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Abstract. This study uses surface disdrometer reflectivity
factor estimates to calibrate the vertical and off-vertical
pointing radar beams produced by an ultra high frequency
(UHF) band radar wind profiler (RWP) deployed at the US
Department of Energy (DOE) Atmospheric Radiation Mea-
surement (ARM) program Southern Great Plains (SGP) Cen-
tral Facility in northern Oklahoma from April 2011 through
July 2019. The methodology consists of five steps. First,
the recorded Doppler velocity power spectra are adjusted
to account for Nyquist velocity aliasing and coherent inte-
gration filtering effects. Second, the spectrum moments are
calculated. The third step increases the signal-to-noise ratio
(SNR) due to inflated noise power estimates during convec-
tive rain events that cause SNR to be biased low. The fourth
step determines the RWP calibration constant for one radar
beam (called the “reference” beam) by comparing uncali-
brated RWP reflectivity factors at 500 m above the ground
to 1 min resolution surface disdrometer reflectivity factors.
The last step uses the calibrated reference beam reflectivity
factor to calibrate the other radar beams during precipitation.
There are two key findings. The RWP sensitivity decreased
by approximately 3 to 4 dByr−1 as the hardware aged. This
drift was slow enough that the reference calibration constant
can be estimated over 3-month intervals using episodic rain
events. The calibrated moments are available on the DOE
ARM data archive, and the Python processing code is avail-
able on public repositories.

1 Introduction

Ultra high frequency (UHF) band (900–1290 MHz) radar
wind profiler (RWP) technology was developed in the 1980s
by the US National Oceanic and Atmospheric Administra-
tion (NOAA) Aeronomy Laboratory and Wave Propagation
Laboratory to study the horizontal wind motions from near
the surface to approximately 5 kma.g.l. (Ecklund et al., 1988;
Angevine et al., 1996, 1998; Carter et al., 1995). When rain-
drops are not in the radar resolution volume, the radar return
power during this “clear-air” condition is due to Bragg scat-
tering from changes in the refractive index caused by tem-
perature and humidity gradients (Gage and Balsley, 1978).
When raindrops are in the radar resolution volume, the long
radar wavelength of 0.25 to 0.33 m implies that Rayleigh
scattering dominates the return signal, providing a verti-
cal structure of precipitation without any signal attenuation
(Rogers et al., 1993). Calibration procedures for radars oper-
ating at higher frequencies will need to account for attenua-
tion through the precipitation (Williams, 2022).

Radars measure the return signal power as a function
of range. For meteorological applications, the signal power
needs to be converted to radar reflectivity factor. In general,
there are two methods to convert signal power to radar reflec-
tivity factor. The first method directly converts the measured
power and range information into radar reflectivity factor.
This method requires rigorous characterization of every radar
hardware component using best engineering practices. For
radars with steerable antennas, rigorous engineering prac-
tices include recording the transmitted power in real time and
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performing balloon-mounted sphere calibrations to charac-
terize the antenna beam pattern and beam-pointing hardware
(Chandrasekar et al., 2015). For radars that are not end-to-
end rigorously characterized (e.g. radar wind profilers), the
radar reflectivity factor can be estimated indirectly by us-
ing the noise relative signal power (i.e. signal-to-noise ra-
tio, SNR) and an external reference to determine the radar
calibration constant. For vertically pointing radars, the ex-
ternal reference has come from ground-based radars (e.g.
Hogan et al., 2000; Williams, 2012; Kneifel et al., 2015;
Radenz et al., 2018), from nearby surface disdrometer obser-
vations (Gage et al., 2000; Williams et al., 2005; Myagkov
et al., 2020), from nearby rain gauges (Hartten et al., 2019),
and from satellite radar statistics (Protat et al., 2011; Kollias
et al., 2019; Hartten et al., 2019; Protat et al., 2022).

Since RWPs were originally designed for horizontal wind
profile measurements, the NOAA Doppler velocity power
spectra processing routines were optimized to estimate mean
radial velocity and did not estimate radar reflectivity fac-
tor (Merritt, 1995). Even today, real-time processed NOAA
RWP datasets do not estimate radar reflectivity factor but
include the spectrum moments of SNR, mean radial veloc-
ity, spectrum width, and noise power (NOAA, 2022). The
radar reflectivity factor is estimated from SNR as shown in
Gage et al. (1994, 2000) and described in more detail in Tri-
don et al. (2013) and Hartten et al. (2019). One limitation
of RWP signal processing routines is that increased noise
power occurs at range gates that have large backscattered sig-
nal power. This overestimated noise power leads to underes-
timated SNR, which leads to underestimated radar reflectiv-
ity factor. The elevated noise power in RWPs was discussed
in Tridon et al. (2013) and mitigated by using the measured
noise power at far range gates as a new noise power at all
range gates. The adjusted SNR is then used to estimate the
radar reflectivity factor. The work presented herein builds on
the concepts discussed in Tridon et al. (2013) but includes ad-
ditional SNR biases not discussed in that work. Specifically,
this study includes signal power biases due to Nyquist veloc-
ity aliasing and coherent integration filtering. Also, this study
uses a daily median noise power in the adjusted SNR esti-
mate to account for RWP operating modes that do not have
range gate sampling above intense precipitation such that the
noise power is still biased high at the “far” range gates.

As discussed above, an external reference is needed to de-
termine a radar calibration constant, and this study uses sur-
face disdrometer reflectivity factors to calibrate RWP radar
reflectivity factors obtained at 500 m. The surface disdrome-
ter was about 100 m from the RWP, and the calibration pro-
cedure includes shifting the time-series data to account for
the 500 m vertical displacement and 100 m horizontal sepa-
ration between the measurement locations. Depending on the
wind speed and direction, disdrometer time-series data could
lead or lag the RWP time-series data. An overarching aim of
this study is to standardize the RWP signal processing steps
to remove known biases in radar reflectivity factor estimates

and provide those codes to the radar community on a public
repository.

The radar and disdrometer datasets used in this study are
described in Sect. 2 (Datasets). Spectrum adjustment meth-
ods are discussed in Sect. 3 (Methods) and include adjust-
ments due to Nyquist velocity aliasing, coherent integration
filtering, and increased noise power. Section 3 also includes
calibration methods derived from surface disdrometer obser-
vations. In Sect. 4 (Results), the radar calibration constant is
shown to vary over an 8-year dataset, with decreased sensi-
tivity caused by degrading hardware and sudden increases in
sensitivity due to installing new hardware. Conclusions are
presented in Sect. 5, and Appendix A provides additional
processing code details.

2 Datasets

This study uses radar observations from a UHF-band radar
wind profiler (RWP) operating at 915 MHz and a surface dis-
drometer located at the US Department of Energy (DOE) At-
mospheric Radiation Measurement (ARM) program (Mather
and Voyles, 2013) Southern Great Plains (SGP) Central Fa-
cility in northern Oklahoma, USA, from 22 March 2011
to 18 August 2019. All datasets used in this study are
available online using the ARM data discovery tool (ARM
1998a, b, c, d, 2011).

2.1 Radar wind profiler

The ARM SGP Central Facility RWP was a Vaisala Mete-
orological Systems Inc. LAP-3000 wind profiler (Muradyan
and Coulter, 2020) and is a commercial version of the NOAA
UHF wind profiler developed under an industry–government
1991 Cooperative Research and Development Agreement
(CRADA). From 22 March 2011 to 31 March 2014, the RWP
operated in a precipitation mode observing only in the ver-
tical direction. The precipitation mode sampled the atmo-
sphere with a short and long pulse, yielding low-sensitivity
short-range measurements and high-sensitivity long-range
measurements, respectively. On 1 April 2014, a wind mode
was added to the RWP and consisted of transmitting pulses
in three different directions in order to estimate the horizon-
tal wind as a function of height. The RWP collected data in
both precipitation and wind modes for 5 years. On 11 March
2019, the wind mode operating parameters changed, and on
19 August 2019, the RWP hardware failed and was even-
tually replaced with a wind profiler produced by a differ-
ent radar manufacturer. The LAP-3000 RWP can only col-
lect data in one beam direction with one pulse configura-
tion at a time. Thus, during the 2011 to 2014 period, the
radar alternated between two vertically pointing precipita-
tion mode radar beams, requiring approximately 5 s to collect
both beams of data. During the 2014 to 2019 period, the radar
sequentially collected data in five unique radar beams (i.e.
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Table 1. Pertinent RWP operating parameters (SGP Central Facility, 22 March 2011 through 18 August 2019).

Operating frequency (MHz) 915
Operating wavelength (m) 0.328

Precip. short pulse Precip. long pulse Wind mode

Observation start date 22 March 2011 22 March 2011 1 April 2014

Observation end date 18 August 2019 18 August 2019 10 March 2019

Beam V Beam A Beam B

Pulse duration (ns) 417 2833 708 708 708
Range resolution (m) 62.5 425 106 106 106
Distance between range gates (m) 125 then 62.5a 212.5 62.5 62.5 62.5
Number of range gates 75 then 150a 75 60 60 60
Range to first gate (m) 327 327 373 373 373
Range to last gate (km) 9.6 16.0 4.0 4.0 4.0
Elevation angle (degree) 90 90 90 77 77
Azimuth angle (degree) 22 22 22 22 292
Inter-pulse period (Tipp) (µs) 100 120 41 41 41
Number of coherent integrations (Ncoh) 56 34 200 200 200
Number of points in spectrum (Npts) 128 128 64 64 64
Number of averaged spectra (Nspc) 3 4 12 12 12
Number of transmitted pulses per dwellb 21 504 17 408 153 600 153 600 153 600
Nyquist velocity (VNyquist) (ms−1) 14.6 19.6 9.99 9.99 9.99
Velocity resolution (v) (ms−1) 0.228 0.306 0.312 0.312 0.312
Dwellc (s) 2.2 2.1 6.3 6.3 6.3

a Distance between range gates and the number of range gates changed on 4 April 2014. b Number of transmitted pulses per dwell: (NcohNnptsNspc).
c Dwell is the time needed to transmit all pulses: Dwell= (TippNcohNptsNspc) (s).

two precipitation mode beams and three wind mode beams),
requiring approximately 25 s to complete one observation cy-
cle. Table 1 lists pertinent RWP operating parameters for
both modes.

The ARM RWP uses the manufacturer’s default process-
ing routines (Muradyan and Coulter, 2020). For each mode,
the RWP transmits a sequence of pulses and performs coher-
ent integrations, fast Fourier transforms (FFTs), and spec-
tra averages. Using the precipitation short-pulse mode as an
example, the RWP transmits 56 radar pulses (represented
by Ncoh) and integrates the in-phase and quadrature volt-
ages (also called I and Q voltages) to produce one in-phase
and one quadrature voltage (i.e. Icoh and Qcoh). After col-
lecting 128 (represented by Npts) coherently averaged Icoh
and Qcoh voltages, a von Hann window is applied to the
time series and a complex FFT is performed to produce
a Doppler velocity power spectrum. Another sequence of
7168 pulses (calculated as NcohNnpts) is transmitted and pro-
cessed to produce another Doppler velocity power spectrum.
After producing three power spectra (represented by Nspc),
the three power spectra are averaged and saved to disc. The
option of calculating a median spectrum or statistically aver-
aging the three spectra (as discussed in Merritt, 1995) in or-
der to remove transient signals (e.g. birds or other flying ob-
jects passing through the radar beam) was not implemented.

A total of 21 504 pulses (NcohNptsNspc) are transmitted per
dwell and a 100 µs inter-pulse period yields a 2.2 s dwell.
For each Doppler velocity spectrum, the first three spectrum
moments (i.e. signal-to-noise ratio, mean radial velocity, and
spectrum width) are estimated using the manufacturer’s sin-
gle peak processing routine with integration limits bounded
by the Nyquist velocities±VNyquist. The average spectra and
the moments are saved to disc.

Between 2011 and 2019, the RWP had two hardware fail-
ures. In 2015, the phase shifter module controlling the beam-
pointing direction failed due to age and overuse. A new phase
shifter module was installed. In 2017, the final amplifier in
the transmitter module failed, and several relays failed in the
phase shifter module. The transmitter module was replaced
with a used Vaisala unit scavenged from a newer RWP, and
the relays were replaced. Since calibration constants change
with ageing and changing hardware, the RWP dataset is di-
vided into five calibration periods as listed in Table 2.

2.2 Surface disdrometer

A 2-dimensional video disdrometer (VDIS) manufactured
by Joanneum Research in Graz, Austria (Schönhuber et al.,
2008), was deployed about 100 m from the RWP at the SGP
Central Facility (Wang et al., 2021; ARM, 2011). The VDIS
uses two orthogonal pointing cameras in the horizontal plane
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Table 2. RWP operating periods with consistent hardware.

Period Start End Hardware version Operating modes

A 22 March 2011 31 March 2014 Radar hardware #1 Precipitation
B 1 April 2014 14 July 2015 Radar hardware #1 Precipitation and wind
– 15 July 2015 24 September 2015 Hardware failure No data collected
C 25 September 2015 10 April 2017 Radar hardware #2 Precipitation and wind
– 11 April 2017 5 June 2017 Hardware failure No data collected
D 6 June 2017 10 March 2019 Radar hardware #3 Precipitation and wind
E 11 March 2019 18 August 2019 Radar hardware #3 Precipitation

to detect raindrops falling through a 10 cm square opening
and then estimates the raindrop number concentration with a
1 min temporal resolution (Tokay et al., 2001, 2013). Radar
reflectivity factors assuming Rayleigh scattering were calcu-
lated using PyDisdrometer routines (Hardin and Guy, 2014),
as used in previous studies using VDIS observations (Gian-
grande et al., 2019).

The calibration procedure uses the 1 min surface disdrom-
eter radar reflectivity factor to estimate a RWP calibra-
tion constant for the precipitation short-pulse mode using
1 min averaged RWP observations at 500 m altitude. The
other RWP modes could be calibrated directly with the 1 min
surface disdrometer observations, but to increase the num-
ber of samples, the other RWP modes are calibrated using
the precipitation short-pulse mode as a reference and using
multiple range gates and nearest-in-time observations. The
calibration procedure described herein is only valid for RWP
modes that collect data while it is raining. If the RWP is adap-
tive and collects precipitation mode data when it is raining
and wind mode data otherwise, then there are not any nearest-
in-time precipitation mode observations nor surface disdrom-
eter observations available to calibrate the wind mode obser-
vations. In this situation, the precipitation mode data can be
calibrated, but the wind mode data cannot be calibrated with
the disdrometer observations.

3 Methods

The ARM RWP records the average Doppler velocity power
spectra, and real-time spectrum moments are calculated on
the RWP host computer using the RWP manufacturer pro-
cessing routines. These real-time spectrum moments are la-
belled “a0” using ARM’s file naming protocols (ARM, 2022)
and saved on the ARM archive in netCDF format (ARM
1998a, b, c, d). The recorded spectrum moments are not cali-
brated and do not include a radar reflectivity factor estimate.
To illustrate the motivation for reprocessing the recorded
spectra and recalculating the spectrum moments, Fig. 1
shows time–height cross-sections of recorded moments in-
cluding signal-to-noise ratio (SNRa0) (dB) (Fig. 1a), mean
radial velocity (V a0

mean) (ms−1) (Fig. 1b), and spectrum noise
power (P a0

noise) (dB) (Fig. 1c) for a rain event on 7 June 2018

using the precipitation short-pulse mode. Examination of the
SNRa0 time–height structure in Fig. 1a suggests convective
rain near 11:45 to 12:00 UTC, followed by stratiform rain
after about 12:15 UTC. There are a couple questionable fea-
tures in this figure between 11:35 and 12:10 UTC that raise
concern about the quality of the real-time spectrum moments.
First, the SNRa0 contains speckles of low-magnitude SNR
above the height of about 3 km. Second, the V a0

mean has large,
unphysical jumps in velocity over several range gates and
over several profiles due to Nyquist velocity aliasing. Third,
the spectrum noise power P a0

noise, which is the denominator in
estimating SNR, has large and variable magnitudes at nearly
all range gates. The first two features are due to the online
processing codes incorrectly estimating the spectrum mo-
ments, and the third feature is due to the broad signal veloc-
ity power spectra occupying a large portion of the velocity
power spectrum, causing the noise level estimate to be con-
taminated by the signal power.

This section describes the five-step RWP calibration
procedure. First, the raw Doppler velocity power spectra
are adjusted to account for both Nyquist velocity alias-
ing (see Sect. 3.1.1) and coherent integration filtering (see
Sect. 3.1.2). Second, the spectrum moments are recalculated
(see Sect. 3.1.3). Third, the recalculated SNR is increased to
account for leaking signal power into the noise power to yield
an adjusted signal-to-noise ratio (see Sect. 3.2). Fourth, a cal-
ibration constant is determined for the precipitation short-
pulse radar beam (defined as the “reference” beam) by com-
paring radar reflectivity factors with surface disdrometer ob-
servations (see Sect. 3.3). The last step determines relative
calibration offsets between the reference beam and the other
four radar beams. The calibration constant for each beam is
the combination of the reference beam calibration constant
and that beam’s relative calibration offset (see Sect. 3.4). To
differentiate between the real-time processed moments and
the reprocessed moments, the former estimates are labelled
“a0” and the latter are labelled “revised”.

3.1 Doppler velocity power spectrum adjustments and
calculating spectrum moments

This subsection describes three processing steps: (1) spec-
trum adjustments due to Nyquist velocity aliasing, (2) spec-
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Figure 1. Radar wind profiler (RWP) spectrum moments calculated
with the real-time processing algorithms and downloaded from the
DOE ARM archive. RWP is located at the SGP Central Facility.
Observations are from the vertically pointing beam using the pre-
cipitation short-pulse mode on 7 June 2018 between 11:20 and
12:40 UTC. (a) Signal-to-noise ratio (SNR) (dB), (b) mean radial
velocity with positive values moving downward toward the radar
(m s−1), and (c) spectrum noise power (dB).

trum adjustments due to coherent integration, and (3) recal-
culating the spectrum moments. Appendix A presents a flow
diagram illustrating how these processing steps are applied
to a profile of radar observations.

3.1.1 Eliminating Nyquist velocity aliasing

Nyquist velocity aliasing is when the target radial velocity
exceeds the Nyquist velocity, and the target appears to be
moving in the opposite direction. One velocity aliasing mit-
igation technique is to concatenate two copies of the same
Doppler velocity spectrum to remove the artificial bound-
ary at the Nyquist velocity (Williams et al., 2018). Figure 2
shows an example of velocity aliasing between 5 and 8 km
using precipitation short-pulse mode Doppler velocity power
spectra for a single profile collected on 7 June 2018 at
11:58:20 UTC. The original power spectra are plotted within
the Nyquist velocity (VNyquist) range of ± 14.6 ms−1, with
downward motions having positive values consistent with
raindrop gravitational fall speeds. The original spectra are
copied in Fig. 2 to visualize and to mitigate Nyquist veloc-
ity aliasing. Specifically, the original downward motions be-
tween 0 and 14.6 ms−1 are copied to upward motions be-
tween −29.2 and −14.6 ms−1. The original upward motions
between−14.6 and 0 ms−1 are copied to downward motions
between 14.6 and 29.2 ms−1. The red circles in Fig. 2 desig-
nate real-time mean radial velocity moments V a0

mean. Note the
jump in V a0

mean near 5.5 km from downward to upward mo-

tion, which is due to the assumption in the real-time signal
processing routines that all signal power is within the Nyquist
interval of ±VNyquist.

For spectra that have velocity aliasing, the SNR is biased
low when using the assumption that all of the signal power
is within ±VNyquist. This issue can be visualized in Fig. 3
and shows individual spectra at 6 km (Fig. 3a) and 3 km
(Fig. 3b). The signal-to-noise ratio can be estimated using
(Riddle et al., 2012):

SNR= 10log

[∑vend
vstart
[S(vi)− n]1v

nNpts1v

]
(dB), (1)

where vstart and vend (ms−1) are the integration limits indicat-
ing the start and end velocities of the power spectrum S(vi)
containing signal power (uncalibrated power per (ms−1)),
vi is the velocity bin, 1v (ms−1) is the velocity bin resolu-
tion, n is the spectrum mean noise level (uncalibrated power
per (ms−1)) (Hildebrand and Sekhon, 1974), and Npts is the
number of points in the spectrum. The real-time processing
routine uses only the spectrum between ±VNyquist to de-
termine the spectrum moments. In Fig. 3b, the maximum
magnitude is near 10 ms−1 (downward), the vstart integration
limit is near 0 ms−1, and the vend limit stops at the Nyquist
velocity of 14.6 ms−1. The spectrum between these integra-
tion limits is shaded red and labelled a0 spectrum in Fig. 3.
The revised processing routine uses the extended spectrum
that spans between ± 2VNyquist. Since the original spectrum
is copied into the extended spectrum, the maximum mag-
nitude peak that occurs near 10 ms−1 (downward) also oc-
curs near −19 ms−1 (upward). The revised processing rou-
tine uses information from the previous range gate to select
which of the two peaks to process. Appendix A describes the
processing steps using a prior velocity Vprior to select one of
the two peaks. After a peak is selected, the revised process-
ing routine uses the same search technique as the real-time
processing routine, except it uses the extended spectrum il-
lustrated in Figs. 2 and 3. For the spectrum shown in Fig. 3b,
the vstart integration limit is the same determined from the
real-time processing routine, but the vend limit extends past
the Nyquist velocity and ends where the spectrum crosses the
mean noise level near 20 ms−1 (downward). The different in-
tegration limits cause the real-time processing method to un-
derestimate both the SNR and mean radial velocity relative to
the dealiased method by 0.2 dB and 0.2 ms−1, respectively.
As will be seen in the next section, including the incoherent
averaging filtering effects will increase these differences.

In Fig. 2, between 5.5 and 9 km, V a0
mean appears to have

upward motion. This is because the true maximum spec-
trum magnitude has a downward velocity occurring outside
the ±VNyquist boundaries, and the aliased peak has an up-
ward velocity. Figure 3a shows the velocity power spectrum
at 6 km, and the real-time processing routine found integra-
tion limits that bound the upward spectrum maximum mag-
nitude peak near−12 ms−1. The integration limits are−14.6
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Figure 2. Spectra profile at time 11:58:20 UTC on 7 June 2018. Downward velocities have positive values and are approaching the ground-
based radar. Original spectra are plotted between Nyquist velocities −14.6 and 14.6 ms−1 and are indicated with solid lines. The portion
of original spectra with downward motion is copied to be more upward than the Nyquist velocity (i.e. portion labelled “a”), and the portion
of original spectra with upward motion is copied to be more downward than the Nyquist velocity (i.e. portion labelled “b”). Red circles
designate real-time estimated mean radial velocities, and blue squares denote revised mean radial velocities. Dashed line indicates 0 ms−1

velocities. Spectra magnitudes are uncalibrated spectral power density units expressed in decibels (i.e. 10log[S(v)] with units dB).

(at the Nyquist boundary) and approximately−5 ms−1. This
a0 spectrum region is shaded red in Fig. 3a. In contrast, the
revised processing routine selected the downward moving
peak in the dealiased spectrum and found integration lim-
its of approximately 11 and 24 ms−1 downward (spectrum
region with blue strips). The different integration limits pro-
duce significantly different mean radial velocities of V a0

mean
equal to −10.5 ms−1 and V revised

mean equal to 17.9 ms−1.

3.1.2 Coherent integration adjustment

Coherent integration is a signal processing technique that
accumulates the radar measured in-phase and quadrature
voltages (a.k.a. I and Q voltages) over consecutive trans-
mitted pulses. Sinusoidal oscillations with slowly varying
phase over the accumulation interval are said to be coherent,
and their accumulated I and Q voltages cause an increase
in signal power. Conversely, accumulating I and Q volt-
ages over high-frequency oscillations, including noise fluc-
tuations, will produce lower-magnitude accumulated I and

Q voltages resulting in smaller signal power. Thus, coher-
ent integration increases radar detection by acting as a low-
pass filter that increases low-frequency signal powers and de-
creases high-frequency noise power (Farley, 1985).

Coherent integration is also known as time-domain aver-
aging (TDA) and is implemented by changing the number
of coherent integration samples Ncoh, which changes the ef-
fective time between transmitted samples and decreases the
Nyquist velocity using

VNyquist =

(
λ

4

)(
1

NcohTIPP

)
, (2)

where λ is the radar operating wavelength and TIPP is the
inter-pulse period (a.k.a. time between transmitted pulses).
Coherent integration also applies a boxcar filter to the I and
Q voltage time-series samples before integrating, which is
equivalent to applying a low-pass filter to the integrated time
series (Wilfong et al., 1999). Since coherent integration is
performed before computing the FFT on the complex I and
Q voltage samples, the low-pass filter manifests as a reduc-
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Figure 3. Example of integration limits used in the real-time
and revised spectrum moment estimation algorithms. Uncalibrated
spectral power density expressed in decibels (dB) for profile at
11:58:20 UTC on 7 June 2018 at (a) 6 km and (b) 3 km. Red shad-
ing and horizontal blue bars indicate spectral power density used to
estimate a0 and revised moments, respectively.

tion in FFT signal power magnitude as a function of veloc-
ity vi and has the form (Schmidt et al., 1979)

S
signal
recorded(vi)

= S
signal
expected(vi)


sin2

[
π
(
vi
1v

)
Npts

]
(
N2

coh
)(

sin2

[
π
(
vi
1v

)
NcohNpts

])
 , (3)

where Ssignal
recorded(vi) is the recorded signal power spectrum

at velocity bin vi , S
signal
expected(vi) is the expected signal power

spectrum without any time-domain low-pass filtering effects,
andNpts is the number of complex I andQ samples after co-
herent integration, which is also the number of velocity bins
in the power spectrum after performing the FFT calculation.
The ratio ( vi

1v
) yields integers from −Npts

2 to Npts
2 . Note that

the low-pass filter response function (the expression within
the square brackets in Eq. 3) has a magnitude of one when
vi = 0 and decreases with increasing vi .

The impact of the TDA low-pass filter can be mitigated by
applying a correction factor to the recorded Doppler velocity
power spectra, as discussed in Wilfong et al. (1999). Since
the low-pass filter only affects coherent signals, the correc-
tion factor should only be applied to the signal portion of the
power spectrum and not to the random noise power. Thus, the

Figure 4. Similar to Fig. 3, except the revised spectra (blue line and
horizontal blue bars) have been TDA-corrected using Eq. (4).

TDA-corrected power spectrum STDA(vi) is estimated using

STDA(vi)=

[S(vi)− n]


(
N2

coh
)(

sin2

[
π
(
vi
1v

)
NcohNpts

])

sin2

[
π
(
vi
1v

)
Npts

]
+ n, (4)

where S(vi) is the recorded Doppler velocity power spec-
trum. For the precipitation short-pulse mode, the correc-
tion factor magnitude (the expression in the square brack-
ets in Eq. 4) at ±VNyquist is 2.47 in natural units as in
Eq. (4) or 3.9 dB in decibels. Figure 4 shows the recorded
power spectra shown in Fig. 3, with the revised spectrum
corrected for the TDA filtering expressed in Eq. (4). The
SNR and mean radial velocity moments for real-time mo-
ments and the revised spectrum are listed in Fig. 4. Com-
paring the non-TDA- and TDA-corrected moments for the
dealiased spectra at 6 km (see Figs. 3a and 4a, respectively)
indicates that the SNR increased by 7.4 dB, and the mean
radial velocity became more downward by 1.6 ms−1 when
including the TDA filter correction. Note that the difference
in a0 and TDA-corrected mean radial velocities at 6 km is
30 ms−1 (see Fig. 4a) and is not a multiple of ± 2VNyquist
(± 29.2 ms−1). This indicates that simple integer± 2VNyquist
adjustments, as proposed by Tridon et al. (2013), will not ac-
count for improper integration limits used in the real-time
processing routines.

3.1.3 Calculating spectrum moments

After adjusting the recorded spectrum due to Nyquist ve-
locity aliasing and coherent integration effects, the spec-

https://doi.org/10.5194/amt-16-2381-2023 Atmos. Meas. Tech., 16, 2381–2398, 2023



2388 C. R. Williams et al.: Calibrating radar wind profilers

trum moments are calculated following the method and equa-
tions presented in Williams et al. (2018) Appendix A. The
calculated revised spectrum moments include spectrum sig-
nal power (P revised

signal ) (dB), spectrum noise power (P revised
noise )

(dB), signal-to-noise ratio (SNRrevised) (dB), spectrum mean
radial velocity (V revised

mean ) (ms−1), spectrum SD (σ revised)
(ms−1), spectrum width (W revised

= 2σ revised) (ms−1), spec-
trum skewness, and spectrum kurtosis. The dealiasing proce-
dure described in Sect. 3.1.1 produces a spectrum with two
peaks (e.g. see Figs. 2 and 3). To determine which peak to
analyse, the processing routine starts at the lowest range gate
and calculates a prior velocity Vprior that is used to select a
peak in the next range gate. More details of the processing
steps are provided in Appendix A.

3.2 Signal-to-noise ratio (SNR) adjustment

Signal power is estimated relative to the estimated mean
noise power and is quantified with the signal-to-noise ratio
SNR. If the noise power estimate is too large, then the signal-
to-noise ratio and the inferred signal power are underesti-
mated. The a0 processed noise power P a0

noise shown in Fig. 1c
had increased magnitudes at nearly all range gates during
the convective rain event between approximately 11:35 and
12:10 UTC. This increased noise power is not expected for
RWPs because the gain is constant with range so that noise
power should be independent of range. Also, Fig. 2 shows
signal power spread over a large fraction of the velocity spec-
trum. These two features are linked: the broad signal spectra
are causing increased noise power estimates. Specifically, as
the signal velocity power spectrum broadens and occupies
more of the velocity spectrum, the noise estimator is biased
by the inclusion of signal power. The RWP online signal pro-
cessing uses the Hildebrand and Sekhon (1974) noise level
estimator to separate noise-only spectral bins from signal-
plus-noise spectral bins based on the statistical properties of
both populations (for more details see Merritt, 1995, and Wil-
fong et al., 1999). If the signal-plus-noise spectral bins are
included in the noise-only population, then the noise level
estimate will be biased high, leading to an underestimated
SNR. To correct for this low SNR bias, a reference noise
power P reference

noise (dB) is determined and an adjusted SNR is
estimated using

SNRrevised
adjusted = SNRrevised

+P revised
noise −P

reference
noise (dB), (5)

where SNRrevised and P revised
noise are moments calculated in

Sect. 3.1.3.
The noise power for every spectrum is estimated using

the method outlined in Hildebrand and Sekhon (1974). The
reference noise power P reference

noise is the median noise power
derived from all spectra collected on a given day. Figure 5
shows the daily median noise power for the precipitation
short pulse (black plusses) and long pulse (red crosses) for
the 8-year dataset. The jump in daily median noise power

Figure 5. Daily median noise level for the precipitation short-pulse
(black plusses) and long-pulse (red crosses) mode for observations
between 2011 and 2019.

Figure 6. Moment profiles at time 11:48:25 UTC on 7 June 2018.
(a) SNR and spectrum noise power from real-time spectrum pro-
cessing routines. (b) Adjusted SNR using the a0 moments shown
in panel (a) (thick blue line) and adjusted SNR using the revised
spectral method (thin red line). The adjusted SNR profiles are offset
because of different reference noise values.

in mid-2017 corresponds to replacing the transmitter with a
used, yet updated version, from the same RWP vendor. It is
interesting to note that the seasonal noise variation decreased
with the updated transmitter and not when the equipment
shelter air conditioning system was updated in mid-2016.

Figure 6 illustrates the impact of adjusting the signal-
to-noise ratio with the reference noise power. Figure 6a
shows the real-time estimated SNRa0 (thick line) and P a0

noise
(thin line) profiles. The large variations in P a0

noise between 4
and 5 km appear as large and inverse variations in SNRa0.
Figure 6b shows the adjusted signal-to-noise ratio using two
methods. The method described in Tridon et al. (2013) uses
the real-time moments (SNRa0 and P a0

noise) to estimate the
adjusted signal-to-noise ratio SNRa0

adjusted (thick blue line in
Fig. 6b). The method described herein recalculates the mo-
ments and then estimates the adjusted signal-to-noise ratio
SNRrevised

adjusted using Eq. (5) (thin red line). The profile offset
in Fig. 6b is due to different reference noise powers used in
the two methods. The SNRa0

adjusted has more variability than
SNRrevised

adjusted, indicating that the revised spectra reprocessing
method produces smoother, more vertically consistent SNR
vertical profiles than the Tridon et al. (2013) method.
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3.3 Calibrating reference beam to surface disdrometer

The precipitation short-pulse beam is defined as the RWP
reference beam, and the radar reflectivity factor ZPrecipShort

(dBZ) for this beam is estimated from the adjusted signal-to-
noise ratio SNRPrecipShort

adjusted using

ZPrecipShort(r)= SNRPrecipShort
adjusted + 20log(r)

+CPrecipShort(dBZ), (6)

where r (m) is range from the radar, and CPrecipShort (dB)
is the calibration constant. To estimate the calibration con-
stant CPrecipShort, an initial value of CPrecipShort equal to 0 dB
is selected, and Eq. (6) is used to estimate the RWP reflec-
tivity factor at all range gates. These initial RWP reflectivity
factors at 500 ma.g.l. are averaged into 1 min quantities and
then compared with the 1 min surface disdrometer radar re-
flectivity factors. Using only disdrometer reflectivity factors
between 20 and 40 dBZ, the reflectivity factor differences
are calculated for RWP lags between ± 4 min. Both positive
and negative lags are needed because the two instruments are
separated by approximately 100 m, and the horizontal wind
speed and direction can cause the surface rain observations
to occur before the radar observations at 500 m altitude. Fig-
ure 7 shows scatter plots and statistics of mean, SD, and Pear-
son’s correlation coefficient for the 7 June 2018 rain event
at nine different lags. For this rain event, the distribution in
Fig. 7d is selected for calibration because it has the highest
Pearson’s correlation coefficient of 0.95.

Using the calibration constant and lag determined from
Fig. 7d (i.e. CPrecipShort

=−49.5 dB and −1 min lag), Fig. 8a
shows the time–height cross-section of calibrated RWP pre-
cipitation short-pulse mode radar reflectivity factor. Fig-
ure 8b shows a time series of RWP reflectivity factor at
500 m (red crosses) and the surface disdrometer reflectivity
factor (black plusses). The thin blue lines in Fig. 8b at 20 and
40 dBZ indicate the reflectivity factor range used for calculat-
ing the RWP and disdrometer differences, which are shown
in Fig. 8c. Also shown in Fig. 8c are the statistics for this lag,
including lag, number of samples, calibration constant, SD,
and Pearson’s correlation coefficient. Figure 8d shows sur-
face disdrometer rain rate RR and mass-weighted mean di-
ameter Dm. The SD of 1.9 dB for this event is due to spa-
tiotemporal mismatch between the surface disdrometer and
radar sample volume as well as measurement uncertainties of
both instruments and is comparable to 1 to 2 dB measurement
uncertainties of side-by-side surface disdrometers (Tapiador
et al., 2017; Wang et al., 2021). Note that the lag is only used
in the calibration procedure and not used as a time offset for
any other purpose.

Figure 9 shows improved moments and calibrated reflec-
tivity factors for the same rain event shown in Fig. 1. The top
panel (Fig. 9a) shows the revised adjusted signal-to-noise ra-
tio (SNRPrecipShort

adjusted ), and the middle panel (Fig. 9b) shows the

revised mean radial velocity (V PrecipShort
mean ). Compared to the

a0 real-time processed moments, the reprocessed moments
in Fig. 9a and b show improved data quality and uniformity.
The calibrated radar reflectivity is shown in Fig. 9c.

3.4 Relative calibration constants for other radar
beams

The radar sensitivity can be adjusted by changing the trans-
mitted pulse length, the number of coherent integrations, and
the number of averaged Doppler velocity spectra. Using the
precipitation short-pulse mode as the reference beam, the ex-
pected relative change in sensitivity for the other four radar
beams can be estimated using

COtherMode
relative = 20log

[
1RMUT

1RPrecipShort

]
+ 10log

[
NMUT

coh

N
PrecipShort
coh

]

+ 5log

[
NMUT

spc

N
PrecipShort
spc

]
+ 20log[sin(θel)], (7)

where 1R is the range resolution, Ncoh is the number of co-
herent samples, Nspc is the number of averaged power spec-
tra, θel is the elevation angle from the horizon, and the su-
perscripts PrecipShort and MUT represent the precipitation
short-pulse mode and the mode under test (MUT), respec-
tively. Using the values from Table 1 and Eq. (7), Table 3 lists
the expected relative sensitivities for the precipitation long-
pulse mode and the wind mode. The last term in Eq. (7) rep-
resents the decrease in gain associated with beam-pointing
direction in phased-array antennas (Balanis, 1997). As the
beam-pointing direction deviates from broadside (a.k.a. ver-
tical direction in the RWP), the projected antenna area de-
creases, causing the gain to decrease and beam width to in-
crease (Balanis, 1997; Palmer et al., 2022). System losses
and variations in antenna gain cause the measured relative
sensitivities to deviate from the expected values listed in Ta-
ble 3.

The reflectivity factor for the other four radar beams fol-
lows Eq. (6) with the addition of the relative calibration con-
stant COtherMode

relative (dB) and is estimated using

ZOtherMode(r)= SNROtherMode
adjusted + 20log(r)

+

(
CPrecipShort

−COtherMode
relative

)
(dBZ). (8)

The negative sign in the bracketed term is because a posi-
tiveCOtherMode

relative indicates that this mode is more sensitive than
the precipitation short-pulse mode and will produce a larger
SNROtherMode

adjusted for the same radar reflectivity factor. Note that
weaker radar reflectivity factors will be detected at further
ranges at the expense of possible receiver saturation from
large reflectivity factor targets at close range.

To estimate relative sensitivities between the other beams
and the reference beam, reflectivity factors are estimated at
all profiles and range gates using Eq. (8) with COtherMode

relative set
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Figure 7. Scatter plots of reflectivity factor differences between RWP precipitation short-pulse mode (with CPrecipShort
= 0 dB) and surface

disdrometer for different minute lags for the rain event on 7 June 2018. Positive lags indicate RWP shifted to a later time. Lag times for
each panel are (a) −4 min, (b) −3 min, (c) −2 min, (d) −1 min, (e) 0 min, (f) 1 min, (g) 2 min, (h) 3 min, and (i) 4 min. This rain event
had 153 min samples with surface disdrometer reflectivity factor between 20 and 40 dBZ. Each panel indicates rain event mean difference,
standard deviation (SD), and Pearson’s correlation coefficient (r). Panel (d) has the largest Pearson’s correlation coefficient and is used for
calibrating this event. The calibration constant for this event is CPrecipShort

=−49 dB.

Table 3. Expected relative sensitivity of other radar beams compared with the reference precipitation short-pulse beam. Relative sensitivity
has four terms in Eq. (7) and is dependent on range resolution 1R, coherent integration Ncoh, number of averaged Doppler velocity power
spectra Nspc, and elevation angle.

Radar sensitivity Precipitation mode Wind mode

Long pulse Beam V Beam A Beam B

Elevation angle 90◦ 90◦ 77◦ 77◦

Azimuth angle 22◦ 22◦ 22◦ 292◦

20log
[

1RMUT

1RprecipShort

]
(dB) 16.5 4.6 4.6 4.6

10log
[

NMUT
coh

N
PrecipShort
coh

]
(dB) −2.2 5.5 5.5 5.5

5log
[

NMUT
spc

N
PrecipShort
spc

]
(dB) 0.6 3.0 3.0 3.0

20log
[
sin(θel)

]
(dB) 0.0 0.0 −0.2 −0.2

COtherMode
relative (dB) 14.9 13.1 12.9 12.9
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Figure 8. RWP precipitation short-pulse mode and surface dis-
drometer observations from 7 June 2018 between 11:00 and
16:00 UTC. (a) RWP radar reflectivity factor with calibration con-
stant of −49.5 dB; (b) RWP radar reflectivity factor (red crosses)
at 500 m range with −1 min lag and surface VDIS radar reflectiv-
ity factor (black plusses); (c) reflectivity factor difference (RWP –
VDIS) for samples with VDIS reflectivity factor within 20 to
40 dBZ, as indicated with blue thin lines in panel (b); and (d) dis-
drometer rain rate RR and mean diameter Dm. Statistics of lag,
number of samples, calibration constant, standard deviation (SD),
and Pearson’s correlation coefficient (r) are shown in panel (c).

to zero and then estimating the differences from nearby pre-
cipitation short-pulse mode observations. Figure 10 shows
scatter plots and histograms of reflectivity factor differences
for the precipitation long-pulse beam during the 7 June 2018
rain event. Valid observations are constrained to be within the
height interval of 800 and 2100 m and precipitation short-
pulse reflectivity factors greater than 30 dBZ. Over 13 000
valid samples are used from this event to calibrate the precip-
itation long-pulse beam. The mean relative offset is 15.5 dB
for this event, with a SD of 1.3 dB. The relative calibra-
tion constant CPrecipLong

relative is set to 15.5 dB and implies that
the long-pulse mode is more sensitive and produces a larger
signal-to-noise ratio for the same radar reflectivity factor as
expressed in Eq. (8).

Figure 11a and b show the time–height cross-sections of
cross-calibrated precipitation short- and long-pulse reflectiv-
ity factors at their native resolution for the 7 June 2018 rain
event. Figure 11c shows the precipitation long-pulse relative
calibration offset for each matched short- and long-pulse ob-
servation. The relative calibration offsets shown in Fig. 11c
are the same samples used to produce Fig. 10 and indicate
the limited height interval used in the comparison to avoid

Figure 9. Similar to Fig. 1 except RWP spectrum moments for
the precipitation short-pulse mode calculated with the revised pro-
cessing algorithms. (a) Signal-to-noise ratio SNRPrecipShort

adjusted (dB),

(b) mean radial velocity V
PrecipShort
mean (ms−1) with positive val-

ues moving downward consistent with raindrop gravitation fall
speeds, and (c) surface disdrometer calibrated radar reflectivity fac-
tor ZPrecipShort (dBZ).

Figure 10. Reflectivity factor differences between precipitation
long-pulse beam with CPrecipLong

relative = 0 (dB) and disdrometer cali-
brated precipitation short-pulse beam observations for the rain event
on 7 June 2018. Observations are limited to heights between 800
and 2100 m and precipitation short-pulse beam reflectivity greater
than 30 dBZ. (a) Histogram of reflectivity difference (long pulse –
short pulse) indicating relative calibration offset, (b) relative 2-
dimensional count of reflectivity difference, and (c) histogram of
disdrometer calibrated precipitation short-pulse reflectivity.
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Figure 11. Time–height cross-sections for the 7 June 2018
rain event. (a) Surface disdrometer calibrated precipitation
short-pulse reflectivity factor ZPrecipShort, (b) cross-calibrated
precipitation long-pulse reflectivity factor ZPrecipLong with
C

PrecipLong
relative = 15.5 dB, and (c) the precipitation long-pulse rel-

ative calibration offset for each matched short- and long-pulse
observation. Relative calibration offset is only calculated for
ZPrecipShort> 30 dBZ and for heights between 800 and 2100 m.

large reflectivity gradients near the radar bright band caused
by melting particles.

Estimating the relative calibration offsets for the three
wind beams follows the same procedure used for estimat-
ing the precipitation long-pulse beam relative calibration off-
set. As expected, the calibration offsets for the oblique beams
have more event-to-event variability than the vertically point-
ing wind mode beam and will be discussed further in the next
section and shown in Fig. 14.

4 Results

This section explores how the individual rain event precipi-
tation short-pulse beam calibration constants varied over the
8-year record from 22 March 2011 to 18 August 2019. The
variation of the relative calibration constants is examined as a
function of ageing hardware and a function of changing radar
hardware after equipment failures.

4.1 Reference beam calibration: event, monthly, and
3-month intervals

From 22 March 2011 to 18 August 2019, the precipitation
short-pulse beam calibration constant CPrecipShort was esti-
mated on 340 d, each having at least 120 min of surface dis-
drometer reflectivity factor greater than 20 dBZ. Figure 12
shows CPrecipShort for every valid precipitation event using

Figure 12. Precipitation short-pulse beam calibration constant
CPrecipShort (dB) from March 2011 through July 2019 estimated
using individual rain events (black plusses), 1-month interval (blue
squares), and 3-month interval (red triangles). Vertical blue and red
lines are ±SD for 1- and 3-month interval calculations, respec-
tively. Mean SDs over the 9-year dataset were 3.6 and 3.0 dB for
the 1- and 3-month intervals, respectively.

black plus symbols. The calibration constant is approxi-
mately −50 dB at the beginning of this record in 2011 and
then increases to about −35 dB near the beginning of 2015.
There is an abrupt drop in calibration constant near the end
of 2015, and then the calibration constant steadily increases
until the end of this dataset in 2019. Snow events were not
included in the calibration procedure.

An increase in calibration constant, without changing op-
erating parameters, indicates the radar sensitivity is degrad-
ing. Referring to Eq. (6), if the reflectivity factor is constant
and the measured SNR decreases because of ageing radar
hardware, then the calibration constant must increase. Thus,
from early 2011 to mid-2015, the calibration was stable until
early 2013, then increased approximately 15 dB over the next
2 years, indicating a rapid change in calibration. There was a
hardware failure in mid-2015.

The gaps in measurements in mid-2015 and early 2017
are when the radar was not operating. A new antenna phase
shifter module was installed in September 2015, and the cal-
ibration constant dropped by about 10 dB relative to the old
hardware. In mid-2017, a new radar transmitter and receiver
module was installed, and the mean noise level dropped by
about 7 dB (see Fig. 5), but the short-pulse beam calibration
constant did not change significantly. The steady increase in
calibration constant from 2016 through 2019 suggests an ap-
proximate 3 dByr−1 decrease in sensitivity for this modified
radar. Though not documented publicly, similar decreasing
sensitivity rates have been estimated in other NOAA UHF
wind profilers and have been attributed to delamination of
the fibreglass patch antenna (Ecklund et al., 1988).

The slow change in calibration constant between precipi-
tation events suggests that the disdrometer-to-RWP calibra-
tion procedure could be performed using fixed time inter-
vals instead of individual rain events. To test this hypothesis,
calibration constants were determined using all rain events
during 1-month and 3-month intervals (i.e. months of JFM,
AMJ, JAS, and OND). The 1- and 3-month calibration con-
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Figure 13. Precipitation long-pulse beam relative calibration con-
stant CPrecipLong (dB) from 22 March 2011 through 18 August
2019, estimated using individual rain events (black crosses). Thick
dashed lines are mean relative calibration constants (listed in Ta-
ble 4) for stable hardware intervals labelled A through E as de-
scribed in Table 2.

stants are plotted in Fig. 12 using blue squares and red trian-
gles, respectively. The vertical blue and red lines represent 1-
and 3-month calibration constant SDs, with mean SDs over
the 9-year record equal to 3.6 and 2.9 dB, respectively. These
SDs represent variations due to spatiotemporal mismatch of
surface disdrometer and radar measurements, instantaneous
measurement uncertainties of both instruments, and ageing
hardware over the sampling interval.

4.2 Relative calibration for each hardware calibration
period

Since the radar operating parameters did not change during
the 2011 to 2019 interval, variations in relative calibration
constants will depend on changes to the radar hardware. This
section examines how the precipitation long-pulse and wind
mode relative calibration constants evolved with hardware
changes.

4.2.1 Changes in precipitation long-pulse relative
calibration constants

The relative calibration constants for the precipitation long-
pulse beam were estimated for every day with at least
1000 precipitation short- and long-pulse range gate sam-
ples between 800 and 2100 m range and with precipitation
short-pulse reflectivity factor greater than 30 dBZ. The lower
height limit of 800 m is to ensure the long-pulse beam ob-
servations are beyond the radar blind zone, and the 2100 m
limit is to avoid reflectivity factor gradients near the melting
layer. The precipitation long-pulse relative calibration con-
stants were estimated for the 690 d meeting these criteria and
are shown in Fig. 13 using black crosses. The dashed lines
are the mean relative calibration values for each stable hard-
ware interval labelled A through E (see Table 2). The relative
calibration constant mean and SD for each interval are listed
in Table 4.

Figure 14. Relative calibration constants for wind mode for every
rain event from March 2014 through February 2019. (a) Vertical
beam (beam V, az: 22◦, el: 90◦), (b) oblique beam (beam A, az: 22◦,
el: 76◦), and (c) oblique beam (beam B, az: 292◦, el:y76◦). The
thick dashed lines are mean relative calibration constants (listed in
Table 4) for stable hardware intervals labelled B, C, and D as de-
scribed in Table 2.

4.2.2 Changes in wind mode relative calibration
constants

Similar to the conditions applied when estimating the pre-
cipitation long-pulse beam relative calibration constants, the
wind mode beams were estimated for every day with at least
1000 range gate samples between 500 and 2100 m range
and with precipitation short-pulse reflectivity factor greater
than 30 dBZ. The wind mode has a shorter pulse length than
the precipitation long-pulse beam, which enables valid wind
observations down to 500 m. Figure 14 shows the daily rel-
ative calibration constants for the three wind beams (black
crosses), with thick dashed lines representing the mean rela-
tive calibration constant for each hardware interval. The ver-
tical beam relative calibration constant is fairly stable over
the 2014 to 2019 observation period, with values listed in Ta-
ble 4. There is more event-to-event variability in the oblique
beam relative calibration constants compared to the vertical
beam because there is more horizontal distance between the
vertical pointing reference beam and the oblique beams. A
14◦ off-vertical pointing angle causes approximately 250 m
horizontal distance between the vertical beam and oblique
beam at 1 km height. Aside from the larger event-to-event
variability, the oblique beam mean relative calibration con-
stants change for each radar hardware configuration. This is
probably due to changes in the antenna phase shift module
that controls the antenna beam pattern and pointing direc-
tion. Table 4 lists the mean oblique beam relative calibration
constants for each hardware configuration.
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Table 4. RWP relative calibration constants (dB) (SD) relative to precipitation short-pulse mode.

Period Start End Precipitation Wind mode

long pulse Beam V Beam A Beam B

A 22 March 2011 31 March 2014 14.5 (0.3)
B 1 April 2014 14 July 2015 14.8 (0.3) 9.3 (0.7) 12.9 (3.1) 19.9 (2.3)
C 25 September 2015 10 April 2017 14.5 (0.3) 8.7 (0.7) 7.8 (1.1) 6.5 (1.5)
D 6 June 2017 10 March 2019 15.4 (0.7) 9.0 (0.9) 8.1 (2.6) 2.1 (2.9)
E 11 March 2019 18 August 2019 15.5 (0.2)

5 Conclusions

This work describes a procedure to calibrate a UHF-band
radar wind profiler (RWP) reflectivity factor to surface dis-
drometer observations. The revised procedure builds on the
method described in Tridon et al. (2013) by correcting the
recorded Doppler velocity power spectra due to Nyquist ve-
locity aliasing and coherent integration bias effects, before
recalculating the spectrum moments. The revised method
also calibrates the oblique pointing RWP beams that are used
to measure horizontal wind motions.

This cross-calibration procedure uses precipitation mea-
surements from one instrument (i.e. surface disdrometer) as
the reference dataset and then calibrates another instrument
(i.e. the RWP) using measurements from the same precipita-
tion event. This method cannot identify any biases in mea-
surements from either instrument, and the difference in mea-
surements also includes instrument measurement uncertain-
ties. To address biases, the calibration procedure is struc-
tured so that a single calibration constant establishes the
disdrometer-to-radar calibration. Then, if future comparisons
with another instrument determine that the disdrometer-to-
radar calibration is biased, a simple offset can be added to
the radar reflectivity factor.

Regarding measurement uncertainties, the SD of
the reflectivity factor difference (i.e. SD[ZPrecipShort

−

ZDisdrometer
]) includes variability due to different measure-

ment technologies and due to spatiotemporal differences
between measurements made at the surface and 500 m above
the ground. The radar-to-disdrometer reflectivity factor
difference SDs were similar in magnitude (i.e. approxi-
mately 2 dB) to SDs from side-by-side surface disdrometers
measuring the same precipitation event (Tapiador et al.,
2017; Wang et al., 2021). Thus, the reflectivity factor
difference SD is a relative measure indicating the quality
of the comparison and is larger than a calibration constant
uncertainty.

The calibration procedure determined an absolute calibra-
tion constant for the precipitation short-pulse beam, which
was then called the reference beam. The relative calibration
between this reference beam and all other beams was de-
termined, enabling all beams to be cross-calibrated to the
surface disdrometer, including the RWP oblique pointing

beams. The horizontal distance between the vertically point-
ing reference and oblique pointing beams caused an increase
in event-to-event variability in the oblique beam relative cal-
ibration constant, as the two radar beams were observing dif-
ferent regions of the same precipitation event.

The precipitation short-pulse calibration constant changed
over the 8-year dataset. The calibration constant tended to
increase over time, corresponding to a decrease in radar sen-
sitivity, consistent with hardware degrading over time. Ref-
erencing Eq. (6), degrading hardware will produce lower
SNR for the same radar reflectivity factor, which is com-
pensated with a larger calibration constant. The radar sen-
sitivity increased significantly (i.e. over 10 dB) when de-
graded hardware was replaced with new hardware. Between
early 2013 and mid-2015, the RWP sensitivity decreased by
about 15 dB, for a rate of about 7 dByr−1, before a hardware
failure in mid-2015. Between 2016 and 2019, the RWP radar
sensitivity decreased at a rate of about 3 to 4 dByr−1. The ap-
proximate 2 dB calibration SD and the slow change in radar
sensitivity implies that the calibration constant can be com-
puted using many rain events over a 1- or 3-month interval.

To promote the calibration of radar wind profilers and
other radar systems, the processing codes used in this study
are available on a public GitHub repository (Williams,
2023a) and a public Zenodo repository (Williams, 2023b).
This code is being incorporated into the ARM RWP pro-
cessing suite with the intent of ARM RWP spectra being re-
processed using this calibration procedure. Also, the 8 years
of data processed in this study are available on the ARM
Archive as a PI product (Williams, 2023c).

Appendix A

This appendix describes the processing steps applied to
a spectra profile needed to account for Nyquist veloc-
ity aliasing (Sect. 3.1.1), account for coherent integration
bias (Sect. 3.1.2), and calculate the spectrum moments
(Sect. 3.1.3). As discussed in Sect. 3.1.1, spectrum power
from targets with true radial velocities greater than the
Nyquist velocity will appear to be moving in the opposite
direction due to velocity aliasing. The Python code provided
in public repositories eliminates velocity aliasing by extend-
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ing the original spectrum from 0 to VNyquist to the velocity
range −2VNyquist to −VNyquist (this segment is called “a” in
Fig. 2) and copying the segment from −VNyquist to 0 to the
velocity range VNyquist to 2VNyquist (this segment is called “b”
in Fig. 2). One problem created by copying and appending
the original spectrum to itself is that the new spectrum now
has two peaks with the same maximum magnitude. One peak
is in the ±VNyquist velocity range, and the other peak is in
one of the two extended spectrum velocity ranges. To deter-
mine which peak to process, the provided Python code uti-
lizes a prior velocity Vprior derived from the previous range
gate to select one of the two peaks, which ensures continuity
between range gates.

Figure A1 shows the flow diagram to process one spec-
tra profile as implemented in the provided Python code. The
processing diagram starts in box 1 in the upper left corner
of Fig. A1. In box 2, the original spectrum at the lowest
range gate is read into memory. The prior velocity Vprior is
set to zero (box 3), which effectively assumes the spectrum
velocity peak is not velocity aliased in this first range gate.
The original spectrum is extended to ±2VNyquist in box 4.
Box 5 identifies the two peaks in the extended spectrum. Us-
ing Vprior as the reference, the peak closest to Vprior is se-
lected for further processing (box 6). The integration lim-
its vstart and vend define the region containing signal power
and are needed to estimate the spectrum moments (e.g. see
Eq. 1). Box 7 estimates the integration limits by starting at
the spectrum peak and moving down both sides of the peak

Figure A1. Flow diagram to process one spectra profile as implemented in the provided Python code.

until the spectrum magnitude drops below the mean noise
level n (Carter et al., 1995). Box 8 performs the time-domain
averaging (TDA) correction, which is only applied to the sig-
nal power above n between the integration limits. The spec-
trum moments are calculated in box 9, and the prior veloc-
ity Vprior is updated in box 10. If the current range gate is
not the last range gate in the profile (box 11), then the next
range gate original spectrum is read into memory (box 12),
and processing continues in box 4. If the current range gate
is also the last range gate in the profile (box 11), then box 13
is executed and estimates the adjusted SNR at all range gates
using Eq. (5). Box 14 estimates the radar reflectivity factor
at all range gates. The next profile is selected in box 15, and
processing resumes in box 1.
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Code availability. The Python code that processes the raw Doppler
velocity power spectra is available on GitHub: https://github.
com/ChristopherRWilliams/RWP_Python_moments (last access:
5 April 2023, Williams, 2023a). This Python source code is
also stored in an open repository with digital object identifier
https://doi.org/10.5281/Zenodo.7734427 (Williams, 2023b).

Data availability. All raw observations used in this
study are available online using the DOE ARM
data discovery tool: https://doi.org/10.5439/1025128
(ARM, 1998a), https://doi.org/10.5439/1025129 (ARM,
1998b), https://doi.org/10.5439/1025136 (ARM, 1998c),
https://doi.org/10.5439/1025137 (ARM, 1998d), and
https://doi.org/10.5439/1025315 (ARM, 2011). The calibrated
RWP moments produced in this study are available using the
DOE ARM data discovery tool: https://doi.org/10.5439/1969962
(Williams, 2023c).
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