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Abstract. The EarthCARE (Earth Clouds, Aerosols and Ra-
diation Explorer) satellite mission will provide new insights
into aerosol–cloud–radiation interactions by means of syn-
ergistic observations of the Earth’s atmosphere from a col-
lection of active and passive remote sensing instruments, fly-
ing on a single satellite platform. The Multi-Spectral Imager
(MSI) will provide visible and infrared images in the cross-
track direction with a 150 km swath and a pixel sampling
at 500 m. The suite of MSI cloud algorithms will deliver
cloud macro- and microphysical properties complementary
to the vertical profiles measured from the Atmospheric Lidar
(ATLID) and the Cloud Profiling Radar (CPR) instruments.
This paper provides an overview of the MSI cloud mask al-
gorithm (M-CM) being developed to derive the cloud flag,
cloud phase and cloud type products, which are essential in-
puts to downstream EarthCARE algorithms providing cloud
optical and physical properties (M-COP) and aerosol opti-
cal properties (M-AOT). The MSI cloud mask algorithm has
been applied to simulated test data from the EarthCARE end-
to-end simulator and satellite data from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) as well as from
the Spinning Enhanced Visible InfraRed Imager (SEVIRI).
Verification of the MSI cloud mask algorithm to the simu-
lated test data and the official cloud products from SEVIRI
and MODIS demonstrates a good performance of the algo-
rithm. Some discrepancies are found, however, for the detec-
tion of thin cirrus clouds over bright surfaces like desert or
snow. This will be improved by tuning of the thresholds once
real observations are available.

1 Introduction

Clouds cover about 70 % of our Earth’s surface and play an
important role in the global radiation and energy budgets.
The influence of clouds on radiative fluxes exhibits a com-
plex dependency on cloud type, phase and geometric height
as well as their optical and microphysical properties, poten-
tially introducing significant radiative feedbacks in response
to climate change. The Intergovernmental Panel on Climate
Change (IPCC) Sixth Assessment Report summarizes the
current state of knowledge, concluding that clouds are ex-
pected to amplify global warming as a result of an increase in
high-level clouds and a reduction in low-level clouds (IPCC,
2021). The report provides a best estimate of the net cloud
feedback, having a positive value of 0.42 W m−2. While the
uncertainty related to cloud feedbacks has been halved com-
pared to the previous Fifth Assessment Report, the response
of clouds to a warming Earth remains one of the biggest chal-
lenges in our understanding of the climate system.

The determination of cloud, atmospheric and surface prop-
erties from multi-spectral satellite imagery relies on the ac-
curate discrimination of cloudy and cloud-free pixels. This
discrimination is typically done by a cloud mask algorithm as
the first step in a processing chain of satellite imagery. If for
instance cloudy areas are misclassified as clear or vice versa,
this could negatively impact subsequent retrievals of aerosol
or cloud optical properties, which underlies the importance
of an accurate cloud-masking algorithm. Different compar-
ison studies and intercomparison studies have been done
like the Cloud Masking Intercomparison eXercise (CMIX) to
evaluate the cloud-masking algorithms (Skakun et al., 2022;
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Zekoll et al., 2021). These techniques are mostly based on
two general assumptions, namely that clouds appear brighter
in solar channels, due to the strong reflection of sunlight, and
colder in infrared channels relative to cloud-free surfaces,
due to the decrease in atmospheric temperature with height.
In addition, discrimination of clouds from cloud-free regions
is commonly based on a variety of spectral features, spatial
structure measures or temporal characteristics in time series
because clouds are often more variable than the underlying
surface (Saunders and Kriebel, 1988).

Operational cloud mask algorithms generally combine a
variety of individual tests by means of a decision tree, as
no single test is able to achieve a sufficient accuracy for the
diversity of clouds and atmospheric conditions encountered
globally (e.g., Saunders and Kriebel, 1988). An alternative is
the use of fuzzy-logic-based or Bayesian schemes to combine
tests to yield a confidence value or probability for the classi-
fication (e.g., Ackerman et al., 1998; Hollstein et al., 2015).
More recently, convolutional neural networks have been ap-
plied to discriminate between different land surfaces, ocean,
clouds and cloud shadows (Mateo-García et al., 2017; Li et
al., 2019; Hughes and Kennedy, 2019). Such cloud-masking
approaches are often applied to high-resolution satellite im-
ages (e.g., Landsat, Sentinel-2) and require large training
datasets. In practice, these training datasets have to be cre-
ated manually, and the significant effort required for estab-
lishing high-quality training datasets and validating their per-
formance has so far not led to operational application in
global-scale long-term cloud climate data records. Rossow
and Garder (1993) classify the different tests used in cloud
mask algorithms into radiance threshold tests, spatial vari-
ance tests, temporal variance tests and tests using indepen-
dent datasets to estimate clear-sky radiances. The perfor-
mance of these tests strongly depends on the satellite sensor
specifications including spatial, spectral and temporal reso-
lution.

The International Satellite Cloud Climatology Project (IS-
CCP; Schiffer and Rossow, 1983) was the earliest effort
to provide a comprehensive global cloud climatology from
multi-spectral meteorological satellite imagers. Its cloud de-
tection algorithm is described in Rossow and Garder (1993)
and is based on a combination of static and dynamic thresh-
old tests for one window channel in the visible and one win-
dow channel in the thermal infrared wavelength range. This
choice was made based on the limited availability of channels
from early geostationary satellites, specifically the Meteosat,
GMS (Geostationary Meteorological Satellite) and GOES
(Geostationary Operational Environmental Satellite) series.

Based on the Advanced Very High Resolution Radiometer
(AVHRR) which has been flown on NOAA’s polar-orbiting
satellites since the early 1980s, the APOLLO (AVHRR Pro-
cessing scheme Over cLoud, Land, and Ocean) cloud detec-
tion scheme used both static and dynamic threshold tests. The
availability of additional spectral channels was used in partic-
ular to improve nighttime cloud detection performance. Dy-

namic thresholds were derived from a histogram-based scene
analysis (Saunders and Kriebel, 1988; Strabala et al., 1994).

A new milestone in instrumental capabilities was reached
by the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument, providing observations in 36 spectral
channels from NASA’s Earth Observing System satellites
Terra and Aqua, launched in 1999 and 2002, respectively.
The operational cloud mask product for MODIS considers
the spectral information from 19 of these channels (Acker-
man et al., 2002; Platnick et al., 2003). While several spec-
tral tests are similar to those used by the APOLLO and IS-
CCP cloud detection schemes, the availability of channels in
water vapor and CO2 absorption bands enabled an improved
cloud detection in particular for thin high-level clouds and
for polar night conditions (e.g., Liu et al., 2004; Nakajima et
al., 2011).

EarthCARE, the Earth Clouds, Aerosols and Radiation
Explorer, is a joint European and Japanese mission and part
of ESA’s Living Planet program (Illingworth et al., 2015;
Wehr et al., 2023). The mission objective is to improve our
understanding of aerosol–cloud–radiation interactions and
the role of aerosols and clouds in the Earth radiation bud-
get. While observation of clouds have gradually improved
over the past decades, the launch of the EarthCARE satellite
is expected to bring a breakthrough by means of its novel ob-
servational capabilities. To achieve the mission objective, ac-
curate and simultaneous measurements of microphysical and
optical properties of aerosol and clouds together with solar
and infrared radiation fluxes are crucial. EarthCARE will of-
fer the unique opportunity to collect these observations at a
global scale due to its polar orbit. The satellite will carry an
exceptional collection of active and passive remote sensing
instruments, flying on a single satellite platform in an orbit
at an altitude of 393 km. The instruments include the Atmo-
spheric Lidar (ATLID), the Cloud Profiling Radar (CPR), the
Multi-Spectral Imager (MSI) and the Broad-Band Radiome-
ter (BBR).

This paper describes the algorithm used to produce the
cloud flag, type and phase products based alone on MSI ob-
servations. The approaches selected for EarthCARE’s MSI
cloud mask (M-CM) products relies on the research on and
experience with cloud-masking approaches during the past
40 years since the start of the satellite era. It exploits the
full spectral information content of the MSI instrument (e.g.,
the cloud type is determined using 3D histograms of the
VIS, visible; SWIR-2, short-wave infrared; and TIR-2, ther-
mal infrared, channels). It is, however important to real-
ize that its performance is also determined by the selection
of four solar and three infrared channels for MSI, having
central wavelengths of 670 nm (VIS), 865 nm (NIR, near
infrared), 1650 nm (SWIR-1), 2210 nm (SWIR-2), 8.8 µm
(TIR-1), 10.8 µm (TIR-2) and 12.0 µm (TIR-3). Given this
specification, MSI’s capabilities and sensitivity is more simi-
lar to that of AVHRR than of MODIS. In particular, no chan-
nels within absorption bands of atmospheric gases are avail-
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able. Reflectances in the solar channels are used to detect
clouds by means of a visible reflectance test and a reflectance
ratio test. The visible reflectance test assumes that the re-
flectance of clouds exceeds the reflectance of cloud-free sur-
faces, with the exception of highly reflective surfaces. The
reflectance ratio test compares the ratio of the reflectances of
two shortwave channels to thresholds. Complementing the
solar channel tests, a brightness temperature test uses infor-
mation from the thermal infrared (TIR) channels to detect
clouds based on the assumption that the brightness tempera-
ture of clouds is significantly lower than the brightness tem-
perature of cloud-free pixels.

The estimation of the expected difference in cloud-free
brightness temperatures for the three infrared channels is an
important aspect for the accuracy of cloud detection. This
difference depends on differences in atmospheric absorp-
tion (water vapor) and surface emissivity. Therefore, scene-
dependent lookup tables or online radiative transfer simula-
tions have to be elaborated to determine suitable thresholds.
All tests yield a probability that a pixel is cloud-free. Some
of the individual tests are however not independent of each
other because they rely on similar channels and principles.
Hence, the resulting probabilities of those tests are combined.
For every 500 m resolution pixel of the 150 km wide MSI
swath, the M-CM products provide a classification whether
it is cloud-covered or cloud-free as the final output. Addition-
ally, for the cloudy pixels, the cloud type and cloud phase of
the uppermost cloud layer will be reported.

This paper is structured as follows. Section 2 describes the
algorithms for deriving the operational Level 2 M-CM prod-
ucts, which comprise a binary cloud flag, cloud phase and
cloud type as well as confidence statistics. The verification
of the algorithm using MODIS and Meteosat Second Gen-
eration (MSG) SEVIRI scenes as well as synthetic test data
from the EarthCARE end-to-end simulator (Donovan et al.,
2023) is provided in Sect. 3. Comprehensive comparisons
between the operational M-CM product and the synthetic
test fields are presented in Appendix A. The data process-
ing chain including the role of M-CM is explained in more
detail in Eisinger et al. (2023).

2 M-CM algorithm description

The MSI cloud product processor (M-CLD) provides algo-
rithms for calculation of the cloud flag; cloud phase; cloud
type; cloud optical depth; cloud particle size; cloud water
path; and cloud top temperature, pressure and height. The
processor consists of two main parts, which are sequentially
processed. First is the cloud mask (M-CM), which is manda-
tory for the other cloud optical and physical properties (M-
COP). The present paper describes the cloud mask processor
(M-CM), which is schematically shown in Fig. 1.

The algorithm starts with the calculation of the re-
flectances at the top of the atmosphere in the shortwave chan-

nels. The reflectances (ρi) of each channel i are obtained
from the measured radiance (L) and the solar irradiance E0
as

ρi (θ0,θ,φ)=
πLi (θ0,θ,φ)

E0 cos(θ0)
, i = 0.6,0.8,1.6,2.2, (1)

with the sun zenith angle θ0, the viewing zenith angle θ and
the relative azimuth angle φ. An important input for the al-
gorithm is the day/night flag. The daytime condition is con-
sidered for a certain pixel of the sun zenith angle θ0 < 80◦.
Additionally, the sunglint angle θr is calculated over ocean as

cos(θr)= sin(θ)× sin(θ0)× cos(φ)+ cos(θ)× cos(θ0). (2)

If θr < 36◦, the pixel is flagged with sunglint provided in the
surface flag.

2.1 M-CF: binary cloud flag

The algorithm derives a cloud mask by applying individual
threshold tests to brightness temperatures and reflectances of
individual channels. The threshold tests and the way that re-
sults are combined are adapted from the MODIS cloud mask
algorithm (Ackerman et al., 2002). The thresholds rely on the
assumption that spectral signatures of cloud-free pixels and
pixels covered by different cloud types differ. As the thresh-
olds vary globally, only the upper (cloudy) and lower (cloud-
free) limits of the thresholds are defined, and a linear func-
tion is used to determine the probability that a cloud is really
present based on how close the observation is to the limits.
Furthermore, the probability of being cloud-free from the ap-
plied tests is combined to an overall probability which may
provide, in combination with the number of applied tests,
a measure of the confidence of the result. From the over-
all probability a binary cloud mask indicating if a pixel is
cloudy or not is derived with four levels of confidence: clear,
probably clear, probably cloudy and cloudy.

2.1.1 Visible reflection tests

The visible reflectance test compares the reflectance in the
0.67 µm channel or the reflectance in the 0.865 µm chan-
nel with surface-dependent thresholds (Fig. 2). These thresh-
olds are initially taken from the MODIS cloud mask algo-
rithm. These thresholds have been tuned based on simulated
MSI properties, while further adaptions are planned at a later
stage, when actual MSI data will become available. If the
reflectance exceeds the upper threshold, pixels are assumed
to be very likely cloudy. Pixels with reflectances below the
lower threshold are classified with high confidence as cloud-
free. The pixels in between are classified by calculating prob-
ability functions, as described in Sect. 2.1.3.

The upper and the lower thresholds differ for land, desert
and ocean pixels outside the sunglint region and ocean pix-
els in the sunglint region (Fig. 2). Whereas the thresholds are
fixed for the first three classes, they depend on the sunglint
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Figure 1. Schematic of the main components of the M-CM algorithm. BT: brightness temperature, LUT: lookup table.

Figure 2. Flow chart of the visible reflectance test.

angle in the sunglint region. Over land the test applies the
reflectance in the 0.67 µm channel, while over desert the re-
flectance in the 0.865 µm channel is used. Ocean pixels lo-
cated outside the sunglint region are classified by using the
reflectance in the 0.865 µm channel. Ocean pixels affected
by sunglint also apply thresholds based on the 0.865 µm
channel, but the thresholds are calculated depending on the
sunglint angle (see Eq. 2). The lower and upper thresholds
of the 0.865 µm tests depend on predefined limits of sunglint
angles between 0–10, 10–20 and 20–36◦ (Fig. 2).

2.1.2 Reflectance ratio test

The reflectance ratio test is applied to daytime pixels over
oceans and land surfaces with low reflectivities. Therefore,
the land pixels are classified in surfaces with high reflectiv-
ity like desert, polar and semi-arid regions and low reflec-
tivity. Over ocean the reflectance ratio test can be applied
as well in the sunglint region. The test score is the ratio of
the reflectance in the 0.865 µm channel and the reflectance
in the 0.67 µm channel. If the test score is smaller than the
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lower threshold, the pixel is classified with high confidence
as cloud-free. A test score larger than the upper threshold re-
sults in labeling the pixel with high confidence as cloudy. For
pixels with values in between, the confidence level is calcu-
lated in a linear way. Upper and lower thresholds are defined
for ocean pixels outside and inside the sunglint region, re-
spectively.

For a land pixel indicated by the application mask as ap-
propriate, the test score is a modified GEMI (Global Environ-
mental Monitoring Index) first described by Pinty and Ver-
straete (1992). It is calculated as

m_gemi= η(1− 0.25 · η)−
ρ0.6− 0.125

1− ρ0.6
, (3)

with

η =
2(ρ0.8− ρ0.6)+ 1.5 · ρ0.8+ 0.5 · ρ0.6

ρ0.8+ ρ0.6+ 0.5
. (4)

If m_gemi is greater than m_gemiclear, the pixel is classified
with high confidence as clear, and if m_gemi is lower than
m_gemicloudy, the pixel is assumed with high confidence to
be cloudy. If values in between appear, then the confidence
level of being clear is calculated by a linear approach.

2.1.3 Brightness temperature tests

We use two different approaches for the brightness temper-
ature tests, one using simple thresholds and the other one
applying brightness temperature differences between differ-
ent infrared channels for the separation between cloudy and
cloud-free pixels. The first simple threshold test is applied on
the 10.85 µm channel for all surface types during nighttime.
The pixels is identified as cloudy if

T10.8 < T10.8_cs, (5)

where the clear-sky brightness temperature T10.8_cs, at top
of the atmosphere, is calculated with the IR radiative trans-
fer model (RTTOV; Saunders et al., 1999) on the grid of
the auxiliary meteorological (X-MET) data and then inter-
polated to the geolocation and measurement time of the MSI
pixel. The X-MET dataset provides additional meteorologi-
cal model parameters required for the processing (Eisinger et
al., 2023). Details about the RTTOV forward simulation are
described in Hünerbein et al. (2023). If T10.8_cs is larger than
T10.8, the pixel is assumed to be cloudy. The probability of
being cloud-free is calculated by assuming a linear probabil-
ity function. The tri-spectral window brightness temperature
difference test (at 8.8, 10.8 and 12.0 µm) is only applied to
water surfaces during daytime. The brightness temperatures
at 10.8 and at 12.0 µm are used to detect thin cirrus clouds
and cloud edges, which are characterized by a higher bright-
ness temperature difference (10.8–12.0 µm) than a cloud-free
surface. The pixel is detected as cloudy if

T10.8− T12.0 > Tdiff1_cs, (6)

where Tdiff1_cs is calculated with RTTOV for each pixel for
clear-sky conditions. By use of the temperature differences
at 8.8–10.8 µm, thin cirrus clouds over all surface conditions
can be detected. In addition to Eq. (6) if the difference is
relatively high compared to the clear-sky condition, then the
pixel is classified as cloudy if

T8.8− T10.8 > Tdiff2_cs. (7)

The probability of being cloud-free is calculated by assum-
ing a linear probability function. The same applies for the
tri-spectral brightness temperature difference test. Further in-
vestigation is needed to define the base threshold, which is
strongly dependent on surface and water vapor.

2.1.4 Estimation of confidence level

The results of all tests are combined in a two-step proce-
dure for determination of the confidence level (Fig. 3). In the
first step the overall probability for each pixel from the tests
applying reflectances is derived because these tests are not
independent. This is accomplished by finding the minimum
probability Gi of being cloudy in both tests. In the next step
the probability from the brightness temperature test and the
intermediate result from the reflectance tests are combined
by calculation of the square root of the multiplied values if
multiple valid test results are available:

Q=
n

√√√√ N∏
i=1
Gi . (8)

Otherwise the final result consists of the valid test result
or is undefined. The square root of the multiplied probabili-
ties of a pixel being clear ensures that the overall result does
not tend to cloudy pixels as would be the case if results were
solely multiplied. This approach is considered clear-sky con-
servative.

2.2 M-Ctype: cloud types

The algorithm applies a maximum-likelihood classifier to re-
flectances and brightness temperatures at VIS, SWIR-2 and
TIR-2. Before the algorithm assigns a specific cloud type
for a certain pixel, the dataset needs to be trained to acquire
statistics for predefined cloud classes. This procedure is de-
scribed in the following section.

2.2.1 Cloud type training using MODIS

A large number of MODIS scenes are used to learn statis-
tics for nine predefined cloud classes (from thin to thick
clouds, high, medium and low clouds) and one cloud-free
class, either over sea, land or desert and separated into stripes
of 15◦ latitude. Nine cloud classes are categorized by us-
ing the MODIS cloud top height and cloud optical thickness
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Figure 3. Four groups of cloud tests to determine cloud confidences. VRT: visible reflection tests, RRT: reflectance ratio test, dBT: brightness
temperature difference.

based on the ISCCP cloud classification schemes (Rossow
and Schiffer, 1999). From these scenes, the mean vector and
covariance matrix are calculated for all cloud classes, with
one cloud-free class from the visible channel, the shortwave
infrared channel and the infrared channel, and saved in a
lookup table.

The region, season and surface are identified for each
pixel. The regions are defined by a circle of latitude in 15◦

steps. The pixels are separated into four seasons (winter,
spring, summer and fall) based on the month (Fig. 4). The
surfaces are separated with the land–sea mask into land,
water and desert pixels. The nine ISCCP cloud classes can
be clearly distinguished between cirrus, cirrostratus, deep
convection, altocumulus, altostratus, nimbostratus, cumulus,
stratocumulus and stratus. Also a clear-sky class is defined
for the different surface types, regions and seasons (not
shown in Fig. 4). The statistics are then used to assign each
pixel in the measured scene to a certain class by applying
a maximum-likelihood classifier. The algorithm assumes ei-
ther a completely cloud-covered or completely cloud-free
pixel and does not take sub-pixel clouds into account.

2.2.2 Maximum-likelihood classifier

The probability is computed for each MSI pixel to all indi-
vidual classes by means of a maximum-likelihood classifier.
A pixel is assigned to class j if the likelihood of class j is
the greatest among the 9+ 1 classes which are relevant for
the respective surface. The maximum likelihood is found by

j = argmax

[
f

(
x|mi

∑
i

)]
, (9)

Figure 4. Observed reflectances (Ref) and brightness (Brt) tempera-
tures at VIS, SWIR-2 and TIR-2 (MODIS) for the nine ISCCP cloud
classes (cirrus, cirrostratus, deep convection, altocumulus, altostra-
tus, nimbostratus, cumulus, stratocumulus and stratus) and seasonal
separation.

f

(
x|mi,

∑
i

)
=

1√
(2π)p

∣∣∑
i

∣∣
exp

[
−1
2
(x−mi)

T
∑
−1
i
(x−mi)

]
, (10)

with x being the vector of properties (reflectances and bright-
ness temperature) in the considered channels, mi being the
mean vector of class i,

∑
i being the covariance matrix

and p being the number of maximum-likelihood classes
for the respective surface. Though a maximum-likelihood
classifier that does not assign a class when the maximum-
probability value falls below a certain probability also ex-
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ists, the classifier applied here is a hard classifier assign-
ing a class to every pixel with valid radiation data inde-
pendent of the magnitude of the maximum probability. The
reliability of a maximum-likelihood classification result de-
pends on the probability pi = f (x|mi,

∑
i) for the assigned

class i and the probability for the next class j derived as
pj = f (x|mi,

∑
j ). The next class is determined by mini-

mizing argmin= [|pj−pi |] = j . The assignments to the nine
cloud classes and the clear-sky class are determined for all
pixels.

2.3 M-CP: cloud phase

The discrimination of the thermodynamic phase at the cloud
top is based on the spectral absorption differences in ice and
water clouds between the visible (0.67 µm) and the short-
wave infrared (1.65 µm) as well as the brightness tempera-
tures at 8.8, 10.8 and 12.0 µm. The cloud phase categories of
the M-CP algorithm include liquid water, ice, supercooled
mixed phase and cloud overlap (e.g., multi-layer clouds).
The M-CP retrieval closely follows the approach applied to
AVHRR and the Visible Infrared Imaging Radiometer Suite
(VIIRS) (Pavolonis et al., 2005; Pavolonis and Heidinger,
2004) as well as for MODIS (Strabala et al., 1994). The al-
gorithm consists of several spectral threshold tests applied
to the reflectances from the VIS, SWIR and TIR channels.
The thresholds are adapted from the corresponding AVHRR
channels based on Pavolonis et al. (2005). The fine tuning
of these thresholds will be done with the whole measure-
ments suite of EarthCARE at nadir. The algorithm starts with
a series of threshold tests based on TIR-2, which follows
the physical assumption that the cloud top phase depends
on the cloud top temperature. The liquid water category in-
cludes clouds of liquid water droplets that have a tempera-
ture greater than 273.16 K measured by TIR-2. Only non-
opaque cirrus clouds can also fall into that category. To de-
tect semitransparent cirrus clouds over optically thick water
clouds, a cloud overlap test is done. The cloud overlap detec-
tion uses the VIS, TIR-2 and TIR-3 channels. This method is
adapted from the AVHRR algorithm explained by Pavolonis
and Heidinger (2004). The underlying physical theory is that
the VIS reflectance will not change much when having an
overlapping thin cirrus cloud over a thick water cloud, while
the temperature difference between both clouds results in a
brightness temperature difference in the IR window chan-
nels that is larger than predicted by radiative transfer calcu-
lations. A certain pixel is defined as an ice cloud if the BT at
10.8 µm< 233.16 K and the overlap test fails. Supercooled
mixed-phase cloud pixels are assumed based on threshold
tests with the BT at 10.8 µm between 233.16 and 273.16 K.
During daytime conditions, additional tests are applied using
the SWIR-1 channel, which improves the detection of over-
lapping and cirrus clouds.

2.4 Surface flag

The surface flag distinguishes between water, land, desert,
vegetation, snow, sea ice, sunglint and undefined. While the
surface types water, land, desert and sunglint are used as in-
put for the M-CM algorithm, the types vegetation and snow
are calculated for the cloud-free pixels only, by using the nor-
malized difference vegetation index (NDVI) and the normal-
ized difference snow index (NDSI). The NDVI is the nor-
malized ratio of the difference in reflectance at NIR and VIS
based on the red edge feature of the vegetation.

NDVI= (ρ0.8− ρ0.6)/(ρ0.8+ ρ0.6) (11)

The NDSI is the normalized ratio of the difference in re-
flectance at VIS and SWIR-1. The atmosphere is transparent
at both wavelengths, while snow is very reflective at VIS and
not reflective at SWIR-1.

NDSI= (ρ0.6− ρ1.6)/(ρ0.6+ ρ1.6) (12)

The algorithm distinguishes between sparse vegetation/o-
cean and dense vegetation with the NDVI and identifies snow
surfaces with the NDSI.

2.5 M-CM quality flags

The M-CM quality flags provide pixel-based quality infor-
mation for the cloud flag, the cloud type and the cloud
phase products. The quality flags distinguish between high,
medium, low and poor quality. These measures do not rep-
resent probabilities but rather the number of tests which
have been executed for the associated pixel, the consistency
among the products or the surface flag. The definitions of the
individual quality flags are provided in Table 1.

The results of the M-CF and M-Ctype are also combined
to a final cloud mask quality flag. A high-quality flag means
that both results are consistent.

3 Verification of the M-CM algorithm performance

The algorithm performance and processing chaining has
been tested by applying the M-CM processor to scenes from
the MODIS and MSG SEVIRI instruments and atmospheric
test scenes created synthetically with the EarthCARE end-to-
end simulator (Donovan et al., 2023).

3.1 Verification against synthetic test scenes

Three specific synthetic test scenes have been created based
on forecasts from the Global Environmental Multiscale
(GEM) model (Qu et al., 2022) to test the full chain of Earth-
CARE processors (Donovan et al., 2023). These test scenes
cover a variety of atmospheric situations over ocean, land
and ice surface during day- and nighttime. The natural-color
RGB images of the three test scenes are provided in Ap-
pendix A.
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Table 1. Definitions of pixel-based quality flags (high, medium, low, poor) for the cloud flag, the cloud type and the cloud phase products.

Quality Cloud flag Cloud type Cloud phase
status

High All tests executed and results Results consistent Results consistent with BT thresholds for water
consistent with M-Ctype with M-CF (BT< 233.16 K) and ice (BT> 273.16 K)

Medium All tests executed and results Surface flag is ocean Surface flag is ocean
inconsistent with M-Ctype

Low Less than 50 % of the tests were executed Surface flag is land Surface flag is desert

Poor Only one test executed (e.g., for night) Surface flag is desert Only night tests performed

It seems very appealing to verify our cloud algorithm
against the test scenes; however, the results should be han-
dled with care because they strongly depend on the as-
sumptions made in the model. But since no observational
EarthCARE-like dataset exists, the synthetic model dataset
provides the best available proxy for testing the EarthCARE
processing chain and synergistic products (Donovan et al.,
2023). The most prominent one is the Halifax scene cover-
ing a 6000 km long frame starting over Greenland, cross-
ing the eastern end of Canada and ending in the Caribbean
(Fig. 5). The scene starts over the Greenland ice sheet with
mixed-phase clouds at nighttime, transitioning from deeper
clouds with tops up to 6 km around 65◦ N to mixed-phase
clouds with tops around 3 km at temperatures as cold as
−30 ◦C over the eastern edge of Canada. Below there is a
high ice cloud regime followed by a low-level cumulus cloud
regime embedded in a marine aerosol layer below an elevated
dirty dust layer around 5 km altitude. The original model out-
puts are generated for 7 December 2015 using the Canadian
GEM model (Qu et al., 2022). While the binary cloud flag
and cloud phase product provide results for the high-latitude
part of the Halifax scene, the cloud type product does not
show results there. This is due to the nighttime conditions.
The maximum-likelihood classifier also requires information
in the visible bands, which makes it impossible to classify
cloud types during nighttime. For the cloud flag, only bright-
ness temperature tests have been applied. For this reason, the
cloud mask quality flag indicates only poor quality there.

Verification of the M-CF cloud flag with 3D model input
fields

The M-CF cloud flag is verified against the input from the 3D
model fields (Donovan et al., 2023). The model cloud flag is
calculated based on the extinction profiles at 680 nm from
the model input, which we consider the reference. In the first
step, we have calculated the cloud optical thickness (COT)
as the extinction of radiation along the path from the Earth’s
surface to the top of atmosphere at 680 nm. The second step
defines a certain profile as cloudy applying three different
thresholds, COT≥ 0.01, COT≥ 0.1 and COT≥ 1. Figure 6

shows the reference cloud flag, based on the 3D extinction
profiles for three different thresholds applied to the COT.
When assuming pixels with COT≥ 0.01 to be cloudy, the
overall cloud fraction of the scene would be 72 %. The cloud
fraction decreases to 61 % for COT≥ 0.1 and to 37 % for
COT≥ 1. This demonstrates that the reference cloud mask is
very sensitive to the choice of the COT threshold. Using M-
CF, a cloud fraction of 50 % is determined for this scene (see
Fig. 7). The best agreement between the cloud fraction of
the reference cloud flag and the M-CF cloud flag is achieved
when applying a threshold of COT≥ 0.1. The cloud detec-
tion sensitivity of the M-CF algorithm is clearly better than
COT≥ 1, but in contrast to COT≥ 0.1, a few cloudy pixels
with probably optically thin clouds are not detected by the
M-CF cloud flag. Figure 7 illustrates the performance of the
M-CF cloud flag compared to the reference cloud flag (us-
ing a threshold of COT≥ 0.1) by showing the results of the
confusion matrix (e.g., true positive, true negative, false pos-
itive, false negative). Both cloud flags are in good agreement
for most parts of the scene. Only a few false-cloudy pixels are
visible over the ocean, which are most likely thin clouds with
COT≤ 0.1 that are detected by MSI but not in the cloud flag
for COT≥ 0.1. The orange pixels in the center of the scene
show pixels that are detected as clear-sky by M-CF, while
the reference cloud flag defines them as cloudy. This can be
explained by the fact that different thresholds are applied for
snow and land surface types, but there are inconsistencies be-
tween the surface types in the M-CF algorithm and the model
data. The M-CF algorithm uses surface information from the
X-MET data as input, while the model data use slightly dif-
ferent surface specifications. The scattered false-clear pixels
in the lower part of the scene are due to edge pixels of low-
level clouds, which are not detected by the M-CF cloud flag.

3.2 Verification against MODIS

The M-CM cloud mask algorithm has also been verified
against MODIS scenes. In contrast to the synthetic scenes,
the MODIS scenes do not rely on the assumptions made in
the background model. We have used the calibrated radiances
of MODIS Terra Level 1B (L1B) (MOD021KM) of seven
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Figure 5. M-CM processor applied to the Halifax scene including the binary cloud flag (M-CF) and cloud mask quality flag (a, b), the
cloud phase (M-CP) and quality flag (c, d), and cloud types (M-Ctype) and quality flag (e, f). The light-grey-shaded region indicates pixels,
labeled as undefined by the processor. cu: cumulus, ac: altocumulus, ci: cirrus, sc: stratocumulus, as: altostratus, cs: cirrostratus, st: stratus,
ns: nimbostratus, cb: cumulonimbus.
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Figure 6. Reference cloud flag based on the 3D extinction fields at 680 nm for the Halifax scene. Cloud-free and cloudy areas are identified
by applying three different thresholds on the column-integrated cloud optical thickness, COT≥ 0.01 (a), COT≥ 0.1 (b) and COT≥ 1 (c).
The resulting cloud fraction is 72 % (COT≥ 0.01), 61 % (COT≥ 0.1) and 37 % (COT≥ 1).

similar channels to MSI and global forecast data from the
Copernicus Atmosphere Monitoring Service (CAMS) as in-
put for the M-CLD processor. For verification of our results,
however, we use the standard MODIS Level 2 (L2) cloud
product which makes use of more spectral channels com-
pared to MSI.

Figure 8 shows the MSI M-CM cloud flag and the MODIS
cloud flag for an example over western Africa on 11 Septem-
ber 2021 at 11:50 UTC. Both cloud flags discriminate be-
tween clear-sky, cloudy, probably cloudy and probably clear.
The false-color RGB image uses the MODIS band 1 (620–
670 nm), band 4 (545–565 nm) and band 3 (459–479 nm).
The MSI surface flag separates between water (1), land (2),
desert (3), vegetation (4), snow (5, 6), sea ice (7), sunglint (8)
and undefined (0); the scene over western Africa has no
snow or sea ice pixels. Both desert and sunglint represent
difficulties for cloud-masking algorithms, which is why the
largest differences between the MODIS and MSI cloud flag
are found over these surface types. The MSI cloud flag yields
a cloud fraction of 52 %, while MODIS results in 80 %. Con-
verting the M-Ctype cloud classes in a binary cloud class re-
sults in a cloud fraction of 41 %. The product is independent
from M-CF because it uses a maximum-likelihood classifier.
When combining both binary M-CM cloud flags into one,
the cloud fraction increases to 69 % (Table 2). This result
demonstrates that the combination of both independent M-
CM cloud products leads to a better agreement with MODIS
than just using one of them. The MSI algorithm misses large
parts of clouds over desert, but there are also clear differences
over the ocean in the upper part of the scenes. These differ-
ences are expected because the MODIS cloud tests are based
on much more spectral channels. For the majority of clouds,

Table 2. Comparison of the scene cloud fraction between M-CF,
M-Ctype, the combination of M-CF and M-Ctype, and MODIS.

Algorithm M-CF M-Ctype M-CF + MODIS
M-Ctype

Cloud fraction (%) 52 41 69 80

which are visible on the RGB image, the agreement between
the MODIS and MSI cloud flag is very good.

To get more robust statistics, the cloud mask compari-
son has been done for the full month of September 2021.
The MSI cloud flag systematically shows a lower cloud frac-
tion than the MODIS cloud flag. Only in cases with a strong
sunglint effect, do the combined M-CF and M-Ctype cloud
mask show a higher cloud fraction than MODIS. For as-
sessing the overall agreement between the MSI and MODIS
cloud mask, we have calculated the percentage of consis-
tency for both clear-sky and cloudy for all 45 MODIS scenes
in September 2021. The results are shown in Table 3. We
have intercompared the M-CF vs. M-Ctype products, M-CF
vs. MODIS, M-Ctype vs. MODIS and M-CF combined with
M-Ctype vs. MODIS. The overall agreement between M-CF
and MODIS is 76 %. This results increase to 79 % when com-
bining M-CF and M-Ctype (Table 3). When excluding all
pixels that are labeled as sunglint by the M-CM surface flag,
the agreement increases to 91 %. This finding demonstrates
that large parts of the discrepancies are due to differences in
the handling of the algorithms in scenes effected by sunglint,
which will be further investigated by tuning the thresholds
with real measurements.
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Figure 7. M-CF cloud flag (a) and confusion matrix (b) indicating the classification performance (e.g., true cloudy, true clear, false cloudy,
false clear) of the binary M-CF and the reference cloud flag (using a threshold of COT≥0.1). The M-CF cloud fraction is 50 %, while the
reference cloud flag results in a cloud fraction of 61 %.

Figure 8. M-CM algorithm applied to satellite data from MODIS over western Africa on 11 September 2021 at 11:50 UTC. The MODIS
false-color RGB composite (using MODIS bands 1, 4 and 3) is shown in panel (a), the MSI surface flag is shown in panel (b), the MODIS
cloud flag is shown in panel (c) and the MSI cloud flag is shown in panel (d). The MSI surface types 5, 6 and 7 are snow and sea ice flags,
which are not present in the present case study. While 1 (water), 2 (land), 3 (desert) and 8 (sunglint) are inputs for the processor, type 4
(vegetation) is based on the NDVI and only calculated for clear-sky pixels in the M-CF flag.
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Table 3. Comparison of the two M-CM cloud flags and the MODIS cloud flag. The agreement in percent is calculated for a binary cloud flag
only, where confidently cloudy and probably cloudy is merged to cloudy and the same is done for clear-sky. For M-Ctype, cloud types 1–9
are considered cloudy.

Algorithm M-CF vs. M-Ctype M-CF vs. MODIS M-Ctype vs. MODIS M-CF +M-Ctype vs. MODIS

Full scene 80 % 76 % 65 % 79 %
No sunglint 92 % 90 % 87 % 91 %

3.3 Verification against MSG SEVIRI

The M-CM cloud mask was also part of a cloud retrieval in-
tercomparison study in the framework of the International
Cloud Working Group (ICWG). The ICWG supports the as-
sessment of cloud retrievals applied to passive imagers on
board geostationary satellites (Hamann et al., 2014; Wu et al.,
2017). Therefore, the M-CM algorithm has been applied to
images from the SEVIRI instrument on board Meteosat Sec-
ond Generation (MSG). As in the comparison with MODIS,
SEVIRI also provides similar channel characteristics like the
MSI. Nevertheless, one should be aware that this leads to
uncertainties through the adaptation to SEVIRI due to differ-
ences in the central wavelength and spectral response func-
tion, radiative transfer simulations, and generated lookup ta-
bles.

Different scientific institutions (e.g., EUMETSAT central
facility, European Organisation for the Exploitation of Me-
teorological Satellites; NWC SAF, Nowcasting Satellite Ap-
plication Facility; and CM SAF, Climate Monitoring Satel-
lite Application Facility) provided cloud mask data for the
SEVIRI disk for the intercomparison study. The individual
input data have been transformed into a binary cloud mask
separating between cloudy and cloud-free. The M-CM cloud
mask was with a cloud fraction of 52 % in the range of the
other results ranging from 31 % to 64 %. Figure 9 shows the
discrepancies of the different cloud masks results. A pixel
value of 0 means that all algorithms are in agreement that
it is cloudy. Grey values indicate that all algorithms consis-
tently label the pixel as clear-sky. A disagreement value of 1
shows that half of the algorithms classified a pixel as cloudy,
and the other half did so as cloud-free. The main discrepan-
cies between the different cloud masks are found to be over
northern Africa, caused by different detection thresholds for
thin cirrus clouds over bright surface like desert in this case.
It could also be biomass burning aerosol that is classified as
clouds by some algorithms. Another area of disagreements is
the southern part of the Arabian Peninsula and the adjacent
sea.

4 Conclusions

In this paper, the algorithms used by the cloud mask proces-
sor (M-CM) for the MSI on board EarthCARE are described.
The algorithms provide the cloud flag (M-CF), cloud phase

Figure 9. Differences between the cloud masks of 12 algorithms
for the MSG SEVIRI disk on 13 April 2008. A value of 0 means
that all algorithms for this particular pixel set it as cloudy. The grey
values mean that all algorithms agree this pixel is cloud-free. In
total the disagreement measure is normalized to 1 if the half of the
algorithms classify a pixel as cloudy and the other half classify it as
cloud-free.

(M-CP) and cloud type (M-Ctype) products. The cloud flag
and cloud phase at the cloud top are based on spectral thresh-
old tests for the visible and infrared channels, while the cloud
type product is based on a maximum-likelihood classifier.
While the cloud type product is only available during day-
time, the cloud flag and cloud phase products are also re-
trieved during nighttime, although with a reduced number of
tests (Fig. 1). The M-CM products are an important input
for the subsequent retrieval of the cloud optical and physical
products (M-COP) (Hünerbein et al., 2023) and the aerosol
optical properties (M-AOT) (Docter et al., 2023).

In order to test the algorithm performance and to get a bet-
ter impression of the products before the EarthCARE launch,
the M-CM algorithm has been verified in this study against
synthetic test scenes from the EarthCARE end-to-end simu-
lator and satellite data from MODIS and MSG SEVIRI.

Using synthetic test data, it is found that the M-CM prod-
ucts are in good agreement with the products from other pro-
cessors within the EarthCARE instrument suite and with the
3D model fields used as input to the simulator which can
thus be considered the truth. One should keep in mind that
in contrast to ATLID or CPR, which provide vertical profile
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information, MSI is a passive instrument that retrieves cloud
properties at the cloud top or, for aerosol and optically thin
clouds, total column-integrated information. The synergistic
products using data from MSI and ATLID will help to bet-
ter understand some of the uncertainties in the MSI products
(Haarig et al., 2023).

An overall agreement of 79 % was found between the MSI
and the MODIS cloud flag using 1 month of MODIS data
over Cabo Verde in September 2021. The agreement signif-
icantly improves to 91 % when excluding the sunglint areas
from the comparison. Ocean areas characterized by sunglint
represent some of the most challenging scenes for cloud-
masking algorithms. This indicates that further adjustments
are needed for the thresholds of the M-CM cloud flag for
sunglint conditions to improve the performance. However,
the MSI images are less affected by sunglint in comparison
to MODIS due to the fact that the MSI is tilted sideways,
with 35 km of the full 150 km swath on the sun-facing side
and 115 km on the other side of the nadir track.

The M-CM algorithm has also been applied to measure-
ments from MSG SEVIRI, and the results have been com-
pared against other cloud mask algorithms in the frame of
the International Cloud Working Group. The comparison has
demonstrated that the M-CM performance lies in the range
of the other cloud masks.

Planned improvements in M-CM will include dynamic
thresholds for the threshold tests for the cloud flag. We pro-
pose that this tuning should be done after launch once real
observations will be available. A tuning of the M-CM thresh-
olds towards better agreement with MODIS is not optimal in
the current state because of the spectral differences between
MSI and MODIS. While MSI features 7 spectral bands,
MODIS has 36 spectral bands, allowing for better cloud de-
tection performance. The advantage of the MSI observations
are, in contrast to MODIS, that MSI is flying together with
active instruments (e.g., ATLID and CPR) on the same plat-
form, which will allow for unique synergies of cloud prod-
ucts from different instruments.

The algorithm verification in the present study uses syn-
thetic test scenes and data from other satellite platforms
as the basis. During the validation phase after the Earth-
CARE launch, dedicated campaigns will be conducted us-
ing ground-based and airborne instruments, which will of-
fer the opportunity for a more comprehensive validation of
the MSI cloud products. Also geostationary satellites will be
used for the validation to support the selection of suitable
validation datasets and to provide complementary reference
datasets on a global scale. Meteosat Third Generation (MTG)
was launched in 2022 into geostationary orbit (Holmlund et
al., 2021), offering with its Flexible Combined Imager (FCI)
with 16 spectral channels and up to 500 m spatial sampling
excellent opportunities for the validation of and synergies
with the MSI products.

Further improvements in the M-CM product are expected
once real observations are available due to its flexible design

based on configuration files, which allows for easy adjust-
ment, e.g., of cloud mask thresholds without modifying the
source code of the whole algorithm chain.

In contrast to the pre-launch MSI test data presented in
this study, the MSI spectral bands are affected by a shift in
the central wavelength depending on the instrument view-
ing angle. This effect is caused due to imperfections in the
bandpass filters on the curved optical lenses (e.g., Wehr et
al., 2023; Wang et al., 2022). Investigations are ongoing to
mitigate this effect in the Level 2 M-CLD and M-AOT re-
trievals. During the validation phase, aircraft measurements
with high spectral resolution will further help to quantify the
impact of the central wavelength shift on the MSI cloud and
aerosol products.

Appendix A: Natural-color RGB images of the synthetic
test scenes

For the three test scenes natural-color RGB images are gen-
erated to visualize several types of atmospheric and surface
features. The natural-color RGB is composed of the VIS,
NIR and SWIR-1 channel data. The images have been lin-
early stretched within the reflectance ranges to the full range
of display values from 0–255 bytes to improve the contrast.

The benefit is the easy interpretation because most of the
colors of the image are very similar to a true-color image
of the Earth. Figure A1 shows the RGB images for the three
test scenes, which includes clouds, snow, vegetation, sunglint
and clear skies. Snow on the ground as well as ice over moun-
tains, frozen lakes and sea ice appear cyan in the RGB im-
ages (Fig. A1b). The more homogeneous the snow/ice cover
is, the brighter the cyan color will be. Snow and ice on moun-
tains will therefore be depicted in a stronger cyan color than
snowy surfaces on ground, which are often disrupted by veg-
etation. In addition, clouds with ice crystals also appear cyan
in the RGB images (Fig. A1a) as the ice crystals reflected
at 0.67 and 0.865 µm and absorb solar radiation at 1.65 µm.
Further different cloud heights, ice crystal habits and sun
zenith angles lead to an inhomogeneous color pattern. The
ocean and lakes in the RGB images appear in dark black
(Fig. A1c). Vegetation is indicated by green colors because
of the stronger reflection of solar radiation at 0.865 µm than
at 0.67 µm (Fig. A1a, e.g., Caribbean island in the Halifax
scene). For detailed information on how to interpret RGB im-
ages, see the RGB color guide (Eumetrain, 2022).
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Figure A1. Natural-color RGB images generated from the MSI VIS, NIR and SWIR-1 channels for (a) Halifax, (b) Baja and (c) Hawaii
(Donovan et al., 2023).

Data availability. The EarthCARE Level 2 demonstration
products from simulated scenes, including the MSI cloud
mask products discussed in this paper, are available at
https://doi.org/10.5281/zenodo.7117115 (van Zadelhoff et al.,
2022).
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