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Abstract. As the changing climate expands the extent of arid
and semi-arid lands, the number of, severity of, and health
effects associated with dust events are likely to increase.
However, regulatory measurements capable of capturing dust
(PM10, particulate matter smaller than 10 µm in diameter)
are sparse, sparser than measurements of PM2.5 (PM smaller
than 2.5 µm in diameter). Although low-cost sensors could
supplement regulatory monitors, as numerous studies have
shown for PM2.5 concentrations, most of these sensors are
not effective at measuring PM10 despite claims by sensor
manufacturers. This study focuses on the Salt Lake Val-
ley, adjacent to the Great Salt Lake, which recently reached
historic lows exposing 1865 km2 of dry lake bed. It eval-
uated the field performance of the Plantower PMS5003, a
common low-cost PM sensor, and the Alphasense OPC-N3,
a promising candidate for low-cost measurement of PM10,
against a federal equivalent method (FEM, beta attenuation)
and research measurements (GRIMM aerosol spectrometer
model 1.109) at three different locations. During a month-
long field study that included five dust events in the Salt Lake
Valley with PM10 concentrations reaching 311 µg m−3, the
OPC-N3 exhibited strong correlation with FEM PM10 mea-
surements (R2

= 0.865, RMSE= 12.4 µg m−3) and GRIMM
(R2
= 0.937, RMSE= 17.7 µg m−3). The PMS exhibited

poor to moderate correlations (R2 < 0.49, RMSE= 33–
45 µg m−3) with reference or research monitors and severely
underestimated the PM10 concentrations (slope < 0.099)
for PM10. We also evaluated a PM-ratio-based correction
method to improve the estimated PM10 concentration from
PMSs. After applying this method, PMS PM10 concentra-
tions correlated reasonably well with FEM measurements
(R2 > 0.63) and GRIMM measurements (R2 > 0.76), and the

RMSE decreased to 15–25 µg m−3. Our results suggest that
it may be possible to obtain better resolved spatial estimates
of PM10 concentration using a combination of PMSs (of-
ten publicly available in communities) and measurements of
PM2.5 and PM10, such as those provided by FEMs, research-
grade instrumentation, or the OPC-N3.

1 Introduction

Our changing climate is expanding the extent of arid and
semi-arid lands globally; these lands currently cover approx-
imately one-third of the Earth’s land surface (Williams et al.,
2022; Huang et al., 2016). Recent studies suggest that this
expansion of arid lands is linked to increases in the num-
ber and severity of dust events (Clifford et al., 2019; Tong et
al., 2017; Ardon-Dryer and Kelley, 2022). Dust events can
transport particulate matter (PM), particle-bound air toxics,
and allergens over thousands of kilometers (Goudie, 2014).
The suspended PM affects regional climate by impacting
cloud formation, precipitation processes, and convection ac-
tivity (Cai et al., 2021; Kumar et al., 2021; Mallet et al.,
2009). Dust events significantly affect the regional air qual-
ity (Chakravarty et al., 2021; Akinwumiju et al., 2021; Liu et
al., 2020), decrease atmospheric visibility (Jayaratne et al.,
2011), and have adverse effects on human health, including
being linked to increased incidence of asthma, pneumonia,
bronchitis, stroke, adverse birth outcomes, influenza, menin-
gitis, and valley fever (Dastoorpoor et al., 2018; Jones, 2020;
Bogan et al., 2021; Soy, 2016; Trianti et al., 2017; Diokhane
et al., 2016; Schweitzer et al., 2018).
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During dust events, the majority of PM is greater than
2.5 µm in diameter (Tam et al., 2012). Government organiza-
tions, such as the World Health Organization (WHO), mea-
sure and/or provide guidelines for ambient PM10 concentra-
tions (PM10, particles with aerodynamic diameter < 10 µm).
PM smaller than 10 µm in diameter is of particular inter-
est because it is inhalable. The WHO has set guidelines
for 24 h and annual average PM10 concentrations at 45 and
15 µg m−3, respectively (WHO, 2022). The US EPA’s na-
tional ambient air quality standards for PM10 concentrations
are 150 and 50 µg m−3 for the 24 h and annual average, re-
spectively. One challenge with 24 h standards and guidelines
is that dust events often last a few hours, and these events are
obscured when reporting only the PM10 24 h average or com-
paring these averages to the 24 h guidelines (Ardon-Dryer
and Kelley, 2022).

PM10 concentrations tend to be more spatially heteroge-
nous than PM2.5 concentrations because PM10 settles more
quickly (Keet et al., 2018). In addition, regulatory measure-
ments of PM10 are spatially and temporally sparser than
PM2.5 measurements. For example, the US EPA reports mea-
surements from 1370 active PM2.5 sites versus 800 active
PM10 sites (EPA, 2022). Approximately half of these PM10
sites only report 24 h averages (US EPA, 2022). Further-
more, many dust-prone areas of the US lack any PM monitor-
ing (US EPA, 2022). More highly resolved measurements of
PM10 concentration would aid communities and researchers
in understanding and addressing the effects of windblown
dust and dust events.

More recent studies of PM have leveraged low-cost PM
measurements and mobile measurements to obtain higher-
spatial- and temporal-resolution PM2.5 estimates (Bi et al.,
2020; Caplin et al., 2019; Lim et al., 2019; Caubel et
al., 2019; Kelly et al., 2021). With appropriate calibra-
tion, low-cost sensors have been demonstrated to be gener-
ally effective at measuring PM2.5; however, the most com-
mon low-cost PM sensors that employ a laser and a pho-
todiode to estimate particle concentration (Plantower PMS,
Nova SDSS011, Sensirion SPS30, Shineyi PPD42NS, and
Samyoung DSM501A) are ineffective at measuring PM10
and dust (Kosmopoulos et al., 2020; Mei et al., 2020; Sayahi
et al., 2019; Kuula et al., 2020), primarily due to truncation
of the forward-scattering coefficient for larger particles and
potentially due to the sensors’ inability to aspirate the larger
particles into the device (Ouimette et al., 2022). Kuula et
al. (2020) tested several low-cost PM sensors using monodis-
perse dioctyl sebacate particles (0.5–10 µm) and observed a
constant particle size distribution for particle sizes > 0.5 µm
and indicated that these sensors are incapable of measuring
coarse-mode particles (2.5–10 µm).

The Alphasense optical particle counter (OPC)-N series is
a promising low-cost sensor for measuring PM10. It is larger
and more expensive (∼USD 500) than many of the low-cost
PM sensors (< USD 50) with a greater flow rate (total flow of
5.5 L min−1 and sample flow rate of 0.28 L min−1) and a mir-

ror that allows collection of light scattering from a broader ar-
ray of angles than typical low-cost PM sensors, which have
flow rates on the order of 0.1 L min−1 (Sayahi et al., 2019;
Ouimette et al., 2022; Alphasense Ltd, 2022). The OPC-
N3 allows particle counting in 24 size bins for sizes rang-
ing from 0.35–40 µm. The working principle of Alphasense
OPC-N3 and its previous version (OPC-N2) is similar to an
aerosol spectrometer; it measures scattering from single par-
ticles (Vogt et al., 2021). Studies have used the Alphasense
OPCs for indoor and ambient PM monitoring (Kaliszewski
et al., 2020; Chu et al., 2021; Dubey et al., 2022b; Feenstra
et al., 2019; Pope et al., 2018; Nor et al., 2021; Alhasa et
al., 2018; Mohd Nadzir et al., 2020), to monitor PM2.5 per-
sonal exposure (Harr et al., 2022a), to identify PM sources
(Harr et al., 2022b; Bousiotis et al., 2021), and to monitor
occupational PM2.5 and PM10 exposure (Runström Eden et
al., 2022; Bächler et al., 2020). The Alphasense OPCs cor-
relate well (R2

= 0.93–0.99) with PM10 in laboratory stud-
ies (Sousan et al., 2021, 2016; Samad et al., 2021; Dubey et
al., 2022a). The field-based studies have reported somewhat
lower correlations (R2: 0.53–0.8) (Bílek et al., 2021; Dubey
et al., 2022b, a; Crilley et al., 2018) due to the variable am-
bient meteorological conditions and changing PM composi-
tions. The ambient PM ratios (PM2.5 / PM10) in these pre-
vious studies were greater than 0.6, indicating that the main
contributions to PM levels were from fine PM rather than
coarser PM. The ratio of PM2.5 / PM10 can provide crucial
information about particle origin and formation processes
(Xu et al., 2017; Speranza et al., 2014). Duvall et al. (2021a)
have suggested evaluating the performance of PM10 sensors
for varying PM2.5 / PM10 ratios, and dust events provide a
great opportunity to evaluate PM10 sensor performance at
ambient PM ratios < 0.3.

Few studies have evaluated the performance of Alphasense
OPCs for measuring PM10 concentration during dust events.
Gomes et al. (2022) measured hourly PM10 concentra-
tion exceeding 300 µg m−3 using the OPC-N3 during Saha-
ran dust events in western Portugal. In Sarajevo, Bosnia–
Herzegovina, Masic et al. (2020) reported that for the Ar-
alkum Desert dust event, the OPC-N2 tracked GRIMM-
11D PM10 measurements but at a lower magnitude. Fewer
studies have compared the Alphasense OPCs with the reg-
ulatory monitors during dust events. Vogt et al. (2021) re-
ported that the OPC-N3 captures the long-range-transported
dust well but slightly overestimates PM10 concentration
(< 120 µg m−3) compared to a FIDAS (EN 16450 approved
regulatory instrument). They also reported a moderate cor-
relation with PM10 compared to FIDAS (R2

= 0.58–064
and RMSE 12–13 µg m−3) and compared to a gravimetric
method (R2

= 0.71–0.74 and RMSE 9–11 µg m−3). Mukher-
jee et al. (2017) evaluated the OPC-N2 performance against
a Met One beta attenuation monitor (BAM) over 12 weeks
in the Cuyama Valley of California, where PM concentra-
tions are impacted by windblown dust events and regional
transport; they reported a moderate to good degree of corre-
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lation (R2
= 0.53–0.81, depending on sampling orientation)

for PM10 (< 750 µg m−3). In general, the studies report that
the OPC-N2/N3 tracks the temporal variation of research and
reference measurements but with varying correlation factors.

A high PM2.5 / PM10 ratio represents fine-dominated
aerosols, likely corresponding to anthropogenic or other
combustion sources. Low ratios represent coarser particles
(aerodynamic size between 2.5–10 µm) that tend to corre-
spond to windblown dust (Sugimoto et al., 2016). Sugi-
moto et al. (2016) classified aerosols as local dust when the
PM2.5 / PM10 ratio was less than 0.1 and as transported dust
when PM2.5 / PM10 ratios were between 0.1 and 0.3. During
dust events, low-cost sensors like the Plantower PMSs can
detect only a small portion of a particle size distribution, and
its response greatly depends on the particle size distribution
and particle optical properties (Vogt et al., 2021). This study
explores the possibility of using a size-segregated correction
factor (PM2.5 / PM10 ratio) to infer PM10 concentration from
low-cost sensors that typically respond poorly to particles
larger than 2.5 µm in diameter. If successful, this technique
could leverage the large number of existing low-cost sensor
measurements that use the Plantower PMS (and similar sen-
sors) and improve spatial estimates of PM10 concentration.

This study aims to evaluate the Alphasense OPC-N3 to
complement common low-cost PM measurements to under-
stand PM10 concentrations during dust events in the Salt
Lake Valley. The Salt Lake Valley is particularly well suited
to studying dust events because it is affected by both regional
dust events from the playas located to the west of the valley
and from the drying Great Salt Lake bed, which has reached
historic lows with more than 1865 km2 of exposed lake bed
(Perry et al., 2019). Under appropriate meteorological condi-
tions, portions of this exposed lake bed produce substantial
dust plumes, and the winds can transport this dust directly
into the populated areas of the Salt Lake Valley (Perry et al.,
2019).

2 Methods

This study focused on April 2022 in the Salt Lake Valley,
when it experienced five dust events (summarized in Table 1).
It relies on low-cost sensors as well as reference and research
measurements at three different locations (Fig. 1): the Utah
Division of Air Quality (UDAQ) Hawthorne monitoring sta-
tion (HW), the UDAQ’s Environmental Quality (EQ) station
and surroundings, and a residential site (RS) in the northeast-
ern quadrant of the Salt Lake Valley. This period included an
hourly average FEM (federal equivalent method) PM10 con-
centration that reached 311 µg m−3.

2.1 Low-cost sensors

The low-cost sensors tested in this study include the Al-
phasense optical particle counter (OPC-N3, Alphasense Ltd,

Figure 1. Study locations in Salt Lake County: EQ (UDAQ Envi-
ronmental Quality) site, HW (Hawthorne UDAQ) site, and RS (res-
idential site). The distance between EQ to HW, HW to RS, and EQ
to RS is 7.8, 4.3, and 7.35 km, respectively. The OPC sensors and
PMSs were collocated at RS and HW sites. Two PurpleAir II sen-
sors were located within 2 km of the EQ monitoring station.

USD 500) and the Plantower PMS5003 (USD 20) integrated
into the PurpleAir II (∼USD 259). The Alphasense OPC-N3
uses a class 1 laser (∼ 658 nm) to detect, size, and count par-
ticles in the size range 0.35–40 µm in 24 bins, which is trans-
lated, using the embedded algorithm, into estimated PM1,
PM2.5, and PM10 mass concentrations. The default setting
for the OPC-N3’s refractive index is 1.5 (real part) and for
density is 1.65 g cm−3, and these default settings were used
throughout this study. The OPC-N3 uses an internal fan to
create flow and reports a sample flow rate (∼ 0.28 L min−1

and a total flow rate of 5.5 L min−1). Each OPC-N3 was
connected to a laptop and used the manufacturer-provided
software. The OPC-N3 was set to store measurements every
1 min. The measurements included the date, size bins and
counts, pump flow, relative humidity (RH), temperature, and
PM1, PM2.5, and PM10 concentration.

The PMS5003 is a low-cost sensor (∼USD 20, Plantower
Technology, China), which has been integrated into a variety
of low-cost air quality sensor packages, such as TSI BlueSky
and PurpleAir. It uses a fan to create a flow (∼ 0.1 L min−1),
and it is equipped with a red laser (∼ 680± 10 nm), a scat-
tering angle of 90◦, and a photo-diode detector to covert
the scattered light to a voltage pulse (Sayahi et al., 2019;
Ouimette et al., 2022). The PMS converts light scattering
into several different air quality parameters, including par-
ticle counts (0.3–10 µm), PM1, PM2.5, and PM10, although
these different metrics are all based on this single measure-
ment, total light scattering. The PMS5003 has been evaluated
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Table 1. PM measurements at the three different study locations.

Site Measurement type Working principle No. Sensor ID Distance from a
reference monitor

Hours of
operationa

HW OPC-N3 Light scattering (optical
particle counter)

1 OPC-HW Collocation 633b

PurpleAir II Light scattering
(nephelometry)

2 PMS-HW-1A,
PMS-HW-1B,
PMS-HW-2A,
PMS-HW-2B

Collocation 697

Thermo Scientific model
5030 SHARP analyzer

Light scattering
(nephelometry) + BAM

1 PM2.5 FEM-HW Federal equivalent
method

697

Met One E-BAM PLUS BAM 1 PM10 FEM-HW Federal equivalent
method

695

EQ PurpleAir II Light scattering
(nephelometry)

2 PMS-EQ-1A,
PMS-EQ-1B,
PMS-EQ-2A,
PMS-EQ-2B

480 m and 1.82 km 697

Thermo Scientific model
5030 SHARP analyzer

Light scattering
(nephelometry) + BAM

1 PM2.5 FEM-EQ Federal equivalent
method

697

Met One E-BAM PLUS BAM 1 PM10 FEM-EQ Federal equivalent
method

697

RS OPC-N3 Light scattering (optical
particle counter)

1 OPC-RS Collocation 425c

PurpleAir II Light scattering
(nephelometry)

2 PMS-RS-1A,
PMS-RS-1B,
PMS-RS-2A,
PMS-RS-2B

Collocation 302d

GRIMM 1.109 Light scattering (optical
particle counter)

1 GRIMM Research monitor 452

a The total number of available hours is 711. Measurements between 11 April 2022 at 20:00 and 12 April 2022 at 05:00 MDT were not available for HW and were
subsequently removed for all sensors. Measurements corresponding to relative humidity > 85 %, i.e., 14 h, were excluded. b OPC-HW measurements were not
available between 12 April 2022 at 18:00 and 14 April 2022 at 19:00 MDT due to connectivity issues. c The measurements for OPC-RS were available starting on
9 April 2022. OPC-RS measurements between 14 April 2022 at 10:00 and 17 April 2022 at 20:00 MDT were not available due to connectivity issues. d The
measurements from all the PurpleAir II sensors at RS were available starting on 18 April 2022.

extensively in the laboratory and the field, and the measure-
ments tend to correlate well with PM1 or PM2.5 concentra-
tion, although it performs poorly for larger PM sizes, such as
PM2.5–PM10 (Sayahi et al., 2019; Vogt et al., 2021; Kuula et
al., 2020; Ouimette et al., 2022). In this study, we used two
PurpleAir PA-II sensors at the HW and RS sites, and each
PA-II has two PMSs per node. PM10 mass concentration cor-
responding to a correction factor of 1 (CF= 1) and a data col-
lection rate of every 2 min were used. The data were down-
loaded from the PurpleAir website. In addition, we evaluated
two PurpleAir PA-II sensors located within 2 km of the EQ
monitoring station.

All the OPC-N3 sensors were placed inside a custom-
built housing to protect the sensor from rain and insects.
The details of the housing can be found in the Supplement
(Sect. S3).

2.2 Site descriptions

The study includes measurements from the two UDAQ sites
(HW and EQ) in Salt Lake County that provide both hourly
PM2.5 and PM10 measurements (Fig. 1). UDAQ uses a
Thermo Scientific model 5030 SHARP analyzer for mea-
suring hourly PM2.5 concentration and a Met One E-BAM
(Beta Attenuation Monitoring) PLUS for measuring PM10
concentration. We placed two PurpleAir PA-II sensors (con-
taining four Plantower PMS5003 sensors named PMS-HW-
1A, PMS-HW-1B, PMS-HW-2A, and PMS-HW-2B) and one
OPC-N3 (named OPC-HW) at the HW site (Table 1). The
PurpleAir PA-II sensors and the OPC-N3 were mounted
on poles that extend above the roof of the HW monitor-
ing station. The HW monitoring station is located in an ur-
ban residential area (AQS: 49-035-3006, lat: 40.7343, long:
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−111.8721) at an elevation of 1308 m. This site was estab-
lished to represent population exposure in the Salt Lake City
area, and it is often the controlling monitor for the county.
The average of PMS-HW-1A, PMS-HW-2A, and PMS-HW-
2B PM10 concentrations at HW was named PMS-HW. PMS-
HW-2B was excluded from the PMS-HW average because of
its moderate correlation with the other three sensors (Fig. S2
in the Supplement).

We also evaluated two PurpleAir II (containing four Plan-
tower PMS5003 sensors named PMS-EQ-1A, PMS-EQ-1B,
PMS-EQ-2A, and PMS-EQ-2B) sensors located near the
UDAQ EQ site. One of the sensors was 480 m away (PMS-
EQ-1), while the other was 1.82 km away (PMS-EQ-2). The
EQ monitoring station (AQS: 49-035-3015, lat: 40.777028,
long: −111.94585, elevation 1284 m) is located approxi-
mately 14 km southeast of the Great Salt Lake dry lake
bed. In addition to PM concentrations, we accessed rela-
tive humidity (RH), temperature, wind speed, and wind di-
rection data from the two UDAQ monitoring sites on EPA’s
AirNow Tech website. EPA-flagged measurements were ex-
cluded from this study. UDAQ uses RM Young Ultrasonic
Anemometer model 86004 to measure the wind speed and
wind direction and an instrument based on a hygroscopic
plastic film to measure relative humidity.

The RS was located in the northeastern quadrant of the
Salt Lake Valley at an elevation of 1383 m (lat: 40.771938,
long:−111.861290). Measurements at this site included four
Plantower PMS5003 sensors (labeled as PMS-RS-1A, PMS-
RS1B, PMS-RS-2A, and PMS-RS-2B) in two PurpleAir
PA-II sensors: one OPC-N3 (labeled as OPC-RS) and one
GRIMM (model 1.109, Aerosol Technik Ainring, Germany).
The GRIMM employs an internal pump to create a flow of
1.2 L min−1, measures the number concentration of parti-
cles of size 0.265–34 µm in 31 size bins, and reports esti-
mated PM1, PM2.5, and PM10 concentrations. The GRIMM
measurements were stored every minute in an internal stor-
age card. The GRIMM measurements were not available be-
tween 24 April at 18:00 and 26 April 2022 at 14:00 MDT
(Mountain Daylight Time). The PurpleAir PA-II sensors and
the GRIMM were mounted on the eastern side of a small
outbuilding.

2.3 Data analysis

The measurements from the low-cost sensors and the re-
search monitor (GRIMM) were converted to hourly average
concentrations and time-synchronized to MDT. Two EPA-
flagged measurements corresponding to unexplainable high
hourly PM10 concentrations (> 800 µg m−3) from FEM-HW
were removed. The low-cost sensors used in this study were
not supplemented with dryers, and therefore their perfor-
mance is affected by high humidity conditions, which can
result in condensation and droplet formation (Samad et al.,
2021). Consequently, the measurements corresponding to

relative humidity greater than 85 % were excluded from the
study (< 2 % of total measurements).

Using the HW and EQ meteorological measurements,
we defined dust events as periods with PM10 concentra-
tions exceeding 100 µg m−3 accompanied by winds exceed-
ing 5 m s−1 at either site. These high winds were either
observed at the beginning of or during dust events. Each
dust event typically included a period of time when PM10
concentrations began increasing before reaching peak val-
ues. After wind speeds began to decrease, PM10 concentra-
tion decreased gradually. The dust events in this study in-
cluded the entire time period when wind and PM10 levels de-
creased until PM10 concentrations reached background levels
(< 50 µg m−3). Table 2 (for HW) and Table S1 (for EQ) pro-
vide the meteorological parameters (wind speed, wind direc-
tion, temperature, and RH), PM2.5 and PM10 concentrations,
and PM2.5 / PM10 ratios for each event.

We performed a linear regression to relate the PM10 con-
centration measurements of the low-cost sensors to reference
monitors at HW and EQ as well as a research monitor at
the RS. Performance guidelines for low-cost PM10 measure-
ments are not yet available. For discussion purposes, we use
EPA guidelines for low-cost PM2.5 sensors, which include
acceptable performance as a slope of 1± 0.35, intercept of
0± 5 µg m−3, root mean square error (RMSE)≤ 7 µ g m−3,
normalized root mean square error (NRMSE)≤ 30 %, and
R2 > 0.7 (when compared with the reference monitor) (Du-
vall et al., 2021b). RMSE and NRMSE were calculated using
the following equations:

RMSE=

√√√√ 1
N

N∑
t=1

(low-cost sensort −Reft )2, (1)

NRMSE=
RMSE

Ref
× 100, (2)

where “low-cost sensor” represents the low-cost sensor mea-
surement, Ref represents the reference and regulatory mea-
surements, and Ref represents the average of the reference or
regulatory monitor measurements.

We also explored a PM2.5 / PM10 ratio-based calibration
strategy for correcting PMS readings. Based on the ra-
tio of FEM-HW PM2.5 / PM10, we segregated the FEM-
HW and PMS-HW PM10 measurements into six bins: for
PM2.5 / PM10: < 0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.7, and
> 0.7. For each bin, the collocated PMS-HW PM10 concen-
trations were linearly regressed against the FEM-HW PM10
concentrations to obtain correction factors (slope and inter-
cept). These correction factors were later used to correct
the PMS PM10 concentrations at the other two locations
(RS and EQ). The PM2.5 / PM10 ratios from the GRIMM
and OPC-RS at the RS were calculated for use in selecting
the appropriate PM-ratio-based correction factor and subse-
quent correction of the collocated PMSs. At the EQ site, the
PM2.5 / PM10 ratio from the FEM-EQ was used to select the
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Table 2. Meteorological and PM characteristics during the non-dust and dust events at the HW monitoring site. The number in parentheses
represents the minimum and maximum of the parameter. Parameters for the EQ site can be found in Table S1 (Supplement).

Start Duration Wind speed Relative Temperature PM2.5 / PM10 PM10
(h) (m s−1) humidity (◦C) (µg m−3)

(%)

All non-dust duration 658 1.93 [0.26, 6.07] 39.7 [9, 92] 9.58 [−2.78, 23.3] 0.47 [0.056, 1] 16.5 [1.9, 99a]
9 April 2022 05:00 MDT 7 3.13 [1.13, 4.16]b 37.9 [28, 46] 10.4 [8.3, 13.8] 0.14 [0.10, 0.27] 81.3 [36, 140]
11 April 2022 10:00 MDT 9 4.12 [2.11, 5.91] 20.9 [12, 37] 12.4 [7.2, 15.6] 0.2 [0.13, 0.36] 67.6 [44, 101]
19 April 2022 09:00 MDT 10 3.75 [1.64, 5.60] 23.4 [17,32] 16.7 [13.3, 18.3] 0.24 [0.13, 0.36] 96.5 [54, 161]
21 April 2022 11:00 MDT 23 3.54 [1.02, 6.73] 37.6 [10, 79] 15.6 [7.2,23.9] 0.15 [0.08, 0.24] 141 [51, 274]
28 April 2022 21:00 MDT 4 3.17 [1.54, 5.14] 36.5 [28, 45] 14.4 [11.1, 17.2] 0.2 [0.10, 0.38] 79.5 [26, 128]

a A single measurement with a high PM10 concentration (99 µg m−3) was observed on 5 April 2022 at 00:00 MDT. The measurement did not meet the dust event criteria and
hence was not included in the dust events. b A wind speed of 6.27 m s−1 was observed at the EQ site.

appropriate PM-ratio-based correction factor and subsequent
correction of the nearby PMSs.

3 Results and discussion

Figure 2 shows the hourly average PM10 concentration at the
three different sites, with the dust events highlighted in grey.
The five dust events were observed at all three locations, and
they occurred at approximately the same time. Four of the
dust events lasted less than 10 h, and the event on 21 April
2022 lasted 23 h. The PM2.5 / PM10 ratio (Table 1) remained
less than 0.3 during all the events, indicating the predominant
contribution of coarser particles to PM10. For each event, the
PM10 concentrations reached at least 100 µg m−3. During the
21 April event, hourly average PM10 concentrations reached
275 µg m−3 at HW, 311 µg m−3 at EQ, and 173 µg m−3 at the
RS site (Tables 1 and S1). The lower PM10 concentration at
the RS may be due to its residential location, its higher alti-
tude, and its greater distance from dust sources. The OPC-
HW and OPC-RS PM10 concentration estimates followed
the temporal pattern of the reference and research monitors
including during the dust events. Previous studies have ob-
served similar responses for OPC-N3 and OPC-N2 (previous
version of the OPC-N3) for dust events (Masic et al., 2020;
Vogt et al., 2021). Vogt et al. (2021) found that the OPC-N3
tracked PM10 concentrations from a FIDAS (EN 16450 ap-
proved regulatory instrument) for long-range-transport dust
events (PM10 range 60–125 µg m−3). The PMSs followed the
temporal pattern of the reference and research monitors ex-
cept during the dust events when the PMSs substantially un-
derestimated PM10 concentration (Fig. 2). Vogt et al. (2021)
also found that the PMS5003 underestimated the PM10 con-
centration during dust events. In addition, Masic et al. (2020)
reported that during the Aralkum Desert dust event (PM10
reached 160 µg m−3), the PM10 reported by OPC-N2 agreed
well with the GRIMM 11-D (research-grade optical particle
sizer), whereas the PMS5003 was not able to detect a large
fraction of coarse particles correctly. Most of these stud-

Figure 2. Hourly averaged PM10 concentrations from the FEM, re-
search monitors, and low-cost sensors at the three different sites:
HW, EQ, and RS. Black solid lines represent reference and re-
search monitors; the red dashed line represents OPC-N3; the green
dotted, blue dash-dotted, turquoise dash–dot–dot, and pink short
dashed lines represent PMSs. The shaded peaks on 9, 11, 19, 21,
and 28 April 2022 correspond to dust events. More details on these
events can be found in Table 2.

ies recorded one dust event during their sampling duration,
whereas this study found that the OPC-N3 tracked multiple
dust events.

Figure 3 shows wind roses for April 2022 and each of
the dust events. During the month of April, winds exceed-
ing 5 m s−1 were observed at HW during 2.5 % of the hours
(1.81 % south predominant and 0.69 % west predominant).
For dust events observed on 11 and 21–22 April, the high
winds came from the south, whereas, for the rest of the
events, high winds predominantly came from the west. The
different wind directions could be transporting dust from dif-
ferent sources, such as the playas to the south and west of the
Salt Lake Valley, the exposed playas of the Great Salt Lake,
or local sources, such as mine tailing, gravel operations, un-
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Figure 3. Wind roses for April 2022 and individual dust events observed at HW. The wind roses for the EQ site can be found in the
Supplement (Fig. S13).

paved roads, and an open-pit copper mine (Hahnenberger and
Nicoll, 2012; Perry et al., 2019). All study monitoring sites
are located west and southwest of the Great Salt Lake (Perry
et al., 2019). Identifying the sources of the windblown dust
and the effects of these differences on sensor performance
would require a thorough analysis of the meteorology, the

PM composition, and size distribution during the study pe-
riod.
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3.1 OPC-N3 performance

Figure 4 illustrates the strong correlation between the OPC-
N3 and the PM10 concentration measured by the FEM at the
HW site and the GRIMM monitor at the RS where the co-
efficient of determination ranges from 0.865 to 0.937. The
intercept, slope, and R2 were within the guidelines sug-
gested by the EPA for low-cost PM2.5 sensors, although
the RMSE and NRMSE (uncorrected measurements) ex-
ceeded the guidelines (12.4 µg m−3 and 53.5 %, respectively;
Fig. 4). Vogt et al. (2021) also observed a similar slope
(0.84–0.9 µg m−3) and RMSE (12–13 µg m−3) for OPC-N3
hourly PM10 compared to FIDAS, but with a lower correla-
tion (R2 0.58–0.64) and for lower concentrations than this
study. Vogt et al. (2021) did not correct the PM10 measure-
ments for relative humidity, and approximately 20 %–30 %
of their measurements corresponded to high humidity con-
ditions (RH > 85 %); the inclusion of elevated RH condi-
tions may have affected their correlations. The coefficient
of determination in this study dropped to 0.81 after the in-
clusion of measurements corresponding to RH above 85 %,
which corresponded to just 2 % of the total measurements
(Fig. S1). Mukherjee et al. (2017) also reported correlations
as high as 0.81 for OPC-N2 compared to BAM PM10 mea-
surements in the Cuyama Valley of California, with OPC-
N2 reporting PM10 concentrations as high as 750 µg m−3.
Mukherjee et al. (2017) also did not correct the OPC data
for relative humidity, which may have affected their correla-
tions. Our study as well as previous studies suggest that the
OPC-N3 and OPC-N2 tend to underestimate the PM10 con-
centrations compared to the BAM (Mukherjee et al., 2017;
Imami et al., 2022). The operating principle of the BAM and
OPC-N3 differ. The BAM PM10 measurements are based on
beta attenuation and do not require assumptions about parti-
cle properties or particle size distribution. In contrast, OPCs
rely on the measured particle size distribution and assumed
or measured particle properties (i.e., refractive index, shape,
and density that can be size-dependent) to estimate mass con-
centration. In addition, particles < 0.3 µm in diameter do not
scatter light sufficiently. Consequently, some deviation from
the mass measured by the FEM is expected. The assump-
tions about refractive index and shape affect how particles
are size-classified, and in addition assumptions about density
affect estimates of mass concentration.

At the RS site, the OPC-RS showed a strong correla-
tion with the GRIMM (R2 > 0.9) and somewhat overes-
timated the PM10 concentration (slope 1.45) compared to
the GRIMM’s default settings (Fig. 4). Such behavior from
OPC-N3 and its predecessor model OPC-N2 has been ob-
served previously. Crilley et al. (2018) also observed this
same behavior for PM10 for the OPC-N2 versus the GRIMM
(1.108) and reported that the OPC-N2 estimated 2 to 5 times
greater PM10 mass than the GRIMM. Sousan et al. (2016)
observed a slope of 1.6 for the Alphasense OPC-N2 com-
pared to a GRIMM (1.108) for Arizona road dust. They at-

Figure 4. Hourly averaged PM10 concentration for (a) OPC-HW
vs. FEM-HW for the period between 1 and 30 April 2022. (b) OPC-
RS vs. GRIMM PM10 concentration at the RS for the sampling
period 9–30 April 2022. The red solid line represents a linear fit,
and the blue dashed line represents the 1 : 1 line. I: intercept; S:
slope.

tributed this behavior to the higher detection efficiency of
OPC-N2 for particles > 0.8 µm compared to the GRIMM
and the effect of aerosol composition on OPC-N2 readings.
Unlike Sousan et al. (2016), Bezantakos et al. (2018), using
polystyrene spheres (size: 0.8, 1, 2.5, 5.1, 7.2, and 10.2 µm),
reported that the OPC-N2 overestimated particle number
concentrations compared to GRIMM (1.109) for all sizes, not
just > 1 µm.

Crilley et al. (2018) considered high relative humidity to
be a controlling factor behind the overestimation by the OPC-
N2. Badura et al. (2018) also reported a strong effect of rel-
ative humidity on the OPC-N2 measurements. We excluded
measurements corresponding to RH > 85 % because we fo-
cus on dust events, and RH is low during these events. We
investigated the effect of RH (after excluding values > 85 %)
by performing a multilinear regression with the FEM-HW as
the dependent variable and the OPC-HW PM10 concentration
and RH as independent variables. Adding RH did not signifi-
cantly improve the correlation coefficient (not including RH:
R2
= 0.865, RMSE= 12 µg m−3; including RH: R2

= 0.872,
RMSE= 11.7 µg m−3; Sect. S1, Supplement). Hygroscopic
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growth changes with PM composition (Masic et al., 2020),
and correcting measurements using a constant humidity co-
efficient can inject noise into the results. In addition, the
Salt Lake Valley is in an arid region, and 82 % of PM mea-
surements corresponded to an RH of less than 60 %. Conse-
quently, the measurements were not corrected for the relative
humidity for this study.

3.2 Performance of the PMS5003

Figures 5, 7 (top), and 8 (top) illustrate the PMSs’ poor to
moderate correlations (R2 between 0.128 and 0.482) with
reference and research measurements of PM10 concentra-
tion; these sensors underestimate the PM10 concentration
(slope < 0.09), particularly during dust events. These sensors
also show high RMSEs (> 30 µg m−3). Poor performance of
PMSs for PM10 has been reported previously (Masic et al.,
2020; Sayahi et al., 2019). Unlike the OPC-N3, PMSs are
nephelometers (Ouimette et al., 2022) and not optical par-
ticle counters, and their response decreases with increasing
size. Previous studies reported a decreased response from
PMS5003 sensors for particles larger than 0.5 µm (He et
al., 2020; Kuula et al., 2020; Tryner et al., 2020). Kuula et
al. (2020) and Tryner et al. (2020) observed constant particle
size distributions from the PMS5003 regardless of actual par-
ticle size (exposed monodisperse particles from polystyrene
latex spheres, 0.1–2 µm, or generated with dioctyl sebacate
0.5–10 µm). The PMSs’ inability to detect coarse particles
(aerodynamic size between 2.5 and 10 µm) is due to its trun-
cation of the forward-scattered light and its limited ability
to aspirate coarse particles into the device (Ouimette et al.,
2022).

The PMSs also exhibited some inter-sensor variability dur-
ing this study (Fig. S2). One sensor, PMS-HW-1B, exhib-
ited a fair correlation with the other three PMSs (R2

= 0.53–
0.55 with slopes differing by more than 50 %). The remaining
three sensors (when compared to each other) had R2 greater
than 0.7, although their slopes differed by 40 % (slope: PMS-
HW-2A vs. PMS-HW-1A= 0.504; PMS-HW-2B vs. PMS-
HW-1A= 0.577). In terms of response to PM10 and correla-
tion with the reference monitor, PMS-HW-1 (A and B) per-
formed somewhat better than PMS-HW-2 (A and B) (RMSE
< 35 µg m−3 and R2 > 0.4 compared to RMSE < 36 and
R2 > 0.15).

Sensor-to-sensor variability has been reported in previ-
ous studies of PMSs, particularly for PM2.5 concentration
(Sayahi et al., 2019; Tagle et al., 2020). The two PurpleAir II
sensors (four PMSs) at the HW site were deployed on dif-
ferent dates. PMS-HW-1 was deployed on 24 April 2020,
whereas the PMS-HW-2 was deployed on 20 September
2019. These sensors could be from different manufacturing
batches, and they experienced different amounts of time in
the field. Sensor aging can cause differences in PMS perfor-
mance (Tryner et al., 2020). In addition, because the PMSs
are inefficient at measuring particles larger than PM2.5 in di-

ameter, as evidenced by the low slopes in Fig. 5, small dif-
ferences (potentially due to sensor orientation and inherent
differences in the sensors themselves) can magnify sensor-
to-sensor variability. Mukherjee et al. (2017) and Duvall
et al. (2021a) discuss the importance of sampler position-
ing for PM10 measurements. For presentation purposes, we
have excluded the PMS-HW-1B, which exhibited poor cor-
relation with the other PMSs (PMS-HW-1A, PMS-HW-2A,
and PMS-HW-2B), averaged the remaining three PMS PM10
concentrations at HW, and compared the average of the three
sensors to the PM10 concentrations measured by the FEM.
Figure 5 shows the poor R2 between the average of all PMSs
and FEM PM10 (R2

= 0.279), as well as how the PMS-HW
underestimates the PM10 composition (slope of 0.0463).

3.3 Using PM2.5 / PM10 ratios to obtain size-segregated
PMS correction factors

The effect of correcting the PMS measurements with
PM2.5 / PM10 ratio-based factors on PMS performance was
explored as a strategy to obtain correction factors that could
enable the PMS measurements to infer PM10 concentra-
tions. The PM2.5 / PM10 ratio, calculated using the PM2.5
and PM10 concentrations reported by the FEM-HW, was
used to segregate the PMS-HW measurements into six bins
for PM2.5 / PM10: < 0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5, 0.5–0.7,
and > 0.7. For all the binned ratios (Fig. 6), the PMS showed
a consistent R2 greater than 0.6 (compared to R2 values of
0.128–0.482 prior to binning), but with very different slopes
for the different PM2.5 / PM10 bins. The slope varied be-
tween 17 and 1.07, with the magnitude decreasing with the
PM2.5 / PM10 ratio. Note that Figs. 4 and 5 show the FEM
on the x axes, whereas Fig. 6 shows the regression equations
used for correcting the PMS measurements (with FEM on
the y axes). During the dust events, the PM2.5 / PM10 ratio
was less than 0.3, supporting the large contribution from dust
and the corresponding large magnitude of the PM10 concen-
tration. The PM10 concentrations were lowest for the high
PM2.5 / PM10 ratios (> 0.7), and most PM10 concentrations
were below 5 µg m−3, which is close to the BAM’s lower
limit of detection (Hart, 2013) and likely contributes to the
low correlation observed for this ratio.

The slope and intercept for each bin were used as correc-
tion factors, called PM-ratio-based correction factors, to cor-
rect the PMS PM10 measurements at the other two locations,
i.e., RS and EQ.

3.4 Correcting PMS data at RS and EQ sites

Similar to the HW site, the PMS PM10 concentration mea-
surements at the RS (Fig. 7, top) exhibited poor to mod-
erate correlation (R2 0.32–0.49, RMSE > 33 µg m−3) com-
pared to the research monitor and underestimated the PM10
concentrations (slope < 0.099). We corrected the raw PMS
PM10 concentration measurements using the PM-ratio-based
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Figure 5. PMS PM10 concentration vs. FEM-HW PM10 concentration. PMS-HW represents the average of three PMSs (PMS-HW-1A, PMS-
HW-2A, and PMS-HW-2B). The solid red line represents a linear fit, and the blue line represents the 1 : 1 line. The plot includes measurements
recorded between 1 and 30 April 2022. I: intercept, and S: slope. Each measurement represents hourly averaged PM10 concentrations.

correction factors obtained from the HW site and the
PM2.5 / PM10 ratio from the GRIMM or the OPC to select
a correction factor for each of the six PM2.5 / PM10 bins. Us-
ing the GRIMM provided ratios, Fig. 7 (middle) shows that
at the RS, after PM-ratio-based correction of the PM10 mea-
surements, the correlation for all the PMSs improved signifi-
cantly (R2 > 0.77) and the RMSEs decreased (< 18 µg m−3).
The R2 varied between 0.773 and 0.810, and the slopes var-
ied between 0.526 and 0.717. The intercept was a little higher
(7–10 µg m−3) than the EPA-suggested guideline for low-
cost PM2.5 sensors. All the PMSs at RS were freshly de-
ployed and were all mounted on the eastern side of a small
building. These sensors exhibited good inter-sensor correla-
tion (Fig. S4, R2 > 0.97, slope > 0.77) and therefore exhib-
ited very similar improvement with all the sensors using the
PM-ratio-based correction. The correlations between PMS
PM10 and GRIMM PM10 concentrations were also good
(R2 > 0.7) when considering PM10 < 50 µg m−3 (Fig. S8 vs.
Fig. S9), indicating that PM-ratio-based correction factors

are applicable during more typical ambient levels of PM10
(without dust events).

Figure 7 (bottom) illustrates a similar strategy at the RS
site but using the OPC-RS to provide the PM2.5 / PM10 ratio.
It also shows that the correlation for PMSs improved after
applying the PM-ratio-based correction using the OPC-RS
for the ratio (R2

= 0.681–0.784). After correction, the slope
also increased and varied between 0.589 and 0.813. The
corrected RMSE (18.6–22.2 µg m−3) and intercept (15.2–
19.4 µg m−3) were somewhat higher than that observed when
using GRIMM-reported PM ratios (Fig. 7, middle). From
Fig. 7 (bottom), the PM-ratio-based corrected PMS PM10
concentration for PM10 < 50 µg m−3 was always above the
1 : 1 line; i.e., the PMS PM10 concentration was overesti-
mated. The OPC-RS efficiency in counting particles smaller
than 0.8 µm is lower than the GRIMM (Bezantakos et al.,
2018; Sousan et al., 2016) and therefore underestimates
PM2.5 mass. Figure S5 also illustrates this overestimation
in our study, where for low PM2.5 and PM10 concentrations
(90 % of the measurements when PM2.5 < 12 µg m−3 and
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Figure 6. PMS-HW PM10 concentration (average of three PMSs at HW) vs. FEM-HW PM10 concentration for different PM2.5 / PM10 bins.
The RMSE and NRMSE have units of micrograms per cubic meter (µg m−3) and percent (%), respectively. Each measurement represents
hourly averaged PM10 concentrations.

PM10 < 40 µg m−3) the OPC-RS underestimated the PM2.5
mass compared to the GRIMM, although the OPC-RS PM10
concentrations were similar to those of the GRIMM. The un-
derestimated PM2.5 measurements from the OPC affected the
PM2.5 / PM10 ratios, which for the OPC-RS remained lower
than those reported by the GRIMM (Fig. S6). The magni-
tude of the PM-ratio-based correction factors (Fig. 6) was in-
versely related to the PM2.5 / PM10 ratio. Since the OPC-RS
reported ratios were always low, the corrected PM10 mea-
surements below 50 µg m−3 were overestimated (Fig. S10).

At the EQ site, we used the PM2.5 / PM10 ratios from
FEM measurements at the EQ site coupled with the PM-
ratio-based correction factors developed at the HW site to
correct the PMS PM10 concentrations from sensors located
near the EQ site. Correcting the PMS PM10 concentrations
using this approach did improve the correlation with FEM-
EQ (Fig. 8). Before the correction, all the PMSs had poor
correlation with the FEM (R2 < 0.342 and slope < 0.0737).
The R2 improved to 0.617–0.797, and the slope increased
to 0.602–1.38 after PM-ratio-based correction. The RMSE
decreased and ranged 21.5–35.6 µg m−3. The intercept in-
creased and varied between 6.06 and 15.4. The sensors at
this site showed moderate inter-sensor correlation (Fig. S7),
which was expected as these sensors were not collocated.
The different correlations with respect to FEM-EQ for the

two PurpleAir II sensors were also expected as these sensors
were not collocated with the FEM-EQ.

4 Limitations

This study has several limitations. The sensors’ performance
was evaluated for a month-long period in April 2022 and fo-
cused primarily on dust events, which commonly occur dur-
ing this month. Understanding the OPC-N3 performance and
whether using a PM2.5 / PM10 ratio-based correction could
improve correction factors for PMSs in other seasons and
under different environmental conditions, like wildfires and
cold air pools, would require a longer period of evaluation.
This study used four PMS5003 sensors at the HW site, and
unlike the RS site, the sensors at HW were deployed at differ-
ent times. These sensors showed moderate inter-sensor corre-
lation, suggesting the need for further investigation of sensor
age, sensor siting for PM10 measurements, and potentially
recalibration. This study occurred in an arid region, with RH
generally less than 60 %. This study did not find a signifi-
cant improvement by adding RH to a calibration model be-
tween the OPC-N3 and the FEM. However, this study ex-
cluded measurements with RH > 85 % (< 2 % of total mea-
surements), a range in which previous studies have identified
a significant effect of RH (Crilley et al., 2018), and the appli-
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Figure 7. (a–d) Uncorrected PMS PM10 concentration vs. GRIMM PM10 concentration at RS the site. (e–h) Corrected PM10 concentrations
using the PM-ratio-based correction factors developed at HW and the PM2.5 / PM10 ratios provided by the GRIMM at the RS. (i–l) Corrected
PM10 concentrations using the PM-ratio-based correction factors developed at HW and the PM2.5 / PM10 ratios provided by the OPC-RS at
the RS. The solid red line represents the linear fit, and the blue dashed line represents the 1 : 1 line. The plots include measurements recorded
between 18 and 30 April 2022. I: intercept; S: slope. The RMSE and NRMSE have units of micrograms per cubic meter (µg m−3) and percent
(%), respectively. Each measurement represents hourly averaged PM10 concentrations.

cability of this study’s results to other, more humid, regions
would need to be evaluated. The correction factors derived
in this study used an average of three collocated PMS mea-
surements at a single site. In the absence of detailed infor-
mation about ambient particle properties, this study used de-
fault constant density for all the size bins for OPC-N3. The
Alphasense OPC-N3 allows the user to change the size-bin
specific density for better estimates of PM10, and if size-bin
density and refractive index were available, the OPC mea-
surements could potentially be improved. Our proposed PM-
ratio-based calibration method relies on local measurements
of the PM2.5 / PM10 ratio. This requires FEM or other accu-
rate measurements of PM2.5 and PM10 concentration, and the
needed spatial distribution of these accurate PM2.5 and PM10
concentrations would need to be determined.

5 Conclusions

This study evaluated the performance of Alphasense OPC-
N3 PM10 measurements compared to FEM and GRIMM
measurements during multiple dust events at two locations
(HW and RS). The OPC-N3 tracked all the dust events at
the two locations and exhibited a strong correlation with ref-
erence measurements (R2

= 0.865–0.937), RMSE of 12.4–
17.7 µg m−3, and NRMSE of 53.5 %–100 %. Uncorrected
PMS5003 PM10 measurements showed poor to moderate
correlation (R2 < 0.49) with the reference and research mon-
itors at three locations (HW, RS, and EQ), with RMSE of
33–45 µg m−3 and NRMSE of 145 %–197 %. The PMS mea-
surements severely underestimated the PM10 concentrations
(slope < 0.099). We evaluated a PM-ratio-based correction
method to improve estimates of PM10 concentration from
PMSs. After applying this method, PMS PM10 concentra-
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Figure 8. (a–d) Uncorrected PMS PM10 concentration vs. FEM-EQ PM10 concentrations at the EQ site. (e–h) Corrected PM10 concentra-
tions using the correction factors developed at HW and the PM2.5 / PM10 ratios calculated using FEM-EQ PM10 and PM2.5 concentrations.
The solid red line represents the linear fit, and the blue dashed line represents the 1 : 1 line. The plots include measurements recorded between
1 and 30 April 2022. I: intercept; S: slope. The RMSE and NRMSE have units of micrograms per cubic meter (µg m−3) and percent (%),
respectively. Each measurement represents hourly averaged PM10 concentrations.

tions correlated reasonably well with FEM measurements
(R2 > 0.63) and GRIMM measurements (R2 > 0.76); the
RMSE decreased to 15–25 µg m−3 and NRMSE decreased
to 64 %–132 %. Our results suggest that it may be possible
to leverage measurements from existing networks relying on
low-cost PM2.5 sensors to obtain better resolved spatial esti-
mates of PM10 concentration using a combination of PMSs
and measurements of PM2.5 and PM10, such as those pro-
vided by FEMs, research-grade instrumentation, or the OPC-
N3.
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