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Abstract. A new algorithm to derive near-real-time (NRT)
data products for the Aura Microwave Limb Sounder (MLS)
is presented. The old approach was based on a simpli-
fied optimal estimation retrieval algorithm (OE-NRT) to re-
duce computational demands and latency. This paper de-
scribes the setup, training, and evaluation of a redesigned
approach based on artificial neural networks (ANN-NRT),
which is trained on > 17 years of MLS radiance observa-
tions and composition profile retrievals. Comparisons of joint
histograms and performance metrics derived between the two
NRT results and the operational MLS products demonstrate
a noticeable statistical improvement from ANN-NRT. This
new approach results in higher correlation coefficients, in ad-
dition to lower root-mean-square deviations and biases at al-
most all retrieval levels compared to OE-NRT. The excep-
tions are pressure levels with concentrations close to 0 ppbv
(parts per billion by volume), where the ANN models fail
to establish a functional relationship and tend to predict 0.
Depending on the application, this behavior might be advan-
tageous. While the developed models can take advantage of
the extended MLS data record, this study demonstrates that
training ANN-NRT on just a single year of MLS observations
is sufficient to improve upon OE-NRT. This confirms the po-
tential of applying machine learning to the NRT efforts of
other current and future mission concepts.

Copyright statement. © 2023. California Institute of Technology.
Government sponsorship acknowledged.

1 Introduction

The Aura Microwave Limb Sounder (MLS) data record is
more than 18 years long, far exceeding the MLS 5-year de-
sign life. Due to its exceptionally long duration and reliabil-
ity (e.g., Hubert et al., 2016; Hegglin et al., 2021; Read et
al., 2022), MLS observations are employed to study a wide
range of atmospheric science topics, such as long-term trends
in atmospheric constituents (e.g., Gaudel et al., 2018; Los-
sow et al., 2018; Strahan and Douglass, 2018; Froidevaux
et al., 2019), global troposphere–stratosphere transport (e.g.,
Neu et al., 2014; Diallo et al., 2019), the influence of strong
convective systems on lower-stratospheric humidity (e.g.,
Schwartz et al., 2013; Werner et al., 2020), and the impact of
wildfires and volcanic eruptions on stratospheric chemistry
(e.g., Pumphrey et al., 2015; Schwartz et al., 2020a; Millán
et al., 2022; Santee et al., 2022), to name just a few.

Processing of the standard retrieval products provided by
MLS takes a little less than a full day and thus cannot be used
in near-real-time (NRT) applications. Therefore, the MLS
team started providing NRT data based on a simplified re-
trieval algorithm for a limited selection of its standard species
in 2008. These products are routinely produced within 3 h of
the MLS observations (Lambert et al., 2022) and can thus
be delivered to the scientific community much more expe-
ditiously. Examples of MLS NRT usage are the assimilation
of MLS NRT ozone (O3) profiles into the Copernicus Atmo-
sphere Monitoring Service (CAMS) from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF; e.g.,
Peuch et al., 2022), in addition to deliveries of O3, water
vapor (H2O), and carbon monoxide (CO) maps over South-
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east Asia during the Asian Summer Monsoon Chemical and
Climate Impact Project (ACCLIP; https://www.eol.ucar.edu/
field_projects/acclip/, last access: 19 December 2022) cam-
paign in 2022 (Pan et al., 2022). MLS NRT O3 and tem-
perature (T ) profiles are also assimilated by the numerical
weather prediction model of the Naval Research Laboratory
(Hoppel et al., 2008), while NRT H2O and sulfur dioxide
(SO2) are part of the NASA Major Volcanic Eruption Re-
sponse Plan (NASA, 2018). While MLS NRT data help to
constrain the model forecasts, monitor the stratosphere dur-
ing volcanic eruptions, and aid flight planning during air-
craft campaigns, they are less reliable than the standard MLS
products and require careful screening procedures (Lambert
et al., 2022).

Recent years have seen a proliferation of the application of
machine learning approaches in atmospheric sciences, from
the dimensionality reduction of satellite observations (e.g.,
Del Frate et al., 2005), estimates of aerosol particle load-
ing (e.g., Grivas and Chaloulakou, 2006) and cloud cover
(e.g., Saponaro et al., 2013; Werner et al., 2020), and land
cover studies (e.g., Campos-Taberner et al., 2020) to weather
and climate modelling (e.g., Schultz et al., 2021). Two of the
main benefits of applying machine learning techniques to an-
swer atmospheric science questions are (i) pattern recogni-
tion, enabling the identification of previously unknown or
poorly understood relationships between observations and
the atmospheric state, and (ii) the increase in computational
efficiency, leading to faster turnaround times in predicting the
atmospheric variable of interest.

In this study, we describe an updated Aura MLS NRT
setup that applies artificial neural networks (ANNs) to fa-
cilitate faster and more reliable predictions of MLS NRT
constituent profiles. This new algorithm provides both of the
abovementioned benefits of machine learning techniques be-
cause (i) it pinpoints the relevant MLS radiance observations
that reliably determine the individual species profiles and (ii)
yields NRT profile predictions an order of magnitude faster
than the previous algorithm it replaces. The paper is struc-
tured as follows: an introduction to MLS observations, re-
trieved data products, and retrieval algorithms is given in
Sect. 2. An overview of the ANN setup, training, and eval-
uation is presented in Sect. 3. A comparison of the former
and updated NRT algorithm encompassing joint histograms,
performance metrics, and global maps is given in Sect. 4.
The main conclusions and a brief summary are presented in
Sect. 6.

2 Data

Aura MLS has observed brightness temperatures from five
spectral frequency ranges centered around 118, 190, 240,
640, and 2500 GHz since 2004 (Waters et al., 2006). The
2500 GHz band targeted the hydroxyl radical; it was deac-
tivated in 2010 and is not considered here. Table 4 in Wa-

ters et al. (2006) and Fig. 2.1.1 in Livesey et al. (2022) give
an overview and additional details on individual MLS bands
and channels in addition to the specific absorption charac-
teristics of the various atmospheric constituents that are tar-
geted. Daily MLS observations comprise ≈ 3500 vertical
limb scans (called major frames; MAFs), each of which takes
≈ 20 s to complete. Each MAF consists of 125 radiance in-
tegrations (called minor frames; MIFs) during a continuous
vertical scan of the limb. In this study, MLS brightness tem-
peratures sampled over 2005–2022 are used as the input vari-
ables (commonly called “features”) for each of the trained
ANN models.

MLS brightness temperatures provide the means for the
profile retrievals of various atmospheric properties and trace
gas concentrations. Here, retrieved profiles of temperature
(T ), in addition to concentrations of H2O, O3, CO, SO2,
nitric acid (HNO3), and nitrous oxide (N2O), provide the
output variables (commonly called “labels”) for each ANN
model. The MLS level 2 (L2) geophysical product files re-
port the respective operational profile retrievals; we use the
most recent data, which are found in version 5 (Livesey et
al., 2022). The spatial resolution of the L2 products depends
on the species of interest, but typical values are 3 km in the
vertical and 5 and 500 km in the cross-track and along-track
dimensions, respectively. The along-track distance between
adjacent profiles is ≈ 165 km. Only valid data, following
the detailed data screening rules provided in Livesey et al.
(2022), are considered. Information on the species-specific
time range considered for training the ANN, in addition to
the employed MLS bands, channels, and MIFs used as input
for the ANNs, are summarized in Table 1.

Results of the ANN algorithm are also compared to those
of the previous NRT retrievals based on optimal estimation
(OE-NRT). The OE-NRT retrievals are based on a modified
L2 algorithm, which is necessary to reduce the data and com-
putational resources. This imposes a number of limitations
on the NRT products, such as a reduced number of valid pro-
file retrievals and limitations on the recommended pressure
ranges. Individual screening rules and recommendations are
provided in Lambert et al. (2022); note that, since January
2023, all MLS NRT data products have been based on this
new approach (ANN-NRT).

3 Artificial neural network

This section describes the theory, training process, settings,
performance evaluation, and data quality assessment of the
updated, ANN-based NRT algorithm. The goal is to train
ANN models on all valid MLS L2 standard product retrievals
over 1 January 2005–31 August 2022 and their associated,
nearest-brightness temperature profiles. Since the MLS L2
standard products are used as labels (i.e., “truth”) during
training, the best-case output of each ANN is a computation-
ally inexpensive, high-fidelity preview of the L2 profiles.
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Table 1. Summary of input features and hyperparameters for each ANN model. See the text for more details. Note: n/a – not applicable.

Data record Samples Bands Channels MIFs JHL JN AF LRP GNS MBS
(mm/dd/yyyy)

T 01/01/2005–05/31/2021 19 084 479
1 1–25

23–97 2 5078 ReLU n/a 1× 10−1 81928 1–25
22 40–90

H2O 01/01/2005–03/31/2022 20 830 018

1 1–25

23–126 2 400 Tanh 5× 10−4 n/a 32
2 1–25
3 1–25

23 40–90

O3 01/01/2005–04/30/2022 21 296 092

1 1–25

23–126 2 400 Tanh n/a 1× 10−1 32
7 1–25
8 1–25

24 40–90

CO-UTLS 01/01/2005–04/30/2022 15 959 662
8 1–25

23–56 2 1068 Tanh n/a n/a 32
9 1–22

CO 01/01/2005–04/30/2022 15 957 189

1 1–25

23–126 2 800 Tanh n/a n/a 32
8 1–25
9 1–22

25 40–90

SO2

08/07/2008–09/02/2008

374 088 8 1–25 23–126 2 1739 ReLU n/a 1× 10−1 32

04/23/2015–05/07/2015
06/14/2009–07/19/2009
06/13/2011–06/28/2011
06/22/2019–08/18/2019
01/14/2022–01/28/2022

HNO3 01/01/2005–08/31/2022 21 347 932

1 1–25

23–126 2 400 Tanh 5× 10−4 n/a 32
4 1–25
6 1–25

33 1–4

N2O 01/01/2005–08/31/2022 18 723 676
1

1–25 23–126 2 400 Tanh 5× 10−4 n/a 323
8

3.1 Theory and general setup

A feed-forward ANN is a type of machine learning model
that consists of sequential layers that contain a large number
of connected neurons, where the information is only propa-
gated forward from layer to layer. Propagating information
backwards is not permitted. A more in-depth description of
ANN setups and the involved mathematics can be found in,
e.g., Reed and Marks (1999), Goodfellow et al. (2016), and
Werner et al. (2021). Similar to the latter study, the model
setup and determination of model weights are facilitated by
the Keras library for Python (version 2.2.4; Chollet et al.,
2015), with TensorFlow (version 1.13.1) as the back end
(Abadi et al., 2016).

A simplified sketch of the general model setup is shown in
Fig. 1. Note that the actual setup for each individual ANN-
NRT model is notably more complex. The input layer, shown
in blue, contains an m×n matrix of n features sampled at m

different times and/or locations. In this study, the features

are n MLS brightness temperatures from individual spectral
bands, channels, and MIFs from m different MAFs (see Ta-
ble 1 for the model-specific details). An example of a single
MAF of MLS band-2 radiances is illustrated in Fig. 1; the
transition from black to white colors indicates the profiles
sampled in channels 1–25. Each feature in the input layer
is connected to individual neurons in the first hidden layer
(N1,j , j = [1,2, . . .,J ]), which is shown in green. Each neu-
ron value is derived as a linear superposition of the weighted
input features. A subsequent activation layer introduces a
degree of nonlinearity. The simplified model in Fig. 1 con-
sists of a second hidden layer that contains neurons N2,j ,
n= [1,2, . . .,J ]. Here, each neuron value is calculated as
a linear superposition of the weighted neuron output of the
first hidden layer, after it passed through the first activation
layer. Finally, following a second activation layer, there is
the output layer (shown in dark orange), which consists of
an m× k matrix of k different labels. Here, the labels are
values from individual profiles of a specific MLS-retrieved
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Figure 1. Simplified sketch of the algorithm setup.

L2 atmospheric constituent. Therefore, the size of k is de-
termined by the number of retrieval levels of the respective
MLS L2 product. An example of a single O3 profile is shown
in Fig. 1. As before, each neuron N2,j in the second hidden
layer is connected to each of the k labels by means of indi-
vidual weights.

A detailed description of the training procedure is given
in Werner et al. (2021). The necessary steps include ran-
domly splitting the complete data set into training, valida-
tion, and test data (75 %, 20 %, and 5 % for each model in
this study), determining the optimal hyperparameters via k-
fold cross-validation, and the final training and validation of
the model with the best set of hyperparameters. The hyperpa-
rameters that were considered in each model setup, some of
which are described in more detail below, are (i) the number
of hidden layers (JHL), (ii) the number of neurons per hid-
den layer (JN), (iii) the activation function (AF) employed
in the activation layer, (iv) the amount of regularization, ei-
ther via weight decay (i.e., the L2 regularization parameter;
LRP) or alternatively the standard deviation of an extra Gaus-
sian noise layer (GNS), and (v) the mini-batch size (MBS).
The variables nHL and nN determine the complexity of the
model. The choice of AF specifies the nonlinear mathemati-
cal transformation of the individual neuron output. Introduc-
ing an LRP is one method to introduce regularization during
the ANN training, which usually improves the generalization
of the model predictions for previously unseen data. Another
method is to add Gaussian noise to each neuron input; the
standard deviation of the noise added directly impacts the
level of regularization. During the training process, the model
weights are determined by iteratively minimizing a prede-
fined loss function (the root-mean-square error or RMSE in
this study). Instead of using the full training data set during
each iteration, only a random subset of the training data is
used, as determined by the parameter MBS. This approach
not only improves the generalization of the models (due to
the introduced noise when minimizing the loss function) but
also speeds up the training process.

Three additional hyperparameters that are not listed here
are the choice of optimizer that minimizes the loss function
during training, the learning rate, which affects the speed of
convergence during training, and the number of “epochs”,

which is the number of iterations during training. We found
that Adam optimization, with a learning rate of 10−5, yielded
the best model performance for each of the NRT species.
Each model was trained with ≈ 10000 epochs, and the low-
est validation loss was recorded. The ideal model weights
are those associated with the minimum validation loss. Ad-
ditional information about hyperparameters and their impact
on model performance is given in, e.g., Reed and Marks
(1999) and Goodfellow et al. (2016).

We considered the following ranges and set-
tings: JHL = [1,2], JN = [100,200, . . .,2/3 · (n+ k)]

per hidden layer, AF= [“ReLU”,“Tanh”], LRP=
[n/a,1× 10−6,5× 10−6,1× 10−5, . . .,1× 10−1

],
GNS= [n/a,1× 10−3,5× 10−3,1× 10−2, . . .,1], and
MBS= [32,64, . . .,8192].

The computational costs associated with the training pro-
cedure of each ANN-NRT model, while dependent on the re-
spective hyperparameters and size of the m×n input matrix,
are generally as follows: it takes about 1 month to develop
and train each ANN, using 12 CPUs and requiring≈ 100 GB
of memory.

3.2 Hyperparameters and performance metrics for
each model

Table 1 gives an overview of the ideal hyperparameters for
each NRT species, which can be determined after a com-
prehensive training procedure. It also provides details on the
features that make up the input matrix for each ANN-NRT
model, namely the start and end dates that define the train-
ing data record for each model, the number of total samples
in that data record (determined by the number of successful
profile retrievals), and the respective MLS bands, channels,
and MIFs. Note that the MIFs for all models basically cover
the vertical range of ≈ 400–0.001 hPa. Since the models for
each of the target species were developed separately, the end
dates for the employed training data vary slightly. The choice
of bands and channels was based on the absorption charac-
teristics of each target molecule, in addition to the possible
interference of other species.

Note that the model setups for T , CO, and SO2 differ
from those of the other species. The T model is considerably
more complex, with comparatively high values of JN = 5078
and MBS= 8192. The ANN-based estimator for tempera-
ture was developed before those for the other products, with
less regard for the computational cost than was present in the
subsequent development. The computationally more expen-
sive temperature model is “overbuilt” but had already been
trained, so it was used in this version of the NRT products.

MLS mid-stratospheric observations of CO are basically
just noise, which negatively affected model performance
in the upper troposphere/lower stratosphere (UTLS) and in
the upper stratosphere/mesosphere, where CO signals are
stronger. The CO NRT product is of particular interest in the
UTLS. As a result, we decided to train two different CO mod-
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els, namely one for the four MLS retrieval levels in the UTLS
between 215 and 68 hPa and a second one for all other levels
(including noisy levels in the middle stratosphere). The final
CO profile predictions are a combination of both models.

Similarly, MLS SO2 retrievals at all stratospheric levels
can be considered noise under standard atmospheric condi-
tions. Elevated values are observed in air masses perturbed
by volcanic eruptions. As a result, the SO2 model was devel-
oped with a reduced data set covering periods of volcanic ac-
tivity, namely the eruptions of Kasatochi, Calbuco, Sarychev,
Nabro, Raikoke, and Hunga Tonga–Hunga Ha’apai (e.g.,
Pumphrey et al., 2015; Millán et al., 2022). An explanation
to justify this decision is given below.

The hyperparameters reported in Table 1 are the ANN-
NRT settings associated with the models that exhibited
the highest performance scores during the training process.
These scores were derived by comparing the ANN-NRT pre-
dictions with the respective MLS L2 results for all MAFs in
both the validation and an independent test data set. The dis-
tinction between the two is important. Following the discus-
sion in Ripley (1996) and Russel and Norvig (2009), the val-
idation data are used for hyperparameter tuning and to pre-
vent overfitting during model training. To truly evaluate the
performance of a trained model, a completely independent
test data set is necessary. However, the performance scores
for the validation and test data set should be similar, and
large discrepancies are an indication that the trained model
does not generalize well (i.e., the model performs worse for
previously unseen data). Note that of the ≈ 3500 daily pro-
files MLS has observed since 1 January 2005, ≈ 875 and
≈ 175 randomly selected samples are included in the vali-
dation and test data set, respectively. This means that three
specific scores were considered, namely Pearson’s product–
moment correlation coefficient (R), the root-mean-square de-
viation (RMSD), and the median of the relative deviation be-
tween the derived ANN-NRT prediction and the L2 product
(i.e., the bias).

The performance metrics derived for the validation and in-
dependent test data set for each of the different ANN-NRT
models are presented in Table 2. Since each of the MLS
constituents describes a profile retrieval, the average over
all valid retrieval levels is reported. With the exception of
the SO2 predictions, the average R and absolute biases for
the test data set are > 0.72 % and < 0.66 %, respectively.
The ANN models designed to predict T , H2O, and O3 per-
form particularly well, with R > 0.88, RMSD < 13 %, and
biases < 0.32 %. The very close agreements between the in-
dividual validation and test scores demonstrate that the de-
rived models generalize well. As mentioned in Sect. 2, strato-
spheric L2 retrievals in the absence of elevated levels of SO2
can be considered noise, and comparisons between L2 and
ANN-NRT results are difficult (R = 0.26 and bias > 11 %).
If the training data set is increased to include all MLS re-
trievals between 1 January 2005 and 30 April 2022 (named
the second model in Table 2) rather than being restricted to

volcanic activity, then the associated correlation coefficients
and biases slightly improve to 0.37 and < 7 %, indicating a
better ability to predict noise. However, further analysis indi-
cates that this model performs slightly worse for profiles con-
taining elevated SO2 concentrations; correlation coefficients
for such profiles in the test data set are decreased by about
0.05 (R = 0.52 compared to R = 0.57), while the RMSD
increases by about 0.31 ppbv (parts per billion by volume;
5.72 ppbv compared to 5.41 ppbv). Since the main objective
of the SO2 NRT is to detect volcanic activity, we decided to
employ the model trained on the reduced (volcanic only) data
set.

3.3 Data quality assessment

The OE-NRT retrieval provides numerous diagnostic quan-
tities, similar to the operational MLS retrieval algorithm
(Livesey et al., 2006), such as the estimated precision, sta-
tus, and convergence, as well as an overall quality flag. Un-
fortunately, none of these quantities is available from the
ANN predictions. Indeed, standard implementations of feed-
forward ANNs do not provide any metrics for uncertainty
quantification. ANN uncertainty comprises epistemic uncer-
tainty, associated with limitations in the data set (i.e., not
enough years to represent all possible atmospheric states),
and aleatoric uncertainty, associated with uncertainties in the
features and labels the model was trained on (i.e., measure-
ment uncertainties in the MLS-observed brightness temper-
atures and retrieval uncertainties in composition profiles).
Note that the retrieval uncertainties for the labels comprise
uncertainties in the forward model and the prior assumptions.

Uncertainties in the ANN-NRT predictions for each com-
position profile value are derived by calculating the root sum
square of (i) the typical MLS L2 precisions for the given
pressure level taken from the training data set and (ii) the
RMSD between the MLS L2 products and the predictions
for the independent test data set. Negative precisions are as-
signed to values outside the valid pressure range, profiles in
overlap regions (see Lambert et al., 2022), and those contain-
ing invalid radiances. Data values with negative precisions
should not be used.

An additional data quality check assures that predictions at
each pressure level are within a predefined confidence range.
This range is derived from the minimum and maximum of
the MLS L2 composition retrievals at each retrieval level,
which is taken from the combined training, validation, and
test data set. If a profile contains a prediction, at any level,
that is smaller (bigger) than the minimum (maximum) value,
then all the associated precisions are set to be negative. In
other words, extrapolations by the ANNs are not permitted.
Other MLS data quality metrics like status, convergence, and
quality are not used.
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Table 2. Summary of the performance metrics for the validation data set and an independent test data set for each of the ANN-NRT models,
namely the average correlation coefficient (R), the average root-mean-square deviation (RMSD), and the average bias. Averages are calcu-
lated over all valid pressure levels. Percentages for both the RMSD and bias are calculated by normalizing by the average L2 value at each
level. Note that ppmv and ppbv stand for parts per million by volume and parts per billion by volume, respectively.

Validation data Test data

R RMSD Bias R RMSD Bias

T 0.96
1.65 K 0.01 K

0.96
1.66 K 0.01 K

(0.77 %) (< 0.01 %) (0.77 %) (< 0.01 %)

H2O 0.87
7.75 ppmv 0.32 ppmv

0.87
7.52 ppmv 0.32 ppmv

(13.02 %) (0.31 %) (12.66 %) (0.32 %)

O3 0.95
0.12 ppmv < 0.01 ppmv

0.95
0.12 ppmv < 0.01 ppmv

(9.85 %) (0.06 %) (9.86 %) (0.06 %)

CO-UTLS 0.72
0.14 ppbv < 0.01 ppbv

0.72
0.14 ppbv < 0.01 ppbv

(24.43 %) (0.16 %) (24.43 %) (0.16 %)

CO 0.74
0.40 ppbv < 0.01 ppbv

0.74
0.40 ppbv < 0.01 ppbv

(69.53 %) (0.49 %) (69.42 %) (0.48 %)

SO2 0.27
5.52 ppbv −0.05 ppbv

0.26
5.45 ppbv 0.05 ppbv

(111.81 %) (−56.76 %) (−206.99 %) (−11.89 %)

SO2 (second model) 0.37
4.88 ppbv < 0.01 ppbv

0.37
4.87 ppbv < 0.01 ppbv

(−1065.92 %) (6.17 %) (−419.34 %) (5.73 %)

HNO3 0.75
0.56 ppbv < 0.01 ppbv

0.75
0.56 < 0.01 ppbv

(−101.65 %) (0.83 %) (−6.42 %) (−0.66 %)

N2O 0.89
7.95 ppbv −0.02 ppbv

0.89
7.95 ppbv −0.02 ppbv

(91.77 %) (0.07 %) (93.03 %) (0.01 %)

4 Results

This section presents comparisons between MLS L2 pro-
file retrievals and the respective OE-NRT and ANN-NRT
predictions. These observations were made after the respec-
tive ANN-models were developed, trained, and evaluated and
serve as examples of model performance going forward.

4.1 Statistical comparison with MLS L2

Figure 2a and c show joint histograms of the OE-NRT and
L2 T retrievals at 21.54 hPa (in the middle stratosphere)
and 100.00 hPa (in the UTLS). Data are from MLS obser-
vations over 1–31 July 2021, a period not employed in the
ANN-NRT training process. Similar comparisons between
the ANN-NRT predictions and L2 retrievals are shown in
Fig. 2b and d. Not only are the ANN-NRT distributions nar-
rower at both of the levels shown but also there are fewer
outliers far away from the 1 : 1 line. Compared to the OE-
NRT results, the ANN-NRT predictions exhibit higher cor-
relation coefficients (R = 0.98,0.99 vs. R = 0.99,1.00 for
100.00 and 21.54 hPa, respectively) and a smaller range of
minimum/maximum deviations from the L2 results.

Similar joint histograms for H2O are shown in Fig. 2e–
h. Because this ANN-NRT model was trained well after

the T model, and the training data include MLS observa-
tions sampled as late as April 2022, the comparisons shown
here are for 1–31 May 2022. This provides the means to (i)
assess ANN-NRT performance for previously unseen data
and (ii) evaluate the ability of ANN-NRT to reproduce the
unprecedented H2O enhancements in the persistent Hunga
Tonga–Hunga Ha’apai plume (e.g., Millán et al., 2022). The
H2O distribution at 21.54 hPa reveals a significant underes-
timation in the OE-NRT retrievals for profiles with H2O >

8 ppmv (parts per million by volume) associated with the vol-
canic plume. In contrast, the ANN-NRT can reliably predict
values of up to 16 ppmv. At 100.00 hPa, the ANN-NRT dis-
tribution is noticeably narrower, with fewer outliers off the
1 : 1 line compared to the OE-NRT results. At the 100 hPa
pressure level, the ANN-NRT predictions have a significantly
higher correlation coefficient than the OE-NRT retrievals
(R = 0.80 compared to R = 0.66), while the 1st and 99th
percentiles of the differences with L2 are reduced (0.9 ppmv
compared to 1.3 ppmv). At the 21.54 hPa level, both NRT
products exhibit R = 0.98.

Comparisons of L2, OE-NRT, and ANN-NRT O3 are
shown in Fig. 2i–l. The OE-NRT algorithm performs well
at both levels, with R = 1.00 and only a few obvious outliers
observed, while ANN-NRT provides similarly good perfor-
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Figure 2. (a) Joint histograms of T derived from OE-NRT and L2 at 21.54 hPa. Data are from MLS observations over 1–31 July 2021. The
gray diagonal line indicates the 1 : 1 correlation. Panel (b) is similar to panel (a) but shows joint histograms of the ANN-NRT and L2 results.
Panels (c and d) are the same as panels (a and b) but at 100.00 hPa. Panels (e–h) and (i–l) are similar to panels (a–d) but for H2O and O3
over 1–31 May 2022.

mance (R = 1.00 at both levels). Joint histograms between
L2 retrievals and the OE-NRT results, in addition to the
ANN-NRT predictions for CO, SO2, HNO3, and N2O, are
shown in Fig. A1 in the Appendix.

Figure 3 presents the profiles of three metrics that char-
acterize the performance of the two NRT algorithms. Fig-
ure 3a–c show the derived R, RMSD, and bias between
T from L2 and OE-NRT (red) and between L2 and ANN-
NRT (blue). At all retrieval levels, the ANN-based T predic-
tions have higher R (> 0.950) and lower RMSD (< 3.4 %).

The ANN-NRT bias shows little vertical variability and is
within ±0.3 % at all levels, whereas the OE-NRT bias shows
some oscillatory behavior and much larger variability (values
within ±1.5 %).

The recommended range for the OE-NRT H2O retrievals
is 147–1 hPa. Here, the performance metrics for the ANN-
NRT predictions compare well to those of the OE-NRT re-
trievals, and the derived R, RMSD, and bias values are very
similar (Fig. 3d–f). Outside of that range, the OE-NRT per-
formance degrades noticeably, and ANN-NRT yields more
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Figure 3. (a) Profiles of correlation coefficient (R) between OE-NRT and L2 T (red) and the ANN-NRT and L2 results (blue). Data are
from MLS observations over 1–31 July 2021. The vertical extent is defined by the recommended L2 data screening procedures; gray areas
indicate levels at which the OE-NRT product is not recommended for scientific use. Panels (b) and (c) are the same as panel (a) but show
the root-mean-square deviation (RMSD) and bias, respectively. Both the RMSD and bias are normalized by the average L2 T at each level.
Panels (d–f) and (g–i) are similar to panels (a–c) but for H2O and O3, respectively, over 1–31 May 2022.

reliable H2O values that are closer to the L2 retrievals. Here
R is > 0.75, RMSD is < 65 %, and the bias is within 15 %.
In the case of the O3 retrievals (Fig. 3g–j), the derived R

values for the OE-NRT and ANN-NRT algorithms are very
similar. Only above ≈ 1 hPa does the OE-NRT performance
suffer, and the correlations between the L2 and the ANN-
NRT results are more than 0.1 higher. At almost all retrieval
levels, the ANN-NRT exhibits slightly smaller RMSD and
biases compared to the OE-NRT algorithm. Similar profiles

for CO, SO2, HNO3, and N2O are shown in Fig. A2 in the
Appendix.

A summary of the average performance metrics is given in
Table 3, derived for the same time period as is used in Figs. 2,
3, A1, and A2. Specifically, the presented metrics are R, the
average absolute RMSD, and the average absolute bias for
each species and the two NRT algorithms, as well as the av-
erages of the 1st and 99th percentiles of the differences com-
pared to L2 (as a proxy for the minimum and maximum devi-
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Table 3. Summary of average correlation coefficient (R), average absolute root-mean-square deviation (RMSD), and average absolute bias,
as well as the averages of the 1st and 99th percentiles of the difference between the various OE-NRT and L2 products and the ANN-NRT and
L2 results. Percentages for the RMSD, bias, and percentile differences are calculated by normalizing by the average L2 value at each level.
Averages are calculated over all valid OE-NRT pressure levels.

R RMSD Bias 1st percentile 99th percentile

OE ANN OE ANN OE ANN OE ANN OE ANN

T 0.95 0.99
4.31 K 2.14 K 1.13 K 0.16 K −10.64 K −5.15 K 10.15 K 5.20 K
(2.00 %) (1.01 %) (0.50 %) (0.07 %) (−4.94 %) (−2.43 %) (4.72 %) (2.44 %)

H2O 0.82 0.85
0.54 ppmv 0.36 ppmv 0.19 ppmv 0.03 ppmv −1.29 ppmv −0.95 ppmv 1.28 ppmv 0.96 ppmv
(11.03 %) (7.21 %) (3.99 %) (0.61 %) (−26.77 %) (−19.20 %) (26.42 %) (19.47 %)

O3 0.95 0.97
0.15 ppmv 0.11 ppmv 0.04 ppmv < 0.01 ppmv −0.33 ppmv −0.28 ppmv 0.31 ppmv 0.27 ppmv
(9.93 %) (6.79 %) (1.79 %) (0.18 %) (−21.04 %) (−16.95 %) (23.56 %) (16.40 %)

CO-UTLS 0.68 0.78
17.52 ppbv 13.04 ppbv 6.79 ppbv 0.56 ppbv −32.55 ppbv −30.04 ppbv 39.92 ppbv 30.66 ppbv
(37.18 %) (27.83 %) (12.07 %) (1.18 %) (−72.60 %) (−64.04 %) (84.39 %) (65.25 %)

CO 0.79 0.75
104.17 ppbv 94.00 ppbv 14.40 ppbv 12.13 ppbv −252.65 ppbv −257.86 ppbv 247.13 ppbv 238.02 ppbv
(62.19 %) (58.52 %) (12.92 %) (7.59 %) (−148.00 %) (−156.18 %) (139.53 %) (134.42 %)

SO2 0.26 0.56
8.03 ppbv 5.44 ppbv 1.44 ppbv 0.08 ppbv −18.47 ppbv −13.18 ppbv 19.04 ppbv 12.83 ppbv

(January 2022) (923.39 %) (610.92 %) (115.73 %) (9.16 %) (355.89 %) (289.23 %) (−244.61 %) (−238.91 %)

SO2 0.20 0.27
7.67 ppbv 6.01 ppbv 1.52 ppbv 0.23 ppbv −17.36 ppbv −14.00 ppbv 17.95 ppbv 14.18 ppbv

(May 2022) (1029.03 %) (778.25 %) (146.28 %) (32.51 %) (87.57 %) (147.09 %) (112.68 %) (−157.35 %)

HNO3 0.73 0.72
0.79 ppbv 0.58 ppbv 0.14 ppbv 0.12 ppbv −1.96 ppbv −1.49 ppbv 1.66 ppbv 1.03 ppbv
(49.38 %) (39.12 %) (6.19 %) (13.17 %) (−119.60 %) (−105.40 %) (110.05 %) (53.57 %)

N2O 0.96 0.94
26.53 ppbv 8.85 ppbv 22.29 ppbv 0.50 ppbv −16.47 ppbv −20.75 ppbv 43.84 ppbv 20.76 ppbv
(46.92 %) (44.84 %) (34.33 %) (1.83 %) (−76.91 %) (−102.82 %) (58.44 %) (105.66 %)

ations). Averages are calculated over all valid pressure ranges
(excluding levels not recommended for OE-NRT). Note that
two sets of SO2 statistics are shown, with one set based on
MLS observations in January 2022, which are affected by
the Hunga Tonga–Hunga Ha’apai volcanic eruption and were
included in training data set, and a second set based on sam-
ples in May 2022 with no volcanic influence. Except for the
stratospheric CO, N2O, and HNO3 models, the ANN-NRT
predictions always exhibit higher R, lower RMSD, lower bi-
ases, and lower minimum and maximum differences com-
pared to L2. These three species are sampled at a number of
stratospheric levels, where the retrieved concentrations are
very close to 0 and can be considered noise. As illustrated
in Figs. A1 and A2, the OE-NRT algorithm statistically fits
that noise better than the ANN-NRT models. Apart from the
noisy retrieval levels, the ANN-NRT approach provides pro-
file predictions that agree better with the operational MLS L2
data products.

4.2 Global maps for individual example days

Figure 4a presents the global maps of temperatures provided
by the operational MLS L2 algorithm (left column), the OE-
NRT product (middle column), and the ANN-NRT predic-
tions (right column). Data are from 12 July 2021, a repre-
sentative example day that was not part of the training data
set and thus unseen by the ANN-NRT model. Each tem-
perature product is shown at two different levels, namely at

100.00 hPa in the UTLS (bottom panels) and at 21.54 hPa in
the middle stratosphere (top panels). At both levels, the three
data products provide similar results, and both the OE-NRT
and ANN-NRT algorithms reproduce the general patterns ob-
served in the L2 temperatures. Compared to the L2 results,
the OE-NRT product exhibits an increased frequency of in-
valid retrievals, as reflected by the areas in white over the
Southern Ocean.

Similar example maps for H2O and O3 on 22 May 2022
are shown in Fig. 4b and c. At 100.00 hPa, there are areas
with strong overestimates of the H2O from OE-NRT com-
pared to L2 (dark blue colors), while concentrations in the
tropics and subtropics are generally underestimated (light vi-
olet colors). Here, the ANN-NRT performs more reliably,
and the results are closer to the L2 data. A notable exception
is the area of increased H2O over India and parts of Southeast
Asia, where the ANN-NRT underestimates the L2-retrieved
concentrations. This region is characterized by strong and
deep convection during the monsoon months that affects
the sampled radiance profiles and may introduce uncertain-
ties into the ANN model predictions. Maps of 100.00 hPa
H2O concentrations on other days during that week indi-
cate that slight underestimations persist in this area; how-
ever, the ANN-NRT predictions generally are much closer
to the L2 results than are the OE-NRT retrievals. At the same
100.00 hPa level, the OE-NRT algorithm also yields slight
overestimates of tropical O3, indicated by the lighter blue
colors. In the middle stratosphere at 21.54 hPa, the signifi-
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Figure 4. (a) Maps of derived T provided by the MLS L2, OE-NRT, and ANN-NRT algorithm at two different levels on 12 July 2021.
Panels (b) and (c) are similar to panel (a) but for H2O and O3, respectively, on 22 May 2022.

cant underestimates of tropical H2O from the OE-NRT re-
trievals is evident, which confirms the results seen in Fig. 2e.
The ANN-NRT algorithm is able to replicate the elevated
L2 concentrations. At this level, the O3 concentrations from
the two NRT approaches are very similar. The only obvious
difference is the area of low concentrations over Antarctica,
which is completely missed by the OE-NRT algorithm and
is overestimated (in area) by ANN-NRT. Note that profiles
sampled in this region are affected by radiances that are re-
flected by the surface (see Fig. 7d in Werner et al., 2021, and
the relevant discussion), which might impact the reliability
of the ANN predictions. Similar maps for CO, SO2, HNO3,
and N2O are shown in Fig. B1 in the Appendix.

5 ANN-NRT performance for different amounts of
training data

The analysis in Sect. 4 illustrates that the new ANN-NRT
algorithm generally provides reliable results in closer agree-

ment to the operational MLS L2 products (compared to OE-
NRT). This shows that it is possible, potentially advisable,
to employ machine learning techniques to obtain more reli-
able NRT data products for current and future mission con-
cepts. However, the good performance of ANN-NRT may
hinge on the long MLS data record, which encompasses more
than 17 years of global observations. If ANN-based NRT ap-
proaches only provide reliable results when trained on exten-
sive data sets that only become available after many years
of observations, then machine learning might be a less at-
tractive solution after all. In order to test how the amount
of available training data affects the reliability of the ANN-
NRT predictions, we calculated performance metrics for two
of the ANN-NRT models in this study when trained with dif-
ferently sized training data sets. Note that the training data
size refers to all data involved in the training and evaluation
procedure and thus also includes the validation and test data
set. For the analysis in this section, the size of the training
data was first set to 1 year and subsequently doubled to 2,

Atmos. Meas. Tech., 16, 2733–2751, 2023 https://doi.org/10.5194/amt-16-2733-2023



F. Werner et al.: MLS near-real-time products from machine learning 2743

4, and 8 years. The performance metrics derived for each of
these models were then compared to the ones for the fully
trained ANN-NRT algorithm, i.e., using the data records in-
dicated in Table 1. We focus on the models for T and O3; i.e.,
quantities for which the OE-NRT algorithms perform com-
paratively poorly and well, respectively.

Figure 5 shows the average R, RMSD, and bias between
the operational MLS L2 retrievals and both the OE-NRT and
ANN-NRT results for the two species. Similar to the anal-
ysis in Figs. 2 and 3, the comparisons are based on obser-
vations over 1–31 July 2021 (T ) and 1–31 May 2022 (O3).
Averages (red lines and blue dots for OE-NRT and ANN-
NRT, respectively) and standard deviations (blue error bars;
for clarity, these are only shown for the ANN-NRT predic-
tions) are calculated over all valid pressure levels following
the data screening procedures for the OE-NRT products, thus
ignoring the levels in the extended ANN-NRT range indi-
cated in Sect. 4.1. It is obvious that, for both species, aver-
age R values increase monotonically with increasing train-
ing data size, while the average RMSD monotonically de-
creases. At the same time, the standard deviation for each
metric slightly decreases. A very small increase in the aver-
aged absolute biases for the T models is observed. However,
these absolute biases are in the range of 0.11–0.16 K (0.05–
0.06 K if both positive and negative biases are averaged) and
can be considered negligible. Note that similar analysis for
the 1st and 99th percentiles of the difference between MLS
L2 retrievals and each ANN-NRT model prediction shows a
monotonically decreasing behavior with increasing training
data size.

Surprisingly, even if just a single year of observations is
available to train the ANN-NRT T model, the derived perfor-
mance metrics show a significant improvement when com-
pared with the OE-NRT results. Here, R increases from 0.95
to 0.98, the RMSD is reduced from 2.00 % to 1.17 %, and the
absolute bias is reduced from 0.50 % to 0.06 %. Even for O3,
where the current NRT algorithm performs rather well, the
ANN model trained on 1 year of MLS observations yields
noticeable improvements. While the correlation coefficients
and RMSD are comparable (0.95 vs. 0.94 and 9.93 % vs.
10.10 %), the absolute bias is reduced from 1.79 % to 0.37 %.

These results illustrate that the simplified OE-NRT re-
trieval algorithm could have been replaced by machine learn-
ing approaches as early as 1 year after the beginning of the
mission, which would have resulted in more reliable NRT
data products.

6 Conclusions

The previous version of MLS NRT data products (OE-NRT)
is replaced with predictions from an artificial neural net-
work (ANN). This paper describes the setup and evaluation
of ANN models for all MLS NRT species. Starting in Jan-

uary 2023, all MLS NRT data products are based on this new
approach (ANN-NRT).

The biggest improvements compared to OE-NRT are ob-
served for T , water vapor (H2O), and O3. The analysis in
this study shows that for these products the ANN-NRT algo-
rithm yields noticeably higher correlation coefficients (R), in
addition to lower root-mean-square deviations (RMSD) and
biases when compared to the operational L2 results.

The ANN-NRT predictions for carbon monoxide (CO), ni-
tric acid (HNO3), and nitrous oxide (N2O) are characterized
by good performance at most retrieval levels. However, the
OE-NRT algorithm does a better job at fitting the L2 noise
for concentrations close to 0 ppbv. Here, ANN-NRT tends
towards predicting 0 ppbv regardless of the L2 values, which
might be the preferable behavior, as it produces background
concentrations that are less noisy.

Of special note is the ANN-NRT setup for sulfur dioxide
(SO2). Volcanic eruptions are the primary source of strato-
spheric SO2. As a result, we decided to train the SO2 ANN
model on MLS observations around major volcanic erup-
tions, namely those of Kasatochi, Calbuco, Sarychev, Nabro,
Raikoke, and Hunga Tonga–Hunga Ha’apai (e.g., Pumphrey
et al., 2015; Millán et al., 2022). While ANN-NRT performs
well in reproducing elevated SO2 concentrations associated
with the Hunga Tonga-Hunga Ha’apai eruption, the train-
ing data are limited, and the model may suffer from overfit-
ting (i.e., learning specific characteristics of known eruptions
well, which is to the detriment of generalization).

Global maps of predicted H2O and O3 concentrations indi-
cate that model performance may be affected by the presence
of strong, deep convection and by strong surface reflections
over Antarctica. While the respective predictions agree better
with the L2 retrievals compared to the OE-NRT results, more
analysis is needed to explore potential improvements to the
ANN setups.

Besides the better agreement with the operational L2 re-
trievals (compared to OE-NRT), the ANN-NRT approach
is computationally more efficient. Current tests reveal that
ANN-NRT provides data ≈ 5–12 times faster than the OE-
NRT algorithm.

The results presented in this work indicate that, instead
of relying on simplified retrieval algorithms and assumed
approximations to provide timely NRT data products, ma-
chine learning approaches can be utilized to obtain results
both more reliably and more rapidly. However, the applica-
tion to MLS data benefits from the extended data record of
more than 17 years of daily global observations. A sensitiv-
ity study was performed to test the effects of significantly
reduced amounts of training data on the reliability of pre-
dicted T and O3. ANN-NRT models were trained with 1, 2,
4, and 8 years of MLS observations, and the performance
in each case was compared to results from the best mod-
els, which were trained on > 17 years of data. This simu-
lates the process of training the ANN-NRT setup after 1, 2,
4, and 8 years of observations. It is shown that even mod-
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Figure 5. (a) Average correlation coefficient (R) between T from the MLS L2 and OE-NRT retrieval algorithms (red line), and the L2 and
ANN-NRT results (blue dots), for differently sized training data sets. Vertical bars indicate the range covered by ±1 standard deviation,
based on the variability in R for different retrieval levels. Panels (b) and (c) are the same as panel (a) but show the average absolute root-
mean-square deviation (RMSD) and bias. Both the RMSD and bias are normalized by the average L2 temperature at each level. Panels (d–f)
are similar to panels (a–c) but for ozone.

els that were trained on only 1 year of MLS data outper-
form the OE-NRT algorithm, which demonstrates the poten-
tial of applying machine learning to generate NRT products
for other current and future mission concepts with a simi-
lar sampling frequency. Alternative approaches, like training
ANNs on synthetic profiles of atmospheric constituents and
simulated brightness temperatures, may be needed for instru-
ments with significantly lower sampling rates.

Appendix A: Statistical comparison with MLS L2: CO,
SO2, HNO3, and N2O

This section presents joint histograms (Fig. A1) and profiles
of performance metrics (Fig. A2) derived for the CO, SO2,
HNO3, and N2O retrievals from the three algorithms. These
results complete the analysis described in Sect. 4.1.

There are no CO sources in the middle stratosphere, and
the MLS retrievals can be primarily considered noise. This is
evident in Fig. A1a, which shows a joint histogram of L2 and
OE-NRT retrievals at 21.54 hPa. The distribution is centered
around very low positive values, and almost all retrievals are
in the range −20 to 40 ppbv. A similar distribution of L2
and ANN-NRT results is shown in Fig. A1b, albeit with a

slight tilt relative to the 1 : 1 line. The ANN-NRT R = 0.51 is
slightly lower than the one for OE-NRT (R = 0.55). Notice-
ably higher CO concentrations are observed at 100.00 hPa;
the respective joint histograms are shown in Fig. A1c and d.
Here, the ANN-NRT distribution shows values closer to the
1 : 1 line compared to the OE-NRT results, which indicates a
higher correlation between the predictions and L2 retrievals
(R = 0.80 vs. R = 0.68).

As mentioned in Sects. 2–4, background SO2 concentra-
tions in the stratosphere are essentially 0 ppbv, and the MLS
retrievals can be considered noise. However, air masses that
are affected by volcanic eruptions show significantly en-
hanced concentrations. The joint histograms of L2 and OE-
NRT, as well as L2 and ANN-NRT results, are shown in
Fig. A1e–h. Data are from 15–22 January 2022, the first
week after the Hunga Tonga–Hunga Ha’apai eruption (e.g.,
Millán et al., 2022). Each distribution is centered around con-
centrations of 0 ppbv, but individual MLS profiles show el-
evated concentrations of up to 200 ppbv (at 21.54 hPa) and
80 ppbv (at 68.13 hPa; this level was chosen to present pro-
files that are less affected by the volcanic eruption). The
parts of the ANN-NRT distributions that resemble SO2 noise
are tighter and appear almost horizontal, indicating that the
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Figure A1. Similar to Fig. 2 but for (a–d) CO over 1–31 May 2022 and (e–h) SO2 over 15–22 January 2022, in addition to (i–l) HNO3 and
(m–p) N2O over 1–30 September 2022.

ANN-NRT tends to predict concentrations close to 0 ppmv
and independent of the L2 noise. Conversely, the distribu-
tions from the L2 and OE-NRT results appear random for
the noisy part and slightly more scattered around the 1 : 1
line for observations in the volcanic plume. Correlation coef-
ficients are higher for the ANN-NRT results, both in the mid-
dle stratosphere (R = 0.86 vs. R = 0.70) and in the UTLS
(R = 0.62 vs. R = 0.46).

Figure A1i–l show a clear improvement for the HNO3
predictions based on the ANN-NRT model compared to
the OE-NRT algorithm. The distributions are tighter, and

fewer outliers are noticeable at both the 21.54 (R = 0.92 vs.
R = 0.83) and 100.00 hPa (R = 0.96 vs. R = 0.92) levels. A
similarly stark improvement from the ANN-NRT algorithm
is evident for N2O, as indicated by the joint histograms in
Fig. A1m–p. Not only does ANN-NRT remove the notice-
able bias that is evident in the OE-NRT results but also the
distributions are closer to the 1 : 1 line (R = 0.99/R = 0.92
vs. R = 0.98/R = 0.81 at 68.13/21.54 hPa). Note that MLS
N2O retrievals are not recommended at 100.00 hPa.

Similar to earlier analysis, Fig. A2 provides a more quan-
titative evaluation of the OE-NRT and ANN-NRT perfor-
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Figure A2. Similar to Fig. 3 but shows performance metrics for (a–c) CO over 1–31 May 2022 and (d–f) SO2 over 15–22 January 2022, in
addition to (g–i) HNO3 and (j–l) N2O over 1–30 September 2022.
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mance. Again, profiles of derived performance metrics from
the MLS L2 products and the current OE- and ANN-based
NRT results are presented.

While the ANN-NRT CO predictions exhibit slightly
higher (lower) R (RMSD) values in the UTLS and upper
stratosphere, the ANN-NRT approach seems to do worse in
the middle stratosphere between ≈ 46 and 3.2 hPa. At these
levels, the CO retrievals can be considered noise, where the
ANN-NRT tends to predict values closer to 0 ppbv regard-
less of the L2 value. Meanwhile, the ANN-NRT bias varies
within 15 % and shows fewer oscillations than the OE-NRT
results.

The ANN-NRT performance metrics for SO2 indicate a
more reliable SO2 prediction than from the OE-NRT algo-
rithm, with better R, RMSD, and bias results at every re-
trieval level (note that the absolute values are plotted in
Fig. A2e). This can be partly explained by the fact that 75 %
of MLS profiles sampled over 1–22 January 2022 are in-
cluded in the training data set for the ANN-NRT model in
order to focus on model reliability for air masses affected
by volcanic eruptions. Predicting concentrations for obser-
vations over 1–31 May 2022 provides the means to evalu-
ate ANN-NRT performance for previously unseen data, al-
beit for a time period without SO2 enhancements due to vol-
canic influence. Compared to the OE-NRT results, the ANN-
NRT predictions are characterized by higher R, in addition
to lower RMSD and biases, at all valid retrieval levels. As
an example, the ANN-NRT (OE-NRT) algorithm exhibits
R = 0.34 (R = 0.22) at 21.54 hPa and R = 0.22 (R = 0.14)
at 68.13 hPa.

Apart from retrieval levels above ≈ 4.6 hPa, the HNO3
predictions from ANN-NRT compare better with the MLS
L2 retrievals, a indicated by the higher R and lower RMSD
and bias values. This improvement is especially noticeable in
the upper troposphere (pressures > 100 hPa), where the OE-
NRT product is not recommended.

Similar to CO, there are pressure levels at which the N2O
retrievals can be considered noise (in the upper stratosphere
for pressures below ≈ 5 hPa). Here, the ANN-NRT results
exhibit lower R and higher RMSD. However, the bias re-
mains small, with values within ≈ 10 %.

Appendix B: Global maps for individual example days:
CO, SO2, HNO3, and N2O

This section presents global maps of CO, SO2, HNO3, and
N2O from the three algorithms for representative example
days (Fig. B1) and completes the analysis in Sect. 4.2.

Figure B1a shows CO on 22 May 2022 from the L2, OE-
NRT, and ANN-NRT algorithms at 100.00 hPa (bottom pan-
els) and 21.54 hPa. Two characteristics that were previously
mentioned are noticeable; i.e., ANN-NRT outperforms the
OE-NRT algorithm in the UTLS (see the enhanced concen-
trations in the region of the Asian summer monsoon; red col-
ors), while it predicts smoother CO noise with concentrations
closer to 0 ppbv (see the absence of red colors in the North-
ern Hemisphere at 21.54 hPa). Similar observations about the
performance for noisy data can be made for the SO2 exam-
ple map (shown in Fig. B1b). At both retrieval levels, ANN-
NRT reproduces the enhanced values over the Indian Ocean
(at 68.13 hPa) and over the African continent (at 21.54 hPa),
while predicted concentrations everywhere else are closer to
0 ppbv (light gray and light salmon colors).

Differences between the OE-NRT and ANN-NRT algo-
rithms are more subtle for the HNO3 field, presented in
Fig. B1c. In the tropics and subtropics at 100.00 hPa, the OE-
NRT concentrations are slightly too low (compared to L2), as
indicated by the darker purple colors. Similar underestima-
tions in the OE-NRT retrievals are noticeable at 21.54 hPa,
especially in the Southern Ocean west of South America and
over Antarctica.

Significant differences are observed for the global N2O
fields in Fig. B1d. The OE-NRT retrievals exhibit strong
overestimation (dark red colors) in the tropics, subtropics,
and midlatitudes. Likewise, concentrations in the polar re-
gions are too high (dark purple colors). The ANN-NRT ap-
proach not only does a much better job at reproducing the L2
retrievals but also does not suffer from the data gaps (white
colors) apparent in the L2 data, which arise from the exten-
sive screening rules.
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Figure B1. Similar to Fig. 4 but shows maps of (a) CO on 22 May 2022 and (b) SO2 on 22 January 2022, in addition to (c) HNO3 and (d)
N2O on 22 September 2022.
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Data availability. MLS L1 radiance data and L2GP data, in-
cluding status flags, are available at https://disc.gsfc.nasa.gov
(last access: 26 May 2023): MLS L1 radiances
(https://doi.org/10.5067/Aura/MLS/DATA1502, Jarnot and Perun,
2020); L2GP data, including status flags: Temperature (https:
//doi.org/10.5067/Aura/MLS/DATA2520, Schwartz et al., 2020b);
H2O (https://doi.org/10.5067/Aura/MLS/DATA2508, Lambert et
al., 2020a); O3 (https://doi.org/10.5067/Aura/MLS/DATA2516,
Schwartz et al., 2020c); CO (https://doi.org/10.5067/Aura/
MLS/DATA2506, Schwartz et al., 2020d); SO2 (https:
//doi.org/10.5067/Aura/MLS/DATA2519, Read and Livesey, 2020);
HNO3 (https://doi.org/10.5067/Aura/MLS/DATA2511, Manney et
al., 2020); N2O (https://doi.org/10.5067/Aura/MLS/DATA2515,
Lambert et al., 2020b). NRT data are available at https:
//www.earthdata.nasa.gov/learn/find-data/near-real-time/mls (last
access: 26 May 2023): https://disc.gsfc.nasa.gov/datacollection/
ML2T_NRT_005.html (EOS MLS Science Team, 2022a),
https://disc.gsfc.nasa.gov/datacollection/ML2H2O_NRT_005.html
(EOS MLS Science Team, 2022b), https://disc.gsfc.nasa.gov/
datacollection/ML2O3_NRT_005.html (EOS MLS Science Team,
2022c), https://disc.gsfc.nasa.gov/datacollection/ML2CO_NRT_
005.html (EOS MLS Science Team, 2022d), https://disc.gsfc.
nasa.gov/datacollection/ML2SO2_NRT_005.html (EOS MLS
Science Team, 2022e), https://disc.gsfc.nasa.gov/datacollection/
ML2HNO3_NRT_005.html (EOS MLS Science Team, 2022f),
https://disc.gsfc.nasa.gov/datacollection/ML2N2O_NRT_005.html
(EOS MLS Science Team, 2022g).
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