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Abstract. A novel method for atmospheric network design is
presented, which is based on information theory. The method
does not require calculation of the posterior uncertainty (or
uncertainty reduction) and is therefore computationally more
efficient than methods that require this. The algorithm is
demonstrated in two examples: the first looks at designing
a network for monitoring CH4 sources using observations of
the stable carbon isotope ratio in CH4 (δ13C), and the second
looks at designing a network for monitoring fossil fuel emis-
sions of CO2 using observations of the radiocarbon isotope
ratio in CO2 (114CO2).

1 Introduction

The optimal design of any observing network is an impor-
tant problem in order to maximize the information obtained
with minimal cost. In atmospheric sciences, observing net-
works include those for weather prediction, as well as for air
quality and the monitoring of greenhouse gases (GHGs). For
air quality and GHGs, one essential purpose of the obser-
vation network is to learn about the underlying sources and,
where relevant, the sinks. This application is based on inverse
methodology in which knowledge about some unknown vari-
ables, in this case the sources (and sinks), can be determined
by indirect observations, that is, the atmospheric concentra-
tions or mixing ratios, if there is a model or function that
relates the unknown variables to the observations. Inverse
methodology provides a means to relate the observations to
the unknown variables and provides an optimal estimate of
these (Tarantola, 2005).

In atmospheric sciences, the methodology is most often
derived from Bayes’ theorem, which describes the condi-

tional probability of the state variables, x, given the obser-
vations, y.

P (x|y)=
P (y|x)P (x)

P (y)
(1)

Assuming a Gaussian probability density function (PDF), the
following cost function can be derived (Rodgers, 2000).

J (x)=
1
2
(x− xb)

TB−1 (x− xb)

+
1
2
(H (x)− y)TR−1 (H (x)− y) (2)

The x for which J (x) is the minimum is the state vector
that minimizes the sum of two distances: one in the obser-
vation space, between the modelled, H (x), and observed, y,
variables, and the other in the state space, between x and a
prior estimate of state variables, xb. These two distances are
weighted by the matrices R and B, which are, respectively,
the observation error covariance and prior error covariance.
Expressions for the centre and variance of the posterior PDF
of x are given by e.g. Tarantola (2005).

The choice of the locations for the observations has im-
portant consequences for how well the state variables can be
constrained. Increasing the number of observations will de-
crease the dependence of the solution on xb, but where those
observations are made is also a critical consideration and de-
pends on how they relate to the state variables, as described
by the transport operator, H (x). Here only the linear trans-
port case is considered in which this operator can be defined
as the matrix H.

In practical applications of network design, there is usu-
ally a predefined budget that would allow the establishment
of a given number of sites, either to create a new network
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or to add to an existing one. The possible locations of sites
are usually a predefined set, since these need to fulfil cer-
tain criteria, e.g. access to the electrical grid, internet con-
nection, road access, an existing building on site to house in-
struments, and the agreement of the property owner, and may
include having an existing tower if measurements are to be
made above the surface layer. Thus, the question is often the
following: which potential sites should be chosen to provide
the most information about the sources and sinks?

The founding work on network design was actually in the
field of seismology (Hardt and Scherbaum, 1994), but there
are already a number of examples of network design in the
framework of atmospheric monitoring in the scientific liter-
ature. An early example is the optimization of a global net-
work for CO2 observations to improve knowledge of the ter-
restrial CO2 fluxes (Gloor et al., 2000; Patra and Maksyu-
tov, 2002; Rayner et al., 1996). These studies dealt only
with small dimensional problems, i.e. with few state vari-
ables, relatively low-frequency observations, and thus small
B and H matrices, and the criteria by which the network
was chosen involved minimizing the posterior uncertainty.
Gloor et al. (2000) solved the problem using a Monte Carlo
method (specifically simulated annealing), but they found
this method took considerable time to converge and up to
5× 105 iterations were needed. Patra and Makysutov (2002)
used a less computationally demanding approach, the in-
cremental optimization method, which is based on the “di-
vide and conquer” algorithm principle. In this method, the
problem to solve is broken down into steps, i.e. sequentially
choosing the best site from the set of potential sites and cor-
respondingly depleting this set by one with each step. In the

incremental optimization approach only
k∑
i=1
(p− i+ 1) cal-

culations are needed, where k is the number of sites to se-
lect and p the number of potential sites to choose from. The
incremental optimization approach, however, may lead to a
different selection of sites compared to testing all possible
combinations of sites, which would involve p!/(k!(p− k)!)
calculations, but this in many cases may be a prohibitively
large number.

More recently, the problem of network design has been
addressed in the context of regional networks for GHG ob-
servations (Lucas et al., 2015; Nickless et al., 2015). Again,
in both these studies the metric for selecting the network was
the posterior uncertainty, either by using the trace of the pos-
terior error covariance matrix, which is equivalent to min-
imizing the mean square uncertainty for all grid cells (Lu-
cas et al., 2015), or by minimizing the sum of the poste-
rior error covariance matrix (or submatrix for a particular
region), which also accounts for the covariance of uncer-
tainty between grid cells (Nickless et al., 2015). These stud-
ies both used Monte Carlo approaches (specifically, genetic
algorithms) to find the network minimizing the selected met-
ric.

However, for large problems any metric involving the pos-
terior uncertainty becomes a bottleneck, if not unworkable,
since the calculation of the posterior error covariance ma-
trix, A, requires inverting the matrix HTR−1H+B−1 which
has dimensions of n× n where n is the number of state vari-
ables. For this reason, methods were proposed based on crite-
ria considering how well a network resolves the atmospheric
variability or “signal” or, in other words, how well they sam-
ple regions of significant atmospheric heterogeneity (Shiga et
al., 2013). In this approach, the atmospheric signal (e.g. mix-
ing ratio) is modelled using an atmospheric transport model
and a prior flux estimate, and sites are sequentially added to
the network so that the distance of any grid cell from an ob-
servation site is within some predetermined correlation scale
length. For this method, the number of calculation steps is
equal to the sites to be selected (Shiga et al., 2013). Although
computationally very efficient, this method does not consider
the information gained about the state variables but only the
optimal sampling of atmospheric variability.

An alternative method, but also based on the consideration
of atmospheric variability, is to consider how “similar” the
atmospheric signal is between potential sites in a network
and to reduce the number of sites, leaving only those with
significantly different signals (Risch et al., 2014). Risch et
al. (2014) applied a clustering method to cluster sites with
similar signals (i.e. strongly correlated sites), and individual
sites were removed from each cluster based on the premise
that they did not contribute any significant new information,
whereas sites in clusters of one member were all retained.
However, as in the method of Shiga et al. (2013), this ap-
proach does not consider the information gained about the
state variables and how atmospheric transport alone may in-
fluence the variability at each site.

Here a method for network design is proposed based on
information theory. This method requires precomputed trans-
port operators for each potential site, so-called site “foot-
prints” or “source–receptor relationships” (SRRs), which can
be calculated directly using a Lagrangian atmospheric trans-
port model (Seibert and Frank, 2004) or from forward cal-
culations of an Eulerian transport model for each source
(Rayner et al., 1999; Enting, 2002). The method can be ap-
plied to the problem of creating a new network or expanding
an existing one and can be applied to observations of mix-
ing ratios, isotopic ratios, column measurements, or a com-
bination of these. It provides an alternative criterion to the
posterior uncertainty (or uncertainty reduction) to assess a
potential network and can be used with either incremental
optimization or Monte Carlo approaches. It has a number
of advantages compared to previous methods: (i) it does not
require the inversion of any large matrix, except for B, but
this is needed only once, making it computationally efficient;
(ii) it accounts for spatial correlations in the state variables;
and (iii) it allows for an exact formulation of the problem to
be solved, i.e. what is the improvement in knowledge about
the unknown variables. On the other hand, it requires linear-
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ity of the operator from the state space to the observation
space, which is not the case for methods examining only at-
mospheric variability.

Two example applications are presented, which are based
on real-life network design problems. The first considers
adding measurements of the stable isotope ratio of CH4, i.e.
δ13C, to a subset of existing sites measuring CH4 mixing ra-
tios in order to maximize the information about CH4 sources.
The second considers designing a network for114CO2 mea-
surements to maximize the information about fossil fuel
emissions of CO2.

2 Methodology

In information theory, the information content of a measure-
ment can be thought of as the amount by which knowledge of
some variable is improved by making the measurement, and
the entropy is the level of information contained in the mea-
surement (Rodgers, 2000). In this case, one can consider the
PDF a measure of knowledge about the state variables, and
the information provided by a measurement can be found by
comparing the entropy of the PDFs before and after mea-
surement was made. Furthermore, the information content of
the measurement is equal to the reduction in entropy. In the
application of network design, all observations within the po-
tential network are considered to be one “measurement”.

The entropy, S, of the PDF given by P(x) is

S (P (x))=−

∫
P (x) ln(P (x)) . (3)

And the information content, I , is the reduction in entropy
after a measurement is made:

I = S (P (x))− S (P ((x|y))) , (4)

where P(x) is the prior PDF (before measurement) and
P(x|y) is the posterior PDF (after the measurement, y). The
entropy is given by integrating Eq. (3) over the bounds −∞
to +∞ (Rodgers, 2000), which for a Gaussian PDF of a
scalar variable is

S = ln
(
σ(2πe)

1
2

)
, (5)

where σ is the standard deviation. In the multivariate case
with m variables the entropy is given by

S =

m∑
i=1

ln(2πeλi)
1
2 , (6)

where λi is an eigenvalue of the error covariance matrix. By
rearrangement one can write the following.

S =

m∑
i=1

(
ln(2πe)

1
2 + lnλ

1
2
i

)
, (7)

S =m ln(2πe)
1
2 +

1
2

ln
(∏

λi

)
, (8)

S =m ln(2πe)
1
2 +

1
2

ln |B| (9)

In Eq. 9 |B| is the determinant of the prior error covariance
matrix, using the fact that the determinant of a symmetric
matrix is equal to the product of its eigenvalues. Similarly,
the entropy for the posterior PDF can be derived, giving the
information content as

I =
1
2

ln |B| −
1
2

ln |A|, (10)

where A is the posterior error covariance matrix. In this case
the determinant can be thought of as defining the volume in
state space occupied by the PDF, which describes the knowl-
edge about the state; thus, I is the change in the log of the
volume when observation is made. From Eq. (10) one can
derive the following.

I =
1
2

ln
∣∣∣BA−1

∣∣∣ (11)

And given that the inverse of A is equal to the Hessian matrix
of J (x) (Eq. 2)

A−1
=HTR−1H+B−1, (12)

one obtains

I =
1
2

ln
∣∣∣BHTR−1H+ I

∣∣∣ , (13)

where R is the observation error covariance matrix, H is the
model operator (for atmospheric observations it is the atmo-
spheric transport operator), and I is the identity matrix.

The principle of this network design method is to choose
the sites that maximize the information, and this criterion
can be used in either the incremental optimization or Monte
Carlo approach. The incremental optimization approach is

computationally efficient, requiring only
k∑
i=1
(p−i+1) calcu-

lations and delivers, if not the same, at least similar results as
testing all possible combinations of sites (Patra and Maksyu-
tov, 2002).

The calculation of the matrix BHTR−1H+ I can be quite
fast, since H and R can be made quite small. H does not need
to represent all observations for each site, but only the aver-
age observation corresponding to different levels of uncer-
tainty or “characteristic observations”. In the case that obser-
vations at each site have only one characteristic uncertainty,
then H will have dimension k× n where n is the number of
state variables, and R will be k× k; in practice R is most
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often diagonal. In the case that the uncertainty of an obser-
vation at a given site varies depending on when it was made,
e.g. daytime or nighttime, then the dimension of H will be
2k× n. The computationally demanding step is the calcula-
tion of the matrix determinant. However, this calculation can
be made very efficient if the matrix BHTR−1H+I is decom-
posed into B and (HTR−1H+B−1), which are both symmet-
ric positive definite matrices, and using the fact that the log of
the determinant of a symmetric positive definite matrix can
be calculated as the trace of the log of the lower triangular
matrix of the Cholesky decomposition:

I =
1
2

ln(|B|)+
1
2

ln
(∣∣∣HTR−1H+B−1

∣∣∣) (14)

= tr(ln(L))+ tr(ln(M)) , (15)

where B= LLT and HTR−1H+B−1
=MMT where L and

M are the lower triangular matrices. Note that if temporal
correlations in B can be ignored, then B only needs to be
formulated for a single time step, i.e. Bt , which is a consid-
erably smaller matrix than B, and HTR−1H+B−1 can be
calculated stepwise adding B−1

t for each time step. Further-
more, B−1

t (or B−1) only needs to be calculated once, since
it does not change with choice of sites. In this case the infor-
mation content is simply

I = qtr(ln(L))+ tr(ln(M)) , (16)

where q is the number of time steps and L in this case is the
lower triangular matrix of Bt .

The computational complexity of the whole algorithm can
be estimated considering that the Cholesky decomposition of
a symmetric matrix has a complexity of O(n3)/3. The cal-
culation of B−1 from B requires O(n3)/3 operations. The
calculation of R−1 from R requiresO(k3)/3 operations. The
calculation of HTR−1H requiresO(nk2

+n2k)∼O(n2) op-
erations if k� n. Then only the calculation of the determi-
nant of the matrix

∣∣HTR−1H+B−1
∣∣ remains, which given

that it is symmetric and positive definite also takes O(n3)/3
operations (Aho et al., 1974). The subsequent logarithm and
the trace operations are linear with respect to n, i.e. O(n).
The total complexity yields O(n3)/3+O(k3)/3+O(n2)+

O(n3)/3+O(n)≈ 2O(n3)/3+O(k3)/3, which is compara-
ble to e.g. one n× n LU factorization if k� n.

3 Examples

3.1 Enhancing a network for estimating sources of CH4

This example considers the enhancement of a network of at-
mospheric measurements of CH4 mixing ratios by adding
observations of stable isotopic ratios, δ13C, at a selected
number of sites within the existing network in order to im-
prove knowledge of the different CH4 sources. For the ex-
ample, the case of the Integrated Carbon Observation System

(ICOS) network (https://www.icos-cp.eu, last access: 12 Jan-
uary 2023) in Europe is used, which consists of 24 opera-
tional sites in geographical Europe measuring CH4 mixing
ratios (Table 1). In this hypothetical case, the budget is avail-
able to equip 5 of the 24 sites with in situ instruments measur-
ing δ13C at hourly frequency, as is now possible with modern
instrumentation (Menoud et al., 2020). The problem can thus
be formulated as follows: given the existing information pro-
vided by 24 sites measuring CH4 mixing ratios, which sites
are the best to choose for the additional δ13C observations?

The δ13C value is the ratio of 13C to 12C in a sample rela-
tive to a reference value measured in per mil (‰).

δ13C=
(
Rsam

Rref
− 1

)
× 1000 (17)

The δ13C value in the atmosphere varies as a result of varia-
tions in the δ13C value of the sources, the oxidation of CH4
in the atmosphere and in soils, and atmospheric transport.
Sources of CH4 can be grouped according to their charac-
teristic δ13C value, with microbial sources being the most
depleted in 13C, while thermogenic sources such as from
oil, gas, and coal are less depleted, and pyrogenic sources,
such as biomass burning, are the least depleted (Fisher et al.,
2011; Dlugokencky et al., 2011; Brownlow et al., 2017) (Ta-
ble 2). In this example, CH4 sources were grouped into an-
thropogenic microbial sources, namely agriculture and waste
(agw); fossil sources, namely fossil fuel and geological emis-
sions (fos); biomass burning sources (bbg); and natural mi-
crobial sources, principally wetlands (wet) and the ocean
source (oce). The change in CH4 mixing ratios from all
sources can thus be written as

1c =Hxagw+Hxwet+Hxfos+Hxbbg+Hxoce, (18)

where 1c is the change in CH4 mixing ratios, x is the vector
of fluxes, and H is the transport operator. Analogously, the
change in δ13C can be defined as

1δ13c =Hδagwxagw+Hδwetxwet+Hδfosxfos

+Hδbbgxbbg+Hδocexoce, (19)

where δx is the isotopic signature for each source type.
Therefore, the transport operator for an observation of the
change in δ13C is just the transport operator H but scaled by
δx for each source.

For this example, SRRs were calculated for all 24 sites in
the ICOS network using the Lagrangian particle dispersion
model, FLEXPART (Pisso et al., 2019), driven with ERA-
Interim reanalysis wind fields. Retro-plumes were calculated
for 10 d backwards in time from each site at an hourly fre-
quency. The SRRs were saved at 0.5◦× 0.5◦ resolution over
the European domain of 12◦W to 32◦ E and 35 to 72◦ N
and averaged over all observations within a month to give
a monthly mean SRR for each site.
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Table 1. List of sites in the ICOS network (only those in geographical Europe are included). The sampling height that was used in this study
is shown, which is the highest sampling height at each site.

Site ID Full name Latitude Longitude Site altitude Sampling height
(m a.s.l.) (m a.g.l.)

CMN Monte Cimone, Italy 44.19 10.70 2165 8
GAT Gartow, Germany 53.07 11.44 70 341
HPB Hohenpeissenberg, Germany 47.80 11.02 934 131
HTM Hyltemossa, Sweden 56.10 13.42 115 150
IPR Ispra, Italy 45.81 8.64 210 100
JFJ Jungfraujoch, Switzerland 46.55 7.99 3580 5
KIT Karlsruhe, Germany 49.09 8.42 110 200
KRE Kresín u Pacova, Czech Republic 49.57 15.08 534 250
LIN Lindenberg, Germany 52.17 14.12 73 98
LMP Lampedusa, Italy 35.52 12.63 45 8
LUT Lutjewad, the Netherlands 53.40 6.35 1 60
NOR Norunda, Sweden 60.09 17.48 46 100
OPE Observatoire Pérenne de l’Environnement, France 48.56 5.50 390 120
OXK Ochsenkopf, Germany 50.03 11.81 1022 163
PAL Pallas, Finland 67.97 24.12 565 12
PUY Puy de Dôme, France 45.77 2.97 1465 10
SAC Saclay, France 48.72 2.14 160 100
SMR Hyytiälä, Finland 61.85 24.29 181 125
STE Steinkimmen, Germany 53.04 8.46 29 252
SVB Svartberget, Sweden 64.26 19.78 269 150
TOH Torfhaus, Germany 51.81 10.54 801 147
TRN Trainou, France 47.96 2.11 131 180
UTO Utö, Finland 59.78 21.37 8 57
ZEP Zeppelin, Swalbard, Norway 78.91 11.89 474 15

Table 2. The prior fluxes and δ13C value used for each source where the total and mean δ13C values are given for the European domain.

Source Total Dataset/reference Mean δ13C Reference

Agriculture and waste 24.5 EDGAR v5 −63.0 ‰ Schwietzke et al. (2016)
Fossil fuel 13.5 EDGAR v5 −44.5 ‰ Schwietzke et al. (2016)
Wetlands and termites 5.0 LPX–Bern −69.0 ‰ Fisher et al. (2017)
Soil sink −1.0 LPX–Bern −22.0 ‰ Reeburgh et al. (1997)
Biomass burning 0.13 GFED v4.1s −22.0 ‰ Schwietzke et al. (2016)
Ocean 0.17 Weber et al. (2019) −48.6 ‰ Yu et al. (2015)

The uncertainty in the δ13C measurements was set to the
same value for each site, that is, at 0.07 ‰ based on exper-
imental values (Menoud et al., 2020). Similarly, the uncer-
tainty in CH4 mixing ratio measurements was also set to the
same value at all sites, at 5 ppb (WMO, 2009). The prior un-
certainty σ for each grid cell was calculated as 0.5 times the
prior flux, with a lower threshold equal to the first percentile
value of all grid cells with non-zero flux for the smallest flux
source. The spatial correlation between grid cells was calcu-
lated based on exponential decay over distance with a corre-
lation scale length of 250 km over land. The prior error co-
variance matrix was then calculated as

B=6C6, (20)

where C is the spatial correlation matrix and 6 is a diagonal
matrix with the diagonal terms equal to the prior uncertain-
ties for each grid cell.

For this example, the optimal network was found for three
different scenarios: (1) monitoring all sources in EU27 coun-
tries plus the UK, Norway, and Switzerland (EU27+ 3);
(2) monitoring only anthropogenic sources in EU27+ 3; and
(3) as in scenario 1 but ignoring the existing information pro-
vided by CH4 mixing ratios at all sites.

For these scenarios the influence of the fluxes that are not
the target of the network needs to be projected into the ob-
servation space and included in the R matrix. For example,
in scenario 1 this is the influence of fluxes outside EU27+ 3,
and in scenario 2 it is the influence of all non-anthropogenic
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Figure 1. Map of the total mean SRRs for optimal sites for scenar-
ios 1 and 2. Since only the EU27+ 3 emissions are constrained, the
SRRs are also only shown for EU27+ 3. The locations of the opti-
mal sites are indicated by the white points (i.e. IPR, SAC, KIT, LIN,
and KRE), and the locations of the unselected sites are indicated by
the black points.

sources plus the influence of fluxes outside EU27+ 3. This
is calculated as

R=HBotherHT
+Rmeas, (21)

where Rmeas is simply the prior measurement uncertainty and
Bother is the prior error covariance matrix for the other (i.e.
non-target) fluxes.

For all scenarios the choice of the first four optimal sites
was the same, that is, IPR, SAC, KIT, and LIN, while the
last site chosen was KRE in scenarios 1 and 2 (Fig. 1) and
LUT in scenario 3. All chosen sites are strongly sensitive
to anthropogenic emissions, and the choice to optimize all
sources or only anthropogenic sources made no difference
in this example, likely because the natural sources (predom-
inantly wetlands) are a relatively small contribution to the
total CH4 source in Europe (only 12 %). On the other hand,
ignoring existing information provided by CH4 mixing ra-
tios led to LUT being chosen over KRE, likely because LUT
provides a stronger constraint on the region with the largest
emissions and diverse sources, i.e. Benelux (Fig. 2), which is
more important in the absence of CH4 mixing ratio data.

3.2 Network of 14CO2 measurements for fossil fuel
emissions

This example concerns the establishment of a network for
measurements of radiocarbon dioxide, 14CO2, which can be
used as a tracer for fossil fuel CO2 emissions; since fossil
fuel contains no 14C, its combustion depletes the atmospheric
background value of 14CO2 (Turnbull et al., 2009). Similar
to the previous example, the ICOS network is used, which
also has CO2 measurements at 24 sites in Europe. The hy-
pothetical problem can be formulated as follows: if there is

Figure 2. Map of annual mean CH4 emissions (units of
kg m−2 yr−1) plotted with a logarithmic (base of 2) colour scale.

a budget to equip 10 sites in the ICOS network with weekly
flask samples for 14CO2 analysis, which sites should be cho-
sen to gain the most knowledge of fossil fuel emissions? In
this case, only weekly measurement frequency is examined
as 14CO2 measurements cannot be made continuously, and
the measurement method, either via counting radioactive de-
cay or by accelerator mass spectrometry, is costly and time-
consuming. The optimization problem needs to consider the
information already brought by the CO2 measurements at all
sites (in this example hourly measurements) and, in addition,
the influence on the atmospheric signal from other sources,
which may change the sensitivity of a site to fossil fuel emis-
sions.

Measurements of 14CO2 are reported as the ratio of 14CO2
to CO2 relative to a reference ratio and given in units of per
mil (‰).

114C=
(
Rsam

Rref
− 1

)
× 1000 (22)

Since fossil fuels contain no 14C, its isotopic ratio is
−1000 ‰. Other than fossil fuels, atmospheric values of
114CO2 are determined by the natural production of 14CO2
in the stratosphere, nuclear power and spent fuel-processing
plants, ocean and land biosphere fluxes, and atmospheric
transport. Ocean fluxes affect 14CO2, since the ocean is not
in isotopic equilibrium with the atmosphere owing to higher
values of atmospheric 14CO2 in the past due to nuclear
bomb testing and similarly for plant respiration fluxes of CO2
(Bozhinova et al., 2014).

The change in CO2 mixing ratios can be described as fol-
lows:

1c =Hxfos+Hxpho+Hxres+Hxoce, (23)

where xfos is the fossil fuel emission, xpho the land biosphere
photosynthesis flux, xres the land biosphere respiration flux,
and xoce the net ocean flux. A similar expression for the
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change in 114CO2 can be derived following Bozhinova et
al. (2014) as

114c =H1fosxfos+H1phoxpho+H1resxres

+H1ocexoce+H1nucxnuc, (24)

where114c is the change in114CO2, the term1x is the iso-
topic signature of the corresponding source, and H1nucxnuc
is the production of 14CO2 from nuclear facilities. There is
a term missing from Eqs. (23) and (24), namely the strato-
spheric production of CO2 and 14CO2. This term is ignored
as the direct stratospheric contribution is negligible for the
time and space domain considered by the Lagrangian model,
since the observations are close to the surface. Equation (24)
can be further simplified by removing the term H1phoxpho,
since photosynthesis, although it affects the 14CO2 mixing
ratio, does not affect 114CO2 (Turnbull et al., 2009). Fur-
thermore, the ocean and respiration fluxes can be split into a
background term and a disequilibrium term, 1bg+1ocedis
and 1bg+1resdis, respectively. As for photosynthesis, the
background terms for ocean and respiration fluxes do not
change 114CO2, but only the disequilibrium terms change
114CO2. For the domain in consideration, these terms are
much smaller than that of fossil fuels and are ignored as in
Bozhinova et al. (2014). With these simplifications, Eq. (24)
becomes the following.

114c =H1fosxfos+H1nucxnuc (25)

Since xnuc is pure 14CO2, 1nuc would be infinite; therefore,
the approach of Bozhinova et al. (2014) is used and 1nuc is
approximated as the ratio of the activity of the sample and
the referenced standard, giving 1nuc ≈ 0.7× 1015 ‰.

Because, in this example, only the fossil fuel emissions are
the unknown variables and the target of the network, the ma-
trix B corresponds only to the uncertainty in the fossil fuel
emissions and is resolved monthly. The other terms influ-
encing CO2 and 114CO2 are projected into the observation
space and included in the R matrix using Eq. (21). For the
114CO2 observations, Bother is only the nuclear source, and
for CO2 observations, Bother includes photosynthesis and res-
piration, the sum of which is net ecosystem exchange (NEE)
and the ocean flux, for which the effect on the observed CO2
signal is very small and is thus ignored here. For both NEE
and nuclear emissions, an uncertainty of 0.5 times the value
in each grid cell was used to calculate Bother with a spatial
correlation length of 250 km. Since NEE fluxes have large
diurnal and seasonal cycles which co-vary with atmospheric
transport, for the CO2 observations, R was calculated using
H and B, resolved for day, night, and monthly. Note, only
one uncertainty value was calculated for each site, which rep-
resents the annual mean uncertainty for a daytime observa-
tion. Each site has a different uncertainty for CO2 mixing ra-
tios and 114CO2 depending on the influence of NEE fluxes
and nuclear emissions, respectively. This can be simply in-
terpreted in terms of a signal-to-noise ratio. For example, for

CO2 mixing ratios where there is a large influence of NEE,
the time series becomes noisier, similarly for the influence of
nuclear emissions on 114CO2 observations. The measure-
ment uncertainty, Rmeas, was set to the same value for each
site, that is, at 2 ‰ for 114CO2 (Turnbull et al., 2007) and
0.05 ppm for CO2 mixing ratio measurements (WMO, 2018).

For this example, SRRs were calculated for all 24 sites
in the ICOS network using FLEXPART with retro-plumes
calculated for 5 d backwards in time from each site at an
hourly frequency. The SRRs were saved at 0.5◦× 0.5◦ and
3-hourly resolutions over the European domain of 15◦W to
35◦ E and 30 to 75◦ N and were averaged to give mean day
and night SRRs for each month for each site. Estimates of
NEE fluxes were used from the Simple Biosphere Model –
Carnegie Ames Stanford Approach (SiBCASA) and were re-
solved 3-hourly (Schaefer et al., 2008), estimates of nuclear
emissions were used from the CO2 human emissions (CHE)
project (Potier et al., 2022) and were an annual climatology,
and estimates of fossil fuel emissions were from GridFED at
monthly resolution (Jones et al., 2020a).

Figure 3 shows the uncertainty in the observation space
at each site due to the influence of uncertainties in NEE
and nuclear emissions on CO2 mixing ratios and 114CO2
values, respectively. For CO2, sites in western Europe have
the largest uncertainties, while sites in northern Scandinavia
and southern Europe have smaller uncertainties following the
pattern of NEE amplitude. For114CO2, most sites have only
small uncertainties owing to nuclear emissions, but two no-
table exceptions are NOR and KIT, and both are close to large
nuclear sources.

The optimal sites in the order selected are SAC, KIT, LUT,
KRE, STE, LIN, GAT, IPR, TRN, and TOH (Fig. 4). Two of
the sites, SAC and TRN, are relatively close to one another
(approximately 95 km apart); however, they have somewhat
different footprints with SAC sampling more of the Paris re-
gion and TRN sampling more of the south and east. If the
prior error covariance matrix, B, and the transport operator,
H, are not resolved monthly but only annually, the optimal
sites differ by only one site, namely HPB instead of TRN.
If the existing information provided by CO2 mixing ratios
is ignored (i.e. the network is designed only considering in-
formation from 114CO2), then the choice of optimal sites
differs slightly, and TRN and TOH are no longer selected but
OPE and LMP. The choice of LMP may seem unexpected at
first, but it is close to an emission hotspot in Tunis, Tunisia
(Fig. 5). The reason this site is not selected when the infor-
mation from CO2 mixing ratios is included is presumably
because the CO2 mixing ratio already provides a reasonable
constraint on the fossil fuel emissions with the NEE signal
being relatively small.
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Figure 3. Maps showing the uncertainty at each site from the pro-
jection of flux uncertainty into the observation space, (a) CO2 mix-
ing ratios and (b) 114CO2.

Figure 4. Map of the total mean SRR for optimal sites for monitor-
ing fossil fuel CO2 emissions with monthly resolution and including
existing information from CO2 mixing ratios. The locations of the
optimal sites are indicated by the white points (i.e. SAC, KIT, LUT,
KRE, STE, LIN, GAT, IPR, TRN, and TOH), and the locations of
the unselected sites are indicated by the black points.

4 Discussion

An obvious question is how does the criterion of informa-
tion content compare to criteria based on the posterior un-

Figure 5. Map of annual mean fossil fuel CO2 emissions (units of
kg m−2 yr−1) plotted with a logarithmic (base of 2) colour scale.

certainty? The information content describes the change in
probability space from before an observation is made (prior
probability) compared to after an observation is made (poste-
rior probability) and is thus more closely linked to the obser-
vations themselves than to the exact definition of the poste-
rior uncertainty metric. The performance of the two metrics,
i.e. information content versus the sum of the posterior error
covariance matrix, was examined using the CH4 example in
scenario 1 (described in Sect. 3.1). For this example, a second
network was selected using the criterion of the sum of the
posterior error covariance matrix and consisted of the sites
HPB, HTM, KRE, PUY, and TRN (only KRE was also se-
lected using the information criterion). Two inversions were
performed using pseudo-observations generated by applying
the transport operator, H (with rows corresponding to daily
afternoon means for each site and columns corresponding to
the six source types resolved annually), to the annual mean
fluxes for each source type, x, and adding random noise ac-
cording to the error characteristics of R.

yobs =Hx+R
1
2 r where r ∼N (0,1) (26)

In these inversions, the prior was generated by randomly per-
turbing the fluxes according to the error characteristics of B.

xb = x+B
1
2 r where r ∼N (0,1) (27)

Both inversions used the same prior fluxes and uncertainties
and differed only in the set of sites used. The performance of
the inversions was tested using the so-called gain metric, G,
based on the ratio of the distance of the posterior from the
true fluxes to the distance of the prior from the true fluxes:

G= 1−

√
(x− xa)

2

(x− xb)
2 , (28)

where xa is the posterior flux vector. The larger the value of
G, the closer the posterior is to the true flux. Using the op-
timal sites according to the information content G= 0.6996,
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while using the optimal sites according to the posterior error
covariance G= 0.6988. (A comparison of the prior and pos-
terior compared to the true fluxes is shown in Fig. 6.) Thus,
the information content performs at least as well as the pos-
terior error covariance metric for determining a network.

Another question that arises is how does this method com-
pare to methods based on the analysis of the variability in the
time series at the different sites? To answer this question, a
clustering method was applied to the example of designing
a network for fossil fuel CO2 emissions. For this, a time se-
ries of 114CO2 was generated for each of the 24 sites using
Eq. (25) (see the Supplement for plots of the time series).
The values were generated hourly, but, since generally only
daytime values are used in inverse modelling, data were se-
lected for the time interval 12:00 to 15:00 LT. A dissimilar-
ity matrix was calculated for the 24 time series (using the
R function proxy::dist with the dynamic time warp (DTW)
method; Giorgino, 2009). The divisive hierarchical clustering
method (R function cluster::diana) was applied to the dissim-
ilarity matrix, stopping at 10 clusters. The first cluster con-
tained 13 sites, that is, those with little signal (e.g. JFJ, CMN,
and ZEP). Two clusters contained two sites, namely IPR and
KRE, as well as OPE and TRN, while the remaining clusters
contained only one site. Based on the principle of choosing
sites that display different signals, one would choose the sites
which are in a cluster of one. This would lead to the choice
of GAT, KIT, LIN, LUT, SAC, STE, and TOH. These seven
sites are also chosen by the method based on information
content. However, the question is how to choose the remain-
ing three sites from clusters with more than one site. For this
there is no single answer. Moreover, the sites that are the most
dissimilar are not necessarily those that will provide the most
information about the target fluxes of the network, since the
reasons for dissimilarity are various, e.g. having little signal,
being sensitive to sources that are not the target of the net-
work, or owing to distinct atmospheric circulation patterns.
Sites with high degrees of similarity may both offer a strong
constraint and both be valuable to a network (in this exam-
ple IPR and KRE were in the same cluster, but both sites are
chosen in the method based on information content).

In the examples presented, the atmospheric transport ma-
trix, H, and the matrix, B, were resolved at 0.5◦× 0.5◦ (and
considered only land grid cells) and monthly. The size of the
matrix B (and the matrix HTR−1H+B−1) for the example of
a network for fossil fuel CO2 emissions was ∼ 11 Gb. How-
ever, in the case of finer spatial resolution or a larger domain,
which means the size of the matrices exceeds the available
memory, it is still possible to use this method as long as B
and HTR−1H+B−1 defined for one time step do not exceed
the memory. In this case, the problem can be solved by sum-
ming the information content calculated separately for each
time step. Disaggregating the problem in this way does not
lead to the same value of information content as when all
time steps are considered together; however, the choice of
sites is nearly the same. For the example of a network for

fossil fuel CO2 emissions, the two methods (i.e. disaggregat-
ing versus not disaggregating) differed by only one site. For
the example of a fossil fuel network, the total computation
time was ∼ 3 h using multi-threaded parallelization on eight
cores.

In addition to the memory requirements, there is the ques-
tion of the computational cost determined by the complexity
of the algorithm, in particular compared to the more estab-
lished method using a metric based on the posterior error co-
variance. Such analysis can be performed putting aside the
practical considerations related to particular software and/or
hardware. It has been established that the algorithmic com-
plexity, and hence the computational cost, of the calculation
of the determinant is the same as that of matrix multiplica-
tion (Strassen, 1969; Aho et al., 1974). Ignoring the partic-
ularities of the algorithm used and its hardware implemen-
tation, the analysis can be simplified by counting the num-
ber of matrix multiplications: O(mnk) for two generic rect-
angular matrices, Cholesky decompositions (O(n3)/3), ma-
trix inversions, and determinant calculations (both obtained
e.g. from the Cholesky decomposition). Both the error co-
variance metric and the information metric require the in-
version of the matrix B. The covariance metric requires the
Hessian matrix G=HTR−1H+B−1that takes one inversion
of B (∼O(n3)/3), one inversion of R (∼O(k3)/3), and the
product of three matrices (O(nk2

+n2k)∼O(n2) if k� n).
This yields G in O(n3)/3+O(k3)/3+O(nk2

+ n2k) oper-
ations. The inverse of G yields the posterior covariance in
O(k3)/3 operations via the Cholesky decomposition. Subse-
quent steps are of lower computational order. Even if some
simplifications are possible, its complexity is bounded below
by 2O(n3)/3. Therefore, the information metric is not com-
putationally more expensive than the covariance metric. The
algorithm presented here is faster than the naive computation
of the information content from its formal definition.

5 Conclusions

A method for designing atmospheric observation networks
is presented based on information theory. This method can
be applied to any type of atmospheric data: mixing ratios,
aerosols, isotopic ratios, and total column measurements. In
addition, the method allows the network to be designed with
or without considering existing information, which may also
be of a different type, e.g. mixing ratios of a different species
or isotopic ratios. Since the method does not require invert-
ing any large matrices (e.g. for the calculation of posterior
uncertainties), and the calculation of B−1 only needs to be
performed once, it is very efficient and can also be used on
large problems. The only constraint is that the matrices B and
HTR−1H + B−1 defined for one time step do not exceed the
available memory. The algorithm allows the exact problem to
be defined, that is, to target specific emission sources or re-
gions. Two examples are presented: the first is to select sites
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Figure 6. Comparison of the true-prior flux differences (units g m−2 yr−1) (a–c) versus the true-posterior flux differences for the inversion
using sites chosen with the information content criterion (d–f) and the inversion using sites chosen with the posterior uncertainty criterion (g–
i). Note: only the fluxes for the sources agriculture and waste, fossil, and biomass burning sources are shown as the other three sources are
very minor.

from an existing network of CH4 mixing ratios for additional
measurements of δ13C to constrain emissions in EU coun-
tries (plus Norway, Switzerland, and the UK), and the sec-
ond is to select sites from an existing network of CO2 mix-
ing ratios for additional measurements of 114CO2 to moni-
tor fossil fuel CO2 emissions. These examples demonstrated
that the optimal network differs depending on its exact pur-
pose, e.g. is the network targeting emissions over the whole
domain or for a specific region? And should existing infor-
mation be considered or not? Thus it is important that the
method of network design is able to account for these con-
siderations.

Code availability. The R code for the network design al-
gorithm presented in this paper is available from Zenodo:
https://doi.org/10.5281/zenodo.7070622 (Thompson and Pisso,
2022).

Data availability. The CH4 emissions data for anthropogenic
sources are available from the EDGAR website (http://data.
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cess: 12 January 2023; Crippa et al., 2019). The biomass burn-
ing sources are available from the GFED website (https://www.
geo.vu.nl/~gwerf/GFED/GFED4/, last access: 12 January 2023; van
der Werf et al., 2017). The wetland sources and soil sinks from
the LPX-Bern model are available on request to Jurek Müller (ju-
rek.mueller@unibe.ch), and the ocean sources are available from

the website (https://doi.org/10.6084/m9.figshare.9034451.v1, We-
ber, 2019). The CO2 emissions data for anthropogenic sources are
available from Zenodo (https://doi.org/10.5281/zenodo.3958283,
Jones et al., 2020b). The NEE fluxes from the SiBCASA
model are available on request to Ingrid Van der Laan
(ingrid.vanderlaan@wur.nl), and the nuclear emissions esti-
mates of 14CO2 are available on request to Elise Potier
(elise.potier@lsce.ipsl.fr).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-16-235-2023-supplement.

Author contributions. RLT developed the algorithm, wrote the
code, and carried out the examples. IP contributed to the modelling
of114CO2 and to the algorithm, performed the algorithm complex-
ity analysis, and provided feedback on the paper.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Atmos. Meas. Tech., 16, 235–246, 2023 https://doi.org/10.5194/amt-16-235-2023

https://doi.org/10.5281/zenodo.7070622
http://data.europa.eu/89h/488dc3de-f072-4810-ab83-47185158ce2a
http://data.europa.eu/89h/488dc3de-f072-4810-ab83-47185158ce2a
https://www.geo.vu.nl/~gwerf/GFED/GFED4/
https://www.geo.vu.nl/~gwerf/GFED/GFED4/
https://doi.org/10.6084/m9.figshare.9034451.v1
https://doi.org/10.5281/zenodo.3958283
https://doi.org/10.5194/amt-16-235-2023-supplement


R. L. Thompson and I. Pisso: A flexible algorithm for network design based on information theory 245

Acknowledgements. This work was supported by the European
Commission, Horizon 2020 Framework Programme (VERIFY,
grant no. 776810). We would like to acknowledge Jurek Müller for
preparing the LPX–Bern simulations of wetland CH4 fluxes, as well
as Elise Potier and Yilong Wang for providing the estimates of nu-
clear emissions of 14CO2.

Financial support. This research has been supported by the Euro-
pean Commission, Horizon 2020 Framework Programme (VER-
IFY, grant no. 776810).

Review statement. This paper was edited by Thomas Röckmann
and reviewed by Peter Rayner and one anonymous referee.

References

Aho, A. V., Hopcroft, J. E., and Ullman, J. D.: The Design and
Analysis of Computer Algorithms, Addison-Wesley, ISBN 978-
0-201-00029-0, 1974.

Bozhinova, D., van der Molen, M. K., van der Velde, I. R.,
Krol, M. C., van der Laan, S., Meijer, H. A. J., and Peters,
W.: Simulating the integrated summertime 114CO2 signature
from anthropogenic emissions over Western Europe, Atmos.
Chem. Phys., 14, 7273–7290, https://doi.org/10.5194/acp-14-
7273-2014, 2014.

Brownlow, R., Lowry, D., Fisher, R. E., France, J. L., Lanoisellé,
M., White, B., Wooster, M. J., Zhang, T., and Nisbet, E. G.:
Isotopic ratios of tropical methane emissions by atmospheric
measurement, Global Biogeochem. Cy., 31, 2017GB005689,
https://doi.org/10.1002/2017gb005689, 2017.

Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E.,
Solazzo, E., Monforti-Ferrario, F., Olivier, J., and Vignati, E.:
EDGAR v5.0 Greenhouse Gas Emissions, European Commis-
sion, Joint Research Centre (JRC) [data set], http://data.europa.
eu/89h/488dc3de-f072-4810-ab83-47185158ce2a (last access:
12 January 2023), 2019.

Dlugokencky, E. J., Nisbet, E. G., Fisher, R., and Lowry,
D.: Global atmospheric methane: budget, changes
and dangers, Phil. Trans. Roy. Soc., 369, 2058–2072,
https://doi.org/10.1098/rsta.2010.0341, 2011.

Enting, I. G.: Inverse Problems in Atmospheric Constituent Trans-
port, Cambridge University Press, Cambridge, ISBN 978-0-511-
53574-1 , 2002.

Fisher, R. E., Sriskantharajah, S., Lowry, D., Lanoisellé, M.,
Fowler, C. M. R., James, R. H., Hermansen, O., Myhre, C.
L., Stohl, A., Greinert, J., Nisbet-Jones, P. B. R., Mienert,
J., and Nisbet, E. G.: Arctic methane sources: Isotopic evi-
dence for atmospheric inputs, Geophys. Res. Lett., 38, L21803,
https://doi.org/10.1029/2011gl049319, 2011.

Fisher, R. E., France, J. L., Lowry, D., Lanoisellé, M., Brownlow,
R., Pyle, J. A., Cain, M., Warwick, N., Skiba, U. M., Drewer, J.,
Dinsmore, K. J., Leeson, S. R., Bauguitte, S. J. B., Wellpott, A.,
O’Shea, S. J., Allen, G., Gallagher, M. W., Pitt, J., Percival, C. J.,
Bower, K., George, C., Hayman, G. D., Aalto, T., Lohila, A., Au-
rela, M., Laurila, T., Crill, P. M., McCalley, C. K., and Nisbet, E.
G.: Measurement of the 13C isotopic signature of methane emis-

sions from Northern European wetlands, Global Biogeochem.
Cy., 31, 2016GB005504, https://doi.org/10.1002/2016gb005504,
2017.

Giorgino, T.: Computing and Visualizing Dynamic Time Warping
Alignments in R: The dtw Package, J. Stat. Softw., 31, 1–24,
https://doi.org/10.18637/jss.v031.i07, 2009.

Gloor, M., Fan, S., Pacala, S., and Sarmiento, J.: Optimal sampling
of the atmosphere for purpose of inverse modeling: A model
study, Global Biogeochem. Cy., 14, 407–428, 2000.

Hardt, M. and Scherbaum, F.: The design of optimum networks
for aftershock recordings, Geophys. J. Int., 117, 716–726,
https://doi.org/10.1111/j.1365-246X.1994.tb02464.x, 1994.

Jones, M. W., Andrew, R. M., Peters, G. P., Janssens-Maenhout,
G., De-Gol, A. J., Ciais, P., Patra, P. K., Chevallier, F., De-
Gol, A. J., Ciais, P., Patra, P. K., and Le Quéré, C.: Grid-
ded fossil CO2 emissions and related O2 combustion consistent
with national inventories 1959–2018, Scientific Data, 8, 1–23,
https://doi.org/10.1038/s41597-020-00779-6, 2020a.

Jones, M. W., Andrew, R. M., Peters, G. P., Janssens-
Maenhout, G., De-Gol, A. J., Ciais, P., Patra, P. K., Cheval-
lier, F., and Le Quéré, C.: Gridded fossil CO2 emissions
and related O2 combustion consistent with national invento-
ries 1959–2018 (GCP-GridFEDv2019.1), Zenodo [data set],
https://doi.org/10.5281/zenodo.3958283, 2020b.

Lucas, D. D., Yver Kwok, C., Cameron-Smith, P., Graven, H.,
Bergmann, D., Guilderson, T. P., Weiss, R., and Keeling, R.: De-
signing optimal greenhouse gas observing networks that consider
performance and cost, Geosci. Instrum. Method. Data Syst., 4,
121–137, https://doi.org/10.5194/gi-4-121-2015, 2015.

Menoud, M., van der Veen, C., Scheeren, B., Chen, H.,
Szénási, B., Morales, R. P., Pison, I., Bousquet, P., Brun-
ner, D., and Röckmann, T.: Characterisation of methane
sources in Lutjewad, The Netherlands, using quasi-continuous
isotopic composition measurements, Tellus B, 72, 1–20,
https://doi.org/10.1080/16000889.2020.1823733, 2020.

Nickless, A., Ziehn, T., Rayner, P. J., Scholes, R. J., and Engel-
brecht, F.: Greenhouse gas network design using backward La-
grangian particle dispersion modelling – Part 2: Sensitivity anal-
yses and South African test case, Atmos. Chem. Phys., 15, 2051–
2069, https://doi.org/10.5194/acp-15-2051-2015, 2015.

Patra, P. K. and Maksyutov, S.: Incremental approach to the opti-
mal network design for CO2 surface source inversion, Geophys.
Res. Lett., 29, 97-1–97-4, https://doi.org/10.1029/2001gl013943,
2002.

Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cas-
siani, M., Eckhardt, S., Arnold, D., Morton, D., Thomp-
son, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sode-
mann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart,
J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and
Stohl, A.: The Lagrangian particle dispersion model FLEX-
PART version 10.4, Geosci. Model Dev., 12, 4955–4997,
https://doi.org/10.5194/gmd-12-4955-2019, 2019.

Potier, E., Broquet, G., Wang, Y., Santaren, D., Berchet, A., Pison,
I., Marshall, J., Ciais, P., Bréon, F.-M., and Chevallier, F.: Com-
plementing XCO2 imagery with ground-based CO2 and 14CO2
measurements to monitor CO2 emissions from fossil fuels on
a regional to local scale, Atmos. Meas. Tech., 15, 5261–5288,
https://doi.org/10.5194/amt-15-5261-2022, 2022.

https://doi.org/10.5194/amt-16-235-2023 Atmos. Meas. Tech., 16, 235–246, 2023

https://doi.org/10.5194/acp-14-7273-2014
https://doi.org/10.5194/acp-14-7273-2014
https://doi.org/10.1002/2017gb005689
http://data.europa.eu/89h/488dc3de-f072-4810-ab83-47185158ce2a
http://data.europa.eu/89h/488dc3de-f072-4810-ab83-47185158ce2a
https://doi.org/10.1098/rsta.2010.0341
https://doi.org/10.1029/2011gl049319
https://doi.org/10.1002/2016gb005504
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.1111/j.1365-246X.1994.tb02464.x
https://doi.org/10.1038/s41597-020-00779-6
https://doi.org/10.5281/zenodo.3958283
https://doi.org/10.5194/gi-4-121-2015
https://doi.org/10.1080/16000889.2020.1823733
https://doi.org/10.5194/acp-15-2051-2015
https://doi.org/10.1029/2001gl013943
https://doi.org/10.5194/gmd-12-4955-2019
https://doi.org/10.5194/amt-15-5261-2022


246 R. L. Thompson and I. Pisso: A flexible algorithm for network design based on information theory

Rayner, P. J., Enting, I. G., and Trudinger, C. M.: Optimizing the
CO2 observing network for constraining sources and sinks, Tel-
lus B, 48, 433–444, 1996.

Rayner, P. J., Enting, I. G., Francey, R. J., and Langenfelds,
R.: Reconstructing the recent carbon cycle from atmospheric
CO2, δ13C and O2/N2 observations, Tellus B, 51, 213–232,
https://doi.org/10.3402/tellusb.v51i2.16273, 1999.

Reeburgh, W. S., Hirsch, A. I., Sansone, F. J., Popp, B. N., and Rust,
T. M.: Carbon kinetic isotope effect accompanying microbial ox-
idation of methane in boreal forest soils, Geochim. Cosmochim.
Ac., 61, 4761–4767, 1997.

Risch, M. R., Kenski, D. M., and Gay, D. A.: A Great
Lakes Atmospheric Mercury Monitoring network: Eval-
uation and design, Atmos. Environ., 85, 109–122,
https://doi.org/10.1016/j.atmosenv.2013.11.050, 2014.

Rodgers, C. D.: Inverse methods for atmospheric sounding: the-
ory and practice, World Scientific, https://doi.org/10.1142/3171,
2000.

Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker,
I., Berry, J., Prihodko, L., Suits, N., and Philpott, A.: Com-
bined Simple Biosphere/Carnegie-Ames-Stanford Approach ter-
restrial carbon cycle model, J. Geophys. Res., 113, 187, G03034,
https://doi.org/10.1029/2007jg000603, 2008.

Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller,
J. B., Etiope, G., Dlugokencky, E. J., Michel, S. E.,
Arling, V. A., Vaughn, B. H., White, J. W. C., and
Tans, P. P.: Upward revision of global fossil fuel methane
emissions based on isotope database, Nature, 538, 88–91,
https://doi.org/10.1038/nature19797, 2016.

Seibert, P. and Frank, A.: Source-receptor matrix calculation with
a Lagrangian particle dispersion model in backward mode, At-
mos. Chem. Phys., 4, 51–63, https://doi.org/10.5194/acp-4-51-
2004, 2004.

Shiga, Y. P., Michalak, A. M., Kawa, S. R., and Engelen, R. J.: In-
situ CO2 monitoring network evaluation and design: A criterion
based on atmospheric CO2 variability, J. Geophys. Res.-Atmos.,
118, 2007–2018, https://doi.org/10.1002/jgrd.50168, 2013.

Strassen, V.: Gaussian Elimination is not Optimal, Numer. Math.,
13, 354–356, https://doi.org/10.1007/BF02165411, 1969.

Tarantola, A.: Inverse problem theory and methods for model pa-
rameter estimation, Society for Industrial and Applied Mathe-
matics, ISBN 978-0-89871-572-9, 2005.

Thompson, R. and Pisso, I.: A Flexible Algorithm for Net-
work Design Based on Information Theory, Zenodo [code],
https://doi.org/10.5281/zenodo.7070622, 2022.

Turnbull, J., Rayner, P., Miller, J., Naegler, T., Ciais, P., and
Cozic, A.: On the use of 14CO2 as a tracer for fossil
fuel CO2: Quantifying uncertainties using an atmospheric
transport model, J. Geophys. Res.-Atmos., 114, D22302,
https://doi.org/10.1029/2009jd012308, 2009.

Turnbull, J. C., Lehman, S. J., Miller, J. B., Sparks, R. J., Southon,
J. R., and Tans, P. P.: A new high precision 14CO2 time series for
North American continental air, J. Geophys. Res.-Atmos., 112,
D11310, https://doi.org/10.1029/2006jd008184, 2007.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen,
T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E.,
Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla,
P. S.: Global fire emissions estimates during 1997–2016, Earth
Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-
2017, 2017 (https://www.geo.vu.nl/~gwerf/GFED/GFED4/, last
access: 12 January 2023).

Weber, T.: ocean_ch4.nc, figshare [data set],
https://doi.org/10.6084/m9.figshare.9034451.v1, 2019.

Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane
emissions dominated by shallow coastal waters, Nat. Commun.,
10, 1–10, https://doi.org/10.1038/s41467-019-12541-7, 2019.

WMO: Guidelines for the Measurement of Methane and Ni-
trous Oxide and their Quality Assurance, GAW Report
No. 185, Geneva, Switzerland, https://library.wmo.int/index.
php?lvl=notice_display&id=139#.Y8E2ay0w3Fw (last access:
12 January 2023), 2009.

WMO: 19th WMO/IAEA Meeting on Carbon Dioxide, Other
Greenhouse Gases and Related Measurement Techniques
(GGMT-2017), Geneva, Switzerland, https://library.wmo.int/
index.php?lvl=notice_display&id=20698#.Y8E3AS0w3Fw (last
access: 12 January 2023), 2018.

Yu, J., Xie, Z., Sun, L., Kang, H., He, P., and Xing, G.: δ13C-
CH4 reveals CH4 variations over oceans from mid-latitudes to
the Arctic, Sci. Rep., 5, 1–9, https://doi.org/10.1038/srep13760,
2015.

Atmos. Meas. Tech., 16, 235–246, 2023 https://doi.org/10.5194/amt-16-235-2023

https://doi.org/10.3402/tellusb.v51i2.16273
https://doi.org/10.1016/j.atmosenv.2013.11.050
https://doi.org/10.1142/3171
https://doi.org/10.1029/2007jg000603
https://doi.org/10.1038/nature19797
https://doi.org/10.5194/acp-4-51-2004
https://doi.org/10.5194/acp-4-51-2004
https://doi.org/10.1002/jgrd.50168
https://doi.org/10.1007/BF02165411
https://doi.org/10.5281/zenodo.7070622
https://doi.org/10.1029/2009jd012308
https://doi.org/10.1029/2006jd008184
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.5194/essd-9-697-2017
https://www.geo.vu.nl/~gwerf/GFED/GFED4/
https://doi.org/10.6084/m9.figshare.9034451.v1
https://doi.org/10.1038/s41467-019-12541-7
https://library.wmo.int/index.php?lvl=notice_display&id=139#.Y8E2ay0w3Fw
https://library.wmo.int/index.php?lvl=notice_display&id=139#.Y8E2ay0w3Fw
https://library.wmo.int/index.php?lvl=notice_display&id=20698#.Y8E3AS0w3Fw
https://library.wmo.int/index.php?lvl=notice_display&id=20698#.Y8E3AS0w3Fw
https://doi.org/10.1038/srep13760

	Abstract
	Introduction
	Methodology
	Examples
	Enhancing a network for estimating sources of CH4
	Network of 14CO2 measurements for fossil fuel emissions

	Discussion
	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

