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Abstract. We describe an approach for determining lim-
ited information about the vertical distribution of carbon
monoxide (CO) and carbon dioxide (CO2) from total column
ground-based Total Carbon Column Observation Network
(TCCON) observations. For CO and CO2, it has been dif-
ficult to retrieve information about their vertical distribution
from spectral line shapes because of the errors in the spec-
troscopy and the atmospheric temperature profile that mask
the effects of variations in their mixing ratio with altitude.
For CO2 the challenge is especially difficult given that these
variations are typically 2 % or less. Nevertheless, if sufficient
accuracy can be obtained, such information would be highly
valuable for evaluation of retrievals from satellites and more
generally for improving the estimate of surface sources and
sinks of these trace gases.

We present here the Temporal Atmospheric Retrieval De-
termining Information from Secondary Scaling (TARDISS)
retrieval algorithm. TARDISS uses several simultaneously
obtained total column observations of the same gas from
different absorption bands with distinctly different vertical
averaging kernels. The different total column retrievals are
combined in TARDISS using a Bayesian approach where the
weights and temporal covariance applied to the different re-
trievals include additional constraints on the diurnal variation
in the vertical distribution for these gases. We assume that the
near-surface part of the column varies rapidly over the course

of a day (from surface sources and sinks, for example) and
that the upper part of the column has a larger temporal co-
variance over the course of a day.

Using measurements from the five North American TC-
CON sites, we find that the retrieved lower partial column
(between the surface and ∼ 800 hPa) of the CO and CO2
dry mole fractions (DMFs) have slopes of 0.999± 0.002 and
1.001± 0.003 with respect to lower column DMF from in-
tegrated in situ data measured directly from aircraft and in
AirCores. The average error for our lower column CO re-
trieval is 1.51 ppb (∼ 2 %) while the average error for our
CO2 retrieval is 5.09 ppm (∼ 1.25 %). Compared with clas-
sical line-shape-derived vertical profile retrievals, our algo-
rithm reduces the influence of forward model errors such as
imprecision in spectroscopy (line shapes and intensities) and
in the instrument line shape. In addition, because TARDISS
uses the existing retrieved column abundances from TCCON
(which themselves are computationally much less intensive
than profile retrieval algorithms), it is very fast and processes
years of data in minutes. We anticipate that this approach will
find broad application for use in carbon cycle science.

1 Introduction

Remote sensing retrievals of atmospheric gas abundances are
used to diagnose the sources, sinks, and fluxes at local, re-
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gional, and global scales (Connor et al., 2008, p. 2; Deeter,
2004; Kerzenmacher et al., 2012; Wunch et al., 2011). Com-
pared with in situ measurements, these retrievals, which are
used in carbon cycle science investigations, are less influ-
enced by nearby point sources or sinks and rapidly chang-
ing meteorological conditions that would lead to erroneous
flux calculations (Keppel-Aleks et al., 2012). Because the
column represents the integral of a gas from the surface
to the top of the atmosphere, flux estimates from column
amounts are less sensitive to errors in the assumed vertical
transport than those using surface measurements (Keppel-
Aleks et al., 2011, 2012). In contrast, since signals of CO2
and CO fluxes at the surface are muted in the total column
(due to the dilution of signals from the surface being inte-
grated throughout an entire column), they are less useful in
diagnosing local emissions than in situ measurements. For
CO2, the total columns are strongly influenced by synoptic-
scale transport in the troposphere, making it even more diffi-
cult to discern the influences of surface fluxes (Keppel-Aleks
et al., 2011, 2012). For CO, its lifetime of several weeks in
the free troposphere results in regional transport influences
that can dampen the surface signals in the total column val-
ues (Deeter, 2004; Zhou et al., 2019). These issues limit the
effectiveness of total column measurements in surface flux
analysis – particularly for local sources.

Profile retrievals can, in principle, ameliorate these issues
and thereby enable more direct information on surface pro-
cesses. Theoretical analysis shows that two to three verti-
cal degrees of freedom (DoF) can be achieved in CO2 re-
trievals from near-infrared (NIR) and mid-infrared (MIR)
spectra from high-resolution Fourier transform spectrome-
ters (Connor et al., 2016; Kuai et al., 2012; Roche et al.,
2021; Shan et al., 2021). In practice, however, Connor et al.
(2016) and Roche et al. (2021) showed that the precision of
retrieved CO2 profiles using spectral windows in the NIR was
much lower than the theoretical estimate due to uncertainty
in the temperature profile and in the forward radiative trans-
fer model. Likewise, Shan et al. (2021) retrieve CO2 profiles
using spectral windows in the MIR. They use an a posteriori
optimization method to improve the tropospheric CO2 sig-
nal, and they report errors near 2 %. Although both of these
methods retrieve profiles with sufficient degrees of freedom
to observe some signals of the variation in the vertical distri-
bution, they report errors sufficiently large enough to encour-
age the exploration of other methods for use for carbon cycle
studies.

Several operational CO profile retrievals exist, but these
products still face the issues of column dilution or larger
sensitivity to the free troposphere compared to the surface.
The Network for the Detection of Atmospheric Composi-
tion Change (NDACC) retrieves profiles of CO in the at-
mosphere (Buchholz et al., 2017) with ∼ 2 degrees of free-
dom for the signal providing information of a lower (surface–
8 km) layer sensitive to the boundary layer and an upper (8–
20 km) layer with ∼ 1 %–3 % uncertainty in the total column

(Zhou et al., 2018, 2019). These ground-based measurements
require higher spectral resolution than those typically avail-
able in the Total Carbon Column Observation Network (TC-
CON) interferometers. The higher resolution also requires
longer measurement time, resulting in fewer observations per
day. This limits their ability to capture diurnal changes and
makes the measurements more susceptible to variations in
solar viewing during acquisition of the interferograms. These
measurements also require highly accurate knowledge of the
spectral line widths, their temperature dependence, the in-
strument line shape (ILS), and the solar spectrum. These lim-
itations motivate our work to develop a new product with
better sensitivity to surface processes and higher temporal
resolution from the existing TCCON retrievals.

In our approach, we do not retrieve profile information di-
rectly from the spectra. Instead, we utilize the vertical and
temporal domains to infer partial column dry mole fraction
(DMF) values. We fit partial column scalar values to match
TCCON-retrieved total column DMF that are (i) quality con-
trolled and (ii) individually tied to World Meteorological Or-
ganization (WMO) trace gas standard scales, which mitigates
a number of errors in the forward radiative transfer model, in-
cluding those arising from errors in the spectroscopy. We use
the extant multiple total column measurements from spec-
tral windows with different line intensities and hence differ-
ent shapes of column averaging kernel. We extract the ver-
tical information from the diurnally varying differences in
these total column values and additional a priori informa-
tion about the expected temporal covariance in the different
partial columns based on known atmospheric behavior. This
method allows us to extract information focused on the lower
atmosphere where the trace gas DMFs are most sensitive to
surface exchange.

The uncertainty of this new method for retrieving partial
column values is evaluated using comparisons with in situ
vertical profile measurements. Section 2 describes the the-
ory and parameters chosen for our retrieval and the data used
for the retrieval, validation, and comparison. Sections 3.1
through 3.3 present our validation data and a sensitivity study
of the retrieval parameters. Section 3.4 presents an error and
information content analysis. Finally, Sect. 3.5 gives exam-
ples of the data retrieved using this approach.

2 Methods

2.1 Total Carbon Column Observing Network

The Total Carbon Column Observing Network (TCCON)
is a ground-based network of solar-viewing Fourier trans-
form spectrometers equipped with InGaAs and Si detectors
that gather spectra for the 3900 to 15 500 cm−1 spectral re-
gion (Wunch et al., 2011). Importantly for our work here
on CO, some sites are now equipped with an InSb detec-
tor that simultaneously allows spectral measurement down to
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2000 cm−1 at the expense of simultaneous observations us-
ing the Si detector. CO2 and CO are retrieved simultaneously
over several spectral windows (independent spectral bands).
These windows are chosen to provide high sensitivity to the
gas of interest while limiting interference from other atmo-
spheric absorbers.

Column abundances of atmospheric species are computed
from the measured spectra using a nonlinear least-squares fit-
ting algorithm, GFIT, which minimizes the residuals between
a measured spectrum and one calculated by uniformly scal-
ing a priori vertical profiles for the fitted atmospheric species,
yielding the optimal VMR (volume mixing ratio) scaling fac-
tors (VSF) of the fitted gases. The a priori profiles scaled by
the VSF are integrated to calculate the total column abun-
dance of a species. The retrieved scaled column abundances
are converted to column dry mole fraction (DMF) by mul-
tiplying by 0.2095 and dividing by the column of O2, re-
trieved from a different spectral window of the same spec-
trum. These retrievals are then quality-controlled and scaled
to minimize both air mass dependence and the difference
with simultaneously measured in situ profiles.

For each window and for each spectrum fit by GFIT, an as-
sociated column averaging kernel is computed that describes
the sensitivity of the total column to changes in species abun-
dance at each altitude (shown in Fig. 1). A perfect column
averaging kernel would have values of 1 for all altitudes.
More commonly, the kernels will vary slowly with altitude
with a pressure-weighted average value close to 1. Values
higher (lower) than 1 mean that the retrieval is more (less)
sensitive to trace gas changes at that altitude. These sensi-
tivities vary with solar zenith angle (SZA) as the spectral
absorption deepens at higher SZA. The vertical sensitivity
of each window is a result of its spectral properties. Opti-
cally thin spectral regions (windows) tend to be more sensi-
tive to the upper troposphere and the stratosphere while op-
tically thick windows tend to be more sensitive to the lower
troposphere. Since information about the stratosphere comes
only from near the line center as a result of diminished colli-
sional broadening, if the absorption at the line center is sat-
urated (nearly zero transmission), the spectrum will contain
little information about the stratosphere, and hence the kernel
will be low there. The differences in column averaging kernel
shapes are the main source of information used in the Tem-
poral Atmospheric Retrieval Determining Information from
Secondary Scaling (TARDISS) algorithm. The outputs of the
VSF values, a priori profiles, total column DMF values, and
vertical averaging kernels from standard TCCON processing
are used as input for the TARDISS algorithm.

We will refer to the spectral retrievals as being the TC-
CON retrievals and the temporal partial column retrievals as
the TARDISS fit. We also use the terms retrieval and fit in-
terchangeably to refer to the TCCON or TARDISS method-
ology.

2.2 The TARDISS algorithm

Traditional profile retrievals fit spectra by adjusting the abun-
dance of the trace gases at multiple vertical levels to de-
termine the vertical distribution of a specific atmospheric
species (Pougatchev et al., 1995; Roche et al., 2021). Here,
we describe the Temporal Atmospheric Retrieval Determin-
ing Information from Secondary Scaling (TARDISS) algo-
rithm that optimizes the scaling of the profile of our target
gas separated into two layers, one near the surface and the
other at and above the typical well-mixed surface boundary
layer. This is illustrated by the flowchart in Fig. 2. The al-
gorithm minimizes the cost function (Eq. 1) by finding the
maximum a posteriori solution for a state vector containing
upper and lower column scale factors for all TCCON obser-
vations in a given day. That is, if a day has ns observations,
the state vector will have ns lower column scale factors and
ns upper column scale factors, for 2ns elements total. These
are constrained by TCCON column average mole fractions
and an assumed temporal covariance. The Jacobian matrix
for TARDISS combines the TCCON averaging kernels and
the TCCON assumed vertical CO or CO2 profiles in an op-
erator which maps the upper and lower scale factors back to
column average mole fractions. We define our cost function
as follows:

χ2
=
(
y−K(x̂γ − xa,γ )

)TS−1
ε

(
y−K(x̂γ − xa,γ )

)
+
(
x̂γ − xa,γ

)
S−1

a
(
x̂γ − xa,γ

)
, (1)

where y is the measurement vector, K is the Jacobian matrix,
x̂γ is the retrieved state vector, xa,γ is the a priori state vec-
tor, Sε is the model covariance matrix, and Sa is the prior co-
variance matrix. In the following sections, we will derive the
necessary equations for the construction of the components
of the cost function in detail. Table S1 in the Supplement lists
all the variable names in this work and their descriptions.

2.2.1 Derivation of the TARDISS Jacobian matrix
components

We use the notation and concepts of Rodgers and Connor
(2003) with vectors represented with bolded lower-case let-
ters and matrices represented with bolded upper-case letters.
We start in the vertical domain where Eqs. (3) through (9) are
used for each spectral window, each TCCON measurement,
and each species retrieved (CO and CO2 in this work) in the
TCCON fit. These equations are used to calculate the weights
in the Jacobian matrix and values in the measurement vector
for the temporal calculations in Eq. (10) and beyond (repre-
sented by the middle and bottom rows of Fig. 2). We will
therefore keep Eqs. (3) through (9) agnostic of species and
window for this description.

To derive the values used in the Jacobian matrix, K, we
start by relating the atmospheric profile of CO or CO2 to
the column average mole fractions observed by TCCON. For
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Figure 1. Vertical sensitivities of the total column retrievals from GFIT used in our algorithm for both CO2 (a–c) and CO (d, e) plotted
against pressure normalized to the surface and color coded by the solar zenith angle (SZA). A column averaging kernel greater than 1 means
that the total column is more sensitive to molecules at this pressure level than the average sensitivity. For example, if we move some of
the CO2 molecules from 200 hPa to the surface in our a priori profile, the retrieved total column and scale factor (VSF) will decrease for
the 6073 cm−1 window and increase for the 4852 cm−1 window while the true and a priori total columns remain unchanged. The 6220
and 6339 cm−1 CO2 and 2160 and 2111 cm−1 CO windows have near-identical kernels due to the CO2 bands being almost identical in
their line strengths, separations, widths, and temperature dependences. The 6339 cm−1 CO2 is represented by dashed black lines behind the
dotted lines representing the 6220 cm−1 sensitivities, and the 2111 cm−1 CO is represented by dashed black lines behind the dotted lines
representing the 2160 cm−1 sensitivities.
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Figure 2. Flowchart illustrating the steps performed by of the TARDISS retrieval. The input to the TARDISS retrieval is the output of the
spectral fitting done by the GGG2020 software suite represented by the green row. The setup of the components of the TARDISS algorithm
from the output of the TCCON spectral fits is shown in Eqs. (11) through (14) and in the middle row. The TARDISS retrieval is performed
using Eq. (16), the output partial column DMF values are calculated using Eq. (17), and the information content is calculated by Eqs. (18)
and (19) as shown in the bottom row.

TARDISS, we assume that the a posteriori atmospheric pro-
file can be described as the profile output by the TCCON
retrieval with the bottom q levels scaled separately from the
top nl−q levels, where q is a chosen level index and nl is the
number of vertical levels in the profile:

xpart =



γL · xa,TCCON,1
...

γL · xa,TCCON,q
γU · xa,TCCON,q+1

...

γU · xa,TCCON,nl


. (2)

Here, xa,TCCON is the TCCON a priori profile scaled by the
median TCCON-retrieved VSF across all the TCCON spec-
tral windows for this gas, and the γL and γU values are the
lower and upper column scale factors, respectively, which
our algorithm retrieves. We relate this to the TCCON total
column value using the standard equation from Rodgers and
Connor (2003):

zTCCON = za,TCCON+ a
ξT
TCCON

(
xpart− xa,TCCON

)
, (3)

where zTCCON is the total column DMF output of a cho-
sen species in a particular window from the TCCON fit,
za,TCCON is the original vertical column DMF calculated
from the a priori profile scaled by the median VSF of the

windows used, and aξTCCON is the vector of column averaging
kernel values output from the TCCON processing weighted
by the pressure thickness of each atmospheric layer. All com-
ponents in Eq. (3) are dry mole fractions, except for the aver-
aging kernel which is unitless. Equation (3) tells us how the
retrieved DMF would change if the profile constructed from
the two partial columns differed from xa,TCCON.

The next step is to rearrange this equation so that our ob-
served quantity is on the left-hand side, and the right-hand
side is a linear combination of the two scaling factors. Sub-
tracting za,TCCON from both sides and focusing on the right-
most term of Eq. (3), the averaging kernel is multiplied by the
difference of the a priori and scaled DMF profiles summed
for each of the nl levels of the atmosphere.

zTCCON− za,TCCON = a
ξT
TCCON

(
xpart− xa,TCCON

)
=

∑nl

i=1
aTCCON,i

×
(
xpart,i − xa,TCCON,i

)
(4)

Here, we assign xpart to be the TCCON a priori profile
scaled by two independent values, one for the lower partial
column and one for the upper partial column. To designate
the partial columns, our method splits the total column at a
specified altitude level index q and scales the a priori pro-
file below and above the level q independently by the scalar
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values γL and γU such that

zTCCON− za,TCCON =∑q

i=1
aTCCON,i

(
γLxa,TCCON,i − xa,TCCON,i

)
+

∑nl

i=q+1
aTCCON,i

(
γUxa,TCCON,i − xa,TCCON,i

)
. (5)

Since Eq. (5) is linear, we then group terms, reducing the
right side of Eq. (5) to

zTCCON− za,TCCON =

(γL− 1)
∑q

i=1
aTCCON,ixa,TCCON,i

+ (γU− 1)
∑nl

i=q+1
aTCCON,ixa,TCCON,i . (6)

Defining two new variables, kL and kU, we can write this
as follows:

zTCCON− za,TCCON = (γL− 1)kL+ (γU− 1)kU, (7)

where,=

kL =
∑q

i=1
aTCCON,ixa,TCCON,i, (8)

and

kU =
∑n

i=q+1
aTCCON,ixa,TCCON,i, (9)

and kL and kU are both scalar values.
Equation (7) is applicable to all spectral windows for each

spectrum measured. For example, for our CO2 retrieval, we
use four separate spectral windows per measured spectrum
and often have a few hundred spectra measured per day. In
the case of the CO2 retrieval, the left-hand side of Eq. (7)
and the kL and kU values will be calculated for each of the
four spectral windows used for each spectrum fit by TCCON.
These values are aggregated into the vectors and matrices de-
scribed by Eqs. (10)–(14) in order to fit the spectra measured
over an entire day at one time.

2.2.2 Deriving the maximum a posteriori equation and
solution

While Eq. (7) can be set up and solved for each spectrum us-
ing the total column value from each spectral window used
in the TCCON fit, the TARDISS retrieval uses an entire day’s
worth of TCCON retrievals in order to increase the signal-to-
noise ratio and to utilize the information from the temporal
variation in the kernels. Fitting over an entire day of TCCON
retrievals reduces the retrieved partial column error values
compared to fitting individual measurements using Eq. (7).
Section S1 in the Supplement shows the influence of includ-
ing multiple observations on the retrieved partial column er-
rors. Let nw denote the number of windows and ns the num-
ber of spectra over a day andwi and si denote the ith window
and spectrum. We combine the above equations into a matrix
form:

y =K(xγ − xa,γ )+ ε, (10)

where y is the measurement vector composed of values from
the left side of Eq. (7)

y =



zTCCON,1,1− za,TCCON,1
...

zTCCON,wi ,si − za,TCCON,si
...

zTCCON,nw,ns − za,TCCON,ns

 , (11)

K is the Jacobian matrix of the kL and kU values over a
day

K=



kL,1,1 0 kU,1,1 0

. . .
. . .

0 kL,1,ns 0 kU,1,ns
...

...
...

...
...

...
kL,nw,1 0 kU,nw,1 0

. . .
. . .

0 kL,nw,ns 0 kU,nw,ns


, (12)

vecxγ is our state vector of partial column scalars which
are the same for all windows in each measured spectrum

xγ =



(γL− 1)1
...

(γL− 1)ns

(γU− 1)1
...

(γU− 1)ns


, (13)

and xa,γ is our vector of a priori partial column scalars

xa,γ =



(γa,L− 1)1
...

(γa,L− 1)ns

(γa,U− 1)1
...

(γa,U− 1)ns


. (14)

With ns measurements made in a day, nw spectral win-
dows, and two partial columns, the y vector is of the size 1
by nwns, the K matrix is of the size nwns by 2ns, and the xγ
and xa,γ vectors are of the size 2ns by 1. So for each spec-
trum, there is one γL value and one γU value, representing the
partial column scale factors aggregated over the windows.

Since Eq. (10) is linear, we can apply a basic linear least-
squares method to solve for the partial column scalars:

xL2 = xa,γ + (KTK)−1KTy, (15)

while the linear least-squares method provides a useable
solution to our retrieval, it also has partial column error val-
ues on the order of 10 ppm, due to the strong anti-correlation
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of the lower and upper partial columns, which render the so-
lutions unsuitable for carbon cycle science. Including con-
straints through a Bayesian approach reduces the retrieved
partial column error values as shown in Fig. S1 in the Sup-
plement. In addition, the least-squares method does not allow
us to utilize additional a priori information in the covariance
of the partial columns.

We use the maximum a posteriori (MAP) approach
(Rodgers, 2008) to calculate the most probable state vector
from the given models and a priori information. In line with
the assumptions of the MAP approach, we assume our prob-
lem is linear and follows a Gaussian distribution. The MAP
solution can take a few equivalent forms. In this work we use

x̂γ = xa,γ +SaKT(KSaKT
+Sε

)−1 (
y−Kxa,γ

)
, (16)

where xa,γ is the a priori partial column scalar values, Sa is
the a priori covariance matrix, K is the Jacobian matrix, Sε is
the model covariance matrix, y is the measurement vector,
and x̂γ is the output solution vector. The input components
(xa,γ , Sa, and Sε) are described in Sect. 2.3.2.

Once we have calculated the most likely solution for the
partial column scalars as a vector in temporal space, x̂γ , we
reconstruct the partial column DMF values for the day for the
lower and upper partial columns as follows:

zPC =



zPC,L,1
...

zPC,L,ns

zPC,U,1
...

zPC,U,ns


=



(x̂γL,1+ 1) · za,L,TCCON,1
...

(x̂γL,ns + 1) · za,L,TCCON,ns

(x̂γU,1+ 1) · za,U,TCCON,1
...

(x̂γU,ns + 1) · za,U,TCCON,ns

,


(17)

where za,L,TCCON and za,U,TCCON are the values of the a pri-
ori partial column DMFs calculated by integrating the me-
dian TCCON a posteriori profiles for the measurements in
a day using the same method as the standard TCCON full
column retrievals (Wunch et al., 2011).

2.2.3 Calculating informational content

The MAP retrieval allows us to calculate the information
content of the retrieval. In particular, we compare the de-
grees of freedom for our retrieval calculated by taking the
trace of the averaging kernel of the fit, calculated as the fol-
lows:

DoF= tr(A)= tr
((

KTS−1
ε K+S−1

a

)−1
KTS−1

ε K
)
, (18)

as well as the Shannon information content derived from the
natural log of the determinant of the difference between the
averaging kernel and an identity matrix:

H =−
1
2

ln(|I−A|). (19)

Generally, profile retrieval averaging kernels represent the
sensitivity of a specific level of a profile to the rest of the lev-
els in the profile. The averaging kernel for the TARDISS in-
version is a temporal averaging kernel relating how each par-
tial column calculation relates to every other measurement
during a day. The DoF value for a day of the retrieval repre-
sents how many individual pieces of partial column informa-
tion we can infer over the day of measurements. We either
report the number of degrees of freedom from the fit over
a day or normalize the degrees of freedom by the number
of measurements in each day for a more comparative under-
standing of the TARDISS degrees of freedom with respect to
a traditional profile retrieval and between days with a large
variation in the number of measurements.

2.2.4 In situ comparison calculations

To evaluate the accuracy of our partial column retrieval, we
use the smoothing calculation shown in Eq. (3) of Wunch
et al. (2010), altered to use the terminology of this work, to
determine the value of the partial columns of the TCCON
total columns used as input:

ẑs = za,TCCON+ a
ξT
TCCON

(
fxtrue− fxa,TCCON

)
, (20)

where ẑs is the smoothed column-averaged DMF, za,TCCON is
the column-averaged DMF of the scaled a priori profile,
a
ξ
TCCON is the vertical averaging kernel for the specific spec-

tral window dotted with an integration operator, fxtrue is the
measured in situ profile in DMF, and fxa,TCCON is the scaled
a priori profile. We use this equation to create the smoothed
partial column TCCON DMF values by integrating to the
same split point (q) as in Eq. (5). These values serve as a
sort of null hypothesis to compare to the TARDISS retrieval
to determine if the fits are effective in inferring partial col-
umn information.

In order to compare the partial column retrievals to in situ
profiles for validation purposes, we calculate the vertical sen-
sitivities of the TARDISS fit (shown in Fig. 8) using the gain
matrix, G, from the TARDISS inversion and the averaging
kernel profiles from the TCCON measurement windows as
follows:

G=
(

KTS−1
ε K+S−1

a

)−1
KTS−1

ε . (21)

Avert =G4TCCON, (22)

where

4TCCON =



aTCCON,1,1
...

aTCCON,1,ns

aTCCON,nw,1
...

aTCCON,nw,ns


, (23)
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and aTCCON is the same vector of column averaging kernels
from Eq. (3) without the integration operator for each win-
dow used and Avert is the vertical sensitivity of the partial col-
umn related to the profile. G has dimensions of 2ns by nwns,
4TCCON has dimensions of nwns by 51, and Avert has dimen-
sions of 2ns by 51. The gain matrix relates each measurement
in a day to the upper and lower partial column calculation,
which is useful to calculate the temporal DoF but is not di-
rectly comparable to in situ vertical profiles. The Avert term
converts the temporal sensitivities of the gain matrix to verti-
cal sensitivities using the TCCON vertical averaging kernel,
allowing us to compare with the in situ validation profiles.
We apply the average vertical sensitivities for the measure-
ments used in comparison with in situ profile measurements.

Since aTCCON represents the change in TCCON total col-
umn DMF (also called Xgas) per change in true DMF at each

level ( δXgas,TCCON
δf xtrue

) and the gain matrix represents the change
in partial column scalar per change in TCCON total column
DMF ( δγ

δXgas,TCCON
), Avert has units of change in partial col-

umn scalar per change in level DMF value ( δγ
δf xtrue

) and re-
lies on the difference between a “true” in situ profile and the
a priori profile used in the inversion.

For our TARDISS comparisons, we use an adjusted ver-
sion of Eq. (20) to determine the value the inversion would
return if it were using the true profile instead of the scaled
TCCON priors:

ẑs = za,TCCON+Avert
(
fxtrue− fxa,TCCON

)
, (24)

where fxa,TCCON is the a priori profile used in Eq. (3) and
fxtrue is the measured in situ profile in DMF. The in situ
profile is interpolated to the same vertical levels as the TC-
CON a priori profile as shown in Fig. 4. After calculating
the smoothed in situ profile, we integrate the profile from the
surface to the vertical level at which the partial columns are
separated, q in Eq. (5), for the lower column. For the upper
partial column, we integrate from the level q+1 to the top of
the atmosphere for the upper column using the method out-
lined in Wunch et al. (2010). We then compare the integrated
and smoothed in situ partial column DMFs directly with the
reconstructed lower and upper partial columns calculated by
Eq. (17).

2.2.5 Error calculations

Finally, the error for the retrieval is made up of model pa-
rameter error, smoothing error, and retrieval noise (Rodgers,
2008). There are no model parameters in the state vector of
the TARDISS retrieval, so the model parameter error is zero.
The smoothing error is the square root of the diagonal of the
following matrix:

Ss =
(

KTS−1
ε K+S−1

a

)−1
S−1

a

(
KTS−1

ε K+S−1
a

)−1
, (25)

and the retrieval noise is the square root of the diagonal of
the matrix calculated by

Sr =
(

KTS−1
ε K+S−1

a

)−1

×KTS−1
ε K

(
KTS−1

ε K+S−1
a

)−1
, (26)

and the sum of the two are the total error for the fit.
In order to report an error for our retrieval that reflects the

performance of the retrieval in the validation comparisons in
Sect. 3.1, the retrieval output errors are multiplied by a scalar
calculated from the one-to-one comparisons. Using the mul-
tiplier ensures that we are reporting a conservative estimate
of the error in the retrieval. We use the one-to-one compar-
isons to scale our error values to the point where at least 50 %
of the comparison points are within the 1 standard deviation
error range of the one-to-one line. We calculate the scalar
values as follows:

VEM=median

(∣∣ẑcomp− ẑs
∣∣

σ

)
, (27)

where ẑcomp is the comparison partial column values, ẑs is
the integrated, smoothed, and in situ partial column values;
σ is the output retrieval errors; and VEM is the calculated
validation error multiplier that is unitless. The VEM is cal-
culated and applied to all retrieved errors for each site so that
the retrieved dataset for a site reflects the best representative
error values. If a calculated VEM is less than 1, we use a
VEM of 1 instead to avoid spuriously reducing error values.
A complete discussion of the retrieval error is in Sect. 3.4.2.

2.3 Algorithm setup and choices

2.3.1 Pre-processing of the TCCON data

We begin by preprocessing the TCCON fits. We take the TC-
CON a priori profile and scale it by the median value of
the TCCON output scalar values for each spectrum from the
windows used so that our TARDISS fit is centered around
the median TCCON a posteriori profile for each measure-
ment point. The a posteriori errors from each window are
not included in this calculation but are included in the for-
mation of the measurement covariance matrix. This assumes
that the true column-averaged VMR of a species is some lin-
ear combination of the VMRs calculated from the windows
used in the TARDISS fit. We then calculate the a priori par-
tial columns by integrating the scaled a priori profiles over
the respective pressure levels for the upper and lower partial
column. Finally, we assemble the necessary matrices for the
fit described by Eq. (16).

2.3.2 Maximum a posteriori components

The different components of Eq. (16) reflect where a priori
information can be used in the algorithm and several addi-
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Figure 3. Example of an a priori covariance matrix color coded by the magnitude of the value. The axes represent the relationship of the
contribution of each measurement to each partial column and each other measurement. The upper-right and lower-left quadrants are dark
blue and represent zero assumed correlation between the upper and lower partial columns over a day of measurements, respectively. The
diagonal is scaled to constrain the fit and the lower-right quadrant shows the assumed correlation between upper partial column scalar values
over a day of measurement. The lower partial column has an a priori covariance that is a scaled identity matrix, the upper partial column
has an a priori covariance that decays over one-third of the measurement day, and the cross covariances between the upper and lower partial
columns are assumed to be zero.

tional choices can be made to improve the fit. The follow-
ing describes our standard input for these components. We
present tests of the retrieval’s sensitivity to these choices in
Sect. 3.2.

For the a priori covariance matrix, Sa, we use an identity
matrix for the lower partial column scalar portion of the co-
variance matrix, and we use an exponential decay over the
day of measurements from the diagonal for the upper par-
tial column scalar portion of the covariance matrix. This re-
quires that upper column scalar values shift in relation to one
another and prevents the upper partial column scalars chang-
ing too rapidly in time. The off-diagonal values of the upper
partial column portion of the a priori covariance matrix de-
cay with respect to the measurements made before and after
them over the course of one-third of a day of measurement.
We assume no correlation between the upper and lower par-
tial columns, although this is a place for future study. Since
the a priori covariance matrix is inverted in the calculations,
decreasing the magnitude of the a priori covariance matrix
scalar increases the constraints imposed during the calcula-
tions so that a scalar of 10−5 is a more strict constraint than a
scalar of 10−4. A discussion of the influence of the temporal
covariance is in Sect. 3.4.1.

The measurement error covariance matrix, Sε , is a diago-
nal matrix composed of the squares of the TCCON errors for
each spectral window so that measurements with smaller er-
rors are weighted more heavily than those with larger errors.

CO2 and CO use different values for the a priori TARDISS
scale factors (xa,γ ). For CO, we assume a uniform a priori
scale factors of 1 for all observations. For CO2 we use the
solution to the least-squares method, xL2 from Eq. (15) as
xa,γ in Eq. (16). We adopted different approaches for these
two gases since using a static a priori partial column scalar of
1 for the CO2 retrievals worsened the comparison to in situ
data but improved the validation comparison for the CO re-
trievals (shown in Sect. 3.2).

2.3.3 Choosing spectral windows for the TARDISS fit

The primary information content used in our algorithm is de-
rived from the fact that the total column abundances retrieved
from different spectral windows of the same species will dif-
fer due to differences in their kernels unless the shape of the
a priori profile is perfect. Accordingly, for this method to
have sufficient information, windows with different vertical
averaging kernels are needed, such as those shown in Fig. 1.
Preferably, the TARDISS retrieval would use a window that
is more sensitive to the lower atmosphere and a window that
is more sensitive to the upper atmosphere so that a larger
amount of information is contained between them. While it
is imperative to use windows that have differing averaging
kernel profiles, it is also necessary to use windows that have
sufficiently low error in the TCCON fit.

For the partial column CO2 calculations, we use four spec-
tral windows in the TCCON process centered at 6339, 6220,
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Figure 4. An example of the profiles used in the direct comparison
calculations using data from the Park Falls site on 27 July 2018.
The profile above 10 km is not shown. The solid black line is the
TCCON a priori profile scaled by the median of the vertical scaling
factors from the spectral windows used. The dotted–dashed green
line is the measured AirCore mole fraction. The dashed red line is
the AirCore measurements interpolated to the vertical spacing of the
TCCON prior, and the dotted blue line with circles is the smoothed
vertical-sensitivity-weighted profile that is integrated to calculate
the partial column that the TARDISS retrieval would calculate if it
had a “true” AirCore profile. The black dots within the blue circles
represent the points of the profile that make up the lower partial
column.

4852, and 6073 cm−1, which were suggested for profile re-
trieval exploration by Connor et al. (2016). The 6339 and
6220 cm−1 windows are spectroscopically similar and have
column averaging kernel profiles that vary with solar zenith
angle providing some vertical information over the course
of a day (see Fig. 1). The 4852 cm−1 window has an aver-
aging kernel profile that is largest at the surface and small-
est at the upper troposphere and lower stratosphere, and the
6073 cm−1 window has an averaging kernel profile that is
effectively the opposite of the 4852 cm−1 window. Both the
4852 and 6073 cm−1 window averaging kernels are largely
independent of solar zenith angle with the exception of the
highest levels in the 6073 cm−1 window profile. For the par-
tial column CO calculations, we use three spectral windows
fit during the TCCON process. There is one window in the
NIR region centered at 4233 cm−1, and there are two win-
dows in the MIR region centered at 2111 and 2160 cm−1.
The two MIR windows have similar averaging kernel pro-
files that maximize at the surface and drop to nearly zero at
upper levels. The NIR window averaging kernel profile has a
minimum at the surface and a maximum at the upper levels.

Unlike the CO2 windows that are all observed by the
InGaAs detector, the MIR CO windows are measured by
a liquid-nitrogen-cooled InSb detector. For this reason, we

only have results of the CO partial column fits at the Caltech,
Lamont, and East Trout Lake TCCON sites and, due to the
lack of in situ profiling data in Pasadena, we only have direct
vertical profile comparison results from the Lamont and East
Trout Lake TCCON site.

Other windows output by TCCON retrievals were con-
sidered for the partial column calculations for both species.
However, they had high levels of error in the TCCON fit or
had fits that were particularly sensitive to changes in temper-
ature.

2.3.4 Choice of partial column height

We chose the lower partial column to integrate from the sur-
face through the first five vertical layers of the GEOS mete-
orological fields. Using this criterion, a site at sea level has
a lower partial column from sea level to 2 km and the upper
partial column from 2 to 70 km. While somewhat arbitrary,
the choice of 2 km was made to have the lower partial col-
umn encompass the surface mixed layer at most locations
while minimizing the dilution of surface exchange signals
that would result from integrating over a larger partial col-
umn. If there are known significant species enhancements
near the 2 km level (such as CO during wildfire events), the
retrieval performance may be degraded, and a different par-
tial column height may be a more appropriate choice.

2.4 Sites used in this work

In this study, we use data from the five TCCON sites lo-
cated across North America (Iraci et al., 2022; Wennberg et
al., 2022a, b, c). The data record extends from as early as
2011 to as recent as 2021 (Table 1). These sites are located at
Park Falls, Wisconsin; NASA Armstrong, Edwards Air Force
Base, California; Lamont, Oklahoma (the Department of En-
ergy Southern Great Plains Atmospheric Radiation Measure-
ment site); the California Institute of Technology (Caltech);
in Pasadena, California, and East Trout Lake, Saskatchewan.

Park Falls, WI, hosts the first operational TCCON site
(July 2004–present). The site is in a rural, heavily forested
area and generally far from anthropogenic influence. The
Fourier transform spectrometer (FTS) does not have an InSb
detector, so we are able to only retrieve partial column val-
ues for CO2. We focus on data obtained since 2012, when the
alignment of the instrument has been more consistent. The
increased variance of the TARDISS retrieval for data before
2012 likely reflects the inconsistent alignment of the FTS.

We use similar data from the TCCON site located at
NASA’s Armstrong Flight Research Center (formerly the
Dryden Flight Research Center) in California, which has
been operational since July 2013. We report CO2 partial col-
umn values for the 2013 to 2021 time period. The Armstrong
site is on the northwest edge of Rogers Dry Lake within the
Edwards Air Force Base in the Mojave Desert.
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Table 1. Location, dates of measurement, and DOIs of the TCCON sites used in this work. CO measurements require an InSb detector to
cover the 2160 and 2111 cm−1 windows, which has only been available since 2017 at Caltech, Lamont, and East Trout Lake.

Site Location Dates of
measurements used

Data DOI

Park Falls, WI, USA 45.945 N,
90.273 W

CO2: 2012–2021 https://doi.org/10.14291/tccon.ggg2020.parkfalls01.R0

NASA Armstrong, Edwards
Air Force Base, CA, USA

34.958 N,
117.882 W

CO2: 2013–2021 https://doi.org/10.14291/tccon.ggg2020.edwards01.R0

Lamont, OK, USA 36.604 N,
97.486 W

CO2: 2011–2021
CO: 2017–2021

https://doi.org/10.14291/tccon.ggg2020.lamont01.R0

Caltech, Pasadena, CA, USA 34.1362 N,
118.126 W

CO2: 2012–2021
CO: 2017–2021

https://doi.org/10.14291/tccon.ggg2020.pasadena01.R0

East Trout Lake, SK, Canada 54.354 N,
104.987 W

CO2: 2017–2021
CO: 2017–2021

https://doi.org/10.14291/tccon.ggg2020.easttroutlake01.R0

The Lamont, OK, TCCON site is surrounded by farmland.
It has been operational since July 2008, and an InSb detec-
tor was installed in October 2016. We focus on data from
Lamont obtained after 2011 after an issue with the instru-
ment laser was resolved. We report CO2 partial column val-
ues from 2011 to 2021 and CO partial column values from
2017 to 2021.

The TCCON site on the Caltech campus in Pasadena, CA,
has been operational since July 2012 with an InSb detector
measuring since October 2016. We report CO2 partial col-
umn values from 2012 to 2021 and CO partial column values
from 2017 to 2021.

The East Trout Lake, SK, TCCON site is located in a re-
mote, heavily forested area in the middle of Saskatchewan.
The instrument uses an InSb detector allowing us to retrieve
partial column CO values. It has been operational since Oc-
tober 2016, and we report partial column values for CO and
CO2 from 2017 to 2021.

2.5 Comparison data

We use in situ data from multiple aircraft programs and Air-
Core flights between 2008 and 2020 (Cooperative Global At-
mospheric Data Integration Project, 2019; Baier et al., 2021)
to evaluate our partial column retrieval.

The aircraft CO2 measurements are from the NASA Stud-
ies of Emissions and Atmospheric Composition, Clouds and
Climate Coupling by Regional Surveys (SEAC4RS) cam-
paign (Toon et al., 2016) using an AVOCET instrument,
from the 2016 Atmospheric Tomography Mission (ATom)
(Wofsy et al., 2021; Thompson et al., 2022) using a Picarro
cavity ring-down spectroscopy (CRDS) trace gas analyzer
(Crosson, 2008), from the Korea–United States Air Qual-
ity Study (KORUS-AQ) campaign (Crawfored et al., 2021)
using a non-dispersive IR spectrometer, and from measure-
ments made by the Goddard Space Flight Center using a Pi-
carro CRDS trace gas analyzer.

We use AirCore profiles from July and August of 2018
at the Armstrong, Lamont, and Park Falls sites (Baier et al.,
2021). The AirCore sampling system is composed of coiled
stainless-steel tubing that is open on one end while ascending
on a balloon to ∼ 30 km and passively samples ambient air
as it descends to the ground on a parachute. This sample is
then analyzed for CO2, CH4, and CO using a Picarro CRDS
trace gas analyzer, and a fill dynamics model accounts for
the effect of longitudinal mixing due to diffusion on vertical
resolution (Karion et al., 2010; Tans, 2009, 2022).

Finally, we use CO and CO2 data measured at the La-
mont site (site code SGP) and at the East Trout Lake site
(site code ETL) as a part of the NOAA Global Greenhouse
Gas Reference Network (GGGRN) aircraft network in North
America (Sweeney et al., 2015). Since these datasets do not
include much data within the upper partial column, we com-
pare these measurements only to our retrieved lower partial
column values and exclude them from the validation discus-
sion in Sect. 3.2. Table S2 in the Supplement provides a sum-
mary of the in situ data used in this work.

3 Results and discussion

The TARDISS algorithm is very quick – taking only a minute
of processing time per year of data for each species – be-
cause it does not repeat the spectral fitting. This speed en-
ables the validation comparisons to be performed using many
different model choices. Thus, we evaluated the sensitivity of
the TARDISS inversion by varying different forward model
choices. The set of choices that we have designated as the
operational setup for CO2 inversion are as follows.

– The covariance matrix, Sa, is scaled by 10−5 to better
constrain the fit.

– The value of the a priori scalar for the lower and
upper partial column scalar (xa,γ in Eq. (16)) is the
least-squares solution for the respective column (xL2 in
Eq. 15).
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For the CO inversion, the operational setup parameters are
as follows:

– a covariance matrix, Sa, scaled by 10−4

– an ideal a priori partial column scalar (xa,γ ) of 1.

We vary two aspects of the algorithm and observe the dif-
ferences in the validation comparisons. The results of these
tests are discussed in Sect. 3.2 and represented in Tables 2
and 3.

3.1 Validation comparisons

We compare retrieved partial column values from three of the
five sites presented in this work using measurements from the
same set of in situ data used to evaluate and derive the “in situ
scaling factor” of the TCCON retrievals (Wunch et al., 2011).
For CO2, there are 24 points of comparison obtained between
2013 to 2018. A total of 12 of those comparisons are from the
Armstrong TCCON site, four profiles are available above the
Park Falls TCCON site, and the remaining eight profiles are
from the Lamont TCCON site. As the Lamont site is the only
site in this work with an InSb detector and overlapping in situ
measurements, the eight profiles measured at the Lamont site
serve as the totality of the CO comparison dataset.

We also compare the partial columns calculated from the
TCCON individual windows to further contextualize the per-
formance of the TARDISS algorithm in Sect 3.3.1 and sum-
marized in Table 4. The comparisons of the TCCON individ-
ual windows are performed in the same way as the TARDISS
comparisons using Eq. (20) to calculate the smoothed in situ
partial columns.

The comparison profiles were measured by aircraft-
based instruments or AirCore measurements as described in
Sect. 2.5 and Table S2. We revert to the TCCON priors for
parts of the profile not measured by in situ methods. For the
errors associated with the aircraft measurements, we use the
reported measurement error for the measured parts of the
profile, and for the unmeasured parts of the profile we use
the average reported measurement error. To account for the
errors involved with estimating the parts of the profiles not
measured by in situ methods, we add in quadrature twice
the standard deviation of the measured profile in the respec-
tive partial column. For the errors associated with the Air-
Core measurements, we use the same approach as for the
aircraft measurement and include an extra error term to con-
servatively account for atmospheric variability as captured
by duplicate AirCores launched at approximately the same
time. The error for AirCore from atmospheric variability
is 0.6 ppm for CO2 and 8 ppb for CO compared to the an-
alyzer error of 0.05 ppm and 3 ppb. The partial column er-
ror values are calculated by integrating a profile shifted by
the error values and subtracting it from the integration of the
original smoothed profile. The difference between these two
integrated and smoothed partial columns provides a conser-

vative error value that represents the unlikely occurrence that
the profile at every altitude has 100 % error.

We compare the TARDISS retrievals from spectra ob-
tained within 1 h of the in situ profile to the integrated,
smoothed, and in situ partial columns calculated using
Eq. (24). We report linear fits between the partial column
retrievals and the integrated, smoothed, and in situ partial
columns. Since our retrieval is designed to be linear, we use
fits with y intercepts forced through zero. As there are only
scaling values in our retrieval, a non-zero y intercept would
introduce spurious error into our analysis. Since the reported
coefficient of determination for this linear fit would be spuri-
ously high, we take the ratio of our retrieved partial column to
the integrated, smoothed, and in situ measurement and sub-
tract one to quantify how much they deviate from each other.
We report the mean of the absolute value of the ratio as it
deviates from 1 as the mean ratio deviation. For example, a
1 % difference in values would give a mean ratio deviation
of 0.01. This mean ratio deviation value gives a more direct
understanding of how the partial column values compare.

We use these validation comparisons to perform sensitiv-
ity tests of our algorithm parameters and determine an oper-
ational set of parameters. We then use these optimal parame-
ters for the CO2 and CO retrievals to quantify the total error
of our retrieval by calculating a validation error multiplier for
each site. Validation error multipliers for each site and partial
column are shown in Table 6.

3.2 Choice of operational parameters from validation
comparison

Several terms in our retrieval do not have unambiguously
correct values. To evaluate the sensitivity our retrieval to the
choices made for these parameters, we have run our retrieval
with alternate values and report the degrees of freedom and
comparison to in situ data (specifically, the retrieval compar-
ison error, slope of the zero-forced linear fit, and the mean
ratio deviation value of the linear fit) for each test. We tested
changes to two terms: the TARDISS a priori scale factors and
the a priori covariance matrix scaling.

To test the sensitivity of the retrieval to the partial column
scalar prior, we compare the changes in the validation when
using xL2 from Eq. (15) as the a priori partial column scalar
(our operational choice for CO2), the daily median of xL2, as
well as the idealized scalar of unity (our operational choice
for CO) to each other. In Tables 2 and 3, these are identified
as “xL2,” “xL2 daily median,” and “static ideal prior,” respec-
tively.

We also test the sensitivity of the retrieval to how the
a priori covariance matrix is scaled. This term changes how
strongly the retrieval is constrained to the prior. In Tables 2
(CO2) and 3 (CO), we illustrate the influence of choosing
1× 10−4, 5× 10−5, and 1× 10−5 as an a priori covariance
matrix scalar. While other scaling values were tested, the re-
sulting errors were large enough or the resulting degrees of
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Table 2. Variations in CO2 retrieval upper and lower column validation slopes, upper and lower column mean ratio deviations, upper and
lower column comparison errors, and DoF for different TARDISS a priori choices and a priori covariance matrix scaling values. The asterisk
in the fourth row indicates that this is the operational set of parameter choices for the CO2 retrieval.

TARDISS
a priori choice

A priori
covariance
matrix
scaling

DoF per
measurement
(overall)

Lower Lower Lower Upper Upper Upper
column column column column column column

error validation mean error validation mean
(ppm) slope ratio (ppm) slope ratio

deviation deviation

xL2 daily median 10−5 0.046 (2.12) 1.146 1.004 0.008 0.497 0.999 0.003
10−4 0.311 (15.1) 3.063 1.006 0.010 1.033 0.999 0.003
5× 10−5 0.183 (8.48) 2.378 1.005 0.010 0.658 0.999 0.003

xL2 10−5 ∗ 0.046 (2.12) 1.146 1.001 0.011 0.497 0.999 0.002
10−4 0.311 (15.1) 3.063 1.004 0.011 1.033 1.000 0.002
5× 10−5 0.183 (8.48) 2.378 1.003 0.009 0.658 1.000 0.002

Static ideal prior 10−5 0.046 (2.12) 1.146 1.012 0.014 0.497 0.997 0.003
10−4 0.311 (15.1) 3.063 1.013 0.010 1.033 0.997 0.003
5× 10−5 0.183 (8.48) 2.378 1.013 0.013 0.658 0.997 0.003

Table 3. Variations in CO retrieval upper and lower column validation slopes, upper and lower column mean ratio values, upper and lower
column comparison errors, and DoF for different TARDISS a priori choices and a priori covariance matrix scaling values. The asterisk in the
second to last row indicates that this is the operational set of parameter choices for the CO retrieval.

TARDISS
a priori choice

A priori
covariance
matrix
scaling

DoF per
measurement
(overall)

Lower Lower Lower Upper Upper Upper
column column column column column column

error validation mean error validation mean
(ppm) slope ratio (ppm) slope ratio

deviation deviation

xL2 daily median 10−5 0.010 (0.402) 0.440 0.935 0.055 0.182 1.099 0.100
10−4 0.088 (3.51) 1.334 0.938 0.052 0.370 1.122 0.128
5× 10−5 0.047 (1.88) 0.965 0.937 0.053 0.303 1.116 0.120

xL2 10−5 0.010 (0.402) 0.440 0.918 0.076 0.182 1.113 0.115
10−4 0.088 (3.51) 1.334 0.921 0.074 0.370 1.133 0.142
5× 10−5 0.047 (1.88) 0.965 0.920 0.075 0.303 1.128 0.134

Static ideal prior 10−5 0.010 (0.402) 0.440 0.996 0.003 0.182 1.048 0.050
10−4 ∗ 0.088 (3.51) 1.334 0.999 0.005 0.370 1.081 0.081
5× 10−5 0.047 (1.88) 0.965 0.998 0.004 0.303 1.073 0.075

freedom were small enough that the values were disregarded
from further study.

The agreement between the in situ and TARDISS re-
trievals for CO and CO2 change with both the a priori covari-
ance matrix scaling and the a priori scalar choice. As we are
trying to determine the parameters that give the best compar-
ison results between the in situ and lower partial column re-
trieval data specifically, we chose the parameters that resulted
in the validation slope closest to 1 for the lower partial col-
umn. For the lower partial column CO2, the best result (slope
of 1.001) comes from using the xL2 values as an a priori
scalar and scaling the a priori covariance matrix by 10−5. The
validation slope for the upper column comparison with these

parameters (0.999) is similar to values from other parameter
choices. For the lower partial column CO, the best result for
the lower column (slope of 0.999) results from the retrieval
using a static a priori scalar of 1 and scaling the a priori co-
variance matrix by 10−4. Over the 2 h of the comparison, the
degrees of freedom are about 2.12 for CO2 and 3.51 for CO –
consistent with between 1 and 2 DoF per hour of measure-
ments. Since the largest variation in validation slopes in ei-
ther partial column and either species is driven by the change
in the a priori partial column scalar, we posit that the a priori
partial column scalar choice is the most significant param-
eter in the retrieval for determining validation slopes, while
the a priori covariance matrix scaling is the most significant
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Table 4. Comparisons of the TARDISS partial column retrieval to the partial column comparisons of the fits of the TCCON spectral windows
from TCCON used as input for the TARDISS algorithm. The data in the TARDISS row uses the operational parameters for the fit that are
identified in Tables 2 and 3 by an asterisk.

TCCON
window
(cm−1)

Lower Lower Lower Upper Upper Upper
column column column column column column

validation validation mean ratio validation validation mean ratio
slope slope error deviation slope slope error deviation

CO2 6220 1.016 0.004 0.007 1.004 0.0010 0.003
6339 1.013 0.004 0.005 1.001 0.0009 0.003
6073 1.014 0.004 0.009 1.003 0.0011 0.003
4852 1.020 0.006 0.007 1.002 0.0011 0.004
TARDISS
CO2

1.001 0.003 0.011 0.999 0.0008 0.002

CO 4290 0.990 0.034 0.041 1.058 0.077 0.106
2160 1.031 0.019 0.052 1.077 0.024 0.095
2111 1.059 0.020 0.061 1.092 0.023 0.108
TARDISS
CO

0.999 0.002 0.005 1.081 0.012 0.081

parameter for determining the degrees of freedom of the fit
and the retrieval errors.

3.3 TARDISS performance using operational
parameters

3.3.1 Comparisons with calculated TCCON partial
columns

We compare the validation performance of the TARDISS
partial column retrievals to the partial column validations
of the TCCON individual windows used in the retrieval to
demonstrate that TARDISS provides additional information
about vertical distribution compared to the TCCON retrieval.
We compute a partial column from the TCCON output by
integrating the posterior TCCON CO or CO2 profile (i.e.,
the prior profile times the retrieved TCCON VSF) over the
same pressure levels as the partial columns are calculated
over for TARDISS. We compare the TCCON partial columns
to the integrated, averaging kernel-smoothed, and in situ par-
tial columns calculated using Eq. (20). The comparisons are
shown in Table 4, and the slopes of the TCCON window par-
tial column comparisons are shown as dotted lines in Fig. 5.

The comparisons show that the TARDISS retrieved par-
tial columns for CO2 have lower and upper partial columns
slopes closer to 1 than the TCCON input windows. The mean
ratio deviation for the lower column CO2 is slightly larger
than the mean ratio deviation for the TCCON input windows
(0.011 compared to a TCCON average of 0.007), which is re-
flected in the error of the lower partial column CO2 retrieval.
The retrieved lower partial column for CO has a slope much
closer to 1 than the slopes of the TCCON input and with a
much smaller mean ratio deviation (0.002 compared to a TC-
CON average of 0.024). The retrieved upper partial column

CO has a slope that is between the slopes of the TCCON
input windows but still has a smaller mean ratio deviation,
suggesting increased precision.

These comparisons suggest that, for CO, the TARDISS al-
gorithm is very effective at separately inferring the lower par-
tial column CO values since the validation slope is closer to
1 and the mean ratio deviation is smaller than the individual
windows. The algorithm is limited in its retrieval of the upper
partial column CO, which is shown by its direct comparisons
and mean ratio deviation being similar to the TCCON input
window partial column. The performance of the algorithm
suggests that the large variations in the CO vertical profile
shapes benefit from the increased flexibility in the lower col-
umn but that there might be some spectroscopic biases to
correct, particularly in the mid-infrared windows.

For CO2, the comparisons show that the algorithm can ef-
fectively infer upper partial column values but is less effec-
tive at retrieving the lower partial column CO2 values. The
lower partial columns benefit from the secondary scaling as
they have less bias (a slope closer to 1) than the individual
windows, but the slight increase in mean ratio deviation sug-
gests that the retrieval cannot be as precise at adjusting for the
surface errors in the a priori profile shape. The a priori pro-
files for CO2 intentionally do not include variations of local
sources or sinks at the surface but are quite accurate in the
middle and upper troposphere. Accordingly, the secondary
scaling of the upper partial column has improved accuracy
and precision compared to the individual windows.

Finally, we compare the performance of the total column
values calculated from the TARDISS scaled partial columns
to the total column validations of the TCCON individual win-
dows. The comparisons are shown in Fig. S3 in the Supple-
ment and summarized in Table S3 in the Supplement. The
total column comparisons show similar trends to the upper
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Figure 5. The direct comparisons between the partial column DMF values retrieved from the TARDISS fit and the integrated, smoothed
in situ partial columns for CO2 (a, b) and CO (c, d) for the lower (a, c) and upper (b, d) columns. The CO2 comparisons are color coded by
site, and the CO comparisons are solely from the Lamont site. The error bars in the x direction are the reported errors from the aircraft data
smoothed the same way as the in situ measurements, and the error bars in the y direction are the output errors from the TARDISS fit scaled
by the VEM values. The solid black line is the one-to-one line, and the dotted–dashed blue line is the linear fit of the data with the y intercept
forced through zero. The dotted–dashed blue line for the lower partial column CO fit is overlapping with the solid black line. The slopes of
the partial column validation of the TCCON spectral windows used in the retrieval are represented by dashed lines.

column comparisons. This is likely due to the upper partial
column vertical sensitivity being much larger than the lower
partial column sensitivities, as is discussed in Sect. 3.4.1.

3.3.2 Comparisons with low-altitude in situ profiles

In addition to the aircraft and AirCore validation data that
include profile measurements at altitudes in the upper tropo-
sphere and lower stratosphere, we compare to aircraft data
obtained as part of the NOAA GGGRN aircraft program at
the Lamont and East Trout Lake sites. These measurements
were made more frequently but do not include enough high-
altitude measurements to compare with our retrieved upper
partial column values, so we use them as an independent
comparison to our validation data for our lower column CO2
and CO retrievals. We use data obtained between the sur-
face and 7 km from 26 of the 40 flights made between 2017
and 2020 at East Trout Lake. We also use data obtained be-
tween the surface and 6 km from 267 of the 399 flights per-
formed at the Lamont site over the period of 2008 to 2018
and all 34 flights for CO made between 2017 and 2021. Fig-
ure 6 (East Trout Lake) and Fig. 7 (Lamont) show the re-
trieved lower partial column DMF plotted against the inte-
grated, smoothed, and in situ columns similar to Fig. 5.

Similar to the validation comparison, we revert to the a pri-
ori profile for altitudes not measured by in situ methods. To
account for the errors in using the a priori profile, we add

twice the standard deviation of the partial column that is mea-
sured to the average measurement error in quadrature. Given
the lower altitudes measured by the GGGRN program, the er-
rors associated with the parts of the profile that use the a pri-
ori profile are higher, and therefore the errors in the long-term
comparative measurements tend to be much higher than the
validation measurements, as shown in the CO comparisons
in Fig. 6.

Despite the larger error values, the consistency of the sta-
tistical parameters (summarized in Table S4 in the Supple-
ment) using the larger number of measurements in the long-
term comparisons further motivates the use of the extended
validation dataset. Some of the in situ profile comparisons
occur during times with larger CO DMFs that suggest influ-
ences from sources not accounted for by the TCCON a priori
profiles such as those from wildfires, which likely resulted in
the large VEM for the long-term CO comparisons. Although
the comparisons with the long-term data are not used for val-
idation, the long-term comparisons show that the validation
comparisons are generally representative of the performance
of the TARDISS algorithm overall.
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Figure 6. East Trout Lake site direct comparisons between the partial column DMF values retrieved from the TARDISS fit and the integrated
and smoothed aircraft partial columns for lower column CO2 and CO. The error bars in the x direction are the integrated partial columns of
the profile shifted by the error values and then subtracted from the original partial column integration. The error bars in the y direction are
the output errors from the TARDISS fit scaled by the VEM value for the site. The solid black line is the one-to-one line, and the dotted–
dashed blue line is the linear fit of the data with the y intercept forced through zero. The slope for the fit is 1.001± 0.002 for CO2 and is
0.945± 0.012 for CO.

Figure 7. Lamont site direct comparisons between the partial column DMF values retrieved from the TARDISS fit and the integrated and
smoothed airborne partial columns for lower column CO2 and CO. The error bars in the x direction are the integrated partial columns of the
profile shifted by the error values and then subtracted from the original partial column integration. The error bars in the y direction are the
output errors from the TARDISS fit scaled by the VEM value for the site. The solid black line is the one-to-one line, and the blue line is the
linear fit of the data with the y intercept forced through zero. The slope for the fit is 1.002± 0.001 for CO2 and is 1.000± 0.002 for CO.
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Table 5. Validation comparison DoF, error, validation slope, mean ratio deviation, and site VEM values for lower and upper column CO2 for
retrievals using a temporally constrained upper column and a temporally unconstrained upper column. The retrievals are performed with the
operational parameters denoted by asterisks in Table 2.

Statistics Temporally constrained Temporally unconstrained
upper column upper column

Validation DoF (Overall) 0.0462 (2.12) 0.0352 (1.59)

Lower column CO2 Error (ppm) 1.15 1.15
Validation slope 1.001 1.002
Mean ratio deviation 0.011 0.009
Park Falls VEM 3.25 3.75
Armstrong VEM 2.98 4.42
Lamont VEM 1.35 2.50

Upper column CO2 Error (ppm) 0.497 0.956
Validation slope 0.999 0.998
Mean ratio deviation 0.002 0.003
Park Falls VEM 3.61 1.92
Armstrong VEM 4.63 1.66
Lamont VEM 2.70 1

3.4 Retrieval characterization

3.4.1 TARDISS vertical sensitivity and temporal
covariance

TARDISS uses an a priori covariance matrix with temporal
covariance between upper partial column scalars over the
course of a day of measurement, as shown in Fig. 3. To
determine how this constraint influences the retrievals, we
compare the data above to the validation comparison from a
CO2 retrieval not constrained by a temporal covariance. The
a priori covariance matrix without the temporal covariance
is simply a diagonal matrix of the 10−5 scalar value. Ta-
ble 5 shows that the retrievals without temporal constraints
have a slightly poorer validation comparison overall, includ-
ing larger errors and fewer degrees of freedom. However,
the site-by-site differences in validation data show that the
upper column VEM values are smaller when using a tem-
porally unconstrained fit, whereas the lower column VEM
values are improved when implementing the temporal con-
straints. While the purpose of this study is to create a uni-
versally applicable operational algorithm, local differences
in the sources and meteorology may alter the effects of the
a priori covariance matrix choice on the site VEMs. This sug-
gests that site-by-site parameter choices may enable smaller
errors and increased precision.

The temporal covariance impacts our validation compari-
son through the partial column vertical sensitivities described
in Eq. (22) via the gain matrix (Eq. 21). To assess the impor-
tance of the choice of a priori covariance matrix, we com-
pare the vertical sensitivities for a temporally constrained
upper column and a temporally unconstrained upper column

(shown in Fig. 8) for a representative day (27 July 2018, at
the Lamont site).

Without the temporal constraint, the upper column sensi-
tivities are on the same order as the lower column sensitivi-
ties with values between −0.05 and 0.18. The upper column
sensitivity peaks around the 15 km level at low solar zenith
angles, and the peak moves toward the surface at higher solar
zenith angles consistent with the changing kernel of the 6220
and 6339 cm−1 bands. The lower column sensitivities always
peak near the surface (∼ 2 km or below) and the sensitivity
increases at higher solar zenith angles.

With the temporal constraint, the altitude of the maximum
sensitivities with respect to SZA remains similar but the up-
per column sensitivities are roughly twice the value and the
lower column sensitivities are half the value of the tempo-
rally unconstrained values. The imposed temporal covari-
ance constrains the upper column to vary slowly over the
span of a measurement day so that a change in the column
at one measurement point induces changes at other measure-
ment points, thereby increasing the vertical sensitivities in
the upper column over the entire day. This constraint is also
stringent enough that it propagates into the sensitivity of the
lower column scalar. Since our goal is to retrieve a lower
partial column, it seems counterintuitive that using sensitiv-
ities with an order of magnitude difference provides a better
validation comparison. However, for this method we assume
that we know the shape and behavior of the upper column
fairly well and that most of the change occurs near the sur-
face. Given these assumptions, constraining the upper col-
umn more heavily by introducing expected daily patterns
through the a priori covariance matrix allows for the lower
column retrieval to have improved comparisons with in situ
data despite the decreased vertical sensitivities.
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Figure 8. Vertical sensitivities of the lower partial column (a, c) and upper partial column (b, d) scalars color coded by solar zenith angle
in degrees. The sensitivities calculated when using a temporally covariant a priori covariance matrix are shown in the top row, and the
sensitivities calculated when using a non-temporally covariant a priori covariance matrix are shown in the bottom row.

While we test retrievals simply with and without temporal
covariance, the possible choice of a priori covariance matrix
shape could be much more complex. Future study could in-
clude using model-generated or back-trajectory-based tem-
poral covariances to include outside information in the re-
trieval dynamically. For an operational retrieval product, we
will include the temporal covariance in the a priori covari-
ance matrix as an operational parameter.

3.4.2 Error analysis

Using the information from the validation comparison, we
can evaluate the errors of the entire dataset from each of the
five sites. The output of the retrieval is the partial column
scalar and the error retrieved is the standard deviation of the
partial column scalar calculated from the retrieval variance
and represented as another scalar value. To convert our par-
tial column scalar error to a dry air mole fraction, we multi-
ply the error scalar value by the a priori partial column mix-
ing ratio (za,TCCON in Eq. 17). Error varies from site to site
due to variations in the TCCON total column errors that are
input to the measurement covariance matrix and due to how
well the a priori partial column DMF matches the (gener-
ally unknown) actual partial column DMF. We report the to-
tal retrieval error, retrieval error components, and the error
contribution from the validation comparison measurements
in Table 6.

The retrieval error values range from 1.16 to 1.41 ppm for
lower column CO2 and from 0.26 to 1.33 ppm for the upper
column CO2. For CO retrievals, the average total retrieval
error ranges from 0.48 to 14.0 ppb for the lower column
and 0.032 to 2.23 ppb for the upper column. In general, the

errors vary minimally over the record, but there is a distinct
seasonality for both lower column CO and CO2 retrievals
with the highest errors during the summer perhaps as a result
of errors in the near surface a priori profiles (Fig. S4). The
absolute errors for CO2 generally increase over time simply
because CO2 is increasing due to anthropogenic emissions.
Fractionally, the errors remain similar across the dataset for
both CO and CO2 (Fig. S5).

Because the model parameter error goes to zero in our im-
plementation, the current total retrieval error is the square
root of the sum of the smoothing error (Eq. 25) and the
retrieval noise (Eq. 26). The smoothing error is 94.0 %
to 96.5 % of the total retrieval error on average for CO2
and 81.6 % to 87.8 % of the total retrieval error on average
for CO depending on the site and is directly related to the
scaling of the a priori covariance matrix. While using a more
constrained a priori covariance matrix increases the smooth-
ing error, it also results in a reduction to the total retrieval er-
ror. Furthermore, the fit of the lower partial column CO2 ben-
efits from a stronger constraint since the slope of the lower
partial column CO2 validation is closest to 1 when using the
tightest covariance matrix as shown in Table 2. The retrieval
noise is 3.5 % to 6.0 % of the total retrieval error on average
for CO2 and 18.4 % to 12.2 % of the total retrieval error on
average for CO depending on the site and has the opposite
relationship to the scaling of the a priori covariance matrix.
The retrieval noise reflects the effect of the model covariance
matrix that is composed of the TCCON total column mea-
surement errors, and therefore reducing these errors would
also reduce the retrieval noise.
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Table 6. Errors in the CO and CO2 lower partial column retrievals of each site shown as the average of the entire data time series and broken
down into total retrieval error, retrieval noise, smoothing error, validation error multiplier, and total error. The values for total retrieval error
and total error represent 1 standard deviation.

Site Retrieval Smoothing Mean lower/ Lower/upper Mean total
noise error upper column column lower/upper

(% of total) (% of total) retrieval error validation error column error
(ppm for CO2; multiplier (ppm for CO2;
ppb for CO) (unitless) ppb for CO)

CO2 retrievals Park Falls 3.5 96.5 1.257/0.655 3.61/3.25 4.54/2.13
Armstrong 6.0 94.0 1.253/0.500 4.63/2.98 5.80/1.49
Lamont 4.5 95.5 1.252/0.582 2.70/1.35 3.38/0.786
Caltech 4.5 95.5 1.271/0.568 4.63/3.25 5.88/1.85
East Trout Lake 5.4 94.6 1.268/0.514 4.63/3.25 5.87/1.67

CO retrievals Lamont 12.2 87.8 1.34/0.447 1.00/15.4 1.34/6.88
Caltech 18.4 81.6 1.96/0.318 1.00/15.4 1.96/4.90
East Trout Lake 15.7 84.3 1.22/0.355 1.00/15.4 1.22/5.47

Using the operational setup for our TARDISS fit, we
calculate the site-specific VEM values using Eq. (27) (Ta-
bles 5 and 6). These values are used to scale the error of the
TARDISS fit for all the comparisons in this work. The VEM-
scaled errors serve as a conservative estimate for the retrieval
errors and should be reevaluated with additional in situ pro-
file measurements as they become available. For CO2 at Park
Falls, the lower and upper column VEM are 3.61 and 3.25;
at Armstrong, the lower and upper column values are 4.63
and 2.98; and at Lamont the values are 2.70 and 1.35 for
the lower and upper column, respectively. Since Caltech and
East Trout Lake do not have comparison data, we apply er-
ror multiplier values of 4.63 and 3.25 as they are the largest
multiplier values from among the other sites. For CO, the La-
mont site multiplier values are 1.00 and 15.4, which we use
for the Caltech and East Trout Lake site CO retrieval data as
well.

Since the TARDISS retrieval cannot fully optimize the
shape of the partial profile, the site-to-site differences in
VEM are likely due to the variation in the accuracy of the
TCCON priors, which by design do not capture the local
source, sink, and transport complexities. For CO2, the up-
per column VEM and retrieval error values are consistently
smaller than the associated lower column values, suggesting
that these data support the assumption that the shape of the
profile of the upper partial column is generally much more
accurately captured by the TCCON priors.

The total error for each site is determined by multiplying
the retrieved errors by the site and partial column respec-
tive VEM values. After implementing the VEMs, the errors
for the lower partial column CO2 retrieval range from 3.38
to 5.88 ppm and from 1.22 to 1.96 ppb for CO across all sites
and data. As the Caltech and East Trout Lake sites have no
validation comparisons, we use the largest validation error

multiplier (that of the lower column Armstrong and upper
column Park Falls comparison) as a higher bound.

Since the overall biases are small with validation slopes
close to 1, the errors are sufficiently small that the TARDISS
retrievals have skill in evaluating CO2 fluxes at TCCON sites.
The error compared to the overall lower partial column DMF
is small: 1.25 % on average across the five sites for CO2.

3.4.3 Information content analysis

The information content of the retrieval is determined by the
DoF and Shannon information content (H) of the retrieval,
each calculated from the averaging kernel. The DoF values
represent the independent pieces of information that can be
retrieved from a measurement. We report our DoF values
normalized by both the number of measurements made in
a day and the daily overall DoF. Since the DoF values are
calculated as the trace of the averaging kernel, we isolate
and report the DoF from the upper and lower column sepa-
rately along with the total. The Shannon information content
is a single value to represent the effectiveness of the retrieval
when recovering information from the model with respect to
the variance in the data. Higher Shannon information con-
tent values correspond to a retrieval with a higher possible
effectiveness.

The information content is summarized for each site in
Table 7. The overall average lower column DoF per mea-
surement across all sites and collected data is 0.047 for CO2
and 0.15 for CO. The lowest DoF average value of 0.034 is
in Park Falls, the highest DoF average value of 0.061 is in
Armstrong for CO2, and between the three sites with CO re-
trievals Caltech has the highest average lower column DoF
of 0.18 compared to 0.12 for Lamont and 0.15 for East Trout
Lake. The retrievals of CO have much larger DoF compared
to CO2 primarily since the CO2 requires a stronger scal-
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Table 7. Degrees of freedom per measurement (and per day) for the lower column, upper column, and total retrieval, in addition to the
Shannon information content separated by site for the CO and CO2 retrievals.

Site Total degrees Lower column Upper column Average Shannon
of freedom DoF per DoF per measurements information
per measurement measurement measurement per day content
(per day) (per day) (per day) per day

CO2 retrievals Park Falls 0.151 (14.0) 0.0338 (4.30) 0.117 (9.72) 116 9.96
Armstrong 0.165 (33.2) 0.0613 (14.3) 0.104 (18.9) 227 24.7
Lamont 0.163 (20.6) 0.0444 (7.22) 0.119 (13.4) 155 15.0
Caltech 0.156 (23.1) 0.0452 (8.45) 0.111 (14.7) 180 17.0
East Trout Lake 0.181 (25.5) 0.0503 (10.2) 0.131 (15.3) 181 19.0
Overall 0.163 (23.2) 0.0470 (8.89) 0.116 (14.4) 172 17.1

CO retrievals Lamont 0.236 (26.1) 0.123 (15.7) 0.113 (10.4) 120 17.5
Caltech 0.227 (43.6) 0.184 (36.9) 0.0431 (6.76) 194 26.8
East Trout Lake 0.263 (43.4) 0.146 (29.5) 0.113 (13.8) 178 26.2
Overall 0.242 (37.7) 0.151 (27.4) 0.0910 (10.3) 164 23.5

ing constraint of the a priori covariance matrix, limiting the
amount of information that can be inferred.

Ideally, DoF values greater than 1 are desired for tra-
ditional profile retrievals. However, the temporal aspect of
our retrieval complicates the discussion. If we consider the
CO2 retrievals, the five sites used in this work made an av-
erage of 172 measurements per day so that the DoF value
average of 0.0470 per measurement yields 8.08 independent
pieces of information about the lower partial column per day
which provides significant information on the diurnal varia-
tion and the fluxes into and out of the lower column.

The information content shown in the DoF is mirrored in
the Shannon information content. Similar to the DoF, Park
Falls has the lowest and Armstrong the highest Shannon in-
formation content on average for CO2. These differences are
likely driven by the combination of the TCCON retrieval er-
rors and how well the a priori covariance matrix matches
the temporal aspects of local meteorology, such as cloud
cover or upper tropospheric transport, or the magnitude and
timescales of the local carbon fluxes in the boreal forest ver-
sus the lack of such fluxes in the Mojave Desert. For CO,
the Caltech retrieval has the highest DoF and Shannon in-
formation content of the three sites. While the differences in
Shannon information content and DoF between sites are not
necessarily directly comparable, these differences also might
be due to the TCCON retrieval errors and how well the cho-
sen a priori covariance matrix constrains the solution.

The informational content of the retrieval assists in eval-
uating the TARDISS algorithm, but also serves as a diag-
nostic of the effectiveness of the retrieval for each day of
measurement. Figure 9 shows the long-term comparisons be-
tween the retrieved lower partial column and the smoothed,
integrated, and in situ data at the Lamont site color coded
by the DoF per measurement for each point. The compar-
isons with higher DoF per measurement generally sit closer

Figure 9. The same comparison shown in Fig. 7 is shown here with-
out error bars and color coded by the DoF per measurement for the
comparison day retrieval. The dotted–dashed blue line above the
black one-to-one line is the linear fit of the data with the y intercept
forced through zero with a slope of 1.002± 0.001.

to the one-to-one line as expected and suggest that days
with higher DoF per measurement have lower associated
VEM. Figure S7 shows the VEM calculated after removing
days that have DoF per measurement values below a specific
threshold. The VEM calculated for the long-term compari-
son data decreases consistently with increasing DoF filters
until it reaches 1 at∼ 0.07 DoF per measurement. This, how-
ever, excludes roughly 90 % of the data. As a first step, the
data could be filtered for low DoF or low Shannon informa-
tion content. In the future, the information content could be
used to create more dynamic VEM values for our datasets
and provide more precise error values than the conservative,
static VEM per site reported in Table 6.
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Figure 10. Time series plot of the monthly median lower (a) and upper (b) partial column values of CO2 (in ppm) for the five sites used in
the work from 2012 (or the start of measurement) to the end of 2021. Data from before 2012 measured at Park Falls and 2011 at Lamont are
not used due to instrument alignment issues and laser issues.

3.5 Time series of the TARDISS retrieval

The TARDISS algorithm is applicable to any spectra re-
ported as TCCON data with the correct detector requirements
(InGaAs for CO2 and both InGaAs and InSb for CO). Over-
all, there are at least 9 years of CO2 data at each site in this
work and approximately 5 years of CO data at the East Trout
Lake, Lamont, and Caltech sites.

Figure 10 shows the monthly mean lower and upper par-
tial column data retrieved from spectra obtained over the
last decade at the North American TCCON sites. These up-
per columns reflect the global seasonal patterns in CO2. The
lower column at Park Falls and East Trout Lake reflect the
local influences on CO2 in the sharp decline in surface CO2
when the surrounding forest is most photosynthetically ac-
tive. In contrast, the lower column Caltech trace shows a con-
sistent urban enhancement over the global trends of∼ 5 ppm.
All five upper column traces are generally consistent with
one another and have a ∼ 6 ppm seasonal fluctuation.

Figure 11 shows the monthly median retrieved lower and
upper partial column CO data from the East Trout Lake, La-
mont, and Caltech sites. We observe a slight seasonality at
each site with maximums in the winter months and mini-
mums in the summer months. The CO lower partial column
data from the Caltech site tends to be larger than those from
the Lamont site due to the urban enhancement despite the re-
cent decreasing trend. An example of the effect of the urban
enhancement on total and partial column values is shown in
Fig. S8.

4 Conclusions

The TARDISS retrieval algorithm enables partial column in-
formation to be derived from the TCCON total column ob-
servations of CO2 and CO derived from different absorption
bands with different vertical averaging kernels. Compared
to traditional vertical retrieval approaches, the algorithm re-
laxes the requirement of very accurate meteorology knowl-
edge, is less biased by spectroscopic errors, and is computa-
tionally inexpensive to run since it does fit spectra directly.
By inferring information from the differences between total
column DMF values from spectral windows that are qual-
ity controlled, the retrieval is restricted to imposing small
changes to the partial and total columns. This effectively lim-
its the amount of informational content that can be retrieved
but also mitigates the issues of oscillation or large deviations
in the retrieved vertical profile, in this case partial columns.
Finally, this algorithm takes advantage of the temporal di-
mension by fitting over an entire day of measurements to re-
trieve enough information to infer temporal changes in the
lower (surface to ∼ 2 km) and upper (2 to 70 km) partial
columns, which also allows for the input of external, a pri-
ori, and temporal information that is shown to improve the
information content in the lower partial column fit.

Using measurements from the five North American TC-
CON sites, we compare our retrieved partial columns
of CO and CO2 DMF to the partial columns calculated
from integrated and smoothed in situ data measured by
aircraft and AirCore. We report slopes of 1.001± 0.003
and 0.999± 0.001 for the lower and upper partial column
CO2 comparisons, respectively, and slopes of 0.999± 0.002
and 1.081± 0.012 for the lower and upper partial column
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Figure 11. Time series plot of the monthly median lower (a) and upper (b) partial column values of CO (in ppb) for the three sites used in
the work that have the InSb detector from 2017 to the end of 2021. CO has been declining in most of the US cities due to emissions control
technologies.

CO comparisons, respectively. The retrieved partial columns
have improved direct comparisons and precision compared
to the partial columns calculated from the original TCCON
spectral windows.

We use the comparison data to calculate validation error
multiplier (VEM) values to scale retrieved errors to be repre-
sentative of the in situ comparisons. The average VEM scaled
errors for the lower partial column CO and CO2 retrievals are
1.51 ppb (∼ 2 %) and 5.09 ppm (∼ 1.25 %), respectively. The
magnitudes of these error values suggest that the TARDISS
retrieval will be useful in its current state for understanding
surface fluxes of CO and will have some power for evaluating
surface fluxes of CO2.

The Bayesian TARDISS algorithm enables the informa-
tional content of the retrieval to be estimated. The average
DoF for the lower partial column retrievals are 8.89 and 27.4
degrees of freedom so that∼ 9 and∼ 27 lower partial column
values can be retrieved over a day of measurement for CO2
and CO, respectively. The information content is affected by
the parameters of the retrieval so that there is a tradeoff be-
tween retrieved error and the DoF of the retrieval. Further-
more, the daily DoF normalized by the number of measure-
ments made in a day could serve as a quality control variable.

Future implementations of the retrieval could use the DoF
values to create dynamic VEM to provide error values that
are more precise than the static VEM. Similarly, future work
could improve the effectiveness of the retrieval of lower par-
tial column CO2 using the TARDISS algorithm with the in-
put of external information through the a priori covariance
matrix, a priori partial column scalar, or the inclusion of the
other parameters in the state vector.

Code and data availability. The data used in this study are made
up of TARDISS retrieval products from five TCCON sta-
tions. The retrieval data are publicly available through Cal-
techDATA (https://doi.org/10.22002/pn9de-cry27, Parker et al.,
2022), and the data input into the retrieval are publicly avail-
able via https://tccondata.org/ (last access: 28 April 2023; TCCON,
2023). The retrieval code is also available through CaltechDATA
(https://doi.org/10.22002/dakd7-cdp29, Parker et al., 2023).
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