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Abstract. Satellite retrievals of tropospheric-column
formaldehyde (HCHO) and nitrogen dioxide (NO2) are
frequently used to investigate the sensitivity of ozone (O3)
production to emissions of nitrogen oxides and volatile
organic carbon compounds. This study inter-compared
the systematic biases and uncertainties in retrievals of
NO2 and HCHO, as well as resulting HCHO–NO2 ratios
(FNRs), from two commonly applied satellite sensors to
investigate O3 production sensitivities (Ozone Monitoring
Instrument, OMI, and TROPOspheric Monitoring Instru-
ment, TROPOMI) using airborne remote-sensing data taken
during the Long Island Sound Tropospheric Ozone Study
2018 between 25 June and 6 September 2018. Compared to
aircraft-based HCHO and NO2 observations, the accuracy
of OMI and TROPOMI were magnitude-dependent with
high biases in clean environments and a tendency towards
more accurate comparisons to even low biases in moder-
ately polluted to polluted regions. OMI and TROPOMI
NO2 systematic biases were similar in magnitude (nor-
malized median bias, NMB= 5 %–6 %; linear regression

slope≈ 0.5–0.6), with OMI having a high median bias
and TROPOMI resulting in small low biases. Campaign-
averaged uncertainties in the three satellite retrievals (NASA
OMI; Quality Assurance for Essential Climate Variables,
QA4ECV OMI; and TROPOMI) of NO2 were generally
similar, with TROPOMI retrievals having slightly less spread
in the data compared to OMI. The three satellite products
differed more when evaluating HCHO retrievals. Campaign-
averaged tropospheric HCHO retrievals all had linear
regression slopes∼ 0.5 and NMBs of 39 %, 17 %, 13 %, and
23 % for NASA OMI, QA4ECV OMI, and TROPOMI at
finer (0.05◦× 0.05◦) and coarser (0.15◦× 0.15◦) spatial res-
olution, respectively. Campaign-averaged uncertainty values
(root mean square error, RMSE) in NASA and QA4ECV
OMI HCHO retrievals were ∼ 9.0× 1015 molecules cm−2

(∼ 50 %–55 % of mean column abundance), and the higher-
spatial-resolution retrievals from TROPOMI resulted in
RMSE values ∼ 30 % lower. Spatially averaging TROPOMI
tropospheric-column HCHO, along with NO2 and FNRs, to
resolutions similar to the OMI reduced the uncertainty in
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these retrievals. Systematic biases in OMI and TROPOMI
NO2 and HCHO retrievals tended to cancel out, resulting
in all three satellite products comparing well to observed
FNRs. However, while satellite-derived FNRs had minimal
campaign-averaged median biases, unresolved errors in the
indicator species did not cancel out in FNR calculations,
resulting in large RMSE values compared to observations.
Uncertainties in HCHO retrievals were determined to drive
the unresolved biases in FNR retrievals.

1 Introduction

Tropospheric ozone (O3) is a harmful pollutant, and near-
surface concentrations of this species have detrimental im-
pacts on human and environmental health (Kampa and Cas-
tanas, 2008; Van Dingenen et al., 2009). The production
and destruction rates of tropospheric O3 are controlled by
complex chemical reactions involving the primary precur-
sor species of nitrogen oxides (NOx : nitric oxide and nitro-
gen dioxide (NO+NO2)) and volatile organic compounds
(VOCs) (Sillman, 1999; Lelieveld and Dentener, 2000). It is
critical to understand precursor species emissions and sub-
sequent atmospheric chemistry controlling surface-level O3
production rates since the United States (US) Environmen-
tal Protection Agency (EPA) enforces concentration limits of
criteria pollutants (e.g., O3, NO2, carbon monoxide, particu-
late matter, and sulfur dioxide) under the National Ambient
Air Quality Standards (NAAQS) (US EPA, 2015). To reduce
and maintain surface-level O3 concentrations below NAAQS
thresholds, many regions have implemented emission control
strategies for precursor species. To design effective emission
reduction strategies, knowledge about the non-linear sensi-
tivity of O3 formation to NOx and VOCs is critical (Crutzen,
1973; Sillman, 1999). Based on the relative concentrations of
NOx and VOCs, O3 formation is sensitive to perturbations of
either NOx (NOx-limited regimes) or VOC emissions (NOx-
saturated or VOC- or radical-limited regimes). These O3 sen-
sitivity regimes are separated by a transitional regime where
O3 formation is sensitive to both NOx and VOC emissions.

To understand the non-linear relationship of O3 forma-
tion to NOx and VOC emissions in complex chemical envi-
ronments (e.g., polluted regions and areas of heterogeneous
emissions of NOx and VOCs), spatiotemporally dense in
situ measurements or airborne remote-sensing observations
of precursor species are desired (e.g., Souri et al., 2020).
Since these measurements are often spatiotemporally sparse,
satellite retrievals of chemical proxies for NOx (i.e., NO2)
and VOCs (i.e., formaldehyde, HCHO) have been demon-
strated to provide insight into the O3–NOx–VOC relation-
ship (Tonnesen and Dennis, 2000; Martin et al., 2004; Dun-
can et al., 2010; Souri et al., 2017; Jin et al., 2017, 2020). The
HCHO–NO2 concentration ratio (hereinafter FNR) has been
shown to provide information to monitor the local sensitivity

of O3 production from the chemical loss of HO2+RO2 and
chemical loss of NOx controlling O3–NOx–VOC chemistry
(Tonnesen and Dennis, 2000; Kleinman et al., 2001).

Multiple past and current space-based spectrometers have
the capability to retrieve simultaneous NO2 and HCHO tro-
pospheric columns to calculate FNRs including the Global
Ozone Monitoring Experiment (GOME; Martin et al., 2004),
GOME-2 (Choi et al., 2012), Ozone Monitoring Instrument
(OMI; Duncan et al., 2010), SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CHartographY (SCIA-
MACHY; Jin et al., 2020), and TROPOspheric Monitoring
Instrument (TROPOMI; Chan et al., 2020; Souri et al., 2021).
In addition to these low Earth orbiting (LEO) satellites, Tro-
pospheric Emissions: Monitoring of Pollution (TEMPO) is
a upcoming National Aeronautics and Space Administration
(NASA) geostationary satellite mission which will retrieve
hourly NO2 and HCHO tropospheric columns over North
America (Zoogman et al., 2017; Chance et al., 2019). This
geostationary sensor is part of a constellation of air qual-
ity spaceborne sensors including the Geostationary Environ-
ment Monitoring Spectrometer (GEMS) instrument onboard
the Korea Aerospace Research Institute GEO-KOMPSAT-2B
satellite (Kim et al., 2020) and the European Space Agency
(ESA) Sentinel-4 mission (ESA, 2017). Satellite retrievals of
NO2 and HCHO have been applied to determine the sensi-
tivity of O3 formation to NOx and VOC emissions at coarse
spatial and temporal scales (e.g., Martin et al., 2004; Duncan
et al., 2010) to finer spatiotemporal scales and focusing on
long-term trends (e.g., Choi et al., 2012; Jin and Holloway,
2015; Choi and Souri, 2015; Schroeder et al., 2017; Souri
et al., 2017; Jin et al., 2017, 2020). However, uncertainties
remain in how accurately satellites can retrieve information
needed to study planetary boundary layer (PBL) O3–NOx–
VOC relationships. These uncertainties stem from (a) the ex-
act thresholds of FNRs that separate NOx-limited, transition,
and VOC-limited regimes; (b) the ability of tropospheric-
column retrievals to represent PBL chemical composition
due to variability in the vertical structure of NO2 and HCHO
concentrations and satellite sensitivity throughout the entire
troposphere; (c) whether HCHO is an effective proxy for to-
tal VOC reactivity; (d) satellite spatial representation errors;
and (e) the accuracy and uncertainty in satellite retrievals of
tropospheric-column HCHO and NO2. Of all these sources
of uncertainty, systematic and random biases due to noise in
satellite retrievals may be the largest source of error for re-
trieving FNRs (Souri et al., 2023).

This study is designed to demonstrate the effectiveness
of two frequently applied satellites for evaluating O3–NOx–
VOC relationships (i.e., OMI and TROPOMI) to accu-
rately retrieve tropospheric HCHO and NO2 columns and
FNRs. OMI and TROPOMI retrievals have been evaluated
in numerous studies (e.g., Judd et al., 2020; Vigouroux et
al., 2020; Zhu et al., 2020; Lamsal et al., 2021), typically fo-
cusing on a specific sensor and species (e.g., evaluating OMI
or TROPOMI and NO2 or HCHO separately), however, not
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for the accuracy to retrieve tropospheric-column FNRs. Here
we validate OMI and TROPOMI retrievals of HCHO and
NO2, as well as subsequent FNRs, with airborne spectrome-
ter data obtained during the Long Island Sound Tropospheric
Ozone Study 2018 (LISTOS 2018) field campaign conducted
during the summer of 2018 in the northeastern region of
the US. Furthermore, this work investigates the capability of
OMI and TROPOMI to capture the spatiotemporal variabil-
ity in observed FNRs and discusses the possible causes of
systematic error and uncertainties in these retrievals.

2 Methods

This study focuses on the spatial domain and time pe-
riod (25 June to 6 September 2018) of the LISTOS 2018
field campaign (https://www.nescaum.org/documents/listos,
last access: 8 May 2023). This campaign was chosen due to
the overlap of the TROPOMI and OMI missions; the avail-
ability of airborne spectrometer retrievals (i.e., Geostation-
ary Trace gas and Aerosol Sensor Optimization, GeoTASO,
and GEOstationary Coastal and Air Pollution Events (GEO-
CAPE) Airborne Simulator, GCAS) of tropospheric-column
HCHO and NO2, which are effective satellite validation data
(e.g., Judd et al., 2020); and the large spatiotemporal cov-
erage of the airborne spectrometer data. Studies have ap-
plied stationary sources of ground-based remote-sensing data
to validate OMI and TROPOMI (e.g., multi-axis differen-
tial optical absorption spectroscopy, MAX-DOAS; Fourier-
transform infrared, FTIR; and Pandora); however, using the
airborne data allows for the evaluation of satellite retrievals
in variable environments (i.e., clean to heterogeneous and
polluted regions).

2.1 OMI remote-sensing products

The nadir-viewing OMI sensor, on the polar-orbiting NASA
Aura satellite launched in 2004, is an ultraviolet–visible
(UV–Vis) spectrometer (Levelt et al., 2006). Retrievals are
made from three wavelength channels between 260 and
510 nm (UV-1: 264 to 311 nm, UV-2: 307 to 383 nm, Vis: 349
to 504 nm). Aura OMI has a local equatorial overpass time
of ∼ 13:45 LT (local time) with nearly complete daily global
surface coverage due to the large ∼ 2600 km swath width.
Level-2 (L2) tropospheric vertical column density (VCD)
OMI NO2 retrievals from the NASA version 4 standard prod-
uct (OMNO2; Lamsal et al., 2021) and the NASA operational
OMI HCHO version 3 product using the Smithsonian Astro-
physical Observatory (SAO) retrieval algorithm (OMHCHO;
González Abad et al., 2015, 2016) were applied in this study.
To investigate the impact of different retrieval algorithms, we
also apply tropospheric-column OMI NO2 and HCHO data
derived in the Quality Assurance for Essential Climate Vari-
ables (QA4ECV) project.

Starting in 2007, OMI experienced a field-of-view block-
age known as the “row anomaly”, which affects the data
quality at all retrieval wavelengths for some rows (Dobber
et al., 2008; Schenkeveld et al., 2017). The row anomaly in
NO2 and HCHO retrievals was avoided using data quality
flags to filter out pixels flagged by the row anomaly detec-
tion algorithm. OMI also has systematically biased retrievals
in a striped pattern running in 60 cross-track fields of view.
A “destriping” correction is applied to NO2 data (Boersma et
al., 2011), and the reference sector method corrects this arti-
fact in HCHO data (De Smedt et al., 2015; González Abad et
al., 2015; Zara et al., 2018).

2.1.1 OMI – NASA OMNO2 and OMHCHO

The primary OMI data used in this study are the L2 tropo-
spheric VCD OMNO2 and OMHCHO retrievals provided
at ∼ 13 km×24 km near the nadir to ∼ 24 km× 160 km to-
wards the edge of the swath. Lamsal et al. (2021) de-
scribe the OMNO2 retrieval algorithm (referred to as NASA
OMI NO2) in detail, and it is explained here briefly. The
NASA OMI NO2 retrieval uses a differential optical ab-
sorption spectroscopy (DOAS) approach, with a fitting win-
dow between 405 and 465 nm, to derive slant column den-
sities (SCDs). Tropospheric NO2 columns are separated
from the entire atmospheric column using an observation-
based stratosphere–troposphere separation scheme (Bucsela
et al., 2013). Tropospheric SCDs are converted to tropo-
spheric VCDs using an air mass factor (AMF) calculated
with a radiative transfer model and simulated atmospheres
from a chemical transport model (CTM). Specifics for the
data used in AMF calculations for NASA OMI NO2 are pre-
sented in Table S1 in the Supplement. Tropospheric AMFs
are calculated in NASA OMI NO2 retrievals using monthly
averaged a priori profiles from the NASA Global Model-
ing Initiative (GMI) model at 1.0◦×1.25◦ spatial resolution,
clouds from the OMI O2–O2 algorithm (Acarreta et al., 2004;
Veefkind et al., 2016; Vasilkov et al., 2018), and sur-
face albedo from geometry-dependent surface Lambertian-
equivalent reflectivity (GLER) data (Vasilkov et al., 2017;
Qin et al., 2019; Fasnacht et al., 2019). The uncertainty in
the NASA OMI NO2 product has been shown to vary with
cloudiness and pollution levels and is in the range of ∼ 20 %
to ∼ 60 % (Bucsela et al., 2013), with contributions from er-
rors in spectral fitting, stratospheric correction, and AMF cal-
culations.

González Abad et al. (2015, 2016) describe the OMHCHO
retrieval algorithm in detail (referred to here as NASA OMI
HCHO). Retrievals of HCHO SCDs are obtained by spec-
trally fitting OMI radiances using the basic optical absorption
spectroscopy (BOAS) method (Chance, 1998) with a fitting
window between 328.5 and 356.5 nm. HCHO SCDs are con-
verted to VCDs, applying AMFs using GEOS-Chem (God-
dard Earth Observing System) a priori profiles at 2.0◦×2.5◦

spatial resolution, cloud information (Martin et al., 2002;
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Acarreta et al., 2004), and surface albedo data (Kleipool et
al., 2008). Information about the input data for NASA OMI
HCHO AMF calculations is presented in Table S1. Finally,
postprocessing across-track bias corrections are applied by
comparing daily HCHO VCDs with VCDs simulated with
the GEOS-Chem CTM over a clean region (known as the ref-
erence sector). NASA OMI HCHO uncertainties have been
shown to vary with pollution levels ranging from ∼ 45%
to ∼ 105%, with the largest contributions from the spectral
fitting and AMF calculations (González Abad et al., 2015,
2016).

2.1.2 OMI – QA4ECV NO2 and HCHO

We also evaluated OMI NO2 and HCHO retrievals from
the QA4ECV project (https://knmi.sitearchief.nl/?subsite=
qa4ecv#archive, last access: 8 May 2023). Retrievals from
the QA4ECV NO2 version 1.1 and QA4ECV HCHO ver-
sion 1.2 data products are provided daily at the same spatial
resolution as the NASA OMI products. Zara et al. (2018) de-
scribe the QA4ECV OMI NO2 and HCHO slant column re-
trievals, and Boersma et al. (2018) and De Smedt et al. (2018)
describe the entire QA4ECV OMI NO2 and HCHO retrieval
algorithms, respectively, in detail. They are summarized here
briefly.

QA4ECV retrievals of NO2 SCDs are obtained by lin-
ear fits of optical depths to the observed optical depth using
the DOAS technique with a fitting window between 405 and
465 nm (Boersma et al., 2018). The QA4ECV NO2 retrieval
differs from the NASA OMI NO2 retrieval in some of the
retrieval steps (Compernolle et al., 2020). To calculate tro-
pospheric AMFs, the QA4ECV NO2 retrieval algorithm uses
the surface albedo (Kleipool et al., 2008) and cloud prod-
ucts (Veefkind et al., 2016) from the previous NASA OMI
NO2 version 3 product (see Lamsal et al., 2021), however, us-
ing a priori profiles from the Tracer Model version 5 (TM5)
CTM at 1.0◦× 1.0◦. Tropospheric VCDs are separated from
the entire column using the global TM5 assimilation model.
For detailed information on the differences in spectral fitting
between the NASA OMI NO2 and QA4ECV NO2 retrieval
algorithms, we refer you to Zara et al. (2018). For details
about differences between AMF calculations in the NASA
and QA4ECV OMI algorithms, see Lorente et al. (2017).
QA4ECV NO2 data have been shown to perform relatively
well in clean to moderately polluted regions and have a low
bias in highly polluted regions (Compernolle et al., 2020).
Retrievals of QA4ECV HCHO SCDs are conducted in a
manner similar to QA4ECV NO2 using the DOAS technique
and optical depths with a fitting window between 328.5 and
359.0 nm (Zara et al., 2018; De Smedt et al., 2018). For
information about the inputs used in AMF calculations for
QA4ECV OMI NO2 and HCHO retrievals, see Table S1.
QA4ECV HCHO retrievals show minimal bias in clean to
moderately polluted regions and low biases in polluted loca-
tions (e.g., De Smedt et al., 2021).

2.2 TROPOMI remote-sensing products

The TROPOMI hyperspectral spectrometer (including eight
bands in the UV, VIS, near-infrared, and shortwave infrared
wavelengths) is on the Sentinel-5 Precursor (S5P) satellite
which was launched in October 2017. TROPOMI is in or-
bit with a local equatorial overpass time (∼ 13:30 local time)
similar to OMI. TROPOMI has a swath width of ∼ 2600 km
and a ground pixel size of 3.5 km× 7.0 km at nadir during
LISTOS 2018 (since 6 August 2019 TROPOMI data have
been available at 3.5 km× 5.5 km), which is > 12 times finer
than OMI. TROPOMI retrievals have been used in numer-
ous recent studies investigating processes controlling NO2
concentrations and trends (e.g., Goldberg et al., 2021) and
FNRs (Wu et al., 2022), taking advantage of the high spa-
tial resolution of the sensor, along with being validated thor-
oughly (e.g., Judd et al., 2020; De Smedt et al., 2021). The
high-spatial-resolution information provided by TROPOMI,
compared to past UV–Vis spaceborne sensors, reduces the
representation error in each retrieved NO2 and HCHO pixel
(Souri et al., 2022). In this study, we apply daily TROPOMI
tropospheric-column NO2 v2.3.1 (van Geffen et al., 2022)
and HCHO v1.1.5 retrievals (De Smedt et al., 2018). For
TROPOMI NO2 data we used the product provided by the
Product Algorithm Laboratory (PAL). The retrievals of both
species use QA4ECV methods described above with spec-
tral fitting windows between 405.0 and 465.0 nm for NO2
(Boersma et al., 2018) and 328.5 and 359.0 nm for HCHO
(De Smedt et al., 2018). TROPOMI retrievals are similar to
those from the QA4ECV OMI product as it applies the same
a priori profiles, albedo data, and cloud fraction information.
TROPOMI NO2 v2.3.1 retrievals do differ from QA4ECV
OMI NO2 products as it uses cloud pressure input from the
O2–A band following the FRESCO+ (Fast Retrieval Scheme
for Clouds from the Oxygen A band) wide approach (van
Geffen et al., 2022). TROPOMI HCHO v1.1.5 retrievals dif-
fer from the QA4ECV OMI HCHO data by applying the S5P
ROCINN (Retrieval of Cloud Information using Neural Net-
works) algorithm which uses the O2–A for cloud pressures
(Loyola et al., 2018). For more information about the in-
put data used in AMF calculations for TROPOMI NO2 and
HCHO retrievals, see Table S1.

2.3 Airborne spectrometers

The primary evaluation data set used in this study is from
the UV–Vis airborne remote-sensing data product from Geo-
TASO and GCAS. Since no bias-corrected tropospheric-
column HCHO data are available during LISTOS 2018 from
the Pandora network, this ground-based remote-sensing net-
work is not applied here. Both the GeoTASO and GCAS in-
struments and retrievals are very similar and together provide
a consistent evaluation data set (see details on the instruments
and NO2 and HCHO retrievals in Kowalewski and Janz,
2014; Leitch et al., 2014; Nowlan et al., 2016, 2018; and Judd
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et al., 2020). GeoTASO and GCAS data were obtained from
a nominal flight altitude of 9 km above ground level (a.g.l.)
covering the majority of the troposphere. Airborne data from
13 flight days during LISTOS 2018 (see Table 1) are pro-
vided with a native spatial resolution of 250 m×250 m. To
reduce noise in the raw GeoTASO and GCAS retrievals, the
data were averaged to a 1 km× 1 km spatial resolution. In to-
tal, measurements from 8 and 12 flight days were spatiotem-
porally co-located with OMI and TROPOMI overpasses, re-
spectively.

The airborne GeoTASO and GCAS retrievals used as the
reference data set for validating all satellite data are not with-
out error. A nearly identical airborne NO2 data set used here
was applied in Judd et al. (2020) and was evaluated with Pan-
dora systems. Judd et al. (2020) demonstrated that the air-
borne NO2 retrievals had a median bias of ∼ 1 %, with no
magnitude-dependent biases, and uncertainty within ±25 %.
Due to limited availability of Pandora HCHO data, airborne
GeoTASO and GCAS retrievals of this species have had min-
imal evaluation. Nowlan et al. (2018) did evaluate GCAS
tropospheric HCHO retrievals using airborne in situ mea-
surements and determined GCAS had generally good perfor-
mance with a < 10 % bias (minimal magnitude dependence
in bias) and high correlation with observations. Overall, the
satisfactory comparison of airborne GeoTASO and GCAS
tropospheric-column NO2 and HCHO with independent ob-
servations provides confidence that this data can be applied
as a reference data set to validate OMI and TROPOMI. How-
ever, it should be kept in mind that there is some level of error
associated with the GeoTASO and GCAS data (e.g., Nowlan
et al., 2016, 2018; Judd et al., 2020).

The GeoTASO and GCAS data taken during LISTOS 2018
provided a novel opportunity to use airborne observations
to validate both OMI and TROPOMI coincidently. This air-
borne data differ from many of the recent satellite validation
studies which use longer-term information from networks
of point-source measurements (e.g., Pandora, MAX-DOAS)
(e.g., Compernolle et al., 2020; Vigouroux et al., 2020; Ver-
hoelst et al., 2021; Lamsal et al., 2021; Souri et al., 2023).
The airborne sensors allowed for evaluation of OMI and
TROPOMI over large areas which equates to having tens to
hundreds of clustered ground-based systems on each flight
day. Having long-term observations for robust temporal vali-
dation of satellite sensors is ideal; however, this case study
is unique in that it provides information about the perfor-
mance of coincident retrievals from OMI and TROPOMI
over variable emission source regions (urban to rural areas)
and scenes with differing geophysical characteristics (e.g.,
surface albedo, tropospheric compositions, clouds, aerosol
amounts) during a single flight, which is another novel as-
pect. Even though there are limited observations available
from the flights in LISTOS 2018 (Table 1), all correlation
statistics presented in this study (Tables 2 and 3) are signifi-
cant to a 95 % confidence interval (p value < 0.05).

2.4 Community Multiscale Air Quality Model (CMAQ)
model simulation

Prior vertical profiles play a major role in satellite retrievals
of tropospheric chemistry (e.g., Palmer et al., 2001; Boersma
et al., 2007; Johnson et al., 2018). Past research has demon-
strated that using a well-constrained, high-spatial-resolution
air quality model as the a priori profile source for satel-
lite retrievals can improve VCD results (e.g., Laughner et
al., 2019). To compare NASA OMI and TROPOMI tropo-
spheric NO2, HCHO, and FNR retrievals using a common
a priori profile data set, we conduct sensitivity tests using
high-spatial-resolution (4 km× 4 km) model-simulated ver-
tical profiles of NO2 and HCHO from the Community Mul-
tiscale Air Quality Model (CMAQ) (version 5.3) to reprocess
these satellite retrievals.

CMAQ simulations were driven offline using the meteoro-
logical fields simulated by the Weather Research and Fore-
casting (WRF) model (version 4.1). The WRF-CMAQ spa-
tial domain setup is shown in Fig. S1. The outer WRF do-
main covers the contiguous United States (CONUS) at a hor-
izontal grid spacing of 12 km× 12 km, and the inner domain,
encompassing the entire LISTOS 2018 domain, has a hori-
zontal grid spacing of 4 km× 4 km. Both the outer and in-
ner model domains use 35 vertical levels between the sur-
face and 50 hPa. The WRF configuration follows Appel et
al. (2017) and employs four-dimensional data assimilation
every 6 h to limit the growth of meteorological errors (WRF
configuration details in Table S2). A 15 d spinup period was
used for the WRF-CMAQ simulations. Anthropogenic emis-
sions of trace gases and aerosols are based on the National
Emissions Inventory (NEI) representative of 2014, as this
was the latest available inventory at the time of emission
preparation. NEI 2014 emissions were processed using the
Sparse Matrix Operator Kernel Emissions (SMOKE) model.
WRF simulations were used to drive SMOKE for generating
meteorology-dependent anthropogenic emissions. Biogenic
emissions of trace gases are calculated online using the Bio-
genic Emission Inventory System (BEIS). Gas-phase chem-
istry is represented using Carbon Bond 6 (CB06) version r3.
Chemical lateral boundary conditions for the outer domain
used the idealized profiles available in CMAQ but are dy-
namically provided to the inner domain every hour based on
the outer-domain simulations.

2.5 Evaluation techniques

To perform a systematic, direct comparison of daily satel-
lite products to airborne retrievals, OMI, GeoTASO, and
GCAS data were spatially averaged to 0.15◦× 0.15◦ (∼
15 km× 15 km, similar to OMI nadir spatial resolution) for
evaluating OMI. TROPOMI and airborne observations were
spatially averaged at 0.05◦× 0.05◦ (∼ 5 km× 5 km, simi-
lar to the TROPOMI nadir spatial resolution) for evaluating
TROPOMI. To investigate the impact of the higher spatial
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Table 1. Airborne (GeoTASO and GCAS) flight information (date, flight times, number of co-located satellite and airborne FNR grids) used
in this study.

Flight day Date Time (UTC) OMI FNR TROPOMI FNR
number co-locationsa co-locationsb

1 25 June 2018
Morning: 12:30–15:42

12 201
Afternoon: 16:48–20:18

2 30 June 2018
Morning: 12:12–15:36

37 251
Afternoon: 16:42–20:24

3 2 July 2018
Morning: 11:24–16:36

6 66
Afternoon: 17:54–21:30

4 19 July 2018
Morning: 11:24–15:18

0 155
Afternoon: 16:54–20:54

5 20 July 2018
Morning: 11:24–15:18

5 136
Afternoon: 17:06–21:06

6 5 August 2018
Morning: 12:30–16:30

5 0
Afternoon: 17:48–22:18

7 6 August 2018
Morning: 11:42–16:00

0 67
Afternoon: 17:12–21:30

8 15 August 2018
Morning: 11:12–15:30

0 150
Afternoon: 17:00–21:36

9 18 August 2018
Morning: 11:18–15:18

0 108
Afternoon: 17:18–21:30

10 24 August 2018
Morning: 10:54–15:18

20 147
Afternoon: 16:36–21:00

11 28 August 2018
Morning: 11:18–15:18

8 150
Afternoon: 16:36–20:18

12 29 August 2018
Morning: 11:12–15:06

0 166
Afternoon: 16:36–20:48

13 6 September 2018
Morning: 11:54–15:48

8 96
Afternoon: 17:12–21:24

a OMI FNR co-locations at 0.15◦ × 0.15◦ spatial resolution. b TROPOMI FNR co-locations at 0.05◦ × 0.05◦ spatial resolution.

resolution of TROPOMI, NO2, HCHO, and FNR retrievals
from this sensor were also averaged to 0.15◦×0.15◦ for inter-
comparison with OMI. To smooth and reduce the noise of
satellite data, as well as reduce spatial representation errors
of the satellite compared to GeoTASO and GCAS, we apply
a point oversampling technique (e.g., McLinden et al., 2012)
when spatially averaging the retrievals. This method uses a
larger grid box radius, compared to the averaging resolu-
tion, to bin individual retrievals. When averaging satellite
data to the 0.15◦× 0.15◦ spatial resolution (standard radius
of 0.075◦), we employed a radius twice the standard size
equal to 0.15◦. Similarly, when averaging satellite data to the
0.05◦× 0.05◦ spatial resolution (standard radius of 0.025◦),
we applied a radius of 0.05◦.

Given that the nominal flight altitude during LIS-
TOS 2018 was 9 km a.g.l., in order to directly com-

pare to satellite tropospheric-column retrievals, we
scaled airborne tropospheric-column NO2 values by
multiplying the observed values by the ratio of the
total tropospheric NO2 column abundance over the
tropospheric-column NO2 abundance below 9 km a.g.l.
(i.e., Tropospheric NO2 (surface to tropopause)

Tropospheric NO2 (surface to 9 km a.g.l.) ). This scaling factor
for NO2, which showed that typically 60 % to 99 % of
tropospheric NO2 is below 9 km a.g.l., was derived for each
co-located GeoTASO and GCAS retrieval, using WRF-
CMAQ simulations. Airborne tropospheric-column HCHO
data were not scaled since typically > 95 % of HCHO was
determined to be below the nominal aircraft flight altitude.

GeoTASO and GCAS data were co-located to OMI and
TROPOMI using a temporal threshold of ±60 min. Geo-
TASO and GCAS HCHO and NO2 data were first filtered to
remove airborne retrievals where the radiance flag was > 0.5
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Table 2. Statistical evaluation of NASA OMI, QA4ECV OMI, and TROPOMI retrievals of tropospheric-column NO2 and HCHO and
resulting FNRs. Statistics presented are the number of co-located grids (N ), mean concentration± standard deviation from satellite (sat.
conc.) and airborne (air. conc.) retrievals, median bias± bias standard deviation, NMB (%), RMSE, coefficient of determination (R2 a), and
linear regression slope.

NASA OMI (0.15◦× 0.15◦) QA4ECV OMI (0.15◦× 0.15◦)

FNR HCHOb NO2
b FNR HCHOb NO2

b

N 101 101 116 82 85 106
Sat. conc. 4.4± 4.3 17.5± 7.5 6.3± 5.3 3.7± 3.5 16.5± 9.1 5.9± 3.9
Air. conc. 3.6± 2.1 13.2± 7.1 6.1± 6.6 3.4± 2.2 13.3± 7.4 6.1± 6.9
Bias 0.4± 3.8 5.1± 7.8 0.4± 4.1 −0.2± 3.3 2.3± 8.9 0.4± 4.5
NMB 11.0 38.7 6.3 −5.4 17.3 6.8
RMSE 3.8 8.9 4.1 3.3 9.4 4.5
R2 0.23 0.19 0.62 0.17 0.19 0.62
Slope 1.0 0.46 0.63 0.67 0.54 0.44

TROPOMI (0.15◦× 0.15◦) TROPOMI (0.05◦× 0.05◦)

FNR HCHOb NO2
b FNR HCHOb NO2

b

N 261 261 261 1693 1741 1802
Sat. conc. 3.6± 1.8 15.9± 4.7 5.9± 4.2 4.0± 2.6 16.2± 7.0 5.7± 4.6
Air. conc. 3.2± 1.7 12.8± 6.3 6.0± 6.1 3.4± 2.0 14.6± 6.7 6.6± 6.9
Bias 0.3± 1.4 2.9± 4.9 0.3± 3.3 0.4± 2.3 1.9± 6.7 −0.3± 3.7
NMB 9.3 23.1 5.8 13.0 12.9 −4.8
RMSE 1.4 5.6 3.3 2.3 6.7 3.9
R2 0.48 0.40 0.74 0.29 0.28 0.75
Slope 0.75 0.47 0.59 0.70 0.55 0.58

a Correlation values which are presented in italics are statistically significant to a 95 % confidence interval.
b Concentration, bias, and RMSE units are ×1015 molecules cm−2.

as they are considered to be influenced by clouds or glint. We
initially applied a temporal threshold of ±30 min; however,
this resulted in < 50 total co-locations with OMI retrievals.
Therefore, the longer-temporal-threshold criterion was nec-
essary to achieve enough co-locations for statistical evalua-
tion. The longer temporal threshold of ±60 min resulted in
only slightly larger median biases compared to when apply-
ing the ±30 min threshold. Similar bias statistics using tem-
poral offsets of 30 and 60 min agree with other studies which
show minimal dependence on temporal offsets between 0 and
60 min (e.g., Tack et al., 2021). It should be noted that the
temporal threshold of ±60 min, as well as spatial averaging
methods applied in this study, resulted in a slightly larger
spread in TROPOMI NO2 data when evaluated with Geo-
TASO and GCAS data compared to the results in Judd et
al. (2020) which used a 30 min threshold.

Satellite retrievals with high quality were isolated for use
by using individual OMI retrievals that had quality flags of
qa= 0 for HCHO and NO2. This qa value is suggested in
OMI data user manuals for the application of the highest-
quality data and for the removal of OMI pixels impacted
by the row anomaly. For TROPOMI, individual NO2 and
HCHO retrievals that had qa > 0.75 and qa > 0.5 were used,
respectively, as recommended by the TROPOMI data user
manuals. To avoid anomalous OMI and TROPOMI retrieval

values of HCHO, we remove VCDs with lower and up-
per bounds of −8.0× 1015 and 7.6× 1016 molecules cm−2,
respectively. These bounds were determined from typical
HCHO VCD values and a threshold of 3 times the fitting
uncertainty in OMI retrievals presented by Zhu et al. (2020).
Similarly, to avoid anomalous OMI and TROPOMI retrieval
values of NO2, we remove VCDs with lower and upper
bounds of−1.08×1015 and 8.07×1016 molecules cm−2, re-
spectively (OMI NO2 algorithm team, personal communi-
cation, 2021). Both OMI and TROPOMI retrievals with so-
lar zenith angles > 70◦ and effective cloud fractions > 30 %
and > 50 %, respectively, were also removed. These addi-
tional thresholds were chosen based on guidance from the
OMI and TROPOMI data user manuals. Finally, only co-
located spatially averaged grids that had 75 % spatial cov-
erage by GeoTASO and GCAS and airborne remote-sensing
NO2 VCDs > 1.0× 1015 molecules cm−2 were used.

The statistical evaluation of OMI and TROPOMI retrievals
with co-located GeoTASO and GCAS data was primarily
done using the bias (median); variability in bias represented
by the standard deviation of bias (referred to as bias stan-
dard deviation); normalized median bias (NMB), normalized
to the magnitude of observed data; root mean square error
(RMSE); and simple linear regression statistics (slope; y in-
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Table 3. Statistical evaluation of NASA OMI and TROPOMI retrievals of tropospheric-column NO2 and HCHO and resulting FNRs when
reprocessed with high-spatial-resolution WRF-CMAQ a priori information. Statistics presented are the number of co-located grids (N ),
mean concentration± standard deviation from satellite (sat. conc.), median bias± bias standard deviation, NMB (%), RMSE, coefficient of
determination (R2), and linear regression slope.

NASA OMI (0.15◦× 0.15◦) Scaled NASA OMI (0.15◦× 0.15◦)a

FNR HCHOb NO2
b FNR HCHOb NO2

b

N 101 101 116 101 101 116
Sat. conc. 3.5± 4.3 20.4± 8.9 10.5± 8.5 3.1± 3.6 15.8± 7.1 6.3± 6.2
Bias −0.3± 3.9 8.6± 7.8 3.1± 5.1 0.5± 3.2 4.4± 7.1 −0.3± 3.9
NMB −9.4 65.7 50.0 16.7 35.6 −4.2
RMSE 3.9 10.6 6.7 3.5 7.8 3.9
R2 0.17 0.30 0.65 0.21 0.25 0.67
Slope 0.85 0.70 1.03 1.05 0.50 0.76

TROPOMI (0.15◦× 0.15◦) TROPOMI (0.05◦× 0.05◦)

FNR HCHOb NO2
b FNR HCHOb NO2

b

N 261 261 261 1693 1741 1802
Sat. conc. 3.2± 1.7 12.8± 4.4 6.0± 4.3 3.4± 2.6 14.6± 6.8 6.6± 5.2
Bias −0.3± 1.4 −1.2± 5.1 0.1± 3.8 0.2± 2.2 −0.1± 6.3 −0.4± 4.1
NMB −9.1 −9.4 2.0 4.7 −0.3 −6.4
RMSE 1.4 5.2 3.8 2.2 6.3 4.1
R2 0.43 0.35 0.61 0.32 0.32 0.67
Slope 0.67 0.41 0.55 0.74 0.58 0.61

a Reprocessed with “scaled” CMAQ a priori profiles. b Concentration, bias, and RMSE units are ×1015 molecules cm−2.

tercept; and coefficient of determination, R2) based on ordi-
nary least squares.

3 Results

3.1 Campaign-averaged tropospheric FNRs

Airborne observations during the summer of 2018 suggest
that during the midday hours large areas of FNRs≤ 1.0 oc-
curred over the urban regions surrounding the city of New
York (NYC). The term “urban” here is used qualitatively as
the region close in proximity to the center of NYC, where el-
evated tropospheric-column NO2 values were frequently ob-
served. The opposite is true for the usage of “rural”. Figure 1
shows the campaign-averaged FNRs from OMI (NASA and
QA4ECV) and TROPOMI, averaged to 0.15◦× 0.15◦ and
0.05◦× 0.05◦ spatial resolution, compared to co-located air-
borne remote-sensing products. These regions of FNRs≤ 1.0
likely have O3 production which is limited by VOC emis-
sions. Outside of the VOC-limited region, airborne obser-
vations show a clear transition zone of FNRs between 1.0
and 2.0 and NOx-limited regimes (FNR > 2.0) in the rural
regions of the northeastern US. It should be noted these FNR
thresholds follow the assumptions of Duncan et al. (2010);
however, there are uncertainties in the exact thresholds sepa-
rating O3 sensitivity production regimes, and they can be spa-
tiotemporally variable (e.g., Lu and Chang, 1998; Schroeder

et al., 2017; Souri et al., 2020; Jin et al., 2020; Ren et
al., 2022). For simplicity, we use the constant FNR ratio
thresholds defined by Duncan et al. (2010) for discussion.

Satellite retrievals also displayed the same general re-
gional patterns of FNRs in the northeastern US that were
observed by airborne remote sensing (see Fig. 1). How-
ever, all satellite products show higher FNRs (between 1.0
and 3.0) in the areas where airborne observations observed
NOx-saturated regimes. In general, TROPOMI FNRs at
the 0.05◦× 0.05◦ spatial resolution have the lowest values
over NYC in better agreement with airborne observations.
TROPOMI retrieval data also better capture the spatial pat-
tern and urban–rural interface of observed O3 sensitivity pro-
duction regimes compared to OMI data. TROPOMI FNR
retrievals and airborne observations display a clear urban–
rural interface; however, OMI products result in noisier spa-
tial patterns. When averaged to a resolution similar to the
native resolution of OMI (0.15◦× 0.15◦), TROPOMI data
suggest higher FNRs≥ 2.0 in the vicinity of NYC, in line
with OMI retrieval products. It should be noted that satellite-
and airborne-retrieved FNRs are dependent on both tropo-
spheric NO2 and HCHO data. Median and unresolved bi-
ases in FNRs can then be driven by errors in retrievals of
NO2 and/or HCHO. Therefore, the following sections of this
work investigate the statistical evaluation of NASA OMI,
QA4ECV OMI, and TROPOMI tropospheric NO2, HCHO,
and resulting FNRs.
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Figure 1. NASA OMI, QA4ECV OMI, TROPOMI, and airborne tropospheric-column FNR retrievals averaged for all flights conducted
during the LISTOS 2018 field campaign. All co-located OMI and airborne remote-sensing tropospheric-column FNR values are averaged at
0.15◦× 0.15◦, and TROPOMI co-locations are averaged at 0.05◦× 0.05◦ and 0.15◦× 0.15◦ spatial resolution. The black triangle indicates
the location of NYC.

3.2 Statistical evaluation of OMI and TROPOMI

3.2.1 Tropospheric-column NO2 systematic bias and
uncertainty

The spatial pattern of campaign-averaged tropospheric-
column NO2 retrieved by the satellites and airborne sensors
highlight the large pollution region around the urban areas of
NYC (see Fig. S2). Tropospheric NO2 columns over NYC
from both satellite and airborne observations frequently ex-
ceed 1.0× 1016 molecules cm−2. However, while airborne
NO2 values in the rural regions surrounding NYC were
frequently < 2.0× 1015 molecules cm−2, satellite retrievals
had larger NO2 columns between 2.0× 1015 and > 4.0×
1015 molecules cm−2. This suggests OMI and TROPOMI re-
trievals have a high bias in clean-region tropospheric NO2
columns (spatial distribution of satellite NO2 bias shown
in Fig. S4). This high bias in satellite tropospheric-column
NO2 values in clean regions can possibly be linked to an un-
derestimated abundance of free-tropospheric NO2 in CTMs
used as a priori profile data sets for OMI and TROPOMI re-
trievals resulting in AMFs which are too low (e.g., Silvern
et al., 2019). Studies have shown that the coarse spatial res-
olution of the CTMs used to derive a priori NO2 profiles for
OMI and TROPOMI cannot resolve the sharp gradients of
NO2 at the urban–rural interface and lead to the overestima-
tion of satellite retrievals in low-pollution regions (Lamsal

et al., 2014; Tack et al., 2021). Finally, other aspects of the
satellite retrievals such as biases in stratospheric NO2 con-
centrations and separation from the troposphere, aerosol in-
terference, and surface albedo could contribute to these over-
estimations in clean regions (e.g., Lamsal et al., 2021).

Figure 2 shows the comparison of co-located NASA OMI,
QA4ECV OMI, and TROPOMI retrievals of tropospheric
NO2 columns with observed data from all flights (statisti-
cal evaluation in Table 2). The high bias of tropospheric
NO2 columns in clean regions retrieved by the satellite sen-
sors outside the urban regions of NYC resulted in linear re-
gression slopes < 0.65 and positive y intercepts. Some of
this high bias in clean regions is offset in the campaign-
averaged median biases by the fact that the satellite retrievals
have a low bias compared to NO2 values observed over
polluted regions (> 1.0×1016 molecules cm−2). The magni-
tude dependence of satellite-retrieved NO2 bias agrees with
past validation studies (e.g., Zhao et al., 2020; Lamsal et
al., 2021; Verhoelst et al., 2021). This magnitude dependence
has been shown to be driven by uncertainties in AMF val-
ues used in the retrievals (Martin et al., 2002; Boersma et
al., 2004). TROPOMI at its near-native spatial resolution has
the least high bias of clean-region tropospheric NO2 demon-
strated by the lower y-axis intercept compared to all OMI
and TROPOMI data products at the coarser spatial resolu-
tion. Overall, NASA OMI and QA4ECV displayed small
campaign-averaged median biases (NMB %) of ∼ 0.4×
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Figure 2. Comparison of satellite- (NASA OMI, QA4ECV OMI, and TROPOMI) and airborne-retrieved tropospheric NO2 (molecule cm−2)
for each co-located measurement taken during the field campaign. All co-located OMI and airborne remote-sensing tropospheric-column
NO2 values are averaged at 0.15◦×0.15◦ resolution, and TROPOMI co-located data are averaged at 0.15◦×0.15◦ and 0.05◦×0.05◦ spatial
resolution. The solid black line shows the 1 : 1 comparison, and the dashed line shows the linear regression fit. The figure inset shows the
main statistics (coefficient of determination (R2), slope (M), y intercept (B), and median bias and bias standard deviation) of the comparison.

1015 molecules cm−2 (∼ 6.5 %). TROPOMI retrievals had
a campaign-averaged median bias of −0.3 molecules cm−2

(−4.8 %) and 0.3× 1015 molecules cm−2 (5.8 %) when av-
eraged at 0.05◦× 0.05◦ and 0.15◦× 0.15◦ spatial resolution,
respectively. It should be noted that the TROPOMI low bias
in tropospheric-column NO2 is improved with the newer
retrieval algorithm used in this study compared to early
versions of the data product (e.g., v1.2.2 had a campaign-
averaged median low bias of −1.3× 1015 molecules cm−2)
primarily due to better cloud pressure input data (FRESCO+
wide) now used in TROPOMI retrievals (Riess et al., 2022).

Noise in the satellite retrievals resulting in unresolved
errors (RMSE) is important for accurate retrievals of the
spatially resolved daily tropospheric-column NO2, HCHO,
and FNRs. At the near-native spatial resolution of the three
satellite NO2 retrievals, RMSE values were similar (∼ 3.5–
4.5×1015 molecules cm−2) with QA4ECV OMI data having
the largest bias standard deviation and RMSE values and
TROPOMI having the least noise in the data (see Table 2).
To determine if the higher spatial resolution and less noise
of TROPOMI retrievals resulted in more favorable com-
parisons to observations, we further compared TROPOMI
tropospheric-column NO2 values to OMI results. TROPOMI
data averaged to match OMI spatial resolution displayed the
lowest RMSE values. At both spatial resolutions, TROPOMI
tropospheric NO2 data have less spread in the data compared
to OMI products. The larger noise in OMI tropospheric NO2

SCDs compared to TROPOMI NO2 SCDs has been shown
in recent studies (van Geffen et al., 2020, 2022) and has been
attributed to its higher spatial resolution (better by a factor
of > 12) and similar, to even better, signal-to-noise ratios.
Furthermore, TROPOMI NO2 at 0.05◦× 0.05◦ better repro-
duces the spatial patterns of observed tropospheric-column
NO2. This is emphasized by the higher correlation and lower
RMSE values when evaluating TROPOMI tropospheric NO2
columns with observations in comparison to the other satel-
lite products and visually more clearly separating the urban–
rural interface seen in tropospheric NO2 (see Fig. S2). Fi-
nally, TROPOMI NO2 data averaged to the coarser spatial
resolution of OMI have a similarly high median bias as both
OMI retrieval algorithms; however, displayed RMSE values
are nearly twice as small as NASA and QA4ECV OMI, fur-
ther emphasizing the importance of spatial resolution for re-
trieving tropospheric NO2 columns.

3.2.2 Tropospheric-column HCHO systematic bias and
uncertainty

The spatial pattern of campaign-averaged tropospheric-
column HCHO retrieved by the satellites and airborne sen-
sors demonstrate the large HCHO concentrations in both
urban and rural regions during the summer of 2018 (see
Fig. S3). Airborne observations of tropospheric-column
HCHO concentrations show that over NYC the concentra-
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tions are on average ∼ 1.5× 1016 molecules cm−2 and can
exceed 2.5×1016 molecules cm−2 during the afternoon hours
(see Fig. S3). Both OMI and TROPOMI retrieval products
have smaller gradients between HCHO concentrations in the
urban and rural regions in comparison to airborne observa-
tions.

Figure 3 shows the scatterplot comparison of co-located
NASA OMI, QA4ECV OMI, and TROPOMI retrievals of
tropospheric HCHO columns compared to observed data
(statistical evaluation in Table 2). This figure and Table 2
illustrate the high bias of clean-region tropospheric HCHO
columns retrieved by satellites (spatial distribution of HCHO
bias in OMI and TROPOMI shown in Fig. S5). All satel-
lite products have a high bias for tropospheric-column
HCHO values of ≤ 1.5× 1016 molecules cm−2, linear re-
gression slopes of < 0.60, and positive y intercepts. Both
OMI retrieval products and TROPOMI data better replicate
the larger HCHO concentrations (between 1.5× 1016 and
3.0×1016 molecules cm−2) with some small low bias in more
polluted regions (> 3.0×1016 molecules cm−2). On average,
NASA OMI had the largest campaign-averaged median high
bias of 5.1× 1015 molecules cm−2 (38.7 %). QA4ECV OMI
data result in a lower campaign-averaged median high bias of
2.3× 1015 molecules cm−2 (17.3 %). Finally, TROPOMI re-
trievals had the lowest campaign-averaged median high bias
of 1.9× 1015 molecules cm−2 (12.9 %) at 0.05◦× 0.05◦ spa-
tial resolution and 2.9×1015 molecules cm−2 (23.1 %) when
averaged at 0.15◦× 0.15◦.

The results of the validation shown in Fig. 3 and Ta-
ble 2 are consistent with recent validation studies such as the
work of Vigouroux et al. (2020) and De Smedt et al. (2021)
which also show OMI and TROPOMI retrievals are bi-
ased high in clean conditions and in regions of high tropo-
spheric HCHO columns are generally consistent with some
moderate low bias. In order to provide more of a quantita-
tive comparison with recent validation studies of OMI and
TROPOMI HCHO (Vigouroux et al., 2020; De Smedt et
al., 2021), we separated our co-located satellite–airborne data
points into clean (< 5.0×1015 molecules cm−2) and polluted
(≥ 8.0× 1015 molecules cm−2) scenes. We chose a slightly
higher threshold for separating clean HCHO columns to opti-
mize the number of co-locations for statistics. We also added
a highly polluted threshold (> 16.0× 1015 molecules cm−2)
to further emphasize our results (see Table S3). While the
positive tropospheric HCHO column biases derived in our
study are higher compared to Vigouroux et al. (2020) and
De Smedt et al. (2021), the magnitude dependence is simi-
lar. We show that clean-region satellite HCHO columns are
larger than observations for all satellite products and transi-
tion to a low bias in highly polluted regions.

The NASA and QA4ECV OMI HCHO retrievals had
RMSE values ∼ 9.0× 1015 molecules cm−2 with QA4ECV
data having a slightly larger data spread. The higher spatial
resolution and sufficient signal-to-noise ratio of TROPOMI
resulted in HCHO RMSE values ∼ 25 %–30 % lower com-

pared to OMI. Spatially averaging TROPOMI tropospheric-
column HCHO to coarser grids to increase the signal-to-
noise ratio aided in further reducing RMSE values (see Ta-
ble 2). While both TROPOMI and OMI tropospheric HCHO
retrievals display large noise, TROPOMI has correlation val-
ues better compared to OMI, with R2 values being higher
by a factor of 2 at the same spatial resolution. Vigouroux et
al. (2020) and De Smedt et al. (2021) agree with our analysis
that TROPOMI HCHO has lower RMSE values and higher
correlations with observations, compared to OMI products.
The larger spread in tropospheric HCHO from OMI com-
pared to TROPOMI is likely due to the weaker signal-to-
noise ratio in OMI and potentially the fewer co-located data
points for statistical analysis.

All three satellite HCHO products have larger RMSE val-
ues and low correlations when compared to the statistical
evaluation of satellite NO2 retrievals. TROPOMI SCD re-
trievals of HCHO have been shown in recent work (e.g.,
De Smedt et al., 2021) to have less noise compared to
OMI due to the higher spatial resolution and at least the
same signal-to-noise ratio. Furthermore, UV–Vis retrievals at
shorter wavelengths (∼ 340 nm) have much smaller sensitiv-
ity to HCHO compared to longer wavelengths (∼ 440 nm)
employed for NO2 retrievals (Lorente et al., 2017). The sen-
sitivity of UV–Vis retrievals to HCHO is lower throughout
the middle and lower troposphere compared to NO2, due
to stronger Rayleigh scattering at shorter wavelengths, ap-
proaching twice as low near the surface (Lorente et al., 2017).
The higher sensitivity of NO2 retrievals in the lower tropo-
sphere, compared to HCHO, is important as the largest spa-
tiotemporal variability in both NO2 and HCHO concentra-
tions occur lower in the troposphere leading to the higher cor-
relation and lower RMSE values in the tropospheric-column
NO2 statistical evaluation.

3.2.3 Tropospheric-column FNR systematic bias and
uncertainty

The comparison of satellite- and airborne-retrieved FNRs is
shown in Fig. 4 and Table 2. NASA OMI and TROPOMI (at
0.05◦×0.05◦ and 0.15◦×0.15◦) display campaign-averaged
median biases of 0.3–0.4, and QA4ECV OMI data resulted
in a campaign-averaged median bias of −0.2. Regardless of
how tropospheric-column NO2 and HCHO compared to ob-
servations, all satellite products evaluated here resulted in
campaign-averaged FNR median biases ≤ 0.4, suggesting
that the systematic biases in the individual proxy species
for OMI and TROPOMI offset to result in accurate me-
dian campaign-averaged FNR values. Visual inspection of
TROPOMI and QA4ECV OMI retrievals suggests that these
two products have the best ability to replicate the lowest
observed FNRs over NYC during the field campaign (see
Fig. 1). However, besides NASA OMI retrievals, the satel-
lite products have linear regression slopes < 1.0, indicating a
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Figure 3. Comparison of satellite- (NASA OMI, QA4ECV OMI, and TROPOMI) and airborne-retrieved tropospheric HCHO
(molecule cm−2) for each co-located measurement taken during the field campaign. All co-located OMI and airborne remote-sensing
tropospheric-column HCHO values are averaged at 0.15◦× 0.15◦ resolution, and TROPOMI co-located data are averaged at 0.15◦× 0.15◦

and 0.05◦× 0.05◦ spatial resolution. The solid black line shows the 1 : 1 comparison, and the dashed line shows the linear regression fit.
The figure inset shows the main statistics (coefficient of determination (R2), slope (M), y intercept (B), and median bias and bias standard
deviation) of the comparison.

high bias for lower FNR values and some small low bias for
higher observed FNRs.

All three satellite products displayed high correlation with
tropospheric-column NO2 observations, suggesting these
spaceborne sensors can accurately assess the spatial and tem-
poral patterns of this species. However, all the satellite prod-
ucts had very low correlation and high RMSE values when
compared with observations of HCHO. In fact, the rank in
correlation levels of all four FNR satellite products evalu-
ated here directly matches the rank in correlation levels of
tropospheric HCHO. This leads to the conclusion that given
bias variability and RMSE in satellite tropospheric HCHO
are large, and they directly drive the uncertainty in FNR re-
trievals; satellite HCHO observations are the limiting fac-
tor of using spaceborne retrievals to accurately assess daily
FNRs.

An interesting finding of this study is that the median
bias of OMI and TROPOMI HCHO and NO2 tropospheric
columns tend to cancel out, resulting in low median bi-
ases for FNRs; however, the unresolved biases in HCHO
and NO2 retrievals do not cancel out. This is clear as the
RMSE values for FNRs are still large. Furthermore, biases
for HCHO and NO2 retrievals from OMI and TROPOMI
are not correlated with R2 values < 0.05 for all three satel-
lite products. The uncertainty in HCHO and NO2 retrievals
resulted in FNR RMSE values for NASA OMI, QA4ECV

OMI, and TROPOMI (at near-native spatial resolutions) of
3.8, 3.3, and 2.3, respectively. Spatially averaging TROPOMI
tropospheric-column HCHO data was shown to reduce the
noise in the data, resulting in FNR RMSE values for
TROPOMI at the coarser spatial resolution lower by nearly
a factor of 2 compared to OMI. Overall, the large noise
and unresolved error in tropospheric HCHO retrievals di-
rectly result in the uncertainty in FNR retrievals. It should
be noted that the HCHO validation data from GeoTASO and
GCAS are also hindered by weak absorption signatures in the
shorter UV–Vis wavelengths and could add to the bias vari-
ability and RMSE values derived in this study. However, the
level of uncertainty in tropospheric-column HCHO data from
OMI and TROPOMI derived in this study is generally con-
sistent with other recent studies (e.g., Vigouroux et al., 2020;
De Smedt et al., 2021); therefore, we feel the conclusions
drawn here are robust.

There are two main reasons HCHO retrievals are nosier
compared to NO2: (a) optical depths for HCHO peak in
the UV range (< 380 nm) at the same wavelengths coin-
ciding with large Rayleigh scattering and optical depths
of O3, leading to a weak and noisy signal, and (b) the
stronger NO2 optical depths in the visible wavelength range
(400–500 nm), where there are higher signal-to-noise ra-
tios, permit retrievals with less noise. To further evalu-
ate the comparison of uncertainty in the remote sensing of
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Figure 4. Comparison of satellite- (NASA OMI, QA4ECV OMI, and TROPOMI) and airborne-retrieved tropospheric FNR (unitless) for
each co-located measurement taken during the field campaign. All co-located OMI and airborne remote-sensing tropospheric-column FNR
values are averaged at 0.15◦× 0.15◦ resolution, and TROPOMI co-located data are averaged at 0.15◦× 0.15◦ and 0.05◦× 0.05◦ spatial
resolution. The solid black line shows the 1 : 1 comparison, and the dashed line shows the linear regression slope. The figure inset shows the
main statistics (coefficient of determination (R2), slope (M), y intercept (B), and median bias and bias standard deviation) of the comparison.

NO2 and HCHO, we compared GCAS and GeoTASO pre-
cision levels for the two species. Nowlan et al. (2018) de-
rived the precision of the airborne remote-sensing systems
used for NO2 and HCHO retrievals in this study. Nowlan et
al. (2018) quantified precisions of 1.0×1015 molecules cm−2

and 1.9× 1016 molecules cm−2 at a fine spatial resolution
of 250 m× 500 m for NO2 and HCHO, respectively. Av-
eraging the data to the spatial resolution of 0.05◦× 0.05◦

improves these precision levels to 6.4× 1013 and 1.2×
1015 molecules cm−2 for NO2 and HCHO, respectively. The
campaign-averaged tropospheric-column NO2 and HCHO
abundances from GCAS and GeoTASO at 0.05◦×0.05◦ were
6.6×1015 and 1.5×1016 molecules cm−2, respectively. Com-
paring the precision values of Nowlan et al. (2018) to the
mean abundances during LISTOS at the same spatial resolu-
tion results in mean precision levels of 1 % and 8 % for NO2
and HCHO, respectively. Overall, from this analysis it is ex-
pected that the HCHO retrievals should have more noise by
a factor of 5–10 compared to NO2.

3.3 Common a priori sensitivity test

This section analyzes the impact of using common, high-
spatial-resolution (4 km× 4 km), WRF-CMAQ-predicted
NO2 and HCHO vertical profiles as a priori information
in NASA OMI and TROPOMI retrievals. GeoTASO and
GCAS retrievals were not reprocessed in order to have a con-

sistent reference data set for the evaluation of the standard
and reprocessed satellite retrievals. While reprocessing the
airborne data with the higher-spatial-resolution model output
would in itself be interesting (as done in Judd et al., 2020),
the direct evaluation of the improvements in the reprocessed
satellite data compared to the standard retrieval would not be
possible. Figure 5 shows the campaign-averaged FNRs from
NASA OMI and TROPOMI retrievals, when reprocessed
with WRF-CMAQ NO2 and HCHO a priori vertical profiles,
compared to co-located airborne remote-sensing products
(scatterplot comparison displayed in Fig. S6; statistical
evaluation shown in Table 3). Comparing NASA OMI FNRs
from this figure to Fig. 1, it is evident that using high-
spatial-resolution WRF-CMAQ-predicted vertical profiles
as a priori information resulted in FNR retrievals that are
better able to capture the low FNR values (FNR≤ 1.0).
Reprocessed TROPOMI FNRs also have lower values
around NYC; however, they were reduced less compared to
OMI retrievals.

Comparing standard retrieval products from NASA OMI
(see Fig. S2 for NO2 and Fig. S3 for HCHO) to reprocessed
retrievals (see Fig. S7 for NO2 and Fig. S8 for HCHO), it
is clear that in general the higher-spatial-resolution model
data resulted in larger tropospheric-column NO2 and slightly
larger tropospheric-column HCHO values. For TROPOMI,
reprocessing the retrievals with WRF-CMAQ a priori in-
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Figure 5. NASA OMI and TROPOMI reprocessed tropospheric-column FNR retrievals compared to airborne FNR observations averaged for
all flights. All co-located OMI and airborne remote-sensing tropospheric-column FNR values are averaged at 0.15◦×0.15◦, and TROPOMI
co-locations are averaged at both 0.15◦× 0.15◦ and 0.05◦× 0.05◦ spatial resolution. The OMI FNR retrievals calculated with the scaled
WRF-CMAQ profiles are identified as “scaled” in the figure panel titles. The black triangle indicates the location of NYC.

formation caused increases in tropospheric-column NO2
over polluted regions but small decreases over rural ar-
eas. Tropospheric-column HCHO data for the reprocessed
TROPOMI data were slightly lower in more polluted urban
regions near NYC and much lower in the rural areas domi-
nated by low concentrations compared to standard retrievals.

The increases in NASA OMI tropospheric NO2 columns
resulted in a small negative bias in FNR retrievals (−0.3),
compared to a small positive bias in the standard products
(0.4). When compared to airborne observations, the repro-
cessed NASA OMI NO2 data display a large positive me-
dian bias which was not evident in the standard retrieval
products. Similarly, reprocessed NASA OMI tropospheric-
column HCHO data had a higher positive bias compared
to standard retrievals. It should be noted, as previously dis-
cussed, that median biases in both reprocessed NASA OMI
NO2 and HCHO retrievals offset, resulting in median FNR
values that compared relatively well to observations. How-
ever, the uncertainty in reprocessed satellite HCHO and NO2
retrievals did not cancel out, resulting in FNR RMSE values
which were still large for NASA OMI (3.9) and TROPOMI
(3.5).

The larger tropospheric NO2 columns in reprocessed
NASA OMI data using high-spatial-resolution model data as
a priori information were also shown in past studies (e.g.,
Souri et al., 2016; Goldberg et al., 2017). Both our study and
the work by Goldberg et al. (2017) show that high-spatial-
resolution CMAQ-predicted NO2 a priori profiles result in
OMI tropospheric NO2 columns that are as high as larger
by a factor of 2 than the standard retrievals. This high bias

is caused by smaller AMFs calculated due to the shape fac-
tor of high-spatial-resolution CMAQ-predicted NO2 concen-
trations having a too steep NO2 gradient. The change in
HCHO shape factors when using WRF-CMAQ a priori pro-
files resulted in slightly higher tropospheric HCHO columns
when compared to standard products for the same reason as
tropospheric-column NO2. Similar to Goldberg et al. (2017),
we used airborne in situ observations of NO2 and HCHO
from LISTOS 2018 and the Ozone Water–Land Environmen-
tal Transition Study 2 (OWLETS-2, https://www-air.larc.
nasa.gov/missions/owlets/, last access: 8 May 2023) field
campaigns to correct the model-predicted a priori profiles for
use in NASA OMI retrievals and is discussed later in this sec-
tion.

Tropospheric NO2 columns in reprocessed TROPOMI re-
trievals resulted in slightly lower median biases (−0.4×
1015 molecules cm−2) compared to the standard products
(−0.3× 1015 molecules cm−2) with slightly larger RMSE
values in the reprocessed NO2 retrievals. Reprocess-
ing TROPOMI retrievals of tropospheric-column HCHO
resulted in smaller concentrations and improved me-
dian biases (−0.1× 1015 molecules cm−2) and RMSE val-
ues (6.3× 1015 molecules cm−2) compared to the me-
dian bias (1.9× 1015 molecules cm−2) and RMSE (6.7×
1015 molecules cm−2) in the standard products. The good
performance of both reprocessed TROPOMI NO2 and
HCHO resulted in FNR values with a smaller median bias
(0.2) compared to standard products (0.4) and slightly lower
RMSE values.
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Following methods similar to Goldberg et al. (2017) we
used the University of Maryland Cessna 402B airborne ob-
servations to apply in situ data observational constraints
on the NO2 and HCHO a priori profiles applied in NASA
OMI retrievals. The evaluation of WRF-CMAQ-predicted
NO2 (14 flights during LISTOS 2018 and OWLETS-2) and
HCHO (7 flights during LISTOS 2018) vertical profiles using
airborne data is displayed in Fig. S9. Compared to measured
NO2 values, the model displays a high bias below 1 km a.g.l.
of ∼ 0.4 ppb which was often > 50 % larger than observa-
tions. This is in stark contrast to the model performance
above 2 km a.g.l., where the model has a low bias of −0.2 to
−0.4 ppb often approaching 100 % lower than observations.
For the WRF-CMAQ comparison to airborne in situ HCHO
data, the model has a low bias throughout the lower tropo-
sphere, with larger low biases near the surface (−3.0 ppb be-
tween 0 and 1 km a.g.l.) and smaller low biases in the free
troposphere (∼−1.3 ppb above 2 km a.g.l.). These low bi-
ases range between−50 % to−100 % compared to measured
values. In addition to physiochemical parameterizations ap-
plied in CTMs, meteorological predictions by WRF, such as
wind speed and direction, must have limited errors in order to
accurately predict the horizontal and vertical distribution of
NO2 and HCHO concentration (e.g., Laughner et al., 2016;
X. Liu et al., 2021). Compared to the airborne in situ obser-
vations, WRF wind speed and direction predictions during
this study performed relatively well with median correlation
(R) and bias values of 0.70 and 0.63 and ≤ 1.0 m s−1 in the
u and v wind components, respectively.

We applied approximated scaling factors to the a priori
profiles to reprocess NASA OMI data (hereinafter referred to
as scaled). Separate scaling factors were applied above and
below the PBL, approximated to be at 1.5 km a.g.l., where
noticeable differences in model performance were evident.
For NO2, we apply a scaling factor of 0.5 to WRF-CMAQ a
priori NO2 profiles in the PBL and 5.0 above the PBL. For
HCHO, we applied a scaling factor of 2.0 to WRF-CMAQ
a priori profiles in the PBL and 5.0 above the PBL. These
scaling factors are approximations of the model performance
and are simply applied to determine the impact of “raw” and
“scaled” WRF-CMAQ-simulated a priori profiles in NASA
OMI NO2 and HCHO retrievals.

The spatial distribution of FNRs derived from the scaled
NASA OMI reprocessed NO2 and HCHO retrievals is shown
in Fig. 5 (scatterplot comparison displayed in Fig. S6; sta-
tistical evaluation in Table 3). From Table 3 and Fig. 5 it
can be seen that the scaled WRF-CMAQ a priori profiles re-
sult in higher FNR values and improved tropospheric-column
NASA OMI NO2 and HCHO retrievals compared to repro-
cessed products using the raw model output (see Figs. S7
and S8). Scaled NASA OMI tropospheric-column NO2 and
HCHO retrievals had smaller median biases of −0.3× 1015

and 4.4× 1015 molecules cm−2 and much lower RMSE val-
ues of 3.9×1015 and 7.8×1015 molecules cm−2, respectively,
compared to the retrievals with raw WRF-CMAQ predic-

tions. Finally, the improved accuracy of tropospheric-column
NO2 and HCHO retrievals using scaled WRF-CMAQ pre-
dictions resulted in a slightly higher magnitude of FNR me-
dian bias (0.5), however, with lower RMSE values, com-
pared to reprocessed data using raw CMAQ predictions.
Compared to standard NASA OMI products, the repro-
cessed satellite data using scaled WRF-CMAQ data had sim-
ilar median biases in FNR values and lower median biases
for HCHO (4.4× 1015 molecules cm−2) and NO2 (−0.3×
1015 molecules cm−2). All reprocessed data variables using
scaled model-simulated shape factors, due to the reduction
in uncertainty in retrieving HCHO and NO2 data, had lower
RMSE values, higher correlation (except for FNR), and sim-
ilar or better linear regression slopes compared to standard
satellite retrievals.

3.4 Discussion of satellite sensor errors and capabilities

3.4.1 Relative error in FNR retrievals

A recent study by Souri et al. (2023) showed that satellite
retrievals errors, in particular the unresolved error in HCHO
products, are the largest source of uncertainty in using satel-
lite FNRs to investigate O3 sensitivity. Here we propagate the
uncertainty (RMSE) calculated from NASA OMI, QA4ECV
OMI, and TROPOMI to FNR calculations using Eq. (15)
from Souri et al. (2023) and created maps of the relative er-
ror (see Fig. 6). From this figure it can be seen that satellite
retrieval errors in HCHO and NO2 contribute significantly
to satellite-derived FNR relative errors. In the largest NOx

emission source regions of NYC, where combined column
abundances of HCHO and NO2 are largest, the lowest rel-
ative errors in FNRs occur. For TROPOMI, which has the
smallest values of uncertainty, relative errors are as low as
∼ 40 %. Away from the emission region of NYC these rel-
ative error values reach as high as ∼ 80 %. Similar patterns
of relative error in FNRs from NASA and QA4ECV OMI
retrievals are derived; however, the lowest relative error val-
ues over NYC are∼ 50 % and reach values up to 100 %. The
largest relative errors are seen outside the source region of
NYC in QA4ECV OMI retrievals due to having the largest
uncertainty in HCHO and lower column abundances of this
species in the rural regions of the domain. In addition to the
fact that the less noisy retrievals from TROPOMI result in
lower relative errors in FNR data, Fig. 6 further demonstrates
the larger uncertainty in OMI as the relative error patterns
are more heterogeneous. The spatial averaging of TROPOMI
data results in the lowest relative errors in all four satellite
products, as TROPOMI at the coarser (0.15◦×0.15◦) spatial
resolution had relative errors as low as 35 %, only increasing
to ∼ 60 % outside of the source location of NYC.
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Figure 6. Campaign-averaged relative error in FNR products from standard NASA OMI, QA4ECV OMI, and TROPOMI retrievals due to
uncertainty in HCHO and NO2 retrievals. All co-located OMI and airborne remote-sensing tropospheric-column FNR values are averaged at
0.15◦× 0.15◦, and TROPOMI co-locations are averaged at 0.05◦× 0.05◦ and 0.15◦× 0.15◦ spatial resolution. The black triangle indicates
the location of NYC.

3.4.2 Spatial and temporal capabilities of satellite FNR
retrievals

Given the limited spatiotemporal data coverage provided by
the LISTOS campaign, a robust understanding of the tempo-
ral capabilities of OMI and TROPOMI to retrieve FNRs is
not possible. LEO satellites obtain, at best, a single snapshot
of both HCHO and NO2 each day, so one could only hope
to obtain daily variability in FNRs from these spaceborne
systems. To determine whether OMI and TROPOMI capture
the variability in the daily mean tropospheric-column quan-
tities of NO2, HCHO, and FNRs over the entire LISTOS do-
main from airborne data, we compared these daily mean val-
ues from the satellite products to the airborne observations.
For NASA OMI, daily correlation (R2) values were 0.85
(p = 0.001), 0.58 (p = 0.03), and 0.26 (p = 0.20) for NO2,
HCHO, and FNRs, respectively. For QA4ECV OMI, daily
correlation values were 0.85 (p = 0.001), 0.80 (p = 0.002),
and 0.47 (p = 0.06) for NO2, HCHO, and FNRs, respec-
tively. For TROPOMI, daily correlation values were 0.92
(p ≤ 0.001), 0.85 (p ≤ 0.001), and 0.41 (p = 0.03) for NO2,
HCHO, and FNRs, respectively. All daily correlation statis-
tics for HCHO and NO2 were significant to a 95 % confi-
dence interval and suggest that both OMI and TROPOMI

can capture the overall inter-daily magnitudes of FNR indi-
cator species. However, only TROPOMI could observe the
daily variability in domain-wide FNRs within a 95 % confi-
dence interval. This suggests that unresolved errors in either
HCHO or NO2 retrievals from OMI, using both the NASA
and QA4ECV algorithms, are too large to confidently cap-
ture the inter-daily variability in FNRs.

The same analysis was conducted for NASA and
QA4ECV OMI except just for retrievals near the large an-
thropogenic source regions in NYC (within 0.35◦ of the city
center) where relative errors due to satellite retrievals for
FNR calculations were the lowest (see Fig. 6). Daily cor-
relation values for FNR retrievals near the source region of
NYC for NASA OMI (0.13; p value= 0.39) were reduced
compared to domain-wide means, and QA4ECV OMI (0.66;
p value= 0.01) correlations were improved near the source
region of NYC. Indicator species correlation values from
NASA OMI were degraded compared to the domain-wide
analysis, suggesting that this satellite product may not be able
to capture inter-daily variability in FNRs even in large source
regions. However, this analysis suggests that QA4ECV OMI
data have the capability to retrieve daily variability in FNRs
in large emission regions such as NYC to a statistically sig-
nificant level. Overall, TROPOMI retrievals at both fine and
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coarse spatial resolutions evaluated in this study are able to
capture daily variability in tropospheric FNRs over the entire
domain and emission source regions better compared to OMI
products.

Recent studies have shown that averaging OMI data (es-
pecially HCHO retrievals) for longer temporal periods can
reduce the noise and uncertainty in this data product. For
example, in the recent paper by Souri et al. (2023), it was
shown that unresolved errors in OMI HCHO can be reduced
in monthly averages compared to daily retrievals by ∼ 33 %,
while there was little improvement in uncertainty statistics
of NO2 retrievals from OMI. However, recent studies (e.g.,
Schroeder et al., 2017) have also shown that for trend studies,
monthly averaging column FNR data can mask FNR tempo-
ral gradients that exist within that period. This could hinder
the results of trend studies of pollution on O3 exceedance
days and days of lower pollution.

To understand the extent to which OMI and TROPOMI re-
trievals lose spatial information (variance) compared to air-
borne data, we applied the algorithm named SpaTial Rep-
resentation Error EstimaTor (STREET) (Souri, 2022). This
method creates semivariograms determining the changes in
spatial variability with distance for a defined variable (we
used HCHO and NO2). The maximum variance at which the
modeled semivariogram levels off is defined as a sill, and
data sets with larger sill values possess richer spatial informa-
tion. Figure S10 shows semivariograms, as well as the fitted
stable Gaussian function, applied to TROPOMI and NASA
OMI compared to airborne NO2 columns. Concerning the
comparison of TROPOMI and airborne data at 0.05◦×0.05◦

resolution, we observe airborne semivariograms as high as
20× 1015 molecules cm−2, larger by a factor of 2 than what
OMI achieves. At a ∼ 20 km length scale, TROPOMI can
only observe ∼ 40 % of the airborne spatial variance, indi-
cating that the spatial representation error in TROPOMI is ∼
60 % at this scale. NASA OMI fails to recreate > 50 % of the
maximum variance observed in airborne data at 0.15◦×0.15◦

resolution. At ∼ 20 km length scale, the spatial loss of OMI
is > 70 %.

Figure S10 depicts the semivariograms and fitted exponen-
tial curves applied to TROPOMI and airborne HCHO. Imme-
diately evident is that both semivariograms level off at longer
distances compared to the analysis of NO2. This stems from
the fact that HCHO columns tend to be spatially more ho-
mogeneous in the region of the LISTOS domain. For most
length scales, TROPOMI can replicate the spatial variance
observed in airborne data (∼ 70 %). We do not present the
semivariogram for NASA OMI HCHO columns as the under-
lying unresolved biases in OMI are very large, introducing
artifacts that cannot be solely attributable to unresolved spa-
tial scales. Since TROPOMI is able to capture the observed
HCHO variability to a sufficient degree and can sufficiently
retrieve NO2 spatial variability, this suggests that TROPOMI
has better capability to retrieve FNR spatial variability com-
pared to OMI.

3.4.3 Reasons for systematic bias and uncertainty in
FNRs

As demonstrated in this study, median biases of OMI and
TROPOMI HCHO and NO2 retrievals tend to cancel out
when calculating tropospheric-column FNRs. Figures S4
and S5 show that the median bias spatial distribution of all
satellite HCHO and NO2 retrievals are similar, with a small
low median bias in column abundances near the source re-
gion of NYC and high biases in clean regions. Table S1
shows that AMF calculations from NASA OMI, QA4ECV
OMI, and TROPOMI use many of the same input data sets
for geophysical variables (e.g., surface albedo, cloud frac-
tion, cloud radiance), resulting in campaign-averaged AMFs
of HCHO, NO2, and the ratios of these products (AMF
FNRs) which are relatively similar across the LISTOS do-
main (see Fig. S11). For all satellite products, HCHO and
NO2 AMFs have much less variability compared to AMFs
derived for airborne data which along with SCD biases may
contribute to the median high biases in clean HCHO and
NO2 retrievals. A primary reason for the inability of satel-
lites to capture AMF variability over the LISTOS domain is
likely the shape factors being used for these calculations hav-
ing spatial resolutions from 1.0◦×1.0◦ to even coarser grids.
Furthermore, while TROPOMI and QA4ECV OMI retrievals
used daily model data, NASA OMI uses monthly products
which make it challenging to capture the large spatiotempo-
ral variability in tropospheric HCHO and NO2 vertical pro-
files. Finally, coarse geophysical input data sets used in satel-
lite AMF calculations will not capture the spatial distribution
of these variables as well as the high-spatial-resolution geo-
physical data sets used in airborne AMF calculations.

The more interesting aspect found in this study is that un-
resolved errors in HCHO and NO2 retrievals do not cancel
out in FNR calculations. While there are some reasons why
uncertainty in HCHO and NO2 retrievals could stem from
opposite impacts of geophysical parameters in AMF calcula-
tions, such as AMF uncertainties in HCHO and NO2 having
opposite trends with increasing surface reflectance (compar-
ing Fig. 10 from De Smedt et al., 2018, and Fig. 20 from
S. Liu et al., 2021), these differences are minor and AMF
calculations for both species in NASA OMI, QA4ECV OMI,
and TROPOMI have similar input data sets. A portion of the
uncertainty in HCHO and NO2 retrievals not canceling out
stems from the AMF calculations shown in Fig. S11. In order
for HCHO and NO2 AMFs to have no impact on VCD uncer-
tainty cancelations, AMF FNRs would need to be a constant
or similar value at all locations. However, from Fig. S11 it
is shown that AMF FNRs, while having smooth spatial vari-
ability, are not a constant value. Therefore, some of the un-
resolved error residual in the FNR calculations will be due
to differences in HCHO and NO2 AMF calculations. This
is emphasized in NASA OMI AMF FNR plots in Fig. S11,
where different CTMs, at different spatial resolutions (see
Table S1), are used to derive HCHO and NO2 shape factors
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leading to noticeable differences in the respective AMF cal-
culations. This likely is one of the reasons that NASA OMI
FNRs have the largest uncertainty (highest bias standard de-
viation and RMSE values) compared to airborne data (see
Table 2).

The rest of the remaining unresolved error in FNR cal-
culations is likely due to the SCD retrievals from OMI
and TROPOMI sensors. SCD retrievals of HCHO from
TROPOMI have been shown to have less noise compared
to OMI (De Smedt et al., 2021). The larger uncertainty in
OMI retrievals of HCHO compared to TROPOMI directly
leads to the higher bias standard deviation and RMSE values
for derived FNRs in OMI compared to TROPOMI (see Ta-
ble 2). This is further emphasized in the spatially averaged
TROPOMI data (at 0.15◦×0.15◦ to match OMI data), where
HCHO and FNR retrievals have an RMSE lower by a factor
of 2–3 compared to OMI products. TROPOMI NO2 SCDs
have also been shown to have less noise compared to OMI
retrievals (van Geffen et al., 2020, 2022). This is also shown
in Table 2 when averaging TROPOMI data to match the OMI
spatial resolution. Overall, HCHO and NO2 SCD noise con-
tributes to uncertainty in OMI, and TROPOMI VCDs and are
not canceled out in FNR calculations; however, the reduced
noise in TROPOMI SCD retrievals leads to improved VCDs
of HCHO and NO2 abundances.

4 Conclusions

This study presents a statistical evaluation and inter-
comparison of tropospheric FNR retrievals from two com-
monly applied LEO sensors for investigating O3 production
sensitivity regimes (i.e., OMI and TROPOMI). The evalu-
ation of NASA OMI, QA4ECV OMI, and TROPOMI re-
trievals of tropospheric NO2 and HCHO, as well as resulting
FNRs, was conducted with airborne remote-sensing obser-
vations (GeoTASO and GCAS) during LISTOS 2018. Past
studies have focused on the evaluation of satellite retrievals
of tropospheric-column NO2 and HCHO, individually; how-
ever, this is the first study to validate the ability of multiple
satellite platforms and retrieval algorithms to retrieve tropo-
spheric FNRs. The quantification of satellite-retrieved tropo-
spheric FNRs errors is currently an important, but relatively
unknown, uncertainty when applying spaceborne remote-
sensing products to investigate O3 production regimes.

The statistical evaluation of NASA OMI, QA4ECV OMI,
and TROPOMI illustrated that all three retrievals have a high
bias of clean-region tropospheric-column NO2 and HCHO
concentrations. The satellite retrievals compare more accu-
rately to larger tropospheric-column NO2 and HCHO values
observed in more polluted areas. The magnitude-dependent
biases for OMI and TROPOMI NO2 and HCHO derived in
this study agree with other recent validation projects (e.g.,
Judd et al., 2020; Vigouroux et al., 2020; Zhao et al., 2020;
Compernolle et al., 2020; Lamsal et al., 2021; De Smedt et

al., 2021; Verhoelst et al., 2021). Both OMI and TROPOMI
retrievals compared well to observed NO2 throughout the
campaign; however, the statistical comparison with observed
HCHO data resulted in larger and more variable biases.
Overall, daily averaged and campaign-averaged comparisons
of the satellite HCHO data to observations displayed large
RMSE values, emphasizing the large noise in these retrieval
products which hinders the accuracy of FNRs from space-
borne sensors. While all three satellite products at near-native
spatial resolutions had low systematic campaign-averaged
FNR median biases, suggesting median biases in HCHO and
NO2 data cancel out, the RMSE values for FNRs remained
large, primarily due to uncertainty in HCHO and NO2 re-
trievals not offsetting. Given the limited measurement sensi-
tivity of shorter UV–Vis wavelengths to HCHO in the middle
to lower troposphere, improved information (in situ, remote
sensing, or models) of the vertical profiles of HCHO to be
used as a priori information would benefit satellite remote-
sensing capabilities for observing HCHO and FNRs.

The higher spatial resolution of TROPOMI, along with
a good signal-to-noise ratio, allows for this sensor to bet-
ter capture the spatiotemporal variability and urban–rural in-
terface of tropospheric-column NO2 and HCHO values and
resulting FNRs. This satellite data had the highest correla-
tions with observed NO2, HCHO, and FNRs throughout the
campaign, along with the lowest RMSEs of all three satel-
lite products. The added benefit of TROPOMI spatial resolu-
tion is important as this sensor has now been operational for
5+ years and can be applied in trend analysis along with case
studies. Future studies of FNR trends should include both
OMI and TROPOMI retrievals and determine best practices
to fuse the two data sets.

Applying multiple retrieval algorithms to the radiances of
a single satellite sensor is of interest in order to determine
how input variables (e.g., information on a priori vertical
profiles, clouds, surface albedo) impact the retrieval perfor-
mance. This study evaluated results of OMI retrievals, ap-
plying two well-known retrieval algorithms (i.e., the NASA
version 4 product and output from the QA4ECV project).
Results from the two retrievals were similar for NO2 but
differed primarily in tropospheric-column HCHO, where
NASA OMI data had a median bias larger by a factor of 2
compared to QA4ECV. Both retrieval algorithms resulted in
large RMSE values indicative of the noise in tropospheric
HCHO retrievals. While NASA OMI data displayed less ac-
curate retrievals in HCHO, as well as similar performance
for NO2, NASA OMI data resulted in FNR values with sim-
ilar biases and uncertainties. Given that both the NASA and
QA4ECV retrievals of tropospheric HCHO resulted in noisy
data products, this emphasizes the need for an improved
signal-to-noise ratio and calibration and improved a priori
vertical profile information of HCHO to negate the low mea-
surement sensitivity of HCHO in the middle to lower tropo-
sphere for future satellite sensors.
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Our study investigated the impact of high-spatial-
resolution WRF-CMAQ-predicted NO2 and HCHO a pri-
ori profiles on OMI and TROPOMI retrievals of FNRs.
TROPOMI reprocessed data had improved performance
when using the higher-spatial-resolution WRF-CMAQ data
as the a priori product compared to standard retrievals which
apply coarser-resolution TM5 output. In comparison to stan-
dard OMI products the reprocessed satellite data using op-
timized WRF-CMAQ a priori information had similar me-
dian biases in FNR values and lower median biases in both
indicator species. All reprocessed OMI data variables us-
ing optimized simulated shape factors, due to the reduction
in unresolved error in retrieved HCHO and NO2 data, had
lower RMSE, higher correlation (except for FNR), and sim-
ilar or better linear regression slopes compared to observa-
tions. These results emphasize the importance of accurate a
priori information. Future studies should investigate the im-
pact of a priori profile data sets of various spatial resolu-
tions, ranging from the ∼ 1◦× 1◦ GMI and TM5 model data
used for OMI and TROPOMI, respectively, to much higher-
resolution air quality model simulations, on the results of re-
processed satellite NO2 and HCHO retrievals.

Overall, the systematic biases and uncertainties presented
in this study can be used in future studies when interpret-
ing the accuracy of OMI and TROPOMI retrievals of FNRs,
as well as the two indicator species used for investigating
O3 sensitivity regimes. A main take away from this study is
that it is necessary to statistically evaluate both the tropo-
spheric FNRs and the NO2 and HCHO products individu-
ally, as large median biases in both NO2 and HCHO satel-
lite products can offset, resulting in accurate median FNR
values. However, this study emphasizes that uncertainty in
NO2 and HCHO satellite retrievals do not offset in OMI or
TROPOMI products, greatly hindering the accuracy of daily
scenes of FNRs from these sensors. The large unresolved bi-
ases in tropospheric-column HCHO retrievals appear to be
the controlling and limiting factor of daily FNR accuracy.
While both TROPOMI and OMI captured some of the spa-
tiotemporal variability in observed NO2 within the LISTOS
domain, only TROPOMI is able to capture spatiotemporal
HCHO variability with uncertainty low enough for poten-
tially capturing daily FNR variability. The unresolved error
in HCHO retrievals from OMI is too large and likely limits
the application of these data on a daily basis near the na-
tive spatial resolution of the sensor. Overall, the individual
satellite products display varying degrees of capability to re-
trieve tropospheric FNRs, and it is necessary to further val-
idate OMI and TROPOMI retrievals using other field cam-
paign or stationary network data in different regions of the
world to identify the primary controlling factors of system-
atic biases and uncertainty.
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