-
ship between data and features is easy to obtain when the
small and medium-sized sample size is large. KNN is partic-
ularly suitable for multi-classification problems. Its advan-
tage is that it is simple in thought, easy to understand, and
easy to implement; there are no estimation parameters and
no training – it is highly accurate and insensitive to outliers.
GBDT can flexibly handle various types of data, including
continuous and discrete values. With relatively few parame-
ter adjustment times, the prediction preparation rate can also
be relatively high. If the data dimension is high, the computa-
tional complexity of the algorithm will increase. Using some

robust loss functions, the robustness to outliers is very strong.
LR is a statistical analysis method that uses regression anal-
ysis in mathematical statistics to determine the quantitative
relationship between two or more variables that depend on
each other.The results have good interpretability, can intu-
itively express the importance of each attribute in the predic-
tion, and the calculation of entropy is not complicated.

All the models were optimized with the same technique
described above for the RF model. The results are shown in
Fig. 8. The EC measurements were used as the benchmark.
It can be seen that the RF model generally outperforms the
other four models, with standard deviations (σn) and correla-
tion values of 1.05 and 0.98 during the period of rice plant-
ing and 0.96 and 0.95 during the period of wheat planting,
respectively. The SVM model is the second most accurate
model, with a σn and correlation of 0.92 and 0.98 during the
period of rice planting and 0.91 and 0.93 during the period
of wheat planting, respectively. The LR model performs the
worst, with a σn and correlation of 0.60 and 0.76 during the
period of rice planting and 0.80 and 0.72 during the period
of wheat planting, respectively. The accuracy of KNN and
the GBDT models is in between the above-discussed models,
and the σn and correlation during the rice and wheat period
for KNN is 0.68 and 0.73 and 0.77 and 0.82; for GBDT, it is
0.79 and 0.80 and 0.81 and 0.9, respectively.

3.4.2 Comparison in LE estimation

Figure 9 illustrates a comparison of the estimated LE by all
five models during the period of rice and wheat planting. The
results are similar to those in the H estimation, and the RF
model is found to perform better than the other four mod-
els, with σn and correlation values of 0.95 and 0.97 during
the period of rice planting and 0.97 and 0.96 during the pe-
riod of wheat planting, respectively. Nonetheless, the KNN
model performs the worst for LE estimating, and it has σn
and correlation values of 0.68 and 0.82 during the period of
rice planting and 0.62 and 0.79 during the period of wheat
planting, respectively. Overall, as shown by the Taylor dia-
gram of Figs. 8 and 9, in this study, the RF model has the
best accuracy in either H or LE estimation for data gap fill-
ing.

4 Summary and conclusions

To assess the RF model’s capacity for gap filling the sensi-
ble and latent heat flux measurements over rice–wheat rota-
tion croplands, 90 % of the total observation data gathered
at Shouxian were utilized for training and testing, and the
remaining 10 % of data were used for independent valida-
tion. Our findings demonstrate that Rn is the most impor-
tant variable in regulating H and LE, and it accounts for
78 % and 76 % of the total variable significance in the RF
model construction for H and LE calculation, respectively.
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Figure 6. Same as Fig. 5 but for LE.

Table 1. The MAEs and RMSEs of the RF-estimated heat fluxes for the four-variable input combinations, and the corresponding changes
from the five-variable input combination.

Factors included Factors eliminated MAE (change) RMSE (change)

WS, T , RH, P Rn H 7.63(+1.15) 10.72(−1.22)
LE 21.15(+2.05) 39.38(−4.62)

Rn, T , RH, P WS H 6.15(−0.33) 11.42(−0.52)
LE 18.36(−0.74) 36.13(−2.34)

Rn, WS, RH, P T H 6.68(+0.20) 11.48(−0.46)
LE 19.54(+0.44) 38.54(−1.46)

Rn, WS, T , P RH H 5.66(−0.82) 11.06(−0.88)
LE 17.74(−1.36) 35.27(−4.12)

Rn, WS, T , RH P H 6.49(+0.03) 11.77(−0.17)
LE 19.12(+0.02) 38.13(−1.07)

The least important variables are WS and P , and their to-
tal variable significance is 2 % and 0.6 %, respectively. Dur-
ing the periods of rice and wheat planting, the RF model
with a five-variable input combination shows reliable per-
formance, with MAE values of 5.88 and 20.97 W m−2 and
RMSE values of 10.67 and 29.46 W m−2, respectively. How-
ever, further analysis of the RF model with four-variable in-
put combinations indicates that the performance of the model
is improved when RH is removed from the input list, and the
MAE values decrease by 12.65 % and 7.12 % for H and LE,
respectively. Nonetheless, the four-variable input combina-
tion without Rn causes an increase in the MAE values of the

model, by 16.20 % and 10.73 % for H and LE, respectively.
Therefore, the best input combination found in this study for
heat flux gap filling is [Rn, WS, T , P ]. Statistical comparison
of RF and other four typical ML models (LR, KNN, SVN,
and GBDT) by Taylor diagram further shows that RF is the
most accurate, with the standard deviations and correlation
values of 0.95 and 0.97 during the period of rice planting and
0.97 and 0.96 during the period of wheat planting, respec-
tively. On the other hand, the LR and KNN models perform
the worst forH and LE gap filling, respectively, according to
the statistical metrics of the Taylor diagram.
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Figure 7. The MAE percentage variation after changing the five-variable input combinations to the four-variable input combinations, (a) for
H and (b) for LE, respectively. The x axis labels indicate the removed variables.

Figure 8. The performances of the five models for estimating H in the period of (a) rice and (b) wheat.

Figure 9. The same as in Fig. 8 but for LE.
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This study is based on only the data collected over rice–
wheat rotation croplands, but the method presented above to
find a reliable gap-filling ML model can also be used over
other types of underlying surfaces and in other climate zones.
It should be noted that over different types of underlying sur-
faces and climates, the variable significance can vary, and a
careful check of the input combinations is needed. For ex-
ample, over polar oceans with strong winds, Rn probably is
not the most important driving factor, while the winds which
cause mostly the turbulence may take the first place. On the
other hand, over areas without human irrigation activity, RH
will possibly be strongly related to the latent heat flux, and
hence the inclusion of it in the input list may increase the
ML model performance. Besides the examination of the in-
put combinations, the choice of an ML model and the method
to optimize its parameters are also important.

Overall, this study shows the potential to use the RF model
to produce trustworthy gap-filling data of H and LE over
rice–wheat rotation croplands, and the ML methods are sug-
gested to be used to derive the fluxes’ estimations when direct
EC observations are not available.
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