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Abstract. Detecting and quantifying CH4 gas emissions at
industrial facilities is an important goal for being able to re-
duce these emissions. The nature of CH4 emissions through
“leaks” is episodic and spatially variable, making their mon-
itoring a complex task; this is partly being addressed by at-
mospheric surveys with various types of instruments. Con-
tinuous records are preferable to snapshot surveys for mon-
itoring a site, and one solution would be to deploy a per-
manent network of sensors. Deploying such a network with
research-level instruments is expensive, so low-cost and low-
power sensors could be a good alternative. However, low cost
usually entails lower accuracy and the existence of sensor
drifts and cross-sensitivity to other gases and environmental
parameters. Here we present four tests conducted with two
types of Figaro® Taguchi gas sensors (TGSs) in a labora-
tory experiment. The sensors were exposed to ambient air
and peaks of CH4 concentrations. We assembled four cham-
bers, each containing one TGS sensor of each type. The first
test consisted in comparing parametric and non-parametric
models to reconstruct the CH4 peak signal from observations
of the voltage variations of TGS sensors. The obtained rel-
ative accuracy is better than 10 % to reconstruct the maxi-
mum amplitude of peaks (RMSE≤ 2 ppm). Polynomial re-
gression and multilayer perceptron (MLP) models gave the
highest performances for one type of sensor (TGS 2611C,

RMSE= 0.9 ppm) and for the combination of two sensors
(TGS 2611C+ TGS 2611E, RMSE= 0.8 ppm), with a train-
ing set size of 70 % of the total observations. In the sec-
ond test, we compared the performance of the same models
with a reduced training set. To reduce the size of the training
set, we employed a stratification of the data into clusters of
peaks that allowed us to keep the same model performances
with only 25 % of the data to train the models. The third test
consisted of detecting the effects of age in the sensors after
6 months of continuous measurements. We observed perfor-
mance degradation through our models of between 0.6 and
0.8 ppm. In the final test, we assessed the capability of a
model to be transferred between chambers in the same type
of sensor and found that it is only possible to transfer models
if the target range of variation of CH4 is similar to the one on
which the model was trained.

1 Introduction

Methane (CH4) is a greenhouse gas 28 times more potent
than carbon dioxide, considering its warming potential over
100 years (Travis et al., 2020). Anthropogenic CH4 emis-
sions account for 60 % of global emissions (Saunois et al.,
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2020). Emissions from natural-gas production account for
63 % of total emissions in the category of fossil fuel pro-
duction and use (Saunois et al., 2020). Fugitive leaks of nat-
ural gas at industrial facilities also present a safety hazard.
Emissions from such facilities need to be continuously mon-
itored, due to the episodic and spatially variable nature of
leaks (Coburn et al., 2018). Leaks can be detected and quan-
tified by LDAR (Leak Detection And Repair) surveys to de-
tect high concentrations caused by a leak. Those surveys are
periodical and have limitations related to the portability of
instruments or accessibility of sites. A possible solution to
overcome these limitations is to deploy a network of sensors
that continuously measure methane concentrations around an
emitting area (Kumar et al., 2015). Deploying such a net-
work with highly precise instruments, using techniques such
as cavity ring-down spectrometry (CRDS) is, however, cost-
prohibitive. Low-cost sensors such as low-power metal oxide
semiconductor (MOS) sensors for methane are an alterna-
tive. Recent studies (Riddick et al., 2020; Casey et al., 2019;
Collier-Oxandale et al., 2018; Jørgensen et al., 2020; Rivera
Martinez et al., 2021; Eugster et al., 2020) tested the ability
of MOS sensors to monitor methane concentrations in natu-
ral and controlled conditions and showed a fair agreement be-
tween the concentrations derived from the sensors and those
from high-precision reference instruments. MOS sensors are
composed of a semiconducting-metal-oxide-sensing element
heated at a temperature between 20 and 400 ◦C (Örnek and
Karlik, 2012; Barsan et al., 2007). When the semiconducting
material is in contact with an electron donor gas like CH4,
a change in the conductivity occurs, measured by an exter-
nal electrical circuit (Örnek and Karlik, 2012). MOS sensors
are known to be less precise than CRDS to CH4 variations,
although they can detect small variations in concentrations.
Most MOS sensors have cross-sensitivities to other electron
donors and to environmental variables such as absolute hu-
midity, pressure and temperature (Popoola et al., 2018), with
non-linear interactions (Rivera Martinez et al., 2021).

Biases affect CH4 measurements derived from low-cost
sensors because of cross-sensitivities to other gases, depen-
dence on environmental factors and internal drifts, e.g., due
to aging. Figaro® Taguchi gas sensors (TGSs) are a particular
series of MOS capable of measuring CH4. In order to limit
biases of these sensors, several studies proposed a calibration
model against a high-precision reference instrument. Casey
et al. (2019) compared different calibration approaches with
inverse and direct linear models and artificial neural networks
to quantify O3 from an SGX Corporation MiCS-2611 sensor,
CO from a Mocon Baseline photoionization detector (PID)
sensor, CO2 from an ELT S-100 non-dispersive infrared
(NDIR) sensor and CH4 from observations of a Figaro® TGS
2600 sensor. Collier-Oxandale et al. (2018, 2019) applied
multilinear models, including interactions from environmen-
tal variables, to predict CH4 concentrations and to detect and
quantify volatile organic compounds (VOCs) from Figaro®

TGS 2600 and TGS 2602 MOS sensors at two sites with ac-

tive oil and gas operations. Eugster et al. (2020) used empir-
ical functions and artificial neural networks (ANNs) to de-
rive CH4 concentrations from 6 years of data collected with
Figaro® TGS 2600 sensors at a field site in the Arctic. Rid-
dick et al. (2020) derived nonlinear empirical relationships
for Figaro® TGS 2600 sensors from three experiments, with
durations varying from 1 d to 1 month. Rivera Martinez et al.
(2021) reconstructed CH4 concentration variations in room
air from Figaro® TGS 2611-C00 sensors using ANN mod-
els and co-variations of temperature, water mole fraction and
pressure. Nevertheless, those comparisons were limited by
the choice of a specific reconstruction model and restricted
to only one type of sensor.

There is a need for a more thorough comparison of dif-
ferent calibration approaches for Figaro® MOS sensors ap-
plied to measure CH4. In addition, there is a need to as-
sess the performances of MOS sensors to detect and quantify
CH4 spikes typical of industrial emission. This study aims
to compare several parametric (linear and polynomial) and
non-parametric models (random forest, hybrid random for-
est and ANNs) applied to different combinations of Figaro®

TGS sensors to reconstruct the CH4 signals of repeated at-
mospheric spikes, based on the observed voltage of each sen-
sor and environmental variables such as air temperature and
pressure and H2O mole fraction. The CH4 signal we aim to
reconstruct is representative of variations observed in the at-
mosphere from leaks that occur within or close to an emit-
ting industrial facility, i.e., short-duration CH4 enhancements
(spikes) lasting between 1 and 7 min and ranging from a few
tenths of parts per million to a few parts per million above an
atmospheric background concentration of around 2 ppm (Ku-
mar et al., 2021). In this study, we performed a laboratory
experiment where a CRDS instrument and many TGS sen-
sors of different types were exposed to a controlled airflow
with artificially created CH4 concentration spikes (Sect. 2).
The spikes were composed of pure CH4 and did not con-
tain any VOCs, although those species could be present in
natural-gas leaks from oil and gas facilities. The main focus
of this study is the behavior of TGS sensors that are exposed
to enhancements of CH4 on top of a background signal with-
out the presence of other interfering gases. The influence of
VOCs on a real deployment should be considered and in-
cluded as a predictor to the reconstruction models, corrected
on a preprocessing stage by determining the sensitivity of
TGS to them or determining, from specific laboratory experi-
ments, the amount of signal that models can filter out and the
needs in terms of ancillary measurements. The experiment
lasted 4 months and provided 838 spikes, which give us a
dense and complex dataset to train and test different models
for reconstructing CH4 variations.

For low-cost sensors, a collocation is often required with
a highly precise reference instrument to train an empirical
calibration model. This training phase should be as effec-
tive (parsimonious) as possible. The strategy is to reduce
the time and maintenance costs of having a reference in-
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strument on site if the purpose is to bring it in the field for
future studies where low-cost sensors would have to be cal-
ibrated. We investigate the problem of “parsimonious train-
ing” by testing different configurations (model and inputs) to
establish the minimum amount of reference data needed to
obtain good performances with low-cost sensors (Sect. 3.2
and 3.3). Secondly, since the performance of low-cost sen-
sors may change with time, it is important to understand if
their measurements could be affected by a drift of their sensi-
tivity over time. We address this problem of “non-stationary
training” by comparing different calibration models for a sec-
ond spike experiment conducted 6 months after the first one
(Sect. 3.4). Thirdly, sensitivities may vary from one sensor to
another and may require a sensor-specific calibration model,
which becomes a problem when a large number of sensors
are deployed. Finding a robust calibration model that could
be trained using data from one or several sensors and applied
to others remains an open question. We bring some insight
to this problem of “generalized calibration” by training mod-
els to reconstruct the CH4 signal from a group of sensors lo-
cated in the same chamber and applying them to other groups
of sensors in a different chamber (Sect. 3.5). To assess the
performance of the calibration models and particularly their
capability to reconstruct spikes of several parts per million
occurring upon a background CH4 level, here we define an
acceptable performance to be an error of less than the 10 %
of the maximum amplitude of the peaks we aim to recon-
struct. In our case, this requirement is an RMSE of 2 ppm
between the reconstructed CH4 data from low-cost sensors
and the true data from a reference instrument at a time reso-
lution of 5 s.

2 Methods

2.1 Experimental setup

2.1.1 Low-cost CH4 sensors

For the experiment, four independent sampling chambers
were assembled. Each chamber contained a Figaro® TGS
2600 originally designed to measure VOCs but sensitive to
CH4, TGS 2611-C00 with enhanced sensitivity to CH4 and
TGS 2611-E00 that includes a carbon filter on top of the
sensing material to improve the selectivity to CH4 even fur-
ther (see Table A7 for information on the differences of each
TGS sensor), alongside a relative humidity and temperature
sensor (DHT22 or Sensirion SHT75), and a temperature and
pressure sensor (Bosch BMP280; see Table 1 for details). Is-
sues with the logger system produced gaps in environmental
variables data, thus observations information from an exter-
nal chamber (E; see Fig. 1b and Table 1 for details) was used
in the correction of the sensitivity across all chambers. The
sensors were placed on a circuit board to minimize the direct
heating influence of the TGS sensors on temperature mea-

surements. The sampling chamber was made of acrylic/glass
with a gas inlet and outlet and a port for the electrical ca-
bles (Fig. 1a). Each sensor was connected in series with a
high-precision load resistor which controlled sensitivity (Fi-
garo, 2013, 2005). The voltage across each load resistor was
recorded by an AB Electronics PiPlus ADC board, mounted
on a Raspberry Pi 3b+ logging computer, and sampled at
a frequency of 0.5 Hz (2 s). This voltage measurement was
used in our characterization algorithms, referred to hereafter
as the sensor voltage. We focus on the reconstruction of CH4
using only the TGS 2611-C00 and TGS 2611-E00 data.

2.1.2 Generation of methane spikes on top of ambient
air

The experiment lasted 130 d from 28 October 2019 to
5 March 2020. During this period, the six chambers contain-
ing TGS sensors sampled ambient air pumped from the roof
of the laboratory. Relative humidity, air pressure and tem-
perature were measured in the ambient air flux, as well as
CH4, using a Picarro CRDS G2401 reference instrument. No
calibration was considered on the CRDS instrument during
the experimental period due to its high precision and low
drift over time (less than 1 ppb per month; Yver-Kwok et al.,
2015).

To expose the TGS sensor chambers to CH4 enhance-
ments (spikes) of different durations and amplitude compa-
rable with typical enhancements observed around industrial
sites (Kumar et al., 2021), we designed an automatic system
to add small amounts of CH4 on top of the ambient air ac-
quired from our roof. The system presented on Fig. 1b con-
sists of an ambient airflow to which a small amount of a
gas was periodically added from a cylinder containing 5 %
of CH4 (in argon), controlled by two mass flow controllers
denoted MFC1 and MFC2 in Fig. 1b.

The occurrences of the spikes were programmed to be au-
tomatically generated, with at least three spikes each day.
The duration and magnitude of the spikes were predefined
and controlled by varying the flows of MFC1 and MFC2,
the two mass flow controllers that were programmed to add
an amount of CH4 to produce spikes of an expected ampli-
tude ranging between 3 and 24 ppm. Two different types of
spikes were generated. The first type, with large amplitudes
between 20 and 24 ppm, was generated from 28 October to
9 December 2019. The second type, with smaller amplitudes
ranging between 5 and 10 ppm but with a higher number of
spikes during a given period of time, was generated from
9 December 2019 to 5 March 2020. The typical duration of
the spikes of both types varied between 1 and 7 min, which
is longer than the known response time of the TGS sensors.
Gas from the 5 % CH4 cylinder that persisted on the airflow
after a spike in segment A–B (Fig. 1b) was expulsed though
MFC2, preventing very high CH4 concentrations to remain
in the airflow following a spike. We verified that the amount
of gas with 5 % of CH4 added to the airflow measured by the

https://doi.org/10.5194/amt-16-2209-2023 Atmos. Meas. Tech., 16, 2209–2235, 2023



2212 R. A. Rivera Martinez et al.: Reconstructing high-frequency CH4 peaks using metal oxide sensors

Figure 1. (a) Example of a chamber with three sensors inside. (b) Scheme of the spike creation experiment.

Table 1. Summary of the sensors included on each logger box.

Chamber Figaro® TGS Temperature and relative Temperature and Load resistor
humidity sensor pressure sensor

TGS 2600
DHT22 BMP280 50 k�A TGS 2611-C00

TGS 2611-E00

TGS 2600
SHT75 BMP280 50 k�B TGS 2611-C00

TGS 2611-E00

TGS 2600
SHT75 BMP280 50 k�C TGS 2611-C00

TGS 2611-E00

TGS 2600
SHT85 BMP280 50 k�D TGS 2611-C00

TGS 2611-E00

TGS 2600∗

SHT75 and DHT22 BMP180 5 k�E TGS 2611-C00∗

TGS 2611-E00∗

∗ Two sensors of this type.

TGS sensors did not affect the air pressure, temperature and
relative humidity in the chambers.

The volume of each chamber is 100 mL, and the flow rate
through the chambers was fixed to 2.5 L min−1. We did not
test the effect of increasing the flow rate on the TGS mea-
surements. Instead, we decided to choose a high enough flow
rate to reduce the buffering effect of the chamber volume that
would systematically smooth the CH4 spikes. Despite this
setup, a buffering effect was still present in the chamber, evi-
denced by the fact that after stopping the injection of air with
5 % CH4, the CH4 drawdown in the chamber was observed to
be smooth and lagged the drawdown of the CRDS instrument
by a time constant of 10 s, consistent with previous measure-
ments on buffer volumes acting as a low-pass filter (Cescatti
et al., 2016).

To determine the time constant (τ ) of the buffer effect of
the chambers, we applied an exponential weighted moving
average to the CRDS data with different values of τ and
compared them with the shape of the response of the TGS

sensor (see Fig. A1). The time constant applied on the ref-
erence instrument to compare both TGS sensor types is the
same. A similar approach was employed by Jørgensen et al.
(2020) to compensate for effects of microturbulent mixing of
subglacial air with atmospheric observations. Before apply-
ing this temporal smoothing on the CRDS data, we resam-
pled both signals, the reference CRDS and the TGS, from
their original time resolutions (1 and 2 s, respectively) to a
common time resolution of 5 s. The time shift due to in-
correct clock synchronization between the reference CRDS
instrument and the loggers of the TGS sensors was partly
corrected with a search of the maximum correlation on non-
overlapping windows of 6 h and a manual inspection of the
agreement between TGS voltages and CH4 observations of
the reference CRDS instrument.
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2.2 Separating CH4 spikes from background variations
in ambient air

Different algorithms have been proposed to identify short-
term variations of atmospheric signals (Ruckstuhl et al.,
2012) from slower variations of background variations in at-
mospheric composition. These approaches were applied to
low-cost sensors for the detection of local events (Heimann
et al., 2015) and for the removal of diurnal periodical signals
to identify peaks of air pollutants (Collier-Oxandale et al.,
2020). In this study, we want to separate the background of
slowly varying CH4 in the outside air pumped from the lab-
oratory roof from the signal of the CH4 spikes by using an
algorithm.

We followed a three-step approach. The first step was to
remove the impact of H2O variations on the sensor voltage
signals, given that H2O changes in the background air. Previ-
ous studies (Eugster and Kling, 2012; Rivera Martinez et al.,
2021) demonstrated a direct dependence between the volt-
age/resistance of metal oxide sensors and the H2O concen-
tration. In order to determine this relationship, we used the
background H2O mole fraction and TGS voltage measure-
ments in ambient air during a period of 32 d with no CH4
spikes and regressed both variables to derive the H2O sen-
sitivity of the voltage of each TGS sensor (in mV per ppm
H2O). This linear model of the voltage–H2O sensitivity was
applied to voltage time series of the TGS sensors during the
spike measurement period.

The second step was to separate background and spike
conditions from voltage variations in the time series. We
tested two approaches. The first approach applied the peak
detection algorithm of Coombes et al. (2003) to detect the
voltage associated with spikes and separate the background
signal by a linear interpolation between non-spike values at
the start and the end of each spike. The second approach ap-
plied the robust extraction of baseline signal (REBS) algo-
rithm from Ruckstuhl et al. (2012) to separate voltage ob-
servations associated with background from those during the
spikes. The principle of REBS is to compute local regres-
sions over the time series on small moving time windows
(60 min) and to iteratively identify outliers that are far from
the modeled background, based on a threshold. Here, the
detected outliers are considered to belong to a spike. The
threshold or scale parameter, β, defines a range in the number
of standard deviations around the modeled baseline. A value
of β = 3.5 ppm was used. The third step was to remove ob-
servations corresponding to the baseline and only keep the
data classified as spikes, which form the signal of interest in
this study.

2.3 Modeling CH4 spikes from TGS sensor voltages
and environmental variables

The impact of different magnitudes of the variables used as
predictors is prone to affecting the parameters of the models

in the training stage. Thus, to reduce this impact, we stan-
dardize the inputs before training the models. We chose a
robust scaler unaffected by outliers by removing the median
and scaling the data to a quantile range (Demuth et al., 2014).
To reconstruct CH4 spikes from TGS sensor voltages, we ap-
plied linear and polynomial regressions, ANNs and random
forest models, all trained using the CRDS measurements. We
assessed the performance of the different models using a k-
fold cross-validation, here with k = 20. A fraction of the data
was used for the training of each model and the rest for eval-
uation. We repeated this training and evaluation process with
a moving window to make a robust assessment of each model
performance considering all data available. We specified two
cases for the relative sizes of the training and evaluation (test)
sets. The first case used training and test set fractions of 70 %
and 30 % of the observations, respectively, and the second
one used 50 % and 50 %. We focus in the example below on
the spike data from one chamber (chamber A) using differ-
ent models as test inputs: (1) voltages of TGS C or E sen-
sors separately; (2) voltages of a single sensor type and mea-
surements of H2O, temperature and pressure; (3) combined
TGS C and E voltages; and (4) combined TGS C and E volt-
ages, as well as H2O, temperature and pressure.

2.3.1 Linear and multilinear regression models

Linear regressions between dry-air CH4 concentrations from
the CRDS and TGS sensor voltages are the simplest mod-
els, used in studies with similar low-cost sensors by others
(Collier-Oxandale et al., 2018; Casey et al., 2019; Cordero et
al., 2018; Spinelle et al., 2015, 2017; Malings et al., 2019).
We derived linear regressions between the reference CH4
from the CRDS instrument and the sensor voltage, as well
as a multilinear regression including voltage, H2O, air pres-
sure and temperature, as given by

ŷCH4(x1 = VTGS)= β0x1+β1 (1)

and

ŷCH4 (x1 = VTGS,x2 = H2O,x3 = PAir,x4 = TAir)

= α1x1+α2x2+α3x3+α4x4+α5, (2)

where ŷCH4 is the predicted methane concentration (in ppm),
VTGS the observed sensor voltage (in V), H2O is the water
vapor mole fraction (in %), PAir the air pressure (in kPa) and
TAir is the air temperature (in ◦C).

2.3.2 Polynomial regression models

The second type of models is second-degree polynomials,
for which we considered either TGS sensor voltage alone or
TGS voltage plus environmental variables as predictors, as
given by

ŷCH4(x1 = VTGS)= β0+β1x1+β2x
2
1 (3)
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and

ŷCH4 (x1 = VTGS,x2 = H2O,x3 = PAir,x4 = TAir)

= β0+β1x1+β2x2+β3x3+β4x4+β5x
2
1 +β6x1x2

+β7x1x3+β8x1x4+β9x
2
2 +β10x2x3+β11x2x4

+β12x
2
3 +β13x3x4+β14x

2
4 . (4)

2.3.3 Random forest and hybrid random forest models

Random forest regressors (Breiman, 2001) are an ensemble
learning method consisting of creating several decision trees
to fit complex data. Each tree is composed of leaves defined
hierarchically based on thresholds that group values of input
variables, constructed from a subset of predictors randomly
chosen, a process known as “feature bagging”. The predic-
tion is done by averaging the outputs of all the trees. As a
non-parametric method, the generalization of random forests
is limited by the range of values present in the training set.
A methodology proposed by Malings et al. (2019) to boost
the generalization of random forest models is to “hybridize”
them with a parametric model to be able to predict values
out of those present in the training set. The principle of hy-
bridization consists in training a random forest model with
about 80 % to 90 % of the observations and reserving 20 %
to 10 % of the higher observations to train a linear or poly-
nomial model. This approach allows us to benefit, on the one
hand, from the capability to derive nonlinear relationships
from the inputs, while on the other hand boosting the predic-
tion outside of the range present in the training set, here with
a linear or polynomial model. Here we used both traditional
and hybrid random forest models. For the hybrid models, we
reserved, for each cross-validation fold, the top 10 % concen-
trations to train a polynomial fit, the remaining observations
being fitted by the random forest. The same four cases of
input combinations explained in Sect. 2.3 were used for the
training of traditional and hybrid random forest models.

2.3.4 Artificial neural networks (ANNs)

In recent studies with low-cost sensors (Rivera Martinez et
al., 2021; Casey et al., 2019), ANN models have proven to
be powerful models to derive CH4 concentrations from sen-
sor signals. Here we chose a multilayer perceptron (MLP)
model due to its ability to provide a universal approximator
(Hornik et al., 1989) and due to its generalization capabili-
ties (Haykin, 1998). No prior knowledge of relationships be-
tween variables is required to produce model outputs. Our
MLP is composed of a series of units (neurons) arranged in
fully connected layers, each unit being a weighted sum of its
inputs to which an activation function (tanh, rectified linear
unit (ReLU)) is applied. The last layer of the network when
used as a regressor usually has one unit and a linear activation
function. As a supervised learning algorithm, MLP requires
examples (the training set) and an iterative learning algorithm
to adjust the weights of its connections. The main challenges

for training an MLP are (1) underfitting, when the model is
not able to fit the training set, and (2) overfitting, when the
model is not capable of generalizing new examples. Under-
fitting can be mitigated by increasing the complexity of the
MLP, and overfitting can be partly mitigated by weight decay
regularization or early stopping (Bishop, 1995; Goodfellow
et al., 2016).

We built different MLP models using the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm (Bishop,
1995). The optimal number of layers and units was de-
termined using a grid search technique (Géron, 2019),
resulting in (1) four hidden layers when using the voltage
from a single TGS sensor as input, with two, three, five
and two units per layer; (2) when using TGS sensor volt-
ages and other variables, four, two, five and five units per
layer; (3) five layers when combining both TGS sensor
voltages together (five, three, five, five and four units); and
(4) four layers when using both TGS sensor voltage types
and other variables (five, three, five and five units). The
ReLU activation function was used on units of the hidden
layer, and early stopping was used to prevent overfitting.

2.4 Finding a parsimonious model training strategy

To determine the minimum number of training observations
to obtain a model with satisfactory performances, given our
2 ppm RMSE requirement posed in the Introduction, we fol-
lowed a two-step approach. First, we stratified the data into
different types of spikes using an unsupervised hierarchi-
cal clustering algorithm (Johnson, 1967). Secondly, we con-
structed training sets by randomly selecting spikes inside
each cluster, in different proportions given in Table 2, and
evaluated our models against the remaining spikes used as a
test set. This evaluation strategy helped us to understand the
clusters that have the most influential impact on increases in
the model performance. This allowed us to reduce the length
of the training set by sampling the training data preferentially
in the most influential clusters.

The clusters of spikes were defined using the ward distance
to determine a matrix measuring the degree of similarity be-
tween spikes using dynamic time warping (DTW) (Sakoe
and Chiba, 1978) and to construct a dendrogram. A thresh-
old on the dendrogram allowed us to determine nine different
clusters from our dataset. For the second step, we defined
11 cases to construct training sets. Cases 1 and 11 corre-
spond to sampling 70 % and 10 % of the data for training,
respectively, equally distributed across the clusters. Cases 2
to 10 correspond to preferentially sampling one cluster over
the others for training, by selecting 70 % of the spikes in this
cluster and 10 % in all others. The purpose of this stratified
data selection is to determine the type of spikes that best al-
lows for the reconstruction of the variations of CH4 when
training a model. At this stage we are not interested in the
temporal dependency between observations since we train
models with instant values. On a practical application side,
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Table 2. Percentage of spikes in each cluster (C1 to C9) considered for training different models.

C1 C2 C3 C4 C5 C6 C7 C8 C9 No. of spikes Percentage of data in
in total the training set

Case 1 70 % 70 % 70 % 70 % 70 % 70 % 70 % 70 % 70 % 587 70.0 %
Case 2 70 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 122 12.5 %
Case 3 10 % 70 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 150 13.7 %
Case 4 10 % 10 % 70 % 10 % 10 % 10 % 10 % 10 % 10 % 147 14.5 %
Case 5 10 % 10 % 10 % 70 % 10 % 10 % 10 % 10 % 10 % 198 19.3 %
Case 6 10 % 10 % 10 % 10 % 70 % 10 % 10 % 10 % 10 % 105 17.8 %
Case 7 10 % 10 % 10 % 10 % 10 % 70 % 10 % 10 % 10 % 166 18.5 %
Case 8 10 % 10 % 10 % 10 % 10 % 10 % 70 % 10 % 10 % 150 16.7 %
Case 9 10 % 10 % 10 % 10 % 10 % 10 % 10 % 70 % 10 % 94 11.9 %
Case 10 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 70 % 124 24.5 %
Case 11 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 84 10.0 %

a parsimonious model training strategy will require users to
expose their sensors to a specific type of “highly influential”
spikes on a shorter period from, e.g., a laboratory experi-
ment like the one described above, then train the models upon
those spikes and apply them to data collected in the field.

2.5 Assessing aging effects of the sensors

To assess the effect of aging sensors on the reconstruction
of CH4, we conducted a 33 d experiment from 11 August to
12 September 2020, 6 months after the first experiment de-
scribed in Sect. 2.1.2. The spike generation system was the
same. Between the two experiments, the chambers contain-
ing TGS sensors had been measuring ambient air pumped
from our laboratory roof. To assess the aging effect on the
TGS sensors during the 6-month interval, we selected the
two models that gave the highest performance for the first
experiment and applied them to simulate the spikes gener-
ated during the second experiment.

2.6 Finding generalized models that can be used for
other sensors of the same type

We were interested in understanding to what extent a model
trained with the outputs of a given TGS sensor type in a given
chamber could be applied to other sensors of the same type
in other chambers. The experiment consisted of training a
model per sensor and chamber with the best configuration
subset based on the cluster classification outlined in Sect. 2.4.
The trained model is then used to reconstruct the CH4 spikes
using data from the TGS in other chambers and compare
their performances. For this, we used data from chambers A,
C, F and G to train chamber-specific models and used each
chamber-specific model to reconstruct CH4 spikes using data
from other chambers, as shown in Table 1. The four chambers
have a load resistor of 50 k� and contain three TGS sensors
each. We did not use data from chambers D and E because
they have a load resistor of 5 k�, and chamber E contains
two of each TGS sensor.

2.7 Metrics for performance evaluation

The performance of the models to reconstruct the dry CH4
concentrations observed by the CRDS instrument using TGS
sensors was assessed using a decomposition of the mean
squared deviation (MSD) of the misfits between recon-
structed and true CH4 (Kobayashi and Salam, 2000), to sepa-
rate the main source of errors when comparing different mod-
els. MSD was decomposed into the sum of the square bias
(SB), the difference in the magnitude fluctuation (SDSD) and
the lack of positive correlation weighted by the standard de-
viation (LCS). A large SDSD indicates an incorrect recon-
struction of CH4 spike magnitudes. A large LCS indicates an
incorrect reconstruction of spike phase or shape. The equa-
tions for each error term according to Kobayashi and Salam
(2000) are given by

SB=
(
ŷCH4 − yCH4

)2
(5)

SDSD= (σModel− σRef)
2 (6)

LCS= 2σModelσRef(1− ρ) (7)

MSD= SB+SDSD+LCS, (8)

where ŷCH4 is the mean of the prediction, yCH4 the mean
of the reference observations, σModel the standard deviation
of the modeled CH4 time series, σRef the standard deviation
of the reference one and ρ their correlation coefficient. All
results presented below are using metrics computed for the
test set only.

3 Results

3.1 Data preprocessing and baseline correction

Figure 2 shows the preprocessing steps of the dataset, with
the identification and removal of the background signal from
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Figure 2. Data preprocessing diagram, correction of H2O effects,
and separation of the spikes from background data in the time series.

the spikes in the time series. We removed outliers and the first
30 min of observations in the case of a reboot of the data log-
gers of each chamber, i.e., during stabilization of the sensors.
The original observations on a time step of 2 s were resam-
pled to means of 5 s.

Environmental variables (H2O, temperature and pressure)
were filtered using a low-pass filter (Press and Teukolsky,
1990) to remove high-frequency noise from the sensors and
circuit connections. The water vapor mole fraction was cal-
culated with Rankine’s formula (Eq. 9) from relative humid-
ity (RH; in %) and temperature (T ; in ◦C) from the DHT22
sensors and pressure (P ; in Pa) from the BMP180 sensors in
each chamber, according to

H2OMole Fraction = 100×

 RH
100 × e

13.7−5120
T+273.15

P
100 000 −

RH
100 × e

13.7−5120
T+273.15

 . (9)

An example of several spikes obtained after the prepro-
cessing and background signal removal is shown in Fig. 3
(see also Fig. A3). The entire spike dataset contains 838
spikes, representing 1.6 % (35 536 5 s observations) of the
full dataset.

3.2 Reconstruction of CH4 spikes

Figure 4 shows the reconstruction of several spikes by the
linear, polynomial, random forest (RF), random forest hybrid
(RFH) and MLP models using data from the type-C TGS sen-
sor in chamber A. Figure 5 shows the reconstruction results
using data from the type-E TGS sensor in chamber A. In both
figures, the model training set contains 70 % of the total ob-
servations available. The spikes reconstructed by the differ-
ent models show good agreement with the reference CH4 sig-
nal for the type-C sensors but not for type-E ones which are
associated with phase errors and greater noise in the recon-
structed CH4. This behavior can be linked to the carbon filter

included on top of the sensing material the of type-E sensor
that produces an airflow resistance, leading to a slower re-
sponse. The linear, RF and RFH models broadly capture the
mean amplitude of spikes, but they are less capable of recon-
structing small CH4 variations on the top of the spikes. The
RF and RFH models (the latter with a polynomial model)
provided very similar outputs, with a small enhancement of
the amplitude for RFH during some spikes and noise, espe-
cially with type-E sensors (Fig. 5). The MLP model showed
a constant underestimation of the spike magnitudes and pro-
duced smoother spike shapes, presenting a low-pass filter be-
havior. The polynomial fit models appeared to perform bet-
ter. Despite the phase misfit of models with type-E sensors,
for all the models, both type C and type E meet our require-
ment target of an RMSE≤ 2 ppm (MSD≤ 4 ppm2). With a
stricter requirement of an error of less than 5 % of the max-
imum amplitude of the peaks (RMSE≤ 1 ppm), only type C
is adequate.

Figure 6 shows the distributions of the correlations (ρ)
between modeled and observed CH4 spikes for the 20-fold
validation periods (test sets) for different models. We distin-
guished two groups of models, based on median values of
ρ. The first group corresponds to models trained with type-E
sensor data only, characterized by ρMedian ≤ 0.93. The sec-
ond group corresponds to models trained with type-C sen-
sor data only or with data from both types of sensors, char-
acterized by a higher ρMedian ≥ 0.96. Among the models in
the first group, the polynomial model gave the largest cor-
relations (ρMedian = 0.92, interquartile range (IQ)= 0.035
and 0.013 for a test set size of 30 % and 50 % respec-
tively). Among the models in the second group, the poly-
nomial model also showed the largest correlation, especially
with both types of sensors, and a training set of 50 % of
the observations (ρMedian = 0.98, IQ= 0.006), closely fol-
lowed by the MLP model with the same inputs and the
same training set size (ρMedian = 0.98, IQ range= 0.006).
The random forest, random forest hybrid and MLP models
also showed high correlations when input data are from the
type-C sensors, and the training uses 70 % of the observa-
tions (RF ρMedian = 0.973, RFH ρMedian = 0.973 and MLP
ρMedian = 0.982). These three models however had lower
correlations when input data are from type-E sensors (RF
ρMedian = 0.897, RFH ρMedian = 0.898 and MLP ρMedian =

0.925). Phase errors were reduced when training the mod-
els with either type-C sensor data or data from both sensors.
The length of the training set had an important impact on the
spread of the correlations across the 20-fold periods. With
70 % of observations in the training set, the IQ of the correla-
tions increased, whereas for a smaller training set, the IQ was
smaller, but the distribution of the correlations showed more
outliers. The inclusion of environmental variables (Fig. 6b)
as input to models, in addition to voltages from TGS sensors,
reduced the phase error in the random forest models signif-
icantly but produced little improvement in the results from
other models. Summary statistics of the distribution of cor-
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Figure 3. Top to bottom: time series of reference CH4 signal from CRDS, voltage from TGS sensors, H2O, temperature and pressure during
a period of 30 min, after removing the variations of background signals from the time series and applying the H2O correction to the voltage
signal of TGS sensors. Dots in panels represent actual observations, and lines between dots are drawn to show the shape of the signals.

relations between the modeled and observed CH4 spikes are
shown in Tables A5 and A6.

Figure 7 shows the MSD error decomposition for the dif-
ferent models and for the two training set sizes of 70 % and
50 %, respectively. We observed that the LCS component of
the MSD (related to a phase misfit of the modeled series)
is the principal source of error across the different models,
regardless of the input used or the size of the training set,
meaning that models have more difficulties to reproduce the
phase of the spikes than their amplitude. A systematically
higher LCS error was obtained when data from type-E sen-
sors are used as input, and there is also a larger SDSD error
with this type of sensor. For example, the largest LCS error
was found with a training set of 70 % for the random for-
est models (LCSRF = 4.67 ppm2, LCSRF = 1.24 ppm2 and
LCSRF = 0.79 ppm2 with type-E sensor data, type-C sensor
data and both types respectively) as well as for the RFH mod-
els, when compared with other models. Additionally, the in-

clusion of environmental variables had little effect on the
model performance. This was clearly shown for the LCS
error of the polynomial model, for a training set of 70 %
of the data, which was identical with and without environ-
mental variables as input (LCSpoly = 3.0 ppm2 for the type-
E sensor, LCSpoly = 0.84 ppm2 for the type-C sensor and
LCSpoly = 0.7 ppm2 for both types). Reducing the size of
the training set mostly affected the SDSD component, by
slightly lowering the capability of models to reconstruct the
amplitude of the CH4 spikes. For the non-parametric mod-
els, reducing the size of the training set also increased the
bias error (SB), an effect that was partially mitigated with
the inclusion of environmental variables. Amongst the non-
parametric models, the MLP obtained a similar performance
to the parametric polynomial model (MSDMLP = 3.2 ppm2,
MSDMLP = 0.85 ppm2 and MSDMLP = 0.7 ppm2 for type-
E sensors, type-C sensors and both types together, respec-
tively). To summarize, the choice of the sensor type used
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Figure 4. Example of reconstruction of the CRDS reference CH4 signal on a time step of 5 s for a few spikes in the test set by (a) a linear
model, (b) a polynomial model, (c) a random forest model, (d) a random forest hybrid model and (e) a multilayer perceptron model trained
with 70 % of data and using as input data from the TGS 2611-C00 sensors only. The right panels show scatter plots between the reference
CH4 signal and the modeled outputs. The color code is the density of observations.

to train the models affected the reconstruction error more
than the selection of the model. The type-C sensor data pro-
duced the lowest error compared to type-E, irrespective of
the model used. Overall, the polynomial model gave a better
performance than the non-parametric models. More detailed
statistics are summarized in Tables A1 and A2.

3.3 Results of parsimonious training tests

Figure 8 shows the result of the spike clustering. Based on
spike similarity, we found nine clusters. The peaks with short
durations (under 50 s) and containing only one spike were
grouped into cluster C1 (signal amplitude (sa)≤ 6 ppm) and
cluster C3 (6 ppm≤ sa≤ 12 ppm). Peaks with longer dura-
tion (over 50 s) were grouped into clusters C2 (sa≤ 4 ppm)
and C4 (4 ppm≤ sa≤ 8 ppm). Peaks with very long du-

ration (between 50 s to 1.5 min) were grouped into clus-
ter C5. Peaks with a small concentration at the beginning
(around 6 ppm) followed by a larger peak (up to 12 ppm)
were grouped into cluster C6. Peaks with larger concentra-
tions (≥ 12 ppm) and complex in shape were grouped into
clusters C7, C8 and C9, respectively. The cluster regrouping
the largest number of spikes (191) was C4, and the one with
the smallest number of spikes (17) is C8.

Figure 9 shows the error of the models against the test
set, for each of the training cases listed in Table 2, based
on spikes chosen from different clusters for doing the train-
ing (see Sect. 2.4). The results are summarized in Tables A3
and A4. First, the polynomial and MLP models performed
consistently better than the other models, the MLP being
slightly better for most of the cases. In contrast, the lin-
ear, random forest and random forest hybrid models had the
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Figure 5. Same as Fig. 4 but for data from the TGS 2611-E00 sensors only.

highest error, regardless of the sensor type or the addition
of environmental variables. To compare the performances
of the models trained by spikes from different clusters (Ta-
ble 2), we ranked them by their error. The MLP model was
used with type-C sensor data as input, and training with
spikes from Case 10 (124 spikes) produced the smallest error
(MSD= 0.79 ppm2), followed by the same model for Case 8
(MSD= 0.85 ppm2, 150 spikes), Case 9 (MSD= 0.86 ppm2,
94 spikes) and Case 11 (MSD= 0.87 ppm2, 84 spikes). For
the MLP model, Case 4 (147 spikes), Case 1 (587 spikes) and
Case 7 (166 spikes) performed slightly worse, with a MSD=
0.89 ppm2. Finally, Case 2 (MSD= 0.9 ppm2, 122 spikes),
Case 3 (MSD= 0.91 ppm2, 150 spikes), Case 6 (MSD=
0.93 ppm2, 105 spikes) and Case 5 (MSD= 0.95 ppm2, 198
spikes) showed worse performances. From the model rank-
ing, we derived the following conclusions. Firstly, the small-
est error did not correspond to the most parsimonious train-
ing set (Case 11) but to a larger training set (Case 10, 25 %
of the data). Nevertheless, we found that Case 11, which

was constructed with an even selection of spikes from all
the clusters, each in a modest proportion (10 % from each
cluster), provided better performance than most of the other
training cases. This result shows that some clusters introduce
less information or have redundancy. Overall, the best per-
formances corresponded to Cases 10, 8 and 9, which all in-
cluded spikes with complex shapes from clusters C7, C8 and
C9. Training models with a sample of those spikes thus en-
sured better model performances.

3.4 Results for possible aging effect on model
performance

To test for a possible aging effect of the sensors, we se-
lected the two best models (polynomial regression and MLP)
found in the previous section and trained them following the
best training configuration (Case 10). After being trained us-
ing data from the first experiment, these two models were
applied to reconstruct the spikes of the second experiment,
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Figure 6. Comparison of the Pearson correlation coefficient (ρ) distributions between models on the test set for a 20-fold cross-validation.
The boxes are the interquartile of the distribution of ρ, the whiskers are the 5th and 95th percentiles, and the black line is the median.
(a) Models in which the inputs are only voltage from the Figaro® TGS sensors. (b) Models in which the inputs include voltage from
low-cost sensors and environmental variables (H2O, temperature and pressure). “Linear” represents the linear or multilinear model, “Poly”
the polynomial model, “RF” the random forest model, “RF-h” the random forest hybridized with a polynomial regression and “MLP” the
multilayer perceptron. Below each model, labels denote which TGS sensor was used: “C” is the TGS 2611-C00, “E” the TGS 2611-E00 and
“C & E” both sensors at the same time. The red box plots represent the results of models with a test set size of 30 % of the total observations
and the yellow ones a test set size of 50 %. Note that the y axis was limited in a range to distinguish the different models.

6 months later. A summary of the results is presented in Ta-
ble 3. We observed that after 6 months, the RMSE had in-
creased in a range between 0.57 to 0.85 ppm between both
experiments. The models trained with type-E sensor data
showed a smaller degradation (higher RMSE) after 6 months
compared to those trained with the type-C sensor data. Con-
sidering the amplitude of the peaks that we aim to reconstruct
(∼ 24 ppm), a possible drift caused by aging effects on the
sensors appeared to be a small source of error in the recon-
struction of CH4 spikes during the second experiment. As-
suming that the error of the sensors increased linearly with
time, we determined an error “drift rate” by computing the
ratio of the difference in the error from both experiments di-
vided by the time between them. We observed that for all
the cases, the difference in the error is less than 1 ppm af-
ter 6 months and the mean RMSE on the second experi-
ment is less than 2 ppm in all cases, except for the mod-
els trained with only the type-E sensor. Thus, even with ag-
ing, the type-E sensors would still meet our requirement of a
RMSE smaller than 2 ppm. This shows the capability of our

models to reconstruct spikes despite possible aging effects of
the sensors.

3.5 Generalized models

In this section, we address the comparison of model per-
formances when we train a model on a subset of the sen-
sor data from one chamber and reconstruct the spikes of the
other chambers. Table 4 presents a summary of the number of
spikes, observations and clusters analyzed for each chamber.
The number of clusters, as well the number of spikes, was not
equally captured by all the chambers. Only three chambers,
A, C and D, shared the same number of clusters. Chamber B
had a more limited number of peaks due to a reduced sam-
pling period.

To illustrate the performance of models for their ability
to be generalized from one chamber to another, we selected
the polynomial model with input data from the type-C sen-
sor (Fig. 10) and from the type-E sensor (Fig. 11). The same
results with the MLP model are shown in Figs. A7 and A8,
respectively. The data in Fig. 10 indicate that the error was
lower for the test set of the chamber on which the model was
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Figure 7. Comparison of the mean standard deviation (MSD) across the different models on the test set for a 20-fold cross-validation.
(a) Models with only voltage of TGS sensors as input. (b) Models including environmental variables and voltage of TGS sensors as input.
Left panels show the performances on a training set size of 70 % and right panels a training set size of 50 % of the total observations. The
stacked bars show the contribution of each component of the MSD to the total error. The lack of positive correlation weighted by σ (LCS) is
shown in red, the difference in the magnitude fluctuation (SDSD) in orange and the simulation bias (SB) in green. Notation for the models is
the same as for Fig. 6.

Table 3. Comparison of error for reconstructing spikes in experiment 2, using the two best models (polynomial and MLP) trained with the
best training set configuration during experiment 1.

Mean RMSEa
1 Mean RMSEb

2 Difference Monthly RMSE increase
(ppm) (ppm) (ppm) (ppm per month)

Poly (C) 0.96 1.82 0.85 0.14
MLP (C) 0.95 1.75 0.80 0.13
Poly (E) 1.84 2.53 0.69 0.11
MLP (E) 1.84 2.41 0.57 0.09
Poly (C+E) 0.89 1.58 0.69 0.11
MLP (C+E) 0.86 1.51 0.64 0.10

a For spikes reconstructed during experiment 1.
b For spikes of experiment 2 reconstructed with models trained on experiment 1.

Table 4. Summary of spikes, observations and clusters detected fol-
lowing the procedure explained in Sect. 2.4 for chambers A, B, C
and D.

Chamber Number of Number of Number of
observations spikes clusters

A 35 536 836 9
B 35 499 902 7
C 50 089 861 9
D 50 569 612 9

trained than for the test sets of other chambers, as expected.
In Fig. 10a, c and d, we observed that the models trained with
the data from chambers A, C or D produced good perfor-
mances for reconstructing the spikes of another chamber and
met the requirement target of an RMSE≤ 2 ppm. The mod-
els trained with the data from chamber B (Fig. 10b), however,
performed poorly in reconstructing the spikes from the other
chambers and met the target requirement only when trained
using data from the same chamber. The performances of the
MLP model were similar to those of the polynomial model in
terms of generalization from one chamber to another. When
trained by data from the type-E sensor, our models were
found to be less transferable from one chamber to another,
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Figure 8. Clustering of peaks using DTW on the reference instrument. On the title of each plot, the number inside the parentheses corresponds
to the number of spikes attributed to each cluster. Thin gray lines represent all the peaks inside each cluster, and the black line is the mean of
all the peaks corresponding to each class.

meaning they had a larger error for the test sets of another
chamber than for the one used for training (Fig. 11). We in-
ferred that the reconstruction of spikes from models of other
chambers needs to be coherent with the number of clusters of
the chamber used for training in order to ensure transferabil-
ity of the models. This is the case for chambers A, C and D
for which nine clusters were detected and the distribution of
peaks within the clusters was similar (Figs. 8, A9 and A10).
On the other hand, if the clusters are not similar between
chambers, the transferability of models is lower.

4 Discussion

Our results show that a preprocessing of the data to remove
H2O effects and separate spikes from ambient air CH4 varia-
tions, followed by a careful definition of the training set, pro-
vides capabilities for different models to reconstruct the CH4
spikes on a 5 s time step, across a large range of concentration
variations and spike durations, meeting our requirement of a
target error of RMSE≤ 2 ppm. The TGS 2611-E00 (type E)
was the sensor with the poorest performance, regardless of
the model employed or of the subset of data used to train
models, as shown by our tests with five chambers, each con-
taining five different sensors. The model performances for

TGS 2611-E00 were thus always poorer than for TGS 2611-
C00 (type C), with a degradation in the reconstruction com-
ing from the larger misfit of the phase of the spikes signal
than with the TGS 2611-E00 sensors. This probably is re-
lated to the carbon filter that is integrated within this type of
sensor to improve the selectivity. An additional step of the
preprocessing algorithm could help to correct problems due
to the carbon filter. The MSD error decomposition showed
that the sources of error in the reconstruction were mainly
from an inaccurate reconstruction of the phase, followed by a
misfit of the magnitude of the spikes. Models have produced
a reasonable estimation of the magnitude, which is important
from a policy perspective, since information of the magni-
tude can be of value when monitoring emission magnitudes
despite the errors in reconstructing the phase of the peaks.
The inclusion of environmental variables reduced the LCS
component of the MSD, especially for non-parametric mod-
els. Nevertheless, for the type-E sensor, adding environmen-
tal variables increased the error in the reconstruction of the
magnitude. The presence of other electron donors, such as
ethane and isobutane, also needs to be accounted for in the
modeling including as a predictor or in the correction of the
baseline. Finally, we found that the error always increased
with the reduction of the length of the training set, as previ-
ously shown by Rivera Martinez et al. (2021). This sensitivity
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Figure 9. Performance of each model for the different configurations of training and test set (1 to 11 in the x axis) considering the identified
clusters. (a) Only Figaro® TGS 2611-C00 data as input. (b) Only TGS 2611-E00 data as input. (c) Data with both Figaro® sensors as
input. (d) TGS 2611-C00 data and environmental variables. (e) TGS 2611-E00 and environmental variables. (f) Both TGS sensors and
environmental variables. Note the different y axis for panels (b) and (e).

to the training set mainly affected the non-parametric mod-
els due to their limited capability of extrapolation and their
requirement of large datasets to keep good performances.

How do our approach and results compare with previous
studies?

Malings et al. (2019) performed a comparison of differ-
ent calibration approaches, including linear, quadratic, Gaus-
sian, clustering, ANN and hybrid random forest models
across low-cost sensors measuring different species (CO2,
CO, NO2, SO2 and NO) with the aim to calibrate Real-time
Affordable Multi-Pollutant monitors (RAMP) to assess the
air quality within a city, using a network of sensors. Their

set of sensors included an NDIR CO2 sensor, an Alphasense
photoionization detector and an Alphasense electrochemical
unit. They found that a quadratic regression and a hybrid RF
model produced the best performance across different pollu-
tants for training sets with durations between 21 and 28 d and
observations with a resolution of 15 min. Our results showed
that the hybrid random forest model did not perform as well
as the polynomial model or the MLP for the reconstruction
of CH4 spikes using data from TGS sensors and that these
models were sensitive to the length of the training set for the
k-fold cross-validation. An improvement of our models’ per-
formances could be achieved with a selection of the propor-
tion of observations used for the parametric model. Never-
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Figure 10. Reconstruction error of the peaks for the polynomial model with TGS 2611-C00 as input using the best stratified training case
from (a) chamber A, (b) chamber B, (c) chamber C and (d) chamber D to reconstruct the peaks from the other chambers (listed on the x axis)
with data from the same type of sensor. Note the different ranges of the y axis for the panels (b) and (c).

Figure 11. Reconstruction error of the peaks for the polynomial model with TGS 2611-E00 as input using the best stratified training case on
(a) chamber A, (b) chamber B, (c) chamber C and (d) chamber D to reconstruct the peaks from the other chambers with data from the same
type of sensor. Note the different ranges of the y axis.
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theless, the polynomial model gave consistently better results
regardless of the inclusion of environmental variables.

Casey et al. (2019), Rivera Martinez et al. (2021) and Eu-
gster et al. (2020) used ANN models to derive CH4 concen-
tration from observations of TGS sensors and obtained good
performances. Casey et al. (2019) suggested that the inclu-
sion of correlated species (e.g., CO2) rather than the type
of sensor led to better performance for their MLP model to
reconstruct CH4. The performance of their ANN model to
reconstruct CH4 variations provided an RMSE of 0.13 ppm
for a range of variation between 1.5 and 4.5 ppm. Eugster
et al. (2020) also found that the inclusion of other driving
variables could increase the performance of ANN models.
Their overall model performances for 7 years of continuous
CH4 monitoring on ambient air in northern Alaska (range of
variation between 1.7 and 2.1 ppm) with a Figaro® TGS2600
gave an RMSE of the residuals of 0.043 µmolmol−1. Our re-
sults showed that different types of TGS sensors used with
the same model gave complementary information by reduc-
ing the error of the reconstruction and should be used, espe-
cially with non-parametric models. The performance of our
best model for CH4 spikes with concentrations much larger
than those measured by Eugster et al. (2020), produced under
controlled laboratory conditions, provides a mean RMSE of
0.9 ppm for a range of CH4 variation between 3 and 24 ppm,
which were thus rather comparable results. Regarding the
calibration strategy, the clustering approach allowed us to
determine nine clusters of spikes in our dataset, with three
of them regrouping the largest peaks with complex shapes.
This classification allowed us to understand the impact of
each cluster in the training. Cluster 9, composed of peaks
of complex shape and with a range of variation between 3
and 24 ppm, was the one that provided the best information
for training the models, due to the fact that spikes present on
this cluster include information of larger and shorter peaks,
medium peaks, and larger peaks with patterns on top of the
peaks. With the parsimonious training using Case 10, cor-
responding to a high proportion of peaks from cluster 9,
we were able to reduce the length of the training dataset
from 70 % to 25 % while maintaining similar performance.
This approach has strong potential to reduce the length of
the training set by only selecting observations from specific
clusters defined from the data and which represent the entire
dataset. This approach is designed with an a priori knowl-
edge of the typical concentrations the sensors will be exposed
to. Although, exposing sensors to a wide range of concentra-
tions, like the ones included in cluster 9 from our experiment,
can lead to having a large variety of examples for the training
of the calibration models.

Concerning the aging effect of the sensors, after 6 months,
we observed only small increases in the RMSE of our mod-
els, between 0.6 and 0.8 ppm, corresponding to an error
increase rate of 0.1 ppm per month. These results show
that models would require less calibration in environments
with low variations, or invariability, on the clustering struc-

ture. But for a deployment on sites with high variability on
the clustering structure, periodic re-calibrations would be
needed. Our results also showed the capability to transfer
the models from one chamber to another, provided that the
chamber used for testing contains data with the same range
of CH4 variations as the chamber used for training, which
can be assessed by our clustering analysis of the data.

5 Conclusions

We performed a systematic comparison of different paramet-
ric and non-parametric models to reconstruct atmospheric
CH4 spikes under laboratory conditions, based on the volt-
ages recorded by low-cost metal oxide sensors. Other envi-
ronmental variables such as temperature, pressure and wa-
ter vapor were used. The true CH4 time series comes from
a high-precision instrument run alongside the low-cost sen-
sors. The best models were a second-degree polynomial
function and a multilayer perceptron model. These two mod-
els both meet our requirements of a RMSE smaller than
2 ppm. We found that the main limitation was the large frac-
tion of data (70 %) needed to train the model. This would
limit the use of low-cost sensors in the field, as they would
need to be frequently trained with an expensive instrument
at the same location. This limitation was partly overcome by
adopting a stratified training strategy, namely to perform the
training on fewer but more influential spikes selected in or-
thogonal clusters applied to the whole dataset. This parsimo-
nious training allows us to use only 25 % of the data to keep a
model performance compliant with our 2 ppm RMSE thresh-
old. Understanding the number of spikes required for the
training of the models can help to define a cost-effective strat-
egy for deployment of the sensors. We also showed that sen-
sors’ aging effects after 6 months did not degrade the perfor-
mances of our models too much. Finally, TGS 2611C-00 was
superior to the TGS 2611-E00 model. For this experiment
we generated about 800 peaks with some predefined shapes;
future implementations should consider increasing the diver-
sity of shapes and durations of the generated peaks. Regard-
ing the models employed, we assessed the performances of
models that consider no time dependency in the signal; more
complex models that allow us to include the time dependence
such as recursive neural networks (RNNs) should be tested.
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Appendix A

Figure A1. Different time constant values of the exponential weighted moving average (EWMA) applied to the reference instrument. The
reference instrument is shown by dotted red lines. The applied smoothing for three values of time constant (5, 10 and 20 s) is denoted
“EWMA” for one peak and the TGS 2611-C00 voltage from logger A to compare the smoothing effect shown by the dotted yellow lines.

Figure A2. Derived contribution and correction of water vapor for the Figaro® TGS 2611-C00. (a) The raw voltage signal (gray) and the
derived cross-sensitivities to H2O (blue). (b) The cross-sensitivity-corrected signal.

Figure A3. Example of the baseline extraction and correction for the Figaro® TGS 2611-C00 over 15 d. (a) Raw signal (gray) and detected
baseline with the spike detection algorithm (red). (b) Voltage signal with the corrected baseline.
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Figure A4. Time series of the reference CH4 signal, Figaro® TGS sensor and environmental variables for the entire experiment.
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Figure A5. Dendrogram constructed from the distance matrix computed using the DTW metric. The dotted red line represents the threshold
used to determine the clusters. Each color under the threshold line represents one cluster of peaks. Note that the y axis was rescaled to the
logarithm of the “ward” distance to appreciate the threshold and the clusters better.

Figure A6. Reconstruction error of the peaks for the MLP model
with the TGS 2611-C00 as input and using the best stratified train-
ing on (a) chamber A, (b) chamber B, (c) chamber C and (d) cham-
ber D. The first column on each panel is the reconstruction error
on the test set of the chamber on which the training was done; the
other columns are the reconstruction on the whole dataset for that
chamber on the same sensor. Note the different ranges of the y axis.

Figure A7. Reconstruction error of the peaks for the MLP model
with the TGS 2611-E00 as input and using the best stratified train-
ing on (a) chamber A, (b) chamber B, (c) chamber C and (d) cham-
ber D. The first column on each panel is the reconstruction error
on the test set of the chamber on which the training was done; the
other columns are the reconstruction on the whole dataset for that
chamber on the same sensor. Note the different ranges of the y axis.
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Figure A8. Clustering of peaks using DTW on the reference instrument for the same spikes detected by sensors on chamber B. On the title
of each plot, the number inside the parentheses corresponds to the number of spikes attributed to each cluster. Thin gray lines represent all
the peaks inside each cluster, and the black line is the mean of all the peaks corresponding to each class.

Figure A9. Clustering of peaks using DTW on the reference instrument for the same spikes detected by sensors on chamber C. On the title
of each plot, the number inside the parentheses correspond to the number of spikes attributed to each cluster. Thin gray lines represent all the
peaks inside each cluster, and the black line is the mean of all the peaks corresponding to each class.
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Figure A10. Clustering of peaks using DTW on the reference instrument for the same spikes detected by sensors on chamber D. On the title
of each plot, the number inside the parentheses corresponds to the number of spikes attributed to each cluster. Thin gray lines represent all
the peaks inside each cluster, and the black line is the mean of all the peaks corresponding to each class.

Table A1. MSD decomposition for the different configurations and both test set sizes considering only Figaro® TGS sensors as input. Letters
inside parentheses indicate the sensor used: TGS 2611-E00 is denoted by “E”, TGS2611-C00 is denoted by “C” and both sensors as input
are denoted as “C&E”.

Test set size Model MSD (ppm2) LCS (ppm2) SDSD (ppm2) SB (ppm2)

30 %

Linear (E) 3.51 3.17 0.326 0.013
Poly (E) 3.23 3.06 0.155 0.014
RF (E) 4.74 4.67 0.061 0.011
RF-h (E) 4.67 4.60 0.057 0.010
MLP (E) 3.24 3.07 0.163 0.011
Linear (C) 1.24 1.00 0.229 0.015
Poly (C) 0.88 0.84 0.016 0.021
RF (C) 1.27 1.24 0.014 0.012
RF-h (C) 1.21 1.19 0.012 0.011
MLP (C) 0.85 0.82 0.014 0.014
Poly (C&E) 0.73 0.70 0.010 0.023
RF (C&E) 0.81 0.79 0.009 0.009
RF-h (C&E) 0.78 0.76 0.008 0.009
MLP (C&E) 0.71 0.69 0.009 0.011

50 %

Linear (E) 3.59 3.09 0.457 0.042
Poly (E) 3.24 3.00 0.218 0.022
RF (E) 5.16 4.64 0.415 0.103
RF-h (E) 4.59 4.46 0.115 0.014
MLP (E) 3.64 3.06 0.481 0.097
Linear (C) 1.39 1.04 0.304 0.050
Poly (C) 0.92 0.84 0.047 0.025
RF (C) 1.49 1.27 0.164 0.054
RF-h (C) 1.37 1.20 0.127 0.040
MLP (C) 1.11 0.86 0.192 0.063
Poly (C&E) 0.79 0.71 0.051 0.030
RF (C&E) 1.07 0.85 0.158 0.054
RF-h (C&E) 2.34 1.78 0.314 0.243
MLP (C&E) 0.91 0.71 0.144 0.059
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Table A2. MSD decomposition for the different configurations and both test set sizes considering Figaro® TGS sensors and environmental
variables as input. Notation is the same as in Table A1.

Test set size Model MSD (ppm2) LCS (ppm2) SDSD (ppm2) SB (ppm2)

30 %

Linear (E) 3.59 3.09 0.45 0.042
Poly (E) 3.24 3.00 0.21 0.022
RF (E) 5.16 4.64 0.41 0.103
RF-h (E) 4.59 4.46 0.11 0.014
MLP (E) 3.64 3.07 0.48 0.097
Linear (C) 1.39 1.04 0.30 0.050
Poly (C) 0.92 0.84 0.04 0.025
RF (C) 1.49 1.27 0.16 0.054
RF-h (C) 1.37 1.20 0.12 0.040
MLP (C) 1.11 0.86 0.19 0.063
Poly (C&E) 0.79 0.71 0.05 0.030
RF (C&E) 1.07 0.85 0.15 0.054
RF-h (C&E) 2.34 1.78 0.31 0.243
MLP (C&E) 0.91 0.71 0.14 0.059

50 %

Linear (E) 3.60 3.09 0.46 0.045
Poly (E) 3.28 2.98 0.26 0.034
RF (E) 4.02 3.30 0.62 0.094
RF-h (E) 4.41 4.11 0.26 0.032
MLP (E) 3.56 2.97 0.50 0.077
Linear (C) 3.60 3.09 0.46 0.045
Poly (C) 0.79 0.74 0.03 0.020
RF (C) 1.19 0.94 0.20 0.051
RF-h (C) 2.92 2.61 0.25 0.049
MLP (C) 0.96 0.77 0.15 0.035
Poly (C&E) 0.69 0.64 0.02 0.023
RF (C&E) 1.07 0.82 0.19 0.056
RF-h (C&E) 33933.88 566.99 33319.58 47.296
MLP (C&E) 0.81 0.67 0.11 0.031

Table A3. RMSE (in ppm) for the different configurations of subsetting based on the selected clusters of peaks. Only Figaro® sensors were
used to compute this error. Each configuration is denoted “CX”, with X being the number of the configuration. In each row, the models are
denoted with a letter inside parentheses to indicate the sensors used. “C” denotes the TGS 2611-C00, “E” the TGS 2611-E00 and “C&E”
both sensors.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Linear (C) 1.121 1.115 1.126 1.119 1.163 1.141 1.142 1.105 1.098 1.074 1.105
Poly (C) 0.962 0.966 0.972 0.963 0.988 0.982 0.970 0.943 0.952 0.902 0.957
RF (C) 1.140 1.135 1.149 1.137 1.176 1.158 1.136 1.111 1.123 1.075 1.128
RF-h (C) 1.118 1.113 1.127 1.113 1.152 1.136 1.112 1.088 1.101 1.061 1.106
MLP (C) 0.943 0.951 0.957 0.943 0.976 0.964 0.948 0.926 0.928 0.893 0.937
Linear (E) 1.971 1.932 1.951 1.926 1.988 1.972 1.947 1.838 1.887 1.772 1.909
Poly (E) 1.899 1.861 1.874 1.852 1.909 1.896 1.870 1.764 1.817 1.703 1.838
RF (E) 2.277 2.229 2.261 2.207 2.261 2.251 2.184 2.264 2.233 2.230 2.235
RF-h (E) 2.263 2.214 2.245 2.192 2.243 2.235 2.165 2.249 2.218 2.221 2.219
MLP (E) 1.898 1.861 1.874 1.853 1.910 1.895 1.869 1.764 1.816 1.705 1.838
Linear (C&E) 1.121 1.115 1.126 1.121 1.164 1.142 1.144 1.105 1.098 1.074 1.105
Poly (C&E) 0.872 0.890 0.895 0.885 0.904 0.911 0.891 0.869 0.881 0.844 0.886
RF (C&E) 0.887 0.943 0.951 0.931 0.978 0.936 0.938 0.919 0.936 0.914 0.938
RF-h (C&E) 0.878 0.929 0.940 0.917 0.964 0.925 0.927 0.906 0.924 0.907 0.924
MLP (C&E) 0.861 0.948 0.875 0.874 0.970 0.958 0.871 0.841 0.862 0.820 0.935
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Table A4. RMSE (in ppm) for the different configurations of subsetting based on the selected clusters of peaks. Figaro® sensors and
environmental variables were used to compute this errors. Notation is the same as in Table A3.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Linear (C) 1.115 1.111 1.118 1.112 1.155 1.143 1.136 1.106 1.095 1.075 1.101
Poly (C) 0.915 0.920 0.928 0.913 0.928 0.935 0.919 0.887 0.898 0.872 0.912
RF (C) 0.941 0.988 0.997 0.980 1.010 0.988 0.967 0.937 0.950 0.905 0.977
RF-h (C) 0.925 2721.300 2738.400 2752.600 2842.700 2800.200 2827.700 2788.600 0.949 0.902 2681.000
MLP (C) 0.899 0.918 0.914 0.905 0.944 0.926 0.905 0.872 0.884 0.854 0.894
Linear (E) 1.971 1.932 1.951 1.926 1.988 1.972 1.948 1.839 1.888 1.773 1.910
Poly (E) 1.897 1.863 1.879 1.856 1.910 1.897 1.874 1.763 1.820 1.704 1.842
RF (E) 1.979 1.963 1.978 1.951 2.003 2.000 1.959 1.874 1.939 1.834 1.951
RF-h (E) 1.969 1370.000 13 792.900 13 864.300 14 317.900 14 103.900 14 242.700 14 045.700 1.932 1.830 13 506.000
MLP (E) 1.897 1.865 1.879 1.860 1.914 1.898 1.875 1.801 1.826 1.706 1.844
Linear (C&E) 1.115 1.111 1.118 1.114 1.156 1.143 1.139 1.106 1.095 1.076 1.101
Poly (C&E) 0.833 0.851 0.858 0.842 0.851 0.864 0.850 0.824 0.836 0.828 0.849
RF (C&E) 0.817 0.886 0.891 0.888 0.920 0.864 0.874 0.855 0.867 0.847 0.885
RF-h (C&E) 0.811 0.914 0.924 0.925 0.951 0.902 0.911 0.893 0.893 0.856 0.913
MLP (C&E) 0.833 0.858 0.880 0.850 0.864 0.883 0.857 0.814 1.524 0.811 0.848

Table A5. Summary statistics of the Pearson correlation coefficient (ρ) distributions between models on the test set for a 20-fold cross-
validation. The inputs of the modes are only voltage from the Figaro® TGS sensors.

Test set size Model Mean Median IQ range Min Max σ

30 %

Linear (E) 0.907 0.922 0.034 0.860 0.925 0.024
Poly (E) 0.908 0.923 0.035 0.859 0.929 0.025
RF (E) 0.853 0.897 0.125 0.746 0.904 0.065
RF-h (E) 0.855 0.898 0.128 0.746 0.923 0.067
MLP (E) 0.912 0.925 0.036 0.858 0.979 0.030
Linear (C) 0.970 0.976 0.013 0.946 0.981 0.011
Poly (C) 0.974 0.981 0.010 0.947 0.983 0.012
RF (C) 0.962 0.973 0.023 0.930 0.975 0.017
RF-h (C) 0.963 0.973 0.024 0.930 0.982 0.018
MLP (C) 0.975 0.982 0.011 0.947 0.985 0.012
Poly (C&E) 0.977 0.984 0.008 0.947 0.986 0.012
RF (C&E) 0.975 0.983 0.013 0.943 0.984 0.013
RF-h (C&E) 0.975 0.983 0.013 0.943 0.985 0.014
MLP (C&E) 0.975 0.984 0.013 0.921 0.986 0.017

50 %

Linear (E) 0.917 0.923 0.010 0.877 0.927 0.014
Poly (E) 0.918 0.927 0.013 0.859 0.931 0.019
RF (E) 0.876 0.896 0.043 0.766 0.937 0.041
RF-h (E) 0.878 0.897 0.037 0.766 0.937 0.041
MLP (E) 0.921 0.927 0.014 0.874 0.978 0.021
Linear (C) 0.973 0.976 0.008 0.953 0.982 0.008
Poly (C) 0.977 0.982 0.005 0.959 0.982 0.007
RF (C) 0.967 0.972 0.009 0.940 0.975 0.009
RF-h (C) 0.968 0.973 0.010 0.941 0.976 0.010
MLP (C) 0.978 0.982 0.006 0.958 0.983 0.007
Poly (C&E) 0.980 0.984 0.006 0.962 0.986 0.007
RF (C&E) 0.957 0.982 0.011 0.540 0.984 0.095
RF-h (C&E) 0.957 0.982 0.009 0.540 0.984 0.096
MLP (C&E) 0.981 0.984 0.006 0.961 0.986 0.006
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Table A6. Summary statistics of the Pearson correlation coefficient (ρ) distributions between models on the test set for a 20-fold cross-
validation. The inputs of the models include voltage from low-cost sensors and environmental variables (H2O, temperature and pressure).

Test set size Model Mean Median IQ range Min Max σ

30 %

Linear (E) 0.907 0.922 0.035 0.859 0.925 0.024
Poly (E) 0.908 0.924 0.037 0.846 0.929 0.028
RF (E) 0.895 0.918 0.061 0.823 0.925 0.037
RF-h (E) 0.896 0.919 0.062 0.823 0.926 0.038
MLP (E) 0.911 0.924 0.036 0.853 0.979 0.030
Linear (C) 0.971 0.976 0.014 0.947 0.984 0.011
Poly (C) 0.975 0.982 0.014 0.945 0.984 0.013
RF (C) 0.971 0.981 0.019 0.938 0.983 0.016
RF-h (C) 0.972 0.982 0.020 0.939 0.984 0.016
MLP (C) 0.976 0.983 0.014 0.947 0.987 0.013
Poly (C&E) 0.978 0.985 0.013 0.945 0.988 0.013
RF (C&E) 0.972 0.983 0.026 0.928 0.986 0.018
RF-h (C&E) 0.970 0.980 0.031 0.928 0.987 0.018
MLP (C&E) 0.976 0.985 0.015 0.921 0.987 0.016

50 %

Linear(E) 0.917 0.923 0.010 0.877 0.927 0.014
Poly (E) 0.917 0.927 0.017 0.866 0.931 0.019
RF (E) 0.908 0.920 0.023 0.847 0.943 0.024
RF-h (E) 0.898 0.921 0.023 0.644 0.943 0.062
MLP (E) 0.922 0.927 0.015 0.880 0.979 0.019
Linear (C) 0.973 0.976 0.009 0.954 0.984 0.008
Poly (C) 0.979 0.984 0.006 0.956 0.985 0.008
RF (C) 0.974 0.980 0.013 0.945 0.982 0.010
RF-h (C) 0.957 0.980 0.013 0.602 0.983 0.082
MLP (C) 0.979 0.983 0.008 0.960 0.985 0.007
Poly (C&E) 0.981 0.985 0.006 0.958 0.987 0.008
RF (C&E) 0.974 0.982 0.016 0.918 0.986 0.016
RF-h (C&E) 0.847 0.977 0.021 −0.100 0.986 0.331
MLP (C&E) 0.981 0.986 0.008 0.964 0.987 0.007

Table A7. Comparison between TGS sensors included in the low-cost logging system.

Type Target gas Approximate price Comments

2600 C2H5OH, C4H10, CO, H2, CH4 USD 15 Designed as a smoke detector.

2611-C00 CH4, C2H5OH, C4H10, CO, H2 USD 20 Designed for CH4 detection. Fast response.

2611-E00 CH4, H2 USD 20
Designed for CH4 detection.
Increased selectivity due to a carbon filter installed
on top of the sensing material.
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