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Abstract. While the use and data assimilation (DA) of op-
erational Moderate Resolution Imaging Spectroradiometer
(MODIS) aerosol data is commonplace, MODIS is sched-
uled to sunset in the next year. For data continuity, focus has
turned to the development of next-generation aerosol pro-
ducts and sensors such as those associated with the Visi-
ble Infrared Imaging Radiometer Suite (VIIRS) on Suomi
NPOESS Preparation Project (S-NPP) and NOAA-20. Like
MODIS algorithms, products from these sensors require their
own set of extensive error characterization and correction ex-
ercises. This is particularly true in the context of monitor-
ing significant aerosol events that tax an algorithm’s abil-
ity to separate cloud from aerosol and account for multi-
ple scattering related errors exacerbated by uncertainties in
aerosol optical properties. To investigate the performance
of polar-orbiting satellite algorithms to monitor and char-
acterize significant events, a level 3 (L3) product has been
developed using a consistent aggregation methodology for
4 years of observations (2016–2019) that is referred to as
the SSEC/NRL L3 product. Included in this product are
the AErosol RObotic NETwork (AERONET), MODIS Dark
Target, Deep Blue, and Multi-Angle Implementation of At-
mospheric Correction (MAIAC) algorithms. These MODIS
“baseline algorithms” are compared to NASA’s recently re-
leased NASA Deep Blue algorithm for use with VIIRS. Us-

ing this new dataset, the relative performance of the algo-
rithms for both land and ocean were investigated with a focus
on the relative skill of detecting severe events and accuracy
of the retrievals using AERONET. Maps of higher-percentile
aerosol optical depth (AOD) regions of the world by prod-
uct identified those with the highest measured AODs and de-
termined what is high by local standards. While patterns in
AOD match across products and median to moderate AOD
values match well, there are regionally correlated biases be-
tween products based on sampling, algorithm differences,
and AOD range – in particular for higher AOD events. Most
notable are differences in boreal biomass burning and Saha-
ran dust. Significant percentile biases must be accounted for
when data are used in trend studies, data assimilation, or in-
verse modeling. These biases vary by aerosol regime and are
likely due to retrieval assumptions in lower boundary condi-
tions and aerosol optical models.

1 Introduction

Monitoring the aerosol system is an integral part of many
applications, such as air quality, human health, climate mon-
itoring, and visibility impairment. Passive imager observa-
tions, from polar-orbiting sun-synchronous satellites, have
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allowed researchers to monitor global aerosol for decades.
With once-a-day or better coverage over most areas of the
globe, these satellite sensors have helped to characterize
overall aerosol climatology but also to detect significant
events of dust, smoke, and pollution. From such data, re-
search frequently maps regional impacts and estimate emis-
sions. More recently, the incorporation of satellite aerosol
data into data assimilation (DA) systems has worked to sys-
tematize inverse estimations of emissions, improve aerosol
forecasting, and open numerous new climate applications
(2D-Var – Zhang et al., 2008; 3D-Var – Randles et al., 2017;
4D-Var – Benedetti et al., 2009; ensemble Kalman filter –
Schutgens et al., 2010; Khade et al., 2012; Pagowski and
Grell, 2012; Rubin et al., 2016, 2017; hybrid – Schwartz
et al., 2014). Model reanalyses that depend heavily on con-
sistent and well-characterized satellite datasets in their as-
similation and evaluation cycles are used by the commu-
nity to establish trends and estimate emissions (Lynch et
al., 2016; Randles et al., 2017; Yumimoto et al., 2017; In-
ness et al., 2019). Yet, although satellite data are continuing
to improve, bias and uncertainty remain due to instrument
calibration and retrieval method shortcomings (Zhang and
Reid, 2006, 2010; Shi et al., 2011; Sayer et al., 2013; Levy et
al., 2018). This is especially true for observing and quantify-
ing severe events, which is the focus of this paper. Indeed, the
transition from the Terra and A-Train sensors to the Joint Po-
lar Satellite System is happening just as significant climate
change events such as wildfires are on the rise (Bondur et
al., 2020; Coogan et al., 2020; Zhang et al., 2020).

In addition to simple stochastic errors, satellite products
show strong and spatially correlated errors that systemati-
cally vary with aerosol optical depth (AOD), composition,
and lower boundary conditions (e.g., non-aerosol surface re-
flectance, molecular scatterings and absorptions, clouds; Shi
et al., 2011). Both inverse modeling and data assimilation
(DA) systems are sensitive to observational errors, thus re-
quiring significant quality-assurance corrections and careful
filtering of the satellite data (Zhang et al., 2008; Hyer et
al., 2011).

Examples of satellite-derived datasets used for DA or in-
verse modeling include aerosol retrievals from the Moderate
Resolution Imaging Spectroradiometer (MODIS, on Terra
and Aqua (Sessions et al., 2015; Xian et al., 2019) and more
recently from the Visible Infrared Imaging Radiometer Suite
(VIIRS) on the Suomi-National Polar-orbiting Operational
Environmental Satellite System Preparation Project (S-NPP)
and JPSS-1 (now known as NOAA-20) satellites. While other
satellite products have been used in data assimilation, in-
cluding the Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) and Multi Angle Imaging Spectroradiometer
(MISR) (Sekiyama et al., 2010; Zhang et al., 2011; Lynch et
al., 2016), product lines associated with MODIS and VIIRS
see the most usage due to their coverage, accessibility, de-
livery speed, and high level of characterization (see require-
ments outlined in Zhang et al., 2014; Benedetti et al., 2018).

Given the imminent transition from MODIS- to VIIRS-based
global observations, the focus is on their derived products of
total aerosol optical depth (AOD).

Since quality-assured data are needed for aerosol DA, it is
important to identify and characterize biases and uncertain-
ties for products from specific instruments and retrieval algo-
rithms. In addition, for “severe aerosol events”, which occur
relatively infrequently and may be defined differently based
on application and location, one must be extremely careful in
assessing uncertainties. In other words, characterizing outlier
uncertainty may be an entirely different exercise than char-
acterizing bulk uncertainty.

The operational MODIS- and VIIRS-derived AOD
datasets are intended to represent aerosol conditions in clear-
sky (non-cloudy) conditions and over land and ocean sur-
faces that are free of ice and snow, glint, and underwa-
ter sediments. Therefore, their bulk uncertainty is related to
(1) estimation of the lower boundary condition (e.g., surface
reflectance plus Rayleigh/molecular scattering and absorp-
tion); (2) assumption of an aerosol model (e.g., physical and
optical properties) that is sufficiently representative of the
aerosol in the scene; and (3) masking of clouds, ice/snow,
and other retrieval “obstacles”. For the lowest AOD condi-
tions, it is relatively easy to separate aerosols from clouds
and the choice of aerosol model is relatively unimportant.
Therefore, for low AOD, aerosol retrieval uncertainties are
dominated by uncertainties in the surface boundary condi-
tion. As AOD increases, choice of aerosol model becomes
more important, as errors in assumed single scattering albedo
(SSA), size or shape distributions, and interactions of multi-
ple scattering lead to increased error (Shi et al., 2019). At
even larger AODs, opaque aerosol begins to look like clouds
or other retrieval obstacles. In fact, for the largest (extreme)
AODs, the algorithm may mask these scenes entirely, leading
to no retrieval at all.

A challenge facing satellite aerosol data product devel-
opment is that there is no fundamental spatially contiguous
dataset to provide validation; everything is typically inferred
from point measurements. While field experiments often pro-
vide a high frequency of observation over a small area, most
of the validation relies on using ground-based measurements
from the AErosol RObotic NETwork (AERONET; Holben
et al., 1998). AERONET consists of globally distributed
sun photometers capable of providing near-real-time AOD.
Size and absorption data have become the validation stan-
dard throughout the satellite aerosol community to bench-
mark products and identifying biases (Zhang and Reid, 2006;
Hyer et al., 2011; Shi et al., 2011; Sayer et al., 2013, 2018).
AERONET measurements are also incorporated into aerosol
forecasting models despite the limited amount of spatial cov-
erage they have (Schutegens et al., 2010; Randles et al., 2017;
Rubin et al., 2017).

While providing a global benchmark dataset with numer-
ous sites, using AERONET to investigate severe aerosol
events is limited due to the inherent sparse nature of
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AERONET coverage where AERONET rightly observes
low AOD, but nearby thick aerosol plume features exist
(or vice versa – AERONET manages to sample an ex-
tremely localized plume). AERONET provides an overall
strict cloud screening, meaning that satellite co-locations
with such ground-based data are essentially doubly cloud-
screened, leading to an underestimate of satellite retrieval
uncertainty. Nevertheless, while cloud screening has been
vastly improved, AERONET version 3 level 2 products can
still screen out haze conditions (Eck et al., 2018). For the
very highest AOD conditions, the solar disk can be so at-
tenuated that mid-visible AOD measurements are no longer
possible. Regardless, with these caveats and performing the
work in proper context, AERONET is still the most reliable
instrument for providing verification if placed in the proper
context, especially over larger scales.

This is the first report of several studies that investigate the
nature and trend in severe aerosol events in remote sensing
data and modeling simulations. The first task is to answer the
question of what constitutes a severe aerosol event. That is,
what is the measured median AOD versus 84th, 95th, or 98th
percentile events over the globe? In this article, a baseline
of the global distribution of higher-percentile AOD retrievals
from NASA’s polar orbiting MODIS and VIIRS aerosol pro-
ducts is developed, and the resulting probability distributions
and biases are examined. The MODIS and VIIRS instru-
ments are the basis for the multi-decadal NASA aerosol cli-
mate data records and are the most applied products used for
model evaluation and DA. Also of interest is comparison of
the product performance as the community transitions of the
EOS MODIS to the JPSS VIIRS era and what this implies
for monitoring trends in significant events in association with
climate change. The focus is on the bulk relative probability
distributions of high AOD events and pairwise relationships
between products. However, since the most severe aerosol
events occur near their terrestrial sources over land, statistics
are developed that define severe events locally.

While many aerosol product evaluation studies have been
conducted (Remer et al., 2008; Levy et al., 2010; Hyer et
al., 2011; Sayer et al., 2013; Li et al., 2014; Bilal et al., 2018;
Lyapustin et al., 2018; Wei et al., 2019; Reid et al., 2022),
this study deviates in that it does not strictly compare pro-
ducts against AERONET, or even between each other, but
rather it is an assessment of differences in the probability dis-
tribution functions of AOD with a focus on the relative dif-
ferences between the aerosol retrieval algorithms. Section 2
describes each of the satellite data products and the ground-
based AERONET observation used in the SSEC/NRL L3
product. Section 3 describes the methods used to aggregate
the data and the data analysis used throughout. Section 4 pro-
vides both a global overview of the satellite datasets describ-
ing the aerosol probability distribution functions (PDFs) and
characterizing the nature of severe events. Section 5 iden-
tifies and investigates regions associated with high aerosol
loading using satellite datasets and using AERONET data to

provide a quantitative assessment of the retrieval biases of
severe events. The discussion and conclusions of this study
are resolved in Sect. 6.

2 Data

The datasets in this study use AOD values at 0.55 mm
(AOD550). Here a 4-year time span is used from 2016–2019
to create a L3 product called the SSEC/NRL L3 product grid-
ded at 1◦× 1◦ using a consistent aggregation method similar
to commonly applied DA products. From each dataset the
highest quality-assurance flag available is used to approx-
imate the quality of assimilation-grade data without addi-
tional filtering. By using the highest-quality retrievals, the
amount of AOD pixels is reduced by approximately 55 %,
52 %, and 51 % for VIIRS AERDB, MODIS DT and DB,
and MODIS MAIAC.

2.1 AERONET

The federated AErosol RObotic NETwork (AERONET; Hol-
ben et al., 1998) network of Cimel sun-sky radiometers is the
primary basis set for evaluating satellite products. The na-
ture of these data is discussed in detail in Giles et al. (2019).
The spectral AOD measured by direct sun observations in
AERONET are highly accurate, with level 2 data uncertain-
ties for overhead sun ranging from ∼ 0.01 in the visible and
near-infrared to ∼ 0.02 in the UV (Eck et al., 1999). AOD
uncertainties in level 1.5 data that do not have the final cali-
bration applied are on average an additional ∼ 0.01 higher at
500 nm at midday and mid-deployment (assuming a 1–2-year
deployment interval), and therefore exhibit an average uncer-
tainty of ∼ 0.02 at 500 nm (Giles et al., 2019; Fig. 20). Over
the 4-year time span, 261 255 AERONET AOD observations
are collected from 102 to 231 sites each day. To match typ-
ical DA cycles, all AERONET data are sampled globally
and averaged at a 6 h time interval for each file. While this
study uses version 3 level 1.5 AOD data, it is noteworthy that
these products now share the same cloud screening criterion
as level 2 and products are regularly updated to final cali-
brations as instruments are recalibrated. Thus, they are much
more similar to level 2 than in the past. Since AERONET sun
photometers do not observe AOD at the 550 nm wavelength,
the Spectral Deconvolution Algorithm (SDA) is applied to
the five 380, 440, 500, 675, and 870 nm channels to derive
AOD550 (O’Neill et al., 2003, 2008; Kaku et al., 2014). SDA
is also used in the analysis to separate fine- and coarse-mode
AODs from AERONET. Under very high AOD conditions
the AOD cannot be measured since the high value limit of sun
photometry in measuring AOD is AOD×m< 7.3, where m
is the optical air mass or path length through the atmosphere
(Eck et al., 2019; Giles et al., 2019).
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2.2 Satellite products

This study focuses on the transition and consistency of Terra-
and Aqua-based MODIS to S-NPP and JPSS VIIRS products
with the data quality assessed in the context for data assimila-
tion. The polar orbiting sun-synchronous morning Terra and
afternoon Aqua satellites were launched in 1999 and 2002,
respectively. Since both Aqua and S-NPP are both in after-
noon orbit, this study only focuses on Aqua-MODIS.

For MODIS, this study examines products from three of
NASA’s aerosol retrieval algorithms. Two of them, known
as Dark Target (DT) and Deep Blue (DB), are contained to-
gether in a product known as MYD04. DT retrieves aerosols
over ocean and vegetated (dark) land, whereas DB retrieves
over vegetated and barren (brighter) surfaces. Although de-
rived separately, DT and DB are also combined into a joint
product within the MYD04 and that DT/DB product is used
in this study. It is important to note that both DT and DB
are performing instantaneous single-view granule-based re-
trievals, meaning that there is no information used from pre-
vious or subsequent granules. Collection 6.1 is used in this
study. On the other hand, the Multi-Angle Implementation
of Atmospheric Correction (MAIAC) utilizes multiple over-
passes to derive a higher-resolution 1 km product with simul-
taneous AOD and land surface products. MAIAC products
are contained in a product known as MCD19, and they are de-
rived using combinations of MODIS observations from both
Terra and Aqua. The product can be separated by satellite, so
only Aqua is used in this study. The latest version of MCD19
is known as Collection 6.

For VIIRS, a product known as AERDB is examined,
which follows the heritage of DB on MODIS. Unlike on
MODIS, where DB is performed over land only, DB also
uses an algorithm known as Satellite Ocean Aerosol Re-
trieval (SOAR) to retrieve over ocean. This study uses ver-
sion 1.0 of the AERDB product. Note that now there is now
an available version of DT on VIIRS (known as AERDT;
Sawyer et al., 2020), but this was not yet operational at the
commencement of this study.

All products include an estimation of total AOD at 0.55 µm
(AOD550) as well as spectral AOD at selected wavelength
bands. Given this is a study of severe aerosol events, it is
important to note the maximum AOD values produced by
each algorithm. The DT and DB algorithms have a maximum
AOD of 5. MAIAC has a maximum AOD value of 4.

2.2.1 MODIS combined Dark Target Deep Blue

The MODIS Dark Target (DT) algorithm is the heritage
aerosol algorithm used for global aerosol monitoring. DT
generates AOD550 products over visually dark surfaces such
as vegetated land and ocean regions using two separate al-
gorithms (Kaufman et al., 1997; Levy et al., 2013). Re-
trievals are based on the aggregates ofN×N worth of native-
resolution pixels, where the N equals 40, 20, or 10 depend-

ing on the native resolution, resulting in nadir retrieval sizes
ranging from 10×10 km (at nadir) to ∼ 50×30 km (edge of
swath). Numerous studies have evaluated DT’s performance
from inception of collection 3.1 until its current version of
collection 6.1 with evaluations provided in Levy et al. (2013),
Sayer et al. (2013, 2017), and Wei et al. (2019). Collec-
tion 6.1 has significantly removed many of the previous defi-
ciencies, such as insufficient cloud screening, better aerosol–
cloud discrimination, and improvements in constraining the
lower boundary condition.

A limitation of the DT algorithm is its inability to retrieve
AOD over bright desert surfaces due to the loss of contrast to
isolate the aerosol signal in visible bands. The MODIS Deep
Blue (DB) algorithm was initially developed to better retrieve
AOD550 over bright desert surfaces, taking advantage of the
fact that iron in sand and soil absorbs blue light and thus
reduces the surface albedo. In other words, deserts appear
“dark” at blue and deep blue (e.g., 0.41 µm) wavelengths to
provide sufficient contrast for aerosol retrieval. Since vege-
tation also appears dark in deep blue wavelengths, the DB
algorithm has been subsequently expanded to also include
vegetated surfaces. Like DT, the MODIS DB algorithm is
only performed over snow-free and cloud-cleared land pix-
els; however, it instead uses top-of-atmosphere reflectance at
650, 470, and 412 nm to determine spectral AOD550 (Hsu et
al., 2004, 2013) by matching to lookup tables. Also, like DT,
the DB product for MODIS is provided at a nadir spatial res-
olution of 10×10 km and edge of swath 50×30 km. Collec-
tion 6.1 contains improvements for heavy smoke detection,
heterogeneous terrain, elevated surface types, and changes
within aerosol optical models (Sayer et al., 2019).

Given the different use cases of the DT and DB algo-
rithms, the MODIS combined product provides a retrieval-
by-retrieval selection from both algorithms to form a merged
dataset that is recommended for general use by both the DT
and DB development teams. Selection is based on the under-
lying surface’s monthly averaged normalized difference veg-
etation index (NDVI) value gleaned from a separate MODIS
product (Levy et al., 2013). So, just as there have tradi-
tionally been over-ocean and over-land retrievals, the cur-
rent paradigm is to likewise have land retrievals separated by
lower boundary condition with future releases even able to
retrieve over snow and ice. Using the combined Dark Target
and Deep Blue product increases spatial coverage, especially
over deserts and low-vegetation regions. This combined DT
and DB methodology is most comparable to the Deep Blue
retrieval applied to VIIRS (see below) and thus is the focus
of this analysis.

2.2.2 MAIAC

The MODIS Multi-Angle Implementation of Atmospheric
Correction (MAIAC) product uses time series analysis and a
combination of image-based and pixel–base processing (Lya-
pustin et al., 2011, 2018). MAIAC grids MODIS L1B data to
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a 1 km resolution and creates a 16 d time series using a slid-
ing window technique in order to obtain multiple viewing
angles to capture the surface bidirectional reflectance distri-
bution function (BRDF). This time series analysis separates
slowly varying lower boundary conditions from more rapid
atmospheric conditions to provide a 1× 1 km product pro-
jected onto a sinusoidal grid. While MAIAC is generated for
overland pixels, it also captures coastal waters and major is-
land areas. The highest quality assurance of the product only
retrieves AOD over land and land-containing regions.

There have been several regional evaluation studies of the
MAIAC algorithm (Martins et al., 2017; Superczynski et
al., 2017; Chen et al., 2021). However, to our knowledge this
is first multiyear global analysis.

2.2.3 VIIRS NASA Deep Blue

VIIRS on S-NPP and NOAA-20 has 22 spectral bands rang-
ing from 0.412 to 12.01 µm. While both MODIS and VI-
IRS have a fixed field of view (FOV), VIIRS data are ag-
gregated on board to provide a more consistent spatial res-
olution across the swath with a nominal surface footprint of
750 m for the moderate-resolution (M) band channels that are
used by the algorithms (Sayer et al., 2017). The sensor has a
swath width of 3060 km, allowing for complete global cov-
erage over a day, including at the Equator where MODIS has
gaps. A version of the Deep Blue algorithm that produces
aerosol AOD and their properties at a nadir spatial resolu-
tion of 6× 6 km for both dark scenes and bright land sur-
faces was selected by NASA as the primary Earth system
data record (ESDR) for VIIRS. Over land, Deep Blue draws
its heritage from the MODIS-based Deep Blue product of
Hsu et al. (2013, 2019), while over water the product uses the
Satellite Ocean Aerosol Retrieval (SOAR; Sayer et al., 2017,
2018). SOAR has heritage based on SeaWiFS aerosol pro-
ducts and uses a traditional least-squares fit of multiple chan-
nels to retrieve AOD550 (Sayer et al., 2010). There are two
primary aerosol products produced for VIIRS by both NASA
and NOAA, but this study only uses the NASA product.

3 Methodology

3.1 L3 data integration through YORI

For the purposes of global model applications, data are ag-
gregated and regridded to 1◦× 1◦ resolution suitable for
most global aerosol data assimilation applications using a
python toolkit developed by the UW A-SIPS called Yori that
provides a consistent framework to integrate multiple pro-
ducts into a gridded dataset known as level 3 (L3). Yori pro-
vides easy integration of new datasets from both satellite and
ground-based observations, allowing for custom filtering and
masks and multi-dimensional histograms for each grid cell.
Currently, Yori is used for the L3 cloud products for VIIRS
and is being integrated into the MODIS processing for Col-

lection 7 to generate the L3 cloud and aerosol MYD08 pro-
ducts. That is, the regrading tool used in this study is the same
one used operationally at NASA for its operational aerosol
products. The products for this analysis are gridded at 1◦×1◦

every 6 h to match the standard output of the global aerosol
models. The creation of this SSEC/NRL L3 product differs
from other operational L3 products because of the use of a
consistent aggregation method and the options for filtering
and masking that Yori provides.

Figure 1a provides a map of AERONET sites used in this
analysis and the subdomains for more in-depth discussion.
Figure 1b, c, and d provide maps of the number of aggre-
gated 1◦× 1◦ data points for MODIS Aqua DT/DB, MA-
IAC, and VIIRS, respectively, generated over the 2016–2019
study period. Clearly, there are significantly different num-
bers of samples by a product for any given region, largely
dictated by cloud cover and for over ocean, sun glint, and
available daylight. This is highlighted further in Fig. 1e–g,
where the ratios of the number of data points between pro-
ducts is provided. For example, for the same Aqua MODIS
swath, MAIAC provides a 10 %–20 % higher data population
when upscaled to the 1◦× 1◦ grid. This is because with its
1 km uniform resolution and Boolean cloud flag nature, there
is likelihood of generating data somewhere within the 1◦×1◦

grid. The VIIRS AERDB product, with its 30 % wider swath,
geometrically out-samples the Aqua MODIS counterpart by
a similar amount. Interestingly, overland Aqua MODIS MA-
IAC out-samples VIIRS in some regions by as much as a
factor of 2, again due to its much higher 1 km resolution.

3.2 Global analysis metrics

There are many metrics available to intercompare satellite
products. Here two approaches are taken, a global analysis
of the differences in product probability distribution func-
tions and pairwise comparisons by regression. In Sect. 4,
the relative differences in the global distribution of aerosol
events across MODIS and VIIRS algorithms are globally
mapped by probability distribution (Sect. 4.1) followed by
mapped regressions in a manner similar to Shi et al. (2011)
in Sect. 4.2. Gridded netCDF files of there data in these fig-
ures are provided in the Supplement.

The global analysis of severe aerosol events begins with
the comparison of probability distribution functions. Since
AERONET is limited in terms of spatial area in comparison
to the satellite products, only the satellite data are used in
this section. Over the 4-year period, a probability distribution
function is performed on each grid cell.

The other metric used in the global analysis is a pairwise
regression analysis similar to what was presented in Shi et
al. (2011). The pairwise metrics are used to analyze the spa-
tial bias between each of these satellite datasets. For the re-
gression, the gridded satellite data are matched up pairwise
for where there are AOD values< 0.8. The regression param-
eters studied include r2, slope, and intercept. It is important
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Figure 1. (a) Selected regions for more detailed analysis of severe events, including boreal North America, South America, Saharan Africa,
central Africa, southwestern Asia, South Asia, eastern Asia, boreal Asia, and Southeast Asia. Included are the AERONET locations used in
this analysis. (b–d) The number of 1◦× 1◦ data points used over the 4-year study period for MODIS DT/DB, MODIS MAIAC, and VIIRS.
(e–g) Ratios of the number of data points between products.

to investigate all of these metrics because satellite products
are often well correlated but show slope and intercept biases.
Shi et al. (2011) revealed areas with larger intercept values
are often linked to differences in surface reflectance values.
Highly correlated areas with larger slope values were linked
to aerosol microphysical biases. AOD values> 0.8 tend to
show nonlinearities when regressed, so pairwise mean ratios
calculations were used to explore the spatial biases of each
product.

3.3 Regional analysis metrics

The global overview provided an initial review of the relative
distributions of high AOD550 events between the three AOD
products. But dissimilarities in the AOD550 distributions can
be a result of several aforementioned root causes of sam-

pling, microphysics, lower boundary condition, and aerosol–
cloud discrimination. To attribute product differences by re-
gion, nine regions (as shown in Fig. 1) were selected for
further discussion based on areas of higher geometric stan-
dard deviations, noticeable differences between the datasets,
and variation in fractional identification of high-percentile-
occurring events. Each region demonstrates its own chal-
lenges for retrievals and sampling. Here AERONET is used
as a reference dataset for each of the regions given it is the
closest form of validation despite its limited coverage. Since
AERONET is included in this analysis, the regional satellite
datasets only use land data. The regional analysis uses time
series, scatter plots, log probability plots, and case studies
to demonstrate the challenges in retrieving high AOD events
between each of these datasets.
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4 Global overview

4.1 Event probabilities

The global distribution of 2016 through 2019 aggregated
AOD550 datasets is provided in Fig. 2 projecting AOD550
onto a lognormal distribution. Provided for each grid cell are
the median (i.e., 50th percentile), 84th percentile, and+1 ge-
ometric standard deviation (σg, here taken as the ratio of the
84th percentile to the median). Higher-level percentiles (95th
and 98th), as well as the number of days with AOD550 > 0.8,
are provided in Fig. 3. Ratios of the MODIS products to VI-
IRS are also included in the lower two panel sets in Figs. 2
and 3. VIIRS AERDB is chosen as the baseline for the ra-
tios since it is the newest of the products and provides an
integrated bright and dark surface retrieval. Over-land and
over-ocean ratios are also provided in Table 1, with addi-
tional regional values provided for discussion in Sect. 5. The
84th percentile values account for the value that separates the
highest ∼ 8 weeks of loading for the year, and its ratio to the
median (an approximation of σg) is a measure of the rela-
tive dispersion of the AOD550 probability distribution. The
95th and 98th percentile values of AOD550 (e.g., highest 18
and 7 d) focus on the tail end of the distribution, which com-
prises the most significant severe events. Finally, the num-
ber of days with AOD550 > 0.8 metric provides an absolute
threshold of the world’s most significant aerosol hotspots.
These metrics where selected to provide insight to where the
most significant aerosol events occurred, what is locally con-
sidered an exceptional event, and how these events vary spa-
tially between datasets. It also shows areas where datasets do
not make retrievals, such as over the Arctic and over most
of the ocean for MODIS MAIAC, which contains a quality
flag requiring a portion of land within the sinusoidal grid-
ded area. It is important to highlight that given the lack of a
truth dataset for the global results, it is not possible to directly
screen for incorrect cloud or aerosol classification.

As expected, the overall distribution of median AOD550
is consistent with existing aerosol climatologies of aerosol
means by satellite (Mishchenko et al., 2007; Remer et
al., 2008; Li et al., 2009; Wei et al., 2019; Sogacheva et
al., 2020) and operational model (Sessions et al., 2015; Xian
et al., 2019). Globally the median over-land AOD550 is con-
sistent between products, ranging from 0.14 to 0.15 (Ta-
ble 1). Median AOD550 was in agreement by product and
was highest in the subtropical belt of (i) the South Asian
Indo-Gangetic Plain, 0.37< AOD550 < 0.41, for pollution
and biomass burning coupled with haze formation (Dey and
Di Girolamo, 2011); (ii) Saharan Africa, 0.25< AOD550 <

0.35, for dust (Caton Harrison et al., 2019); (iii) tropical
and central Africa 0.20< AOD550 < 0.23 for smoke (Swap
et al., 2003; Eck et al., 2013); and (iv) southwestern Asia,
0.18< AOD550 < 0.25, for a combination of dust and pol-
lution (Reid et al., 2013; Al-Taani et al., 2019). Additional
sub-domain hotspots in median AOD550 include portions of

the North China Plain (An et al., 2019) and the Taklamakan
Desert (Ge et al., 2014). Over ocean, MODIS DT/DB and
VIIRS are within 0.01 of each other (0.10–0.12). By region,
however, spatially correlated biases between products are
readily apparent. For the ratios of MODIS products to VIIRS
in Fig. 2, values greater than 1 indicate the MODIS products
observed higher AOD550 values, whereas values lower than 1
indicate VIIRS AERDB observed higher AOD values. As re-
flected in the domain average, VIIRS AERDB overall shows
the highest climatological magnitude of gridded AOD550 me-
dians while MODIS MAIAC has the lowest magnitudes. The
most notable locations of differences are clean background
(low-AOD) regions of the arid western United States, the
Gobi Desert, and the Arctic, where both MODIS products
are higher than VIIRS. At the median level this is only a 0.03
difference in AOD. For more heavily loaded environments,
the largest discrepancies are in central and southern Africa
and East Asia. In Sect. 5, these regional differences are in-
vestigated using AERONET to help quantify the biases.

At the 84th percentile level, which inherently accounts for
some seasonality in aerosol loadings, additional aerosol hot
spots are visible that defined the remainder of the regions
in Fig. 1. Most notable are the biomass burning regions of
South America, Southeast Asia, boreal Asia, and Canada, as
well as a more consistent identification of the Taklamakan
Desert. At the 84th percentile level, AOD550 signal is good
in revealing areas of seasonal aerosol loading, and products
also largely agree, but some divergence becomes evident. For
example, over land at the 84th percentile level, MAIAC pro-
vides distinctively lower AODs for nearly all regions (0.31
for MAIAC versus ∼ 0.4 for MODIS DT/DB and VIIRS).
The lowest values for MAIAC are associated with central
African and boreal biomass burning. While MODIS DT/DB
and VIIRS are largely within 10 % of each other, for Saha-
ran Africa VIIRS is 25 % higher at the 84th percentile. By
region, the strongest divergence between satellites is in cen-
tral and southern Africa – unsurprising given the variability
in aerosol speciation, single scattering albedo, and land sur-
face characteristics. Divergence also still exists in the west-
ern United States, although even at the 84th level AODs are
still quite low. Finally, the sign of the ratios to VIIRS often
switches between land and water – an indicator of algorith-
mic differences used for those two surfaces.

In the context of AOD variability, σg normalizes the 84th
percentile with respect to the medians of each dataset to
make them more comparable. σg can be used as an indica-
tor of AOD550 dispersion, with higher values indicative of a
higher prevalence of episodic aerosol events relative to the
mean. Over ocean, the equal area average value is ∼ 1.8–
2.0, with notable enhancements associated with the northern
portion of the Saharan dust plume (due to seasonal variabil-
ity) and northern latitudes, presumably due to biomass burn-
ing events. Over land, the regions with the highest spread
(in excess of 3) include boreal biomass burning regions of
Siberia and North America followed by seasonal biomass
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Figure 2. Median (left), 84th percentile (center), and geometric standard deviation (right) of AOD for VIIRS Deep Blue, MODIS Dark
Target/Deep Blue combined, and MODIS MAIAC. The bottom two rows present the ratio of MODIS DT/DB and MODIS MAIAC relative
to VIIRS AERDB over the years 2016–2019 for each individual 1◦× 1◦ area. The ratios filter areas where the 84th percentile of AOD
is < 0.1.

burning regions of Africa, South America, and Southeast
Asia. Datasets are largely consistent in region identification
to these hotspots. For dust, the Taklamakan desert and coastal
Argentina are also highlighted. Interestingly, the distribution
spread for African dust is much more muted – likely owing to
the dominance of a single and frequently active dust source.

Notable differences between datasets are apparent in
Fig. 2, especially between land and ocean. Overall, MODIS
MAIAC, when aggregated, shows the lowest values of dis-
persion in comparison to the other two datasets. Regions
that show high standard deviations for VIIRS AERDB and
MODIS DT/DB include northwestern North America, south-
ern Africa, central South America, Southeast Asia, and cen-
tral Russia. These are all associated with biomass burning
events.

To further evaluate the differences between each of these
datasets from a severe events perspective, Fig. 3 includes
the 95th and 98th percentile values of AOD550 (e.g., high-

est 18 and 7 d). Over the ocean, MODIS DT/DB generally
observes larger 95th percentile values of AOD550 compared
to VIIRS AERDB. The difference in products is especially
noticeable over the central Atlantic where dust events occur,
as well as high to middle latitudes and the Arctic. Over land,
both MODIS products show greater values of 95th percentile
AOD550 than VIIRS over India, eastern Asia, southwestern
North America, the western coast of South America, and
southern Africa. VIIRS AERDB dominates over land with
higher values over boreal Canada, central South America,
Saharan Africa, and boreal Asia. In the case of the Arctic
Ocean, Africa, and southwestern Asia a clear transition from
a low MODIS to VIIRS ratio to high from the boreal to the
Arctic Ocean is likely related to the switch between land and
ocean retrievals. The 98th percentile values of AOD550 have
similar spatial patterns to the 95th percentile of AOD550.
MODIS DT/DB and VIIRS AERDB show a large plume off
the western coast of the Hawaiian Islands.
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Figure 3. The 95th percentile of AOD (left), 98th percentile of AOD (center), and number of days where AOD> 0.8 (right) for VIIRS
AERDB, MODIS DT/DB, and MODIS MAIAC for 2016–2019. The ratio of MODIS DT/DB and MODIS MAIAC to VIIRS AERDB is
presented in the bottom two rows.

As opposed to probability distributions, the number of
days with AOD550 > 0.8 presented in Fig. 3 was used in this
analysis as a threshold benchmark. While probability distri-
butions to an extent normalize out sampling (account for both
swath width and for over ocean, the higher swath fraction to
glint), threshold scores are useful in their ability to detect an
event. AOD550 > 0.8 is used because the lowest global 98th
percentile over-land value of all datasets is approximately 0.8
(0.82 for MAIAC) and corresponds to an AOD alert as part
of the ICAP_MME consensus (Sessions et al., 2015). While
thresholds are useful, they can also be problematic given the
overall lognormal distribution of AOD; slight systematic bi-
ases may result in larger systematic differences in a threshold
metric. VIIRS, with its wider swath, could be expected to ob-
serve higher AOD events than MODIS. However, over land
the differences between MODIS and VIIRS largely resemble
the differences in the 95th and 98th percentile AODs. Strong
gradients in the ratios from land to water further highlight
the effect of having different ocean and land retrievals. Thus,

retrieval differences for VIIRS overtake the gains made by
coverage for this type of metric. This is explored further in
the pairwise comparisons conducted in Sect. 4.2.

Taken as a whole, the over-land VIIRS AERDB dataset,
with its larger swath, shows the most AOD550 > 0.8 d in
comparison to both MODIS datasets over Africa, boreal
Canada, central South America, and boreal Asia. However,
both MODIS datasets show more AOD550 > 0.8 d over In-
dia and portions of eastern Asia, and the MODIS DT/DB
observes more AOD550 > 0.8 d over the central Atlantic
Ocean. Without having an exact truth to provide validation
of AOD550 over whole regions, it is difficult to determine
which best captures severe events, although it is suspected
that differences can come from several sources. For exam-
ple, the differences over the central Atlantic Ocean between
MODIS DT/DB and VIIRS may be due to the difference in
the dust models used in the algorithm over ocean. This is re-
flected in the high bias in the MODIS DT/DB AOD over the
North Atlantic Ocean.
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Table 1. AOD550 median, 84th percentile, and +1 geometric standard deviation (σg) for selected regions for each dataset. Apart from global
ocean, all values are for over land only.

Region Satellite Median 84th Percentile σg 95th Percentile 98th Percentile

Global land MODIS DT/DB 0.158 0.403 2.55 0.691 0.960
MODIS MAIAC 0.147 0.324 2.20 0.574 0.833
VIIRS AERDB 0.151 0.414 2.74 0.733 1.041

Global ocean MODIS DT/DB 0.114 0.217 1.91 0.360 0.517
MODIS MAIAC 0.109 0.220 2.01 0.351 0.468
VIIRS AERDB 0.114 0.203 1.78 0.313 0.450

Boreal Asia MODIS DT/DB 0.131 0.355 2.72 0.994 1.807
MODIS MAIAC 0.113 0.235 2.07 0.565 1.412
VIIRS AERDB 0.097 0.293 3.04 0.841 1.429

Boreal North America MODIS DT/DB 0.109 0.263 2.42 0.548 0.942
MODIS MAIAC 0.105 0.214 2.05 0.333 0.553
VIIRS AERDB 0.083 0.219 2.62 0.539 1.353

Central Africa MODIS DT/DB 0.228 0.502 2.20 0.788 1.022
MODIS MAIAC 0.201 0.380 1.89 0.612 0.812
VIIRS AERDB 0.221 0.542 2.45 0.885 1.131

South America MODIS DT/DB 0.130 0.274 2.11 0.459 0.672
MODIS MAIAC 0.129 0.229 1.77 0.325 0.409
VIIRS AERDB 0.125 0.279 2.23 0.476 0.683

Southeast Asia MODIS DT/DB 0.197 0.406 2.06 0.688 0.960
MODIS MAIAC 0.188 0.355 1.89 0.603 0.870
VIIRS AERDB 0.201 0.389 1.94 0.650 0.939

Saharan Africa MODIS DT/DB 0.261 0.538 2.06 0.828 1.120
MODIS MAIAC 0.238 0.473 1.99 0.761 1.043
VIIRS AERDB 0.336 0.680 2.02 1.080 1.466

Southwestern Asia MODIS DT/DB 0.247 0.489 1.98 0.730 0.942
MODIS MAIAC 0.181 0.375 2.07 0.637 0.883
VIIRS AERDB 0.243 0.513 2.11 0.812 1.105

South Asia MODIS DT/DB 0.368 0.729 1.98 1.126 1.479
MODIS MAIAC 0.407 0.747 1.84 1.078 1.372
VIIRS AERDB 0.383 0.674 1.76 0.937 1.157

Eastern Asia MODIS DT/DB 0.150 0.444 2.96 0.802 1.125
MODIS MAIAC 0.172 0.392 2.28 0.690 0.989
VIIRS AERDB 0.135 0.400 2.98 0.750 1.066

A second type of threshold score is slightly more relative,
by calculating the probability of each dataset capturing a 95th
percentile event compared to the total number of detected
95th percentile events, as well as the probability of only a
single dataset detecting a 95th percentile event. That is, rela-
tively speaking, we ask for a 95th percentile from one set that
is matched by 95th percentile of another, thus accounting for
slight biases in the datasets. Of course, if no dataset captures
a 95th percentile event then it cannot be counted. This met-
ric is used to identify how common it is for the datasets to
be in agreement and identify areas where the detection of
95th percentile events is missed by the individual algorithms
with the results presented in Fig. 4. In order to focus on high

aerosol events, a threshold was set to eliminate points where
the 95th percentile AOD550 was less than 0.3. It is important
to be reminded that this metric does not define the accuracy
of capturing 95th percentile AOD550 events, but rather the
consistent conclusion that two algorithms are in agreement
that an event has taken place. Such consistency is required
to bridge the climate data record between sensors and algo-
rithms and important for data assimilation.

Overall datasets are generally in agreement when detect-
ing 95th percentile aerosol events, particularly in regions
where high aerosol loadings occur. Not surprisingly given its
increased coverage, VIIRS AERDB shows the highest like-
lihood of identifying an event at the 95th percentile. VIIRS
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Figure 4. Consistency of detection for 95th percentile events by each dataset compared to the total detected 95th percentile events (left) and
the amount of 95th percentile events detected by a single sensor or algorithm in comparison to total detected 95th percentile events (right)
for VIIRS AERDB (top), MODIS DT/DB (middle), and MODIS MAIAC (bottom) with a threshold for 95th percentile> 0.3.

AERDB is more likely to detect individual 95th percentile
events over ocean. Over land, MODIS MAIAC identifies
more individual 95th percentile events than the other two
datasets.

MODIS DT/DB was regionally inconsistent in detecting
95th percentile events, especially over northern South Amer-
ica, central Europe, northeastern Asia, and the central At-
lantic Ocean. This may be due to the cloud conservative na-
ture of the algorithm in order to minimize cloud contamina-
tion. This may also be due to a sampling related difference
as MODIS DT/DB products are available at 10× 10 km res-
olution at nadir while MODIS MAIAC and VIIRS AERDB
aerosol products are available at 1×1 and 6×6 km resolution
at nadir, respectively. MODIS DT/DB and MODIS MAIAC
show lower detection rates along the ocean coastlines of Asia
with respect to VIIRS AERDB with all three datasets seem
to be detecting different events within central Africa.

4.2 Global pairwise analysis

While the comparison of the probability distributions of
datasets characterizes overall sampling, we also wish to
know how products compare at individual points and times,
especially for significant AOD events. Here we briefly repeat

the pairwise global analysis of Shi et al. (2011) with the up-
dated algorithms and an emphasis on higher AOD regimes
where we expect nonlinearities in AOD to exist between pro-
ducts. The global analysis presented here will then feed dis-
cussions of specific regional phenomenology that are pro-
vided in Sect. 5. While regression is a useful tool, there are
considerations when interpreting the results. The quality of a
relationship is often indicated in the coefficient of determi-
nation (r2), which provides the fraction of variance captured
by a regression line. Thus, for a given error bar (e.g.,±0.1 in
AOD), data with wider dynamic range will by nature have
a higher AOD, and low-AOD environments are penalized
by the r2 metric. Further, for higher-AOD events, retrieval
microphysical assumptions and degrees of freedom (absorp-
tion, size, refractive index, phase function etc.) should create
a host of local nonlinear and multi-modal relationships be-
tween products. Indeed, the products examined here do not
even differentiate between fine and coarse mode over land
other than what is regionally pre-defined. Errors due to lower
boundary conditions should diminish with increasing AOD.
Seasonal differences often exist. Ultimately, linear regres-
sion, while useful, is not a universal tool.
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To account for nonlinearity, calculations were made in two
ways. First, linear regression is performed on the 1◦×1◦ bins
for when AOD550 < 0.8 for either of the products being re-
gressed (Fig. 5). Above this value, we found nonlinearities
became prominent. Second, to extract AOD dependent bi-
ases we calculate pairwise mean deviation between products
for differing optical depth bands (Fig. 6), less than the me-
dian (< 0.15), moderate AOD in the linear regime (0.15–
0.4), transition to multiple scattering (0.4–0.8), multiple scat-
tering (0.8–2), and exceptional AOD550 (2–3). The pairwise
occurrences for AOD550 > 3 were limited, so the compari-
son ends at that point. The mean ratios calculated in Figs. 5
and 6 are defined as the averages of the ratios of the pairwise
satellite products. As noted in Sect. 5, even this formulation
is inadequate for regions with multi-modal behavior.

As in Shi et al. (2011), strong spatially correlated biases
are evident in Figs. 5 and 6, as evidenced by widely vary-
ing, slope, intercept, and r2 values. Regions with the high-
est r2 are coastal waters, no doubt aided by the dark ocean
boundary conditions and higher AOD relative to the open
ocean. Slopes are also reasonably close to one for VIIRS and
DT/DB products, with DT/DB showing slightly low differ-
ences from 0 %–20% for moderate AOD. DT/DB also has a
slight positive offset. MAIAC coastal waters show stronger
gradients in slope than the traditional Dark Target counter-
parts, perhaps due to its use of more prescriptive optical mod-
els.

Over-land products continue to show significant spatial
correlation of AOD between products. Over land, the highest
correlations are for moderate- to high-AOD regions over low-
albedo vegetated lands including biomass burning regions of
South America, boreal Asia, central Africa, and peninsular
Southeast Asia, as well as the pollution-dominated regions
of the eastern United States and Europe. In contrast, regions
of low r2 values, and hence indeterminate value of slope and
intercept, include the low-AOD areas of the tropical to sub-
tropical Pacific Ocean and the deserts and mountain ranges of
the western United States, Chile, central Asia, and Australia.
However, arid areas with moderately strong AOD signals
also compare poorly, especially Saharan Africa and south-
western and central Asia. Large intercept deviations between
products are generally highly localized, likely due to arid
land surface features (desert playa, rocks, bare soil) and oro-
graphically related haze and dust features (such as in India
and western China, as discussed in Sect. 5). Saharan Africa,
with its proclivity for dust production, shows the most dis-
persion between products for a region of moderate to high
AOD. Mean deviations from high AOD events likewise have
strong regional patterns, again perhaps due to different dust
models.

Like the probability distributions, regression and bias
statistics are often markedly different across the land and
ocean boundary – especially between arid regions and wa-
ter. Outstanding examples of sharp gradients in model com-
parisons of this include the transition from Saharan Africa to

the Atlantic Ocean and southern and southwestern Asia to the
Arabian Gulf and Bay of Bengal. In Reid et al. (2022), this
is apparent when the ICAP consensus models are compared
to MODIS. These models do not have the sharp boundaries
for significant land plume ejections like the MODIS prod-
uct does. This provides evidence that there are differences
between the land and ocean retrievals resulting in coastal
changes in AOD even when compared pairwise. While it is
surmised that this is largely due to lost signal-to-noise val-
ues over bright backgrounds, it is a reflection of the dif-
ferences in over-land and over-water portions of retrievals.
Finally, while mostly regressed out in the pairwise com-
parison, one must also consider that the very sample pop-
ulations are different on either side of the shoreline. Influ-
ences include orography, glint, and differences in cloud fea-
tures. The AOD distributions also may be truly different due
to land–sea breeze interactions. Over water, sun glint re-
moves up to a third of the large fraction of the swath. In
all these cases, examples are provided in the regional re-
sults section, and even a cursory view of the NASA World-
view site (https://worldview.earthdata.nasa.gov/, last access:
10 August 2021) will show numerous examples of retrievals
being available of only one side of the shoreline.

As noted earlier, while product-to-product regressions are
quite useful, they do not explain why one sensor or algo-
rithm might have difficulty capturing AOD-related depen-
dencies on microphysics and lower boundary conditions. By
looking at product differences by regime or region, one can
begin to infer how algorithm assumptions are influencing
them. The largest relative differences are at the lowest AODs
and are well correlated with lower boundary conditions. For
DT/DB-MODIS versus VIIRS, they are seen at the obvious
geographic boundaries between dark and bright surfaces, and
in the case of MAIAC relative to traditional dark target they
are seen at the land–sea boundary. As AODs increase, the
gradients in AOD ratios between products decrease, in part
due the diminishing influence of the lower boundary condi-
tion but also due to a reduction in coverage of areas with
higher AODs. Nevertheless, regional deviations remain for
high-AOD environments. For AODs higher than the regres-
sion range (i.e., 0.8< AOD550 < 2; 2< AOD550 < 3), devi-
ations over regions still span ±40 % over large regions, with
perhaps the strongest gradients along the western African
and southwestern Asian Coast, with VIIRS having higher
AODs550 over MODIS. Interestingly, mean deviations over
the Siberian boreal region are opposite in sign to most of bo-
real Canada. Also notable are strong deviations (greater than
a factor of 2 or even 5) over the high-latitude regimes, pre-
sumably due to cloud contamination. Likely the same can
also be said about ice over the Arctic regions. At the indi-
vidual pixel level for high-AOD regions, there is still a great
deal of variability, most likely due individual sampling dif-
ferences between products along plume edges. All of these
are discussed by region in the following section.
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Figure 5. Pairwise regression and mean difference maps between the NASA VIIRS Deep Blue, MODIS Dark Target/Deep Blue (DT/DB),
and MAIAC optical depth products. Regressions are performed for AOD550 < 0.8, with the mean ratio between products coming from
AOD550 > 0.8.

5 Regional analysis

To capture the differences in nature between the differ-
ent regions, domains are intercompared in three figures.
Figure 7 provides an area-averaged time series of Aqua
Dark Target/Deep Blue, Aqua MAIAC, SNPP-VIIRS, and
AERONET over the 2016–2019 study period. Figure 8 pro-
vides the corresponding scatter plots of the MODIS products
and AERONET to the VIIRS product. Finally, Fig. 9 plots
log probability of individual 1◦× 1◦ points that make up
the regional averages used in Figs. 7 and 8. Even though
AERONET’s point nature results in limited coverage, its data
are included in these plots to investigate local representa-
tiveness (as indicated in Fig. 1a). For better comparison to
AERONET, this regional analysis will focus only on land
data. In addition to these composite figures, scatter plots
between 1◦× 1◦ products for each region are provided in
Figs. S1–S9 in the Supplement. In the following section,
we examine biomass burning (e.g., Fig. 7a–e), dust (e.g.,
Fig. 7f), and pollution-dominated and mixed environments
(Fig. 7g–i).

5.1 Biomass-burning-dominated regimes

While Figs. 2 and 3 demonstrate that biomass burning is
second to dust for median or even 84th percentile AOD550,
any picture of a significant biomass burning event shows
plumes that have some of the very highest AODs on
the planet that even locally rival clouds. Even region-
ally, smoke AODs from fire complexes can be extreme.
Peat burning in Indonesia can generate AOD550 values

that can only be estimated by AERONET’s near-infrared
wavelengths, indicating mid-visible AOD> 10 (Eck et
al., 2019; Shi et al., 2019). Likewise, AERONET data
corroborate dramatic photographs of the San Francisco
Bay Area during the September 2020 fire season (outside
the period of study) where conditions led to twilight con-
ditions at solar noon (https://theglobalherald.com/news/
wildfires-on-us-west-coast-turn-day-into-night-dw-news/,
last access: 10 August 2021). It is this extreme behavior of
smoke emissions that makes the quantitative monitoring of
biomass burning by satellites so challenging.

5.1.1 Boreal regions: continental and intercontinental
scales

Boreal Asia and Canada (Figs. 7/8/9a and b, respectively)
are excellent examples of regions exhibiting extremely dis-
persive AOD550 distributions, with low median values but
occasional severe continental- to intercontinental-scale wild-
fire smoke events. As shown below, this aerosol domain is
perhaps the most difficult to assesses. Nevertheless, within
the regional spatial average domains, all three satellite algo-
rithms tracked one another well, even with very sharp peak
days without the gradual seasonality seen in other regions
(Fig. 8a and b). With only three AERONET sites in bo-
real Asia, there are periodic spikes due to the proximity of
fires to instruments. In comparison, the higher number of
AERONET sites in North America shows more convergence
between satellite and sun photometers. From a probability
distribution point of view (Fig. 9), boreal Asia clearly has
the highest prevalence of detected high-AOD events glob-
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Figure 6. Pairwise mean ratios between products for differing AOD ranges where at least one of the products has a value within that range.

ally, ranging from 1.7 to 2.5 at the 99th percentile level, with
boreal North America showing more dispersion between pro-
ducts with 99th percentile AODs, ranging from 0.8 to 2. Not
surprisingly, AERONET demonstrates that high AODs are
almost always associated with the fine mode. This being said,
high-latitude dust does exist from isolated sources or trans-
port (Bullard et al., 2016). However, such events are unlikely
to be detected by isolated AERONET sites or identified as
being dominated by coarse mode by the satellite products
examined here.

The statistics in Figs. 7 and 8 are consistent with Fig. 6;
pairwise deviations between products switch in sign between
the Asian and North American domains. Indeed, Figs. 9 and
S1 and S2 show that DT/DB and MAIAC provide 20 %
lower values than VIIRS for boreal Asia. However, for bo-
real Canada, the MODIS values are greater than VIIRS by
more than 50 %. However, for these two regions, the dif-

ferences between the satellite products are much smaller
than the differences between the satellite products and the
AERONET data used for verification. Given there are so
few AERONET verification points for high AOD and mul-
tiple populations visible between copious satellite data pop-
ulations, one cannot say definitively which product is most
“correct.” Assumptions on an individual retrieval’s overland
size and optical properties (most notably absorption as AOD
increases) coupled with multiple scattering are expected to
result in spatially correlated differences between products.
Indeed, mid-visible single scattering albedo can vary consid-
erably by individual fire and age, ranging from 0.9 to 0.99
(Reid et al., 2005; Eck et al., 2009; Nikonovas et al., 2015).

The extreme behavior of fires in boreal and temperate
forested domains provide cautionary examples of sampling
and regional averaging. For this study, the most significant
boreal smoke outbreak was observed over the North Amer-
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Figure 7. Time series of daily mean AOD from 2016-2018 for the regions presented in Fig. 1. Retrievals include AERONET (orange),
VIIRS AERDB (blue), MODIS DT/DB (red), and MODIS MAIAC (green). Total 84th percentile (dot), 95th percentile (dot dash), and 98th
percentile (dash) values are also indicated for all datasets represented.

ican boreal region domain in early July 2018 (Fig. 7b), for
which all products reported smoke AODs over 1. Meanwhile
boreal Asia showed modest fire activity with AODs< 0.5.
However, this North American event was Siberian in ori-
gin. Significant thermal hotspot anomalies and smoke build
up over the Siberian boreal area started in earnest around
26 June 2018 associated with convection and consistent with
lightning. By 1 July, AOD was well above 1 along a 2000 km
band over Siberia (Fig. 10a). By 5 July, smoke was advected
northeastward into the polar regions along with significant
cloud cover masking it from quantification.

This smoke outbreak was colocated with significant
cloudiness, and the retrieved AODs are likely biased high.
Much of the smoke plume that is cloud free has failed re-
trievals Fig. 10b. By 9 July, the smoke is adverted southeast-
ward into Canada, again with relatively few observations rel-
ative to the 2000 km size of the plume Fig. 10c. Thus, these
aerosol events, perhaps the largest by AOD and size, are a
significant challenge to track and apportion by standard satel-
lite products alone.

A second difficulty is that for boreal Asia significant AOD
events are not just associated with biomass burning. As a sec-
ond example, strong regional AOD550 values were logged
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Figure 8. Regional scatter plots of time series data presented in Fig. 7. Retrievals include AERONET (orange), MODIS DT/DB (red), and
MODIS MAIAC (green). Also shown is the 1 : 1 line (black).

Figure 9. Log probability plots of 550 nm AOD taken from the 1◦× 1◦ samples within the regions defined in Fig. 1. Retrievals include
AERONET (orange), VIIRS AERDB (blue), MODIS DT/DB (red), and MODIS MAIAC (green). SDA-derived coarse-mode AOD from
AERONET is also provided (dashed orange).

6 March 2016 (Fig. 11a) for both DT/DB and VIIRS, ap-
pearing to be the fringes of a dust storm. Closer manual in-
spection of these cases showed that they were nearly entirely
covered by snow and clouds (Fig. 11a). However, there were
just a few retrievals solely associated with a significant Asian
dust event along the southern edge of the domain dominat-
ing the area average. Such events are exceptional but obvi-

ously not impossible. Given that imager retrievals lack in-
formation content for fine–coarse partition, aerosol sources
can easily be confused. Indeed, numerous thermal anoma-
lies are observed in the region (Fig. 11a), but they are per-
sistent and likely from petrochemical flaring enhanced by
the cold background. Such differences between products may
become more significant as developers create different cloud-
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and snow-screening techniques. In light of what is presented
here, the observed integer factors in regional bias between
products due to sampling and interpretation alone is not un-
reasonable, although the exact source of the error will require
further study.

5.1.2 Central Africa and South America: variability
within large-scale plumes

In comparison to the extreme behavior of boreal biomass
burning regions, the tropical to subtropical central African
and South American biomass burning regions have more
manageable seasonal biomass burning signals, dominated
by the August to October period (Fig. 7c and d, respec-
tively). Instead of isolated mega-fires with exceptional trans-
port phenomenon, smoke is generated from numerous small
grass and deforestation burns that merge into regional plumes
embedded in more subdued meteorological regime (Reid
et al., 2009). These regions also have significantly higher
AERONET site prevalence compared to the boreal region,
allowing for more assessment opportunities (Figs. 1, 8,
S3 and S4). Over these domains, satellite products and
AERONET track well (Fig. 7), and with the exception of
a slight discrepancy for MAIAC probability distributions,
overlay each other almost exactly (Fig. 9). Over Central
Africa satellite products generally show low scatter between
each other, although in pairwise comparisons to AERONET
they all show a distinct low bias (Fig. S3). Being the world’s
largest biomass burning source (Mu et al., 2011), Cen-
tral Africa has a smaller range of regional optical depth
than other biomass burning regions. South America in con-
trast, has even better pairwise consistency between products
(Fig. S4) but MAIAC and VIIRS have lower values relative
to DT/DB.

While bulk comparisons suggest overall agreement be-
tween products, it is of concern that pairwise model biases do
not always manifest themselves in comparisons to the preva-
lent AERONET sites in the region despite their broad plume
features. Further, regionally prescribed ωo and differences in
over-water retrievals result in sharp discontinuities in inter-
product bias (Figs. 5 and 6). For Africa, a well-established
seasonal cycle in ωo starting at ∼ 0.84 in the early season
due to a high prevalence of grass fires and increasing in time
to 0.93 with increased forest fuels until the end of the season
manifests itself in a seasonal cycle in MODIS bias (Eck et
al., 2013).

Figure 12 provides plots of 9 September 2018 as an exam-
ple day of inter-product differences, including (a) an Aqua
MODIS RGB; (b) a coverage diagram; (c), (d), (e) DT/DB,
MAIAC, and VIIRS AOD, respectively, with AERONET
AODs overlaid; and (f), (g), (h) inter-product ratios of
DT/DB to VIIRS, MAIAC to VIIRS, and MAIAC to DT/DB,
respectively. This example was picked as a typical day, but
with an Aqua orbit gap in the middle to allow for examination
of extreme differences in scattering angles. At first glance,

Figure 10. A case of Siberian smoke transport from Asia to North
America for early 2018. (a–c) Corresponding RGB images of plume
evolution for 3, 5, and 10 July 2018, respectively. (d–f) Correspond-
ing VIIRS AOD550 for Asia through North America. The magenta
box corresponds to the images in panels (a)–(c) that is zoomed in
on in panels (g)–(i). Panels (j–l) and (m–o) show ratios of DT/DB
and MAIAC to VIIRS, respectively. Satellite RGB imagery is from
NASA Worldview.

Figure 11. Case study of a springtime dust intrusion from China
into the Siberian domain on 6 March 2016. Included are (a) an RGB
image of dust transport and MODIS thermal anomalies and (b) a
map showing where retrievals are available. Satellite RGB imagery
is from NASA Worldview.
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Figure 12. Intercomparison of aerosol retrievals for southern Africa
for 19 September 2018: (a) Aqua RGB image; (b) locations where
retrievals are available; (c–e) MODIS DT/DB, MODIS MAIC, and
VIIRS AOD550 retrievals, with AERONET AOD550s in boxes;
and (f–h) ratios of retrieved AOD550 to each source. Satellite RGB
imagery is from NASA Worldview.

AOD patterns do match well overall, but there are some spa-
tially correlated regions of difference. These are highlighted
in the ratio plots. Notable differences include (1) magnitude,
with the largest ratios not being associated with higher AODs
but with lower AODs. (2) All three products compare well to
AERONET on the eastern portion, but there is low bias in the
west, possibly due to differences in smoke optical properties
(worthy of future study). The next version of VIIRS V2.0
has been described as improved by its developers. (3) There
is a sharp coastal delineation in AODs across the AOD values
matching the nearshore AERONET sites. (4) DT/DB relative
to VIIRS has a high bias of up to 30 % along the edge of
swath views. (5) DT/DB also has varying biases relative to
VIIRS offshore of the eastern coast, with higher values in
the north with low AOD, a good match west of Madagascar
for moderate AODs, and a slightly high bias south of Mada-
gascar. MAIAC yields higher values than the others to the
north and lower values to the south. (6) MAIAC has rectan-
gular regions of bias that are quite distinct from both DT/DB
and VIIRS. This is likely due to the tile processing nature of
MAIAC.

Resolving all of these issues is far outside the scope of
this study. But the conclusion here is that it is clear that on a
daily basis that significant spatially correlated biases exist be-

tween products based on a host of sources even if on a larger
scale they converge to similar average values. This finding
requires consideration when the data products are used for
high-fidelity data assimilation and inverse modeling applica-
tions.

5.1.3 Southeast Asia: exceptional AODs

Southeast Asia has two biomass burning seasons: (1) bo-
real spring agriculture, deforestation, and wildfires in the
mainland Southeast Asian countries of Myanmar, Thailand,
Cambodia, and Laos and (2) boreal summer and early fall
agriculture, deforestation, and peat fires for the maritime
Southeast Asian countries of Indonesia and Malaysia (Reid
et al., 2012). Mainland Southeast Asia tends to have more
consistent seasonal behavior with periodic enhancements
(Reid et al., 2013), similar to the African and South Amer-
ican regions. Maritime Southeast Asia, however, has strong
variations due to the El Niño–Southern Oscillation (ENSO;
Nichol, 1998; Field et al., 2016) and a host of inter-seasonal
meteorological dependencies such as the Madden–Julian Os-
cillation and the boreal summer intraseasonal oscillation
(Reid et al., 2012). AODs can be exceptionally high for
weeks at a time, so that sun photometers have insufficient
solar signal even for wavelengths as long as 870 nm (Eck
et al., 2019). Given its high regional cloud cover, extremes
in AOD, and variable aerosol optical properties, maritime
Southeast Asia is exceptionally poor at sampling these ex-
treme conditions (Reid et al., 2013). Yet, all three satellite
products track each other exceptionally well when character-
izing regional average (Figs. 7and 8) and show similar proba-
bility functions (Fig. 9). Even scatter plots between products
show good comparisons (Fig. S5).

Despite the excellent overall comparability, satellite pro-
ducts under-sample extreme events observed by AERONET.
Indeed, 99th percentile AOD for the satellite products are
only 60 % of the AERONET values (0.95 versus 1.6). This
behavior has already been well documented by Reid et
al. (2013) and Eck et al. (2019) for drought periods induced
by El Niño. Now with version 3 of AERONET, it can in-
fer AOD550 > 5 by inferring from the 1020 nm channel. For
example, the year 2019 in our study period had exceptional
biomass burning AOD. Figure 13 provides a time series of
550 nm AOD from AERONET at three sites on Borneo:
(a) Palangkaraya (2.3◦ S, 113.9◦ E), in the heart of biomass
burning activity in southern Kalimantan Indonesia with max-
imum measured AODs; (b) Pontianak (0.1◦ N, 109.2◦ E), on
the shore of western Kalimantan as smoke exits to the Java
Sea; and (c) Kuching (1.5◦ N, 110.3◦ E) on the southern bor-
der of Sarawak, Malaysia, as smoke exits into the South
China Sea. Over southern Kalimantan in the heart of the
source region, we find the greatest discrepancies between
products. For the whole month of August, AODs from the
satellite products significantly underestimate smoke levels.
By mid-September, when smoke loadings are at a maximum,
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Figure 13. Time series of satellite product AOD to AERONET
for three sites on Borneo for the 2019 biomass burning season
(a) Palangkaraya, southern Kalimantan, Indonesia; (b) Pontianak,
western Kalimantan, Indonesia; (c) Kuching, southern Sarawak,
Malaysia.

the sun photometer is attenuated, and AODs over 4 can only
be estimated by using near-infrared wavelengths. Given sat-
uration, estimates shown in Fig. 13 are not even included in
the probability distributions shown earlier in this paper. Ow-
ing to its higher resolution, MAIAC has additional coverage
compared to the other products. By the end of the season
when AODs diminish, AERONET and satellite products rec-
oncile. Along the coast at Pontianak, products compare well
between themselves and AERONET, which we hypothesize
is due in part to smoke homogenization from many plumes
into a single high-AOD region. However, the highest AODs
are still understandably missed. At Kuching, smoke AODs
are even lower, and all products compare well.

An example day is provided in Fig. 14 in a manner similar
to Fig. 12 for Central Africa, with RGB, coverage, AOD, and
ratio plot panels. The difference between this case and Africa
is striking. Whereas Africa showed good coverage across all
products, Borneo shows slight changes in AOD and cloud
mask thresholds and increased VIIRS coverage which re-
sults in more variable retrieval coverage. All products miss
the center of Kalimantan, due to extreme aerosol conditions.
Along the border of the plume, ratios between products can
be extreme depending on the individual retrievals that make
up the aggregates. The conclusion in this case is that all re-
trievals have some physical limits. To cope when AODs are
this exceptional, new techniques need to be developed for
measurement, aggregation, and assimilation.

Figure 14. A Borneo image and AOD analysis for 16 Septem-
ber 2019. Included is (a) corresponding Aqua MODIS RGB im-
age, (b) coverage coincidence map, (c) MODIS DT/DB AOD,
(d) MODIS MAIAC AOD, and (e) VIIRS DB AOD. Also shown are
the ratios between products, including (f) MODIS DT/DB :VIIRS
DB, (g) MODIS MAIAC :VIIRS DB, and (h) MODIS MA-
IAC :MODIS DB. Satellite RGB imagery is from NASA World-
view.

5.2 Dust-dominated Saharan domain: bright surfaces
and dust microphysics

The North African or Saharan region is the only subconti-
nental domain that can be said to be fully dominated by dust.
With median AODs on the order of∼ 0.3 and 98th percentile
values of 1 to 1.5 by product, the Sahara is the largest con-
tiguous aerosol feature on Earth. Visible in Fig. 7 is the Sa-
hara’s dynamic nature, with frequent region-wide spikes in
AOD550. While the dust season is often envisioned as be-
ing comprised of massive boreal summer Saharan Air Layer
outbreaks traversing across the subtropical Atlantic into the
Americas, major events can occur any time of year with only
a minor boreal winter minimum.

Generally, regional dust products are comparable for re-
gional average (Figs. 7, 8) and probability density (Fig. 9).
Even from a bulk point-by-point comparison (Fig. S6), the
products correlate well to themselves and with the few
AERONET sites in the region. VIIRS AERDB tends to be
consistently higher than its MODIS counterparts by up to
30 %–50 %, most likely due to assumptions in dust opti-
cal properties and perhaps some improvements in cloud–
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dust discrimination. In contrast, MODIS MAIAC shows
the lowest daily average of AOD550, which is a difference
that persists throughout the analysis of severe events. The
AERONET values are less correlated with the satellite ob-
servations, likely a result of the sparse sampling in this re-
gion. However, close examination of these plots (most no-
tably Fig. S6) in combination with Fig. 5 shows there are
multiple data populations embedded into the whole, with re-
gions of significant decorrelation and bias. Areas of particu-
lar decorrelation are coincident with areas that are dominated
by evaporates (i.e., low Fe absorption), such as the Tenere
Desert and Bodele Depression of Chad; the Qattara Depres-
sion of Libya and Egypt; and the western Saharan areas of
Mali, Mauritania, and Morocco (Goudie et al., 2002; Perl-
witz et al., 2015).

The spatially correlated nature of bias between products is
provided as an example in Fig. 15 for 6 June 2017. Given the
bright surfaces of deserts, dust may not be visually obvious
(Fig. 15a). However, there is minimal cloud cover, and excel-
lent satellite coverage is available (Fig. 15b). All three pro-
ducts show the same overall dust features with multiple dust
plumes (Fig. 15c–e). However, by ratio, significant patterns
emerge (Fig. 15f–h), sometimes with opposite signs in bias
for adjacent plume features (e.g., in western Africa), along
straight lines due to regional boxes used in the retrieval, along
coastlines, and on either side of an orbit where scattering an-
gles abruptly change.

Of all the cases shown in Sect. 5, Fig. 15 best demonstrates
the challenges of assimilating or performing source function
inversions. Because data assimilation must account for obser-
vation localization and there are so few temporal observation
opportunities to begin with, differences such as these result
in a smeared source area (Khade et al., 2012). Further, since
there are so few AERONET sites available and day-to-day
changes in solar geometries, these differences are difficult to
deconvolve.

5.3 Mixed pollution–dust domains of Asia

It so happens that some of the regions with the strongest
pollution emissions are also influenced by dust transport. In-
deed, the coastal arc extending from the Arabian Sea through
India and up to eastern Asia hosts some of the most heteroge-
neous “mixed” aerosol environments in the world. Figure 9
shows that southwestern Asia and southern Asia have coarse-
mode AODs on the order of 50 % of the total value out past
the 99th percentile. East Asia, known for its significant haze
dominated by the fine mode, nevertheless is frequently im-
pacted by dust storms from areas of central Asia, such as the
Taklamakan and Gobi deserts. The main dust events (high
AOD events) in East Asia occur in spring (March–May), but
background dust levels persist throughout most of the year.
Like the Sahara, correlations and biases across the south-
western to eastern Asian arc have strong spatial variabil-
ity (Figs. 5, 6). Correlations are best for northern mainland

Figure 15. A pan-Saharan image and AOD analysis for 8 June
2017. Included is the (a) corresponding Aqua MODIS RGB im-
age, (b) coverage coincidence map, (c) MODIS DT/DB AOD,
(d) MODIS MAIAC AOD, and (e) VIIRS DB AOD. Also shown are
the ratios between products, including (f) MODIS DT/DB :VIIRS
DB, (g) MODIS MAIAC:VIIRS DB, and (h) MODIS MA-
IAC :MODIS DT/DB. Satellite RGB imagery is from NASA
Worldview.

Southeast Asia due to it having dark, vegetated surfaces and
sufficiently large biomass burning sources. The areas with
the lowest agreement include bright deserts, especially areas
with aerosols that have low values of light absorption.

In Asia, there is so much aerosol activity that numer-
ous individual events can be observed on most days. Fig-
ure 16 provides a comparison for 3 November 2018, which
includes significant dust events over southwestern Asia,
biomass burning and pollution over India, and haze over
western China (Fig. 16a). Like other cases, products compare
well qualitatively (Fig. 16b–d), but there are regional differ-
ences over both land and ocean (Fig. 16e–g). Each region has
its own characteristics that are described below.

5.3.1 Southwestern Asia

Southwestern Asia is a significant producer of dust, albeit to
a lesser extent than the Sahara. Like the Sahara, biases are
expected due to the lower boundary condition, dust micro-
physics, and optical geometry. Taken as a whole, products do
track each other reasonably well at the seasonal level (Figs. 7
and 8) and even look reasonable in the context of a point-
by-point scatter plot (Fig. S7), albeit with some biases. Re-
gression between products at the 1◦ level is likewise poor
over land but good over water (Fig. 5). AOD-dependent bi-
ases exist between products, especially along the land–ocean
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Figure 16. A pan-Asian image and AOD analysis for 3 November
2018. Included is the (a) corresponding Aqua MODIS RGB image,
(b) MODIS DT/DB AOD, (c) MODIS MAIAC AOD, and (d) VI-
IRS DB AOD. Also shown are the ratios between products, includ-
ing (e) MODIS DT/DB :VIIRS DB, (f) MODIS MAIAC :VIIRS
DB, and (g) MODIS MAIAC :MODIS DT/DB. Satellite RGB im-
agery is from NASA Worldview.

border. However, complicating matters beyond the Sahara is
that, owing to its large petrochemical-based economy, south-
western Asia also can exhibit exceptionally strong pollution
events (e.g., Smirnov et al., 2002; Reid et al., 2008), as ex-
hibited by half the 84th percentile of AERONET AOD being
fine mode (Fig. 9g). Thus, while the very largest events are
dust dominated, it is not necessarily a given that moderately
high AOD is dust – potentially leading to confusion for over-
land algorithms that cannot extract a fine–coarse partition.

5.3.2 South Asia

Not surprisingly, the South Asian or Indian Subcontinent do-
main, with its diverse sources from pollution, dust transport,
and agricultural biomass burning, has the highest median
AOD of the regions studied here. Like almost all regions,
products generally agree on the overall distribution statistics
(Fig. 8h). Although there are many AERONET sites in the
region, AERONET averages depart sharply from the satel-
lite products. Examining the time series further (Fig. 7h),
the dominant aerosol features are biomass burning during

the fall and haze during the winter and early spring. The
pre-monsoon season can also be associated with significant
coarse-mode dust. However, taken at the subcontinent scale,
the largest AODs detected by the satellites occur during
the Northern Hemisphere summers, and the MODIS DT/DB
retrieves the largest values. Yet, AERONET retrievals are
also not well correlated with the regional satellite depic-
tion, showing higher AODs overall but lower values in
the monsoon period. This difference between satellite and
AERONET data likely results from (a) the limited network in
this region, notably concentrated in the Indo-Gangetic plain,
and (b) cloud contamination. To investigate these large dis-
agreements, case studies where selected using NASA World-
view where it shows that there is a correlation between oc-
currences of peak AOD550 in the satellite datasets and low
amounts of AOD550 from the AERONET sites. These corre-
lations arise when there are high AOD events in the north-
ern portion of the country along the Indo–Gangetic Plain of
India. In this region, the AERONET stations are located at
boundary of the regions with high amounts of AOD. This
similarly occurs for the opposite case where the satellite
datasets observe lower amounts of AOD and AERONET ob-
serves large amounts of aerosol and helps confirm that sam-
pling bias is causing the disagreement in the regional analy-
sis.

5.3.3 East Asia

Completing the coastal arc to East Asia, this region shows
better inter-product agreement than any other in this cate-
gory. This is despite being one of the most heterogeneous
environments of the world, with significant dust transported
from the Taklamakan and Gobi deserts, wintertime haze over
the eastern North China Plain, severe pollution from the Pearl
River Delta and industrial centers, and biomass burning in-
trusions from Southeast Asia and boreal Asia. There are also
sharp gradients in land surface properties. Similar to other
arid regions, Fig. 5 shows that far western China has the
poorest relationships between products. There is gradual im-
provement eastward. But, taken as a regional average, pro-
ducts largely converge – with the exception of high biases of
AERONET sites – a result of sites being selected to mon-
itor some of the most polluted areas of an already highly
polluted region. It should also be noted that MODIS pro-
ducts often screen out high-AOD fine-mode events in eastern
China since many of these events are associated with sig-
nificant cloud cover (Eck et al., 2018; Shi et al., 2021). In
fact even the version 3 AERONET L2 cloud screening and
quality checks result in eliminating ∼ 15 % of the fine-mode
AOD days with fine AOD (500 nm)> 1 that are identified by
utilizing SDA in the level 1 data before cloud screening is
applied (Eck et al., 2018; Table 3). Indeed, even though the
region is known for all types of aerosols, AERONET is gen-
erally situated in populated areas, likely more reflective of
pollution sources with high fine-mode fractions.
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6 Discussion and conclusions

It is expected that in late 2023 there will be a marked shift
in global aerosol monitoring as the 20+ year MODIS in-
struments are decommissioned, and the community must fin-
ish its adaptation to SNPP/JPSS VIIRS instruments. This
transition will have a notable impact on applications such
as aerosol data assimilation and the generation of consis-
tent climate data records. An area of particular concern is in
the monitoring of extreme events that already stress aerosol
algorithms and are expected to become “more extreme”
in frequency and magnitude with ongoing climate change.
Therefore, to examine potential differences in the efficacy
of MODIS- and VIIRS-based AOD algorithms and what a
2023 change in sensor platforms will result in, severe aerosol
events from VIIRS DB, MODIS DT/DB, and MODIS MA-
IAC are assessed at global, regional, and ground-based-
sensor perspectives from 2016 to 2019.

Using a consistent gridding methodology across products,
statistics related to AOD were generated from each prod-
uct to identify where most significant aerosol events have
occurred, what is considered a locally exceptional event by
region, and how these differences spatially vary between
datasets. These findings include the following points.

a. The median AOD values show relative agreement be-
tween all three datasets. Thus, a dramatic shift in typical
AOD values as systems progress from MODIS to VI-
IRS is not expected. However, there are slight regionally
correlated biases by region. VIIRS has a slightly higher
bias in comparison to MODIS DT/DB and MAIAC in
high-aerosol-producing regions. The largest median dif-
ferences are seen in the clean regions such as the west-
ern United States, Gobi Desert, and the Arctic, with the
MODIS products being higher than VIIRS. Thus, pris-
tine regions may show a decrease in AOD from MODIS
to VIIRS.

b. When observing the 84th, 95th, and 98th percentile
of AOD values, the biases between products start to
become ever more apparent by region, especially sur-
rounding areas impacted by biomass burning. For exam-
ple, for Africa, midlatitude fires, and the boreal regions,
MODIS DT/DB has consistently higher AOD values
than VIIRS, with a more neutral bias for South America
and a reversal in bias in sub-Sahel and tropical Africa.
Conversely, VIIRS provides higher 84th percentile val-
ues for African, southwestern Asian, and Asian desert
regions. In regions such as the Arctic Ocean, Africa,
and southwestern Asia, the ratios of MODIS to VIIRS
along the land–ocean border show a clear distinction
between the land and ocean retrieval algorithms being
used. MAIAC generally retrieves lower high-percentile
AOD values than the other retrievals. Areas of corre-
lated bias exist between lower MODIS MAIAC values
and their MODIS DT/DB and VIIRS counterparts. This

reveals algorithm differences caused by aerosol speci-
ation, single scattering albedo, and surface differences
between land and ocean. Thus, AOD observations for
higher AOD environments will notably shift with the
MODIS to VIIRS transition.

c. Over ocean, median and 84th percentile values are also
very similar between products. However, for 95th and
98th percentile events VIIRS AERDB retrieves lower
values – especially in the central Atlantic, high midlati-
tudes, and the Arctic. Thus, over ocean we expect a de-
crease in AOD in the transition from MODIS to VIIRS
for high AOD events.

d. When comparing the number of days where AOD>
0.8, the contrast between the land and ocean further
highlights the differences in land and ocean retrievals.
The number of days where AOD> 0.8 also reveals
more of the effects of swath width, sun glint, and differ-
ent dust models used for ocean algorithms. When com-
paring the amount of jointly detected 95th percentile
AOD events against the events detected by a single
algorithm, VIIRS AERDB has the highest likelihood
of identifying 95th percentile events over ocean, while
MODIS MAIAC presented the highest likelihood over
land.

e. The global analysis was further investigated by com-
paring products at individual points through linear re-
gression for AOD values< 0.8 and the mean ratios for
AOD> 0.8. Most notable is a clear reduction in slope
from MODIS to VIIRS that is offset by a positive in-
tercept. The highest coefficient of determination (r2) is
seen over coastal waters where there are dark ocean
boundary conditions and higher AOD values relative
to open ocean. For land, the best correlations are seen
over low-albedo vegetated lands in biomass burning re-
gions and pollution-dominated regions. The lowest cor-
relations are seen in regions with little dynamic range,
such as the tropical Pacific Ocean, Chile, central Asia,
western United States, and Australia. The strongest bi-
ases are seen for low AOD, correlated with the issue of
lower boundary conditions, and at the high latitudes.

Based on the findings above, a series of more in-depth
regional analyses were performed aimed at dissecting the
product differences in retrievals and sampling. This is done
through comparisons to AERONET sensors, time series,
probability distributions, and case studies. Regions investi-
gated included a host of biomass burning, arid, polluted, and
mixed environments.

a. The biomass-burning-dominated regimes were sepa-
rated into boreal Asia, boreal Canada, central Africa,
and South America. All three satellite products are
in relatively good agreement with one another and
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AERONET. These regions show that time series re-
gional averaging can provide a good estimate of severe
aerosol events, especially where there is a good distri-
bution of AERONET sites, such as in South America,
whereas boreal Asia and central Africa are underrepre-
sented. Nevertheless, there is evidence of issues asso-
ciated with sampling, scattering angle, the fine–coarse
mode partitions, and under-sampling of severe events.
Algorithms intercompare best for South America and
Central Africa, although MAIAC does exhibit a notice-
able low bias. Boreal smoke is more problematic, with
reversals in bias between algorithms between Asian and
North American boreal smoke plumes.

b. In the dust-dominated Saharan region, MODIS products
are lower than VIIRS due to changes in assumptions in
dust optical properties. Higher values can also be asso-
ciated with algorithm improvements in cloud and dust
discrimination. There are few AERONET sites available
for evaluation, however, and correlations are indetermi-
nant.

c. Regions with mixed pollution and dust within Asia in-
clude southwestern Asia, Southeast Asia, southern Asia,
and eastern Asia. The correlations between products
are strongest over land for dark vegetated surfaces and
biomass burning in northern Southeast Asia and eastern
Asia. Like over the Sahara, lower correlations are exhib-
ited in bright deserts. Given the mixed aerosol sources
in these regions, there are often difficulties in the fine-
and coarse-mode partition and the land–ocean bound-
aries. Sampling bias seems to occur based on the sensor
locations.

The evaluation results of this study show that even after
20 years of experience with Dark Target style algorithms,
correlated divergence between products is still problematic
for higher-fidelity applications and here notably also for
higher optical depths when multiple scattering aggravates er-
rors in assumed aerosol optical properties. This will no doubt
require adjustments in 2023 with the shift from the EOS to
the JPSS constellations. It can be argued that the spatially
correlated biases observed between products here is a nat-
ural result of the underdetermined observations that single
view and non-polarization passive remote sensing provide
for aerosol characterization. Nevertheless, until some agreed
upon baseline is made in the community, scientific results on
climate change, inverse modeling of sources, and aerosol im-
pacts will continue to have regional biases. Next-generation
polarimeters are expected to provide additional information
that is hoped to resolve regional biases that are observed in
MODIS and VIIRS. Nevertheless, they too will require stud-
ies such as conducted here that in turn will require multiyear
datasets for evaluation and algorithm integration.
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