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Abstract. Anthropogenic emissions of methane (CH4) have
made a considerable contribution towards the Earth’s chang-
ing radiative budget since pre-industrial times. This is be-
cause large amounts of methane are emitted from human ac-
tivities, and the global warming potential of methane is high.
The majority of anthropogenic fossil methane emissions
to the atmosphere originate from a large number of small
(point) sources. Thus, detection and accurate, rapid quantifi-
cation of such emissions are vital to enable the reduction of
emissions to help mitigate future climate change. There ex-
ist a number of instruments on satellites that measure radi-
ation at methane-absorbing wavelengths, which have suffi-
ciently high spatial resolution that can be used for detecting
plumes of highly spatially localised methane “point sources”
(areas on the order of m2 to km2). Searching for methane
plumes in methane-sensitive satellite images using classical
methods, such as thresholding and clustering, can be use-
ful but is time-consuming and often involves empirical de-
cisions. Here, we develop a deep neural network to iden-
tify and quantify methane point source emissions from hy-
perspectral imagery from the PRecursore IperSpettrale della
Missione Applicativa (PRISMA) satellite with 30 m spatial
resolution. The moderately high spectral and spatial resolu-
tion, as well as considerable global coverage and free ac-
cess to data, makes PRISMA a good candidate for methane

plume detection. The neural network was trained with simu-
lated synthetic methane plumes generated with the large eddy
simulation extension of the Weather Research and Forecast-
ing model (WRF-LES), which we embedded into PRISMA
images. The deep neural network was successful at locating
plumes with a F1 score, precision, and recall of 0.95, 0.96,
and 0.92, respectively, and was able to quantify emission
rates with a mean error of 24 %. The neural network was fur-
thermore able to locate several plumes in real-world images.
We have thus demonstrated that our method can be effective
in locating and quantifying methane point source emissions
in near-real time from 30 m resolution satellite data, which
can aid us in mitigating future climate change.

1 Introduction

Methane (CH4) is a powerful greenhouse gas with a warm-
ing potential which, per unit mass emitted, is 84 times larger
than for carbon dioxide over a 20-year period (Stocker et
al., 2013). Emissions of methane as a result of human ac-
tivities have contributed to one-quarter of climate warming
since pre-industrial times (Etminan et al., 2016). A large pro-
portion of anthropogenic methane from industrial sources
originates from point sources such as coal mines and oil
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and gas production facilities (Saunois et al., 2020). Fur-
thermore, these emissions are generally underestimated by
inventory-based approaches (Alvarez et al., 2018; Karion et
al., 2013; Zavala-Araiza et al., 2015). A large proportion
of these anthropogenic emissions originates from a small
number of strong point sources due to oil and gas produc-
tion equipment malfunction (Brandt et al., 2016; Duren et
al., 2019; Zavala-Araiza et al., 2017). Consequently, much of
the methane emitted from such sources could be reduced at
no net cost (IEA, 2017; Ocko et al., 2021). Acting to reduce
methane emissions in this sector could be one of the most
cost-effective methods of mitigation against further climate
change.

Methane point sources from oil and gas production are
typically small in extent, and emissions are difficult to quan-
tify and variable in time (Allen et al., 2013; Frankenberg
et al., 2016; Cusworth et al., 2021b). The primary chal-
lenge faced when estimating methane emissions from point
sources from satellite data comes from the relatively low spa-
tial resolution (in the order of kilometres) of satellite im-
agery from dedicated sensors such as the Greenhouse Gases
Observing SATellite (GOSAT) (Kuze et al., 2009) and the
TROPOspheric Monitoring Instrument (TROPOMI) (Levelt
et al., 2006). These sensors typically have high spectral res-
olution of methane absorption bands in the shortwave in-
frared (SWIR) range of the electromagnetic spectrum to pro-
vide accurate measurements with high precisions of around
10–20 ppb (parts per billion) (Lorente et al., 2021; Parker
et al., 2020). SWIR bands can also be effectively utilised
to detect and quantify point sources from lower-spectral-
resolution sensors (Jacob et al., 2016; Duren et al., 2019). Re-
cent hyperspectral spaceborne imaging spectrometers con-
tain hundreds of spectral channels in the visible–shortwave
infrared range, with spectral resolution typically around
10 nm and spatial resolutions of tens of metres. Due to their
spatial and spectral resolution, they have been identified as
useful new tools for identifying and quantifying methane
point source emissions. PRecursore IperSpettrale della Mis-
sione Applicativa (PRISMA), developed and operated by the
Italian Space Agency (ISA) since 2019, is the first hyperspec-
tral mission where the satellite imagery has been openly re-
leased to the scientific community. The satellite consists of a
panchromatic camera and an advanced hyperspectral instru-
ment that measures radiances in approximately 250 bands
between 400 and 2500 nm. The instrument has a spatial res-
olution of 30 m, a swath of 30 km, and a 12 nm spectral res-
olution (Galeazzi et al., 2008). PRISMA has been successful
in quantifying CO2 emissions from coal- and gas-fired power
plants (Cusworth et al., 2021a). However, how to best extract
information on the location and extent of methane plumes
is not yet fully established. Successful detection of methane
point sources from PRISMA using a matched-filter retrieval
technique has been reported by Guanter et al. (2021), albeit
with a strong dependence of detection accuracy on surface
type. In particular, brightness and homogeneity of the satel-

lite images were identified to significantly influence the ac-
curacy of methane detection techniques.

Current approaches for detecting methane point sources
and quantifying emission rates are time-intensive and labo-
rious and can be prone to errors without sufficient train-
ing. They typically involve a spectral analysis of satellite
data to infer methane column mean mixing ratios (Thorpe
et al., 2014) followed by a methane plume detection method
(often based on thresholding and clustering) and finally
the integrated mass enhancement (IME) method to estimate
the emission (Varon et al., 2018). Previous efforts utilis-
ing spaceborne imaging spectrometers to quantify methane
point source emission rates have proved successful but often
with large errors of source detection and emissions estimates.
The IME method yielded errors between 5 % and 12 % us-
ing 50 m resolution Greenhouse Gas Satellite – Demonstra-
tor (GHGSat-D) imagery (Varon et al., 2018). However,
this uncertainty estimate does not include errors from un-
known wind speed and direction, which are both highly un-
certain, where uncertainties are estimated to be 15 %–65 %
larger. The multi-band multi-pass (MBMP) method was suc-
cessful in quantifying methane point source emissions from
Sentinel-2 multispectral instrument (MSI) imagery, with pre-
cision between 30 % and 90 % (Varon et al., 2021). The pri-
mary limitation of this approach is surface interference (Cus-
worth et al., 2019) which leads to artefacts and false anoma-
lies, which can be mistakenly attributed to emission plumes.
This is a major disadvantage for multi- and hyperspectral
missions because the better the resolution (and the greater the
number of channels), the better the discrimination between
the surface and methane absorption. Sherwin et al. (2023)
found comparatively lower errors but required considerable
human intervention. Thus, producing a model that minimises
errors and can automatically locate methane sources would
make emission monitoring from space faster, more reliable,
and more scalable, thus providing an invaluable tool to aid
mitigation. A first effort has also been made to estimate emis-
sion rates from AVIRIS-NG data using a neural network and
without utilising wind speed and direction data. These esti-
mates were subject to an error of roughly 30 % of the emis-
sion rates (Jongaramrungruang et al., 2019). It is apparent
that the noise in the satellite data, the lack of accurate wind
data, and the complex structures of methane plumes make
it difficult to model emission rates accurately via traditional
approaches.

In recent years, deep neural network methods have im-
proved rapidly. LeNet (LeCun et al., 1989) was one of the
earliest convolutional neural networks (CNNs) and was used
successfully to identify handwritten digits. This work laid the
foundations for using artificial intelligence to obtain mean-
ingful information from image data (known as computer vi-
sion). Deep learning models entered the mainstream follow-
ing considerable reductions in model training time through
the utilisation of graphics processing units (GPUs) (Oh and
Jung, 2004). Deep learning was then revolutionised for image
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classification with the introduction of AlexNet (Krizhevsky
et al., 2017). CNNs have since been applied to self-driving
cars (e.g. Nugraha and Su, 2017), the discovery of new drug
treatments (e.g. Wallach et al., 2015), facial recognition (e.g.
Matsugu et al., 2003), and many other applications. The ease
with which deep neural networks can be trained and deployed
has also improved considerably in recent years, partially due
to the development of application programming interfaces
(APIs), such as Keras (Chollet, 2015). This has been sup-
plemented by the increasing ubiquity and decreasing costs
of GPUs and cloud computing servers, which together have
enabled deep learning models to be trained rapidly and at a
relatively low cost. Currently, work utilising deep neural net-
works has already proven to be considerably more effective
than classical methods to detect point source emissions of
nitrogen dioxide (NO2) (Finch et al., 2022).

More recently, a deep neural network has been used to
quantify methane point source emissions using the airborne
AVIRIS-NG instrument (Jongaramrungruang et al., 2022).
In this study, a CNN was trained on synthetic plumes in-
serted into real images to extract features present in plumes
of varying intensities and with differing wind speeds to lo-
cate and quantify the emission rates of the point sources.
Jongaramrungruang et al. (2022) estimated emission rates
of plumes with a mean absolute error of 17 % for emissions
larger than 40 kg h−1. The classification accuracy (determin-
ing whether a plume is present in an image) was 90 % when
testing plumes with emission rates above 100 kg h−1; how-
ever, the accuracy dropped to 50 % for emission rates around
50–60 kg h−1. The spatial and spectral resolution of the air-
craft data used in this study (AVIRIS-NG) has far higher
spatial and spectral resolution than PRISMA, thus making
methane detection prone to lower errors. However, PRISMA
data are publicly available and cover a far larger spatial range
with regular repeat measurements, thus making it a superior
resource for rapid detection of methane point source emis-
sions across many regions on earth. Thus, a deep neural
network that is capable of utilising PRISMA data to detect
methane emissions could be very effective in our efforts to
mitigate future climate change.

In this study, we produced pseudo-observations of sim-
ulated synthetic methane plumes generated with the large
eddy simulation extension of the Weather Research and Fore-
casting model (WRF-LES). These simulated plumes were
then embedded into an array of PRISMA images and used
as training data for a novel neural network architecture that
aimed to produce masks of the locations of methane plumes
and estimate their emission rates from PRISMA satellite im-
agery. The effectiveness of this model was then tested on
images of real-world plumes. The results from the neural
network were then compared with a classical technique that
combined PCA-based retrievals with clustering using DB-
SCAN. The techniques utilised here can be adapted to lo-
cate and quantify emission rates using any satellite imagery

with suitable shortwave-infrared bands or applied to detect-
ing other greenhouse gases, such as carbon dioxide (CO2).

2 Methods

2.1 Simulating methane plumes with WRF-LES

The Weather Research and Forecasting (WRF) model sys-
tem has comprehensive and multiple capabilities for study-
ing atmospheric phenomena from global down to large eddy
scales. The default large eddy simulation case (LES) of the
WRF V4.2.2 was used and modified to simulate methane
plumes for a single point source with a release rate of
1000 kg h−1. The default LES case does not consider clouds,
radiation, or topography but includes surface physics and
1.5-order TKE (turbulent kinetic energy) prediction scheme
(WRF model User’s Guide: https://www2.mmm.ucar.edu/
wrf/users/, last access: 15 March 2022). A constant thermal
flux of 100 W m−2 was applied at the surface to drive the
turbulence. Two nested domains with one-way nesting were
deployed in the simulations. The outer domain had a size of
5.4 km× 6.3 km, with 90 m horizontal resolution and peri-
odic boundary conditions. The inner domain had a size of
3.6 km× 4.5 km, with 30 m horizontal grid spacing and 30 m
vertical resolution and flow-dependent boundary conditions
for scalars. The plume was only released in the inner domain
after a 3 h spin-up run. The total running time is 5 h, and the
final 2 h run was considered for the training, test, and valida-
tion data.

We designed 15 scenarios consisting of five different
southerly wind speeds ranging from 1 to 9 m s−1, each of
which was uniformly applied from the surface to the model
top, and three different patterns of potential temperature ver-
tical profiles (Fig. S1 in the Supplement). The potential tem-
perature in the scenarios is specified as 290 K from the sur-
face to one of the 3 different mixing depths of 500, 800,
and 1100 m (Fig. S2). Above the mixing depth, there is an
inversion layer of 700 m with a vertical gradient of poten-
tial temperature of 0.009 K m−1 applied from the top of the
mixing layer to the model top. For each simulation, the CH4
distribution is saved once every minute, and thus there are
120 different scenes for a 2 h simulation. Altogether there
are 1800 scenes for the 15 simulations in the data, where the
plume was integrated over vertical columns. Figure 1 shows
one snapshot of a plume with initial conditions of 3 m s−1

southerly wind and 800 m mixing depth 30 min after release.

2.2 Satellite data retrieval

Methane absorbs solar radiation at a set of shortwave-
infrared wavelengths that are well known and documented in
spectroscopic databases. The absorption of light by methane
in the atmosphere therefore alters the reflected sunlight mea-
sured by the satellite in a very predictable way that allows
us to quantify the amount of methane along the light path.
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Figure 1. Snapshot of a simulated plume 30 min after release for
initial conditions of 3 m s−1 southerly wind and 800 m mixing
depths. Red arrows indicate wind direction at the moment of the
snapshot.

Here we use a data-driven retrieval algorithm to estimate the
methane enhancements from reflected sunlight using statisti-
cal methods based on the work by Thorpe et al. (2014). This
type of simple and fast retrieval method is commonly used
for instruments with comparably low spectral resolutions, for
which a more sophisticated, so-called full-physics approach
provides no extra benefit.

The relationship between the spectral intensity at each
point in the satellite spectra and the column enhancement of
methane in the scene is represented by a methane Jacobian
vector, which describes the change in the logarithm of the in-
tensity Ik in band k with respect to the column enhancement
of methane CCH4 . The spectral variation of the background
of the scene (i.e. outside of the plume) is approximated by
a number of principal components of all measured spectra
combined derived using the principal component analysis
(PCA) method. We perform the PCA on the logarithm of
measured spectra of the scene and select the singular vec-
tors (principal components) that best describe the spectral
variability of the scene. The optimal number of singular vec-
tors was determined by trial and error, and was found to be
the first three. We then concatenate these vectors with the

methane Jacobian to construct the matrix J with dimension
4× number of PRISMA bands, which we use along with the
logarithm of the measured radiances, y, to find a vector W

that minimises the cost function in a linear least squares fit
for each pixel:

‖y− JW‖2. (1)

The modelled radiance F is calculated from J and W as fol-
lows:

F = JW . (2)

We can then rewrite Eq. (2) as the sum of the background (k)
and CH4 (c+ 1) components of the radiance:

F (W ,J)=
∑c

k=1
Jk ·Wk + Jc+1 ·Wc+1, (3)

where c is the number of singular vectors used. Thus, the
modelled logarithmic radiance F(W ,J) is a linear combina-
tion of the singular vectors, Jk , the CH4 Jacobian, Jc+1, and
their weights, Wk and Wc+1, respectively. This method is de-
scribed in more detail in Thorpe et al. (2014). In order to
avoid column-wise changes in the instrument’s radiometric
response, and since the wavelengths scale for each across-
track pixel of a PRISMA image is different, it is necessary to
infer the principal components for each column in the across-
track direction separately.

2.3 Training data generation

We generated synthetic datasets to train the machine-learning
model by combining PRISMA images with the synthetic
plumes simulated with WRF-LES (described in Sect. 2.1).
We use the SWIR spectral radiance from PRISMA Level-
1b data as well as the RGB bands. These datasets come
with pixel quality and cloud mask information, which we
apply in our data preparation process. We selected 36 dif-
ferent PRISMA background images to cover a wide range of
scenes representative of places where methane plumes might
be expected (Table S1 in the Supplement). These images also
cover a range of different dates throughout the ∼ 3 years of
PRISMA data available in the archive, to account for differ-
ent illumination conditions. All the selected scenes have less
than 1 % cloud cover, and any pixels flagged as cloudy in the
PRISMA product were excluded from the analysis.

A total of 9700 image tiles were generated for training,
each tile with a size of 256× 256 pixels. The tile size was
deliberately selected as a power of 2 to optimise the model
performance. Each tile was selected at random from one of
the 36 1000× 1000-pixel PRISMA background scenes, and
a synthetic methane plume was subsequently embedded in
it. The synthetic plume was also selected randomly from the
WRF-LES simulations, with the following parameters also
randomised following a uniform distribution:

– Time step. A time step of between 1 and 120 s is used
(Fig. S3).
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– Plume origin. This includes any point within the back-
ground scene tile, excluding the areas near the edges to
avoid missing parts of the plume.

– Emission rate. All simulated plumes have a 1000 kg h−1

emission rate, so we applied a scaling factor be-
tween 0.1 and 10 to have a range between 100 and
10 000 kg h−1 (Fig. S4).

The synthetic plumes from WRF-LES are first con-
verted into maps of methane vertical column densities (in
molecules cm−2). The original plume simulations are all car-
ried out for an emission of 1000 kg h−1, and the scenarios for
different emission rates are obtained by scaling the simulated
concentrations. Each plume is inserted into the background
PRISMA image tile by modifying the PRISMA SWIR ra-
diances according to the Beer–Lambert law for absorption.
Methane columns are converted into optical depth for each
band using a representative methane absorption cross-section
for each band computed from the HITRAN database (Gor-
don et al., 2022) for a temperature of 293 K and pressure of
1 atmosphere. The use of a single temperature and pressure
value is a simplification that could introduce small uncertain-
ties for vertically extended plumes. Each of the 9700 train-
ing datasets contains 38 PRISMA radiance bands (3 RGB
and 35 SWIR (2100–2365 nm) channels) and the synthetic
plume (i.e. the “true” methane enhancements to be used as
labels in the model).

2.4 Training data processing

Each PRISMA sub-image (256× 256-pixel tile) was nor-
malised by subtracting the mean and dividing it by the stan-
dard deviation (SD) of the whole collection of training im-
ages such that the mean of all the images was 0 and the SD
was 1 for each band. This data normalisation step is stan-
dard when using deep neural networks as it is understood to
optimise the training time. Following on from this, the unde-
fined (NaN, not a number) values present in the images were
changed to equal the mean value of each band in the respec-
tive image. These NaN values correspond to either invalid
(e.g. saturated) or cloudy pixels.

Every time an image was retrieved during the training pro-
cess, data augmentations were randomly applied. The aug-
mentations were as follows: rotation by a multiple of 90◦

and horizontal and vertical flipping. No brightness and con-
trast augmentations were made because the quantification of
methane plumes relies on the specific band information in-
side the plume region. The purpose of data augmentation
was to increase the data volume, to reduce overfitting, and
to improve the ability of the model to produce accurate re-
sults with data that is different to the training data.

To predict the methane concentration, it was first neces-
sary to model the methane plume mask (binary classifica-
tion of plume/non-plume per pixel) because the vast major-
ity of pixels in the training images did not contain a plume

(zero-inflated data). To create the ground truth masks for bi-
nary segmentation, an initial methane concentration thresh-
old of 8× 1018 molecules cm−2 was chosen as it was the
cut-off point where the plumes were no longer visible. Fur-
thermore, training the model with a lower threshold resulted
in non-convergence. After the model was trained at the 8×
1018 molecules cm−2 threshold, it was possible to continue
training the model at a lower threshold. Thus, we tested train-
ing the model at 5× 1017 molecules cm−2 increments until
the validation loss dropped substantially. The lowest thresh-
old where this was the case was 4× 1018 molecules cm−2.
This final step is important because it increases the range for
which the model can locate and quantify methane emissions.

2.5 Deep neural network architecture and training
process

The training of the neural network was split into four steps.
First, the model was trained to locate the regions of the image
containing a plume via per pixel binary semantic segmenta-
tion. Next, the column enhancements of methane were pre-
dicted inside the region of the estimated plume mask from
the first stage. Following on from this, the emission rate of
the plume in the image was estimated. To ensure that the
emission rate estimates would equal zero when no plume
was present, an intermediate prediction layer was included
where a whole image binary classification was made regard-
ing whether a plume was present in the image or not. At each
stage of the model, the input was a concatenation of the input
satellite image and all the previous outputs (Fig. 2). To op-
timise the training of the model weights, each portion of the
model was trained alone such that the weights in all the other
parts were not being updated. The parts of the model were
trained in order, moving downwards across the models de-
picted in Fig. 2. The loss function to predict the plume mask
was as follows:

Lossmask = 1+BC−SDC , (4)

where BC is binary cross-entropy, and SDC is the Sørensen–
Dice coefficient, defined as follows:

SDC=
2TP

2TP+FP+FN
, (5)

where TP is true positive, FN is false negative, and FP is false
positive. This loss function was chosen because of the large
number of non-plume pixels present in the image. The loss
function for the mask concentration was mean squared error
(MSE), a standard choice for regression modelling. For the
whole image binary classification part of the model, binary
cross-entropy was chosen, which is common for solving 1-
dimensional binary problems. Finally, for the emission rate
part of the model, MSE was chosen as the loss function until
the validation error started to plateau, after which the model
was only trained on images containing plumes, and mean ab-
solute percentage error was given as the loss function. This
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Figure 2. Structure of the neural networks used in this study. Green
boxes indicate portions of the neural network, and orange boxes in-
dicate predictions made by each stage of the neural network. Black
lines indicate flow of data into models, and red lines indicate pre-
dictions resulting from a model.

was done to ensure that the proportion error was minimised
rather than the absolute error. Mean absolute percentage error
was not used throughout the whole training process because
it was important that the model was trained on some images
with no plumes (so an emission rate of zero could be possi-
ble), and mean absolute percentage error produced very high
loss values when false positives were made by the model.

For plume mask detection, a UNet model was used, and
for methane concentration, a ResNet model was used. For the
whole image binary plume detection and emission rate esti-
mation, however, CNNs with only an encoder branch were
used. The two encoder CNNs have identical architectures
except that the activation function at the end of the whole
image binary classification model has sigmoid activation be-
cause the predictions are constrained between 0 and 1, and
the emission rate estimator has a ReLU activation function.

2.5.1 Estimating plume masks

Estimating the mask of a methane plume involved using
a similar architecture to a UNet model (Ronneberger et
al., 2015) (Fig. 3). UNet models consist of two paths; the
first is the encoder, which captures the context in the image
and is composed of convolutional and max pooling layers.
The second path is the decoder, which enables localisation of

the features captured by the encoder and consists of convo-
lutional and upsampling layers (Ronneberger et al., 2015). In
our model architecture, there is an additional 1× 1 convolu-
tional layer with 64 filters at the beginning because methane
plumes are associated with anomalies in certain SWIR bands
of the PRISMA imagery. This additional convolution makes
the network pay closer attention to individual pixel values in
the satellite data rather than focussing more on the shapes
present in the image. Methane does not absorb in the visi-
ble bands; thus, the inclusion of the visible bands helps the
neural network to distinguish between plume and non-plume
by providing information on the background of the image.
Methane plumes can be identified based on the typical spa-
tial structures that form as a result of turbulence and advec-
tion in the atmosphere, as well as the variations in methane-
absorbing bands compared with the background landscape.
It is the latter reason why an additional 1× 1 convolutional
layer was deemed to be helpful in improving the accuracy of
the model.

2.5.2 Estimating methane column enhancements inside
plumes

Estimating the methane column enhancement within the
plumes predicted in Sect. 2.4.1 uses a concatenation of the
input image and the mask predictions. This step to aid the
estimation of methane concentrations is necessary because
the vast majority of pixels do not contain a plume (a zero-
inflated regression problem). Such problems often have the
issue that the model will converge at predicting zeros every-
where. Thus, the inclusion of the mask prediction helps to
prevent this. The ensuing model is composed initially of a
1× 1 convolutional layer for a similar reason as its inclusion
in the UNet model (see Sect. 2.5.1). Following on from this
are two ResNet layers (He et al., 2016), which are charac-
terised by double-layer skip connections, ReLU activation
functions, and batch normalisation (Fig. 4). A ResNet ar-
chitecture was selected for this portion of the model as it is
known to be lightweight and powerful at regression predic-
tions in computer vision.

2.5.3 Estimating emission rate of plumes

The prediction of the whole image binary classification of
plume/not plume involved an architecture identical to the
one presented in this section (except that the final activation
layer was sigmoid, not ReLU). The inputs to the emission
rate portion of the model are the outputs from all the pre-
vious stages of the model concatenated with the input im-
age. The outputs of the mask prediction and whole image
binary segmentation are continuous between 0 and 1. The
majority of the methane concentration output is also in this
range because the methane concentration ground truth was
preprocessed via min–max normalisation (to optimise train-
ing time). This is to ensure that more information is avail-
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Figure 3. Architecture of the deep neural network for the UNet portion of the model. “1× 1 conv, 64” refers to a convolutional filter with
kernel size 1× 1 and 64 filters. “Batch Norm” refers to a batch normalisation layer, “Concat” refers to a concatenation between the inputs
to that layer, “2× 2 Max pool” refers to a max pooling layer with pool size 2, and “2× 2 up sample” refers to upsampling layer with size 2.
“ReLU” and “sigmoid” refer to the rectified linear unit and sigmoid activation functions respectively.

Figure 4. Architecture of the deep neural network for the ResNet portion of the model. “1× 1 conv, 64” refers to a convolutional filter with
kernel size 1×1 and 64 filters. “Batch Norm” refers to a batch normalisation layer, and “Concat” refers to a concatenation between the inputs
to that layer. “ReLU” refers to the rectified linear unit activation function.

able to the model to accurately estimate emission rates. Fol-
lowing on from this is the 1× 1 convolutional layer, which
was included for the same reason as in the previous stages of
the model (see Sect. 2.5.1). This is followed by the encoder
part of the model, in which a convolutional layer is followed
by batch normalisation, ReLU activation, and max pooling,
which is done seven times with increasing filters every sec-
ond loop. These layers encode features about the methane
plumes and reduce the dimensionality of the tensors. Finally,
there is a dense layer and ReLU activation to collect all infor-
mation obtained and output a single floating-point number as
the predicted emission rate (Fig. 5).

3 Results

3.1 Application of neural network to simulated plumes

The total training–validation dataset consisted of 9700 im-
ages, 80 % of which were reserved for training and the
remaining 20 % for validation. After each iteration of the
model through the training dataset (known as an epoch), the
model was tested on the validation dataset. If the loss of the
model when tested on the validation dataset was lower than

the lowest loss previously recorded, the weights of the model
were updated. Thus, at the end of the training procedure, the
best model was saved. Each of the stages of the model de-
picted in Fig. 2 were trained separately in descending order,
where the weights of the other stages did not vary. This was
done so that the most accurate predictions were being pro-
duced from the earlier layers so that no errors from insuf-
ficient training would propagate through the model because
the outputs are concatenated with the satellite data in later
parts of the model.

Once training was complete, the model was tested on
an additional 2000 images not seen during training sam-
pled randomly from a uniform distribution of emission
rates from 500 to 10 000 kg h−1. Out of the 2000 im-
ages, 36 had a maximum methane concentration under the
4× 1018 molecules cm−2 threshold imposed during training;
however they were still included in the testing to determine
if they could still be detected by the model. The model is
able to accurately locate and identify the shape of methane
plumes in the test dataset (Fig. 6).

The average methane column enhancement in the images
was well estimated, where average estimated methane was
closely correlated with the ground truth (Fig. 7) with a ten-
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Figure 5. Architecture of the deep neural network for the emission rate prediction of the model. “1× 1 conv, 64” refers to a convolutional
filter with kernel size 1×1 and 64 filters. “Batch Norm” refers to a batch normalisation layer, “Concat” refers to a concatenation between the
inputs to that layer, and “2× 2 Max pool” refers to a max pooling layer with pool size 2. “ReLU” refers to the rectified linear unit activation
function.

Table 1. Confusion matrix of whole image binary classification por-
tion of the model broken down per image.

Plume present No plume present

Predicted plume 1846 51
Predicted no plume 154 1482

dency to slightly overestimate column values. This is possi-
bly because predicted methane masks were generally smaller
than the true masks, so during training, the methane concen-
tration model overpredicted the centre of the plumes to com-
pensate for this.

In the whole image binary classification part of the model,
we assess its success using the F1 score, precision, and recall,
which are defined as follows:

F1= TP/(TP+ 0.5× (FP+FN)) , (6)
precision= TP/(TP+FN) , (7)
recall= TP/(TP+FP). (8)

In the whole image binary classification part of the model,
the F1 score, precision, and recall were 0.95, 0.96, and 0.92,
respectively (Table 1). These statistics come from predictions
made on the 2000 images with plumes in, as well as an addi-
tional 1533 images with no plumes.

The distributions of the scene noise and methane concen-
trations in the cases where no plume was predicted but a
plume was present (false negative) reveal scene noise that is
slightly lower than average and maximum methane concen-
tration that is much lower than average (Table S2). However,

in the cases where a plume was predicted but no plume was
present (false positive), scene noise is not noticeably differ-
ent (Table S2).

The actual vs predicted emission rate has a slope of 0.83,
with a relatively small spread about the line of best fit (SD=
1447 kg h−1). This means that there is a tendency for un-
derestimating emissions with a mean absolute percentage er-
ror in emission rate of 23.7 % (Fig. 8). Underpredictions are
common in regression models, especially when data points
with zeros are included such as in this case because the model
was trained on images without plumes as well as those con-
taining plumes. This was a necessary step, however, because
the model did not converge so well without these images, and
predictions were far worse at lower emission rate ranges.

The absolute emission rate error increased in magnitude
as the emission rate increased (Fig. 8), as one might ex-
pect. The percentage error was largest in magnitude for the
smallest emission rates (500–999 kg h−1), but the distribu-
tion remained relatively consistent above 2000 kg h−1, with
a median error of 25 % and interquartile range of 40 % error
(Fig. 9). The error in percentage emission rate had a positive
bias for emission rates under 1000 kg h−1 and a negative bias
for emission rates over 2000 kg h−1 (Fig. 9).

3.2 Application to real-world images

The model was then tested on 40 PRISMA scenes obtained
during 2020–2022 in the Korpeje oil field, Turkmenistan
(37.9◦ N, 53.2◦ E–39.4◦ N, 55.2◦ E), a well-studied area with
frequent methane point source emissions plumes (Irakulis-
Loitxate et al., 2022). The images were normalised in the
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Figure 6. Example images and predictions taken from the test dataset. Images are 3840× 3840 m composed of 128× 128-pixel tiles. True
emission rates and initial wind speeds are (a) 8068 kg h−1 and 1 m s−1, (b) 1484 kg h−1 and 1 m s−1, (c) 7673 kg h−1 and 5 m s−1, and
(d) 6270 kg h−1 and 4 m s−1. Retrieved methane comes from the retrieval described in Sect. 2.2. RGB image courtesy of PRISMA (© Italian
Space Agency).

same way that the training, test, and validation images were.
A total of 21 plumes were identified using the neural net-
work from 15 different scenes, with predicted emission rates
ranging from 1112–7615 kg h−1 (Fig. 10; Table S3).

Methane plume detection capability using the neural net-
work was compared with using clustering and thresholding
techniques. The DBSCAN clustering technique was used to
estimate clusters based on the output from the PCA retrieval
method (see Sect. 2.2). Out of the 21 plumes, 14 were found
using the clustering and thresholding approach. The neural
network model took roughly 1 min to make predictions of
plume masks, methane concentrations, and emission rates of
located plumes in an image of 1000× 1000 pixels (900 km2

area) without the need for time-consuming human inspection
typically needed for classical clustering approaches.

4 Discussion

Reduction of methane emissions and hence identification
of high emitters can have a considerable influence over the
Earth’s surface radiation budget and hence our efforts to mit-
igate climate change. Methods utilising classical approaches
have had some success in detecting fossil fuel methane point
sources and estimating their emissions, but the errors are high
(roughly 50 % mean absolute error for emission rate predic-
tions) if no accurate local wind speed information is avail-
able, and often time-consuming human judgement is nec-
essary to separate plumes from surface effects. Within the
pseudo-observation dataset produced in this study, only one-
quarter of the images were deemed suitable to be analysed
via visual inspection after using clustering algorithms. This
was due to interference effects from surface features and
demonstrates the limitation of this approach for detecting
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Figure 7. Scatter plot of predicted vs. true mean methane concen-
tration. The true (predicted) average methane concentration was cal-
culated from the average inside the true (predicted) plume.

Figure 8. Actual vs. predicted emission rate using the deep learning
model. Line of best fit calculated using Huber loss, so outliers do not
have an inordinate influence on the slope.

methane point source emissions. In comparison, only 7.7 %
of the pseudo-observations were undetected by the neural
network (Table 1). The binary prediction neural network pre-
sented in this study was able to accurately locate simulated
methane point source plumes. From testing the neural net-
work on a variety of images with and without simulated
plumes, it achieved a precision and recall of 0.96 and 0.92,
respectively. The estimates of emission rate did not require
wind speed information, which is a major source for uncer-
tainty in emission estimates in conventional approaches such
as the IME method and had an average error of 23.7 %, which
is considerably lower than that obtained from our classical
method. The emission rate prediction error could possibly be
further reduced with training on a larger dataset.

The approach used in this study differs from the approach
by Jongaramrungruang et al. (2022), who directly predicted
the emission rate from the satellite data without first esti-

Figure 9. Error in emission rate predictions from the deep learning
model as a function of true emission rate. Positive values indicate
predicted emission rates being larger than true emission rates. Top
panel shows absolute emission rate error, and bottom panel shows
percentage emission rate error.

mating the plume mask. However, we found that exclud-
ing these stages dramatically worsened the model predic-
tion, where the error in emission rate was greater than 50 %.
The model architecture presented here utilises the maximum
amount of information available from the training data. Pos-
sible explanations for why the model from Jongaramrungru-
ang et al. (2022) was nevertheless successful could include
the large training data volume available in their study (in
the order of hundreds of thousands of images), which is an
order of magnitude larger than that available in this study.
This larger training volume may have enabled the neural net-
work to make the link between plume shapes and emission
rates. In addition, the spectral and spatial resolution of the
aircraft imagery used in their study (AVIRIS-NG) is substan-
tially higher than that of PRISMA. Finally, the input bands
for this study totalled 38, whereas in the study of Jongaram-
rungruang et al., (2022), only one band was sufficient due to
the low noise in the signal in the AVIRIS-NG data and high
methane absorption in that band. Thus, it may have been eas-
ier for their neural network to learn features in the image due
to lower noise present.

When producing the training data labels for plume masks,
a constant threshold was chosen for what methane concen-
tration constitutes a plume. However, the minimum methane
concentration that is detectable likely varies depending on
scene noise and brightness. Thus, more work is necessary
to quantify the most appropriate threshold. However, precise
estimates of the edges of a plume are of lesser importance
than the initial identification of a plume and its correspond-
ing emission rate. Additional improvements could be made
with a larger volume and a greater variety of scenes used in
training. This would greatly improve the performance of the
model in different surface types and atmospheric conditions.
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Figure 10. Images of plumes detected by the neural network in the Korpeje oil field, Turkmenistan. Left panels depict physics-based methane
retrievals, middle panels depict the RGB of the image, and the right panels depict the mask prediction by the neural network. The predicted
emission rates are (top) 7615 and (bottom) 2370 kg h−1. RGB image courtesy of PRISMA (© Italian Space Agency).

There is a noticeable bias present in the emission rate pre-
diction errors (Figs. 8, 9), which was also evident in the study
by Jongaramrungruang et al. (2022). This bias should be
rectified, and future work is needed in fine-tuning the neu-
ral network training procedure to do so. Such adjustments
could include modifying the emission rate loss function or
the model architecture. The model was trained only on im-
ages with a single methane point source; thus, the model is
not able to discriminate between emissions from different
sources within a single 128× 128-pixel image. The solution
to this would be to add in training data with multiple sources
and solve the instance segmentation problem using an appro-
priate architecture, such as Mask-RCNN (He et al., 2020). It
is likely that the errors would be larger in general when using
this approach owing to the increased noise present. Never-
theless, the key advantage of this approach is the speed with
which methane plumes can be identified with little specialist
training necessary.

5 Conclusions

In this study, we present a novel deep neural network model
for identifying and quantifying methane point source emis-
sions from PRISMA satellite data. PRISMA data have suf-
ficient spectral and spatial resolution to identify methane
plumes, while still having considerable spatial coverage, and
are still in operation today. These factors make PRISMA an
ideal tool for methane detection, and the deep neural network
developed here has great potential to impact climate mitiga-

tion efforts. The model proved successful with both identifi-
cation and quantification, but biases were present in the pre-
dictions. Rapid identification and quantification of methane
point sources constitute a vital contribution to climate change
mitigation, and the approach outlined here opens the door
to the capability to automate methane plume detection. Our
model was able to produce predictions on an area of 900 km2

over real PRISMA images in less than a minute. Such a ca-
pability will vastly reduce the time and costs associated with
reducing anthropogenic methane emissions.
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freely available online. The WRF-LES model we used to make
the methane release simulations is available for free online, as
are all the PRISMA data used in this study to train the neu-
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