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Abstract. Evaluating extreme rainfall for a certain location is
commonly considered when designing stormwater manage-
ment systems. Rain gauge data are widely used to estimate
rainfall intensities for a given return period. However, the
poor spatial and temporal resolution of operational gauges
is the main limiting factor. Several studies have used rainfall
estimates based on weather radar horizontal reflectivity (Zh),
but they come with a great caveat: while proven reliable for
low or moderate rainfall rates, they are subject to major errors
in extreme rainfall and convective cases. It is widely known
that C-band weather radar can underestimate precipitation
intensity due to signal attenuation or overestimate it due to
hail and clutter contamination. From the late 1990s, dual-
polarization weather radar started to become operational in
the national surveillance radar network in Europe, provid-
ing innovative quantitative precipitation estimation (QPE)
based on polarimetric variables. This study circumvents Zh
shortcomings by using specific differential-phase (Kdp) data
from operational dual-polarization C-band weather radars.
The rain intensity estimates based on a specific differential-
phase data are immune to attenuation and less affected by
hail contamination.

In this study, for the first time, QPEs based on polarimetric
observations by operational C-band weather radars and with-
out any rain gauge adjustments are analyzed. The purpose is
to estimate return periods for 1 h rainfall total computed from

polarimetric weather radar data using non-adjusted QPEs
based on R(Zh,Kdp) data and to compare the results with
those derived using R(Zh) and rain gauge data. Only the
warm period during the year is considered here, as most of
the extreme precipitation events for such a duration occur for
both places studied (Italy and Estonia) at this time. Limiting
the dataset to warm periods also allows us to use the radar-
based rainfall quantitative precipitation estimations, which
are more reliable than the snowfall ones. Data from opera-
tional dual polarimetric C-band weather radar sites are used
from both Italy and Estonia. Given climatologically homo-
geneous regions, this study demonstrates that polarimetric
weather radar observations can provide reliable QPEs com-
pared to single-polarization estimates with respect to rain
gauges and that they can provide a reliable estimation of re-
turn periods of 1 h rainfall total, even for relatively short time
series.

1 Introduction

The increase in impervious surfaces due to urbanization leads
to an increase in flooding frequency due to poor infiltra-
tion and faster concentration times. Hydrological changes,
driven by heavy urbanization, and resulting impacts on ex-
treme rainfall are also being established: a significant amount
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of research over the last 20 years has shown a strong relation-
ship between urban areas and local microclimates.

The Intergovernmental Panel on Climate Change (IPCC)
Sixth Assessment Report (IPCC, 2021) increased interest in
short-duration rainfall extreme estimations as several Earth
regions are likely to be affected by an increase in heavy-
precipitation events in the near future due to global warm-
ing. In Europe, van den Besselaar et al. (2012) demonstrated
that higher latitudes are still experiencing an incremental in-
crease in intensity and frequency of extreme events and cor-
respondingly in heavy-precipitation events. For all these rea-
sons, studies on extreme annual rainfall maximum depths for
short durations are extremely relevant for hydrological stud-
ies, water management, and urban-area development (Marra
et al., 2017).

However, the reliability of traditional rainfall depth esti-
mations is often limited by the low spatial density of rain
gauge networks, particularly for short durations (Overeem et
al., 2010). Nevertheless, single-polarization weather radars
can provide quantitative precipitation estimations (QPEs),
based on empirical relationships between the equivalent
reflectivity factor at horizontal polarization (Zh) and the
rain rate with proper spatial and temporal resolution. Sev-
eral studies have investigated statistics of extreme areal
rainfall depths obtained from single-polarization weather
radar (Frederick et al., 1977; Allen and De Gaetano, 2005;
Overeem et al., 2008, 2009a, b, 2010; Marra and Morin,
2015; Panziera et al., 2018; Marra et al., 2022). Keupp et
al. (2017) and Fabry et al. (2017) offer a complete review
of monthly or annual rainfall climatology based on weather
radar observations in Europe and the contiguous United
States (CONUS) area, respectively.

However, due to signal attenuation at the C-band (Del-
rieu et al., 2000) and due to hail contamination (Ryzhkov
et al., 2013), the horizontal radar reflectivity (Zh) is sub-
ject to significant errors, especially during intense rainfall
and convective-precipitation events. As stated by Fairman
et al. (2015), relevant QPE underestimations typically oc-
cur in mountainous areas and far away from the weather
radar; beam blocking and overshooting also cause large dif-
ferences between radar-based QPEs and reference gauges.
To overcome these limitations, several adjustment techniques
have been developed that correct QPEs, derived from single-
polarization weather radar, with rain gauge measurements
(Einfalt and Michaelides, 2008; Goudenhoofdt and Delobbe,
2009). Overeem et al. (2009b) derived short-duration ex-
treme rainfall depths from gauge-adjusted weather radar
QPEs. Barndes et al. (2001), Ryzhkov et al. (2005), and
Vulpiani et al. (2012) demonstrated that polarimetric rain-
fall estimation algorithms based on specific differential phase
(Kdp) outperform the conventional QPEs based on horizon-
tal radar reflectivity, being immune from partial beam block-
ing, attenuation, hail contamination, and weather radar mis-
calibration. Several studies have focused on the evaluation
of R(Kdp) relationship performances with respect to tradi-

tional R(Zh) for precipitation events (Paulitsch et al., 2009;
Moisseev et al., 2010; Cremonini and Bechini, 2010). Voor-
mansik et al. (2021a) deeply analyzed 5 years of QPEs de-
rived from operational C-band polarimetric weather radar in
Estonia and Italy, demonstrating that blended R(Zh,Kdp) al-
gorithms provide good-quality QPEs.

For the first time, this study investigates the statistical
properties of annual rainfall maxima for 1 h rainfall to-
tals, analyzing QPEs derived from R(Zh,Kdp) observations
by operational dual-polarization C-band weather radars in
two different climate regions. The results from short-period
weather radar observations are compared with statistics ob-
tained from gauge measurements and QPEs based on tradi-
tional horizontal radar reflectivity. Section 2 provides a de-
scription of study areas, polarimetric weather radar systems,
and algorithms used to derive QPEs. In Sect. 3 extreme-value
statistics are applied to fit the theoretical distributions, pro-
viding rainfall depth as a function of duration for given re-
turn periods. Finally, the Discussion (Sect. 4) and Conclu-
sions (Sect. 5) follow.

2 Materials and methods

This study focuses on QPEs based on polarimetric C-band
weather radar, operating in northern Italy and Estonia. The
studied period is limited to the warm period of the year as
most of the extreme precipitation events at short temporal
scales take place at this time. Limiting the dataset to a warm
period also helps to exclude weather radar observations that
come from snow or ice crystals, a requirement for reliable
rainfall intensity estimations based on R(Zh,Kdp).

2.1 The study areas

This study focuses on areas in Piedmont, Italy, and Estonia,
covered by operational dual-polarization Doppler C-band
weather radars operated by the local weather services.

Piedmont is located in northwestern Italy, in the upper ar-
eas of the Po Valley; the central part of the region is rel-
atively flat (300–200 m a.s.l.) with the Turin Hill reaching
770 m a.s.l. The Alps surround plains with altitudes ranging
from 1000 m to more than 4500 m a.s.l. The two areas con-
sidered in this study are centered on the Turin Hill, and they
extend for about 30–50 km from the weather radar, corre-
sponding to about 7300 km2 altogether (Fig. 1, the left map).
To ensure QPE data quality, the choice to restrict the study
areas close to the radar site is driven by the following main
reasons:

1. to reduce weather radar beam-broadening and beam-
propagation effects,

2. to avoid the Alps’ complex orography in the western
and northern directions,

3. to limit the weather radar beam height above ground,
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Figure 1. The study areas. On the left the two Italian study areas (EPSG:32632) and on the right the Estonian area (EPSG:3301). The dot
symbols show the tipping-bucket rain gauges of the local hydrological networks; orange dot symbols are the tipping-bucket rain gauges used
in the study; the red stars are the weather radar locations, the Bric della Croce radar site and Sürgavere radar location, respectively; basemap:
Esri, https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer (last access: 5 November 2022).

4. to avoid or to limit spatial non-stationarity of the gener-
alized extreme value (GEV) parameters and their depen-
dence on geomorphology (altitude, terrain slope, and
exposition).

The Piedmont rainfall regime is sub-continental with a
dry season during winter; the main maximum precipita-
tion occurs during fall, and a secondary maximum occurs
during spring–summer (Devoli et al., 2018); convective-
precipitation events are very frequent from late spring to
early fall. Pavan et al. (2018) reconstructed rainfall climatol-
ogy over the Po Valley from gauge observations from 1961
to 2015, showing that, despite the relatively small extent of
the whole study area, there are different precipitation regimes
between the area A1, located close to the Alps (wetter), and
the area A2, the flats south of the Turin Hill (drier). It is worth
mentioning that the average annual rainfall within each sin-
gle study area is uniform.

The Bric della Croce weather radar, operated by the Re-
gional Agency for Environment Protection (Arpa Piemonte)
is located on the top of the Turin Hill. The operational radar
completes fully polarimetric volume scans, made of 11 ele-
vations over an up to 170 km range with 340 m range bin res-
olution. Quantitative precipitation estimations (QPEs), based
on horizontal reflectivity, are extensively described by Cre-
monini and Tiranti (2018); meanwhile, Kdp-based precipita-
tion estimations are derived according to Wang and Chan-
drasekar (2009). The closest observations to the weather
radar (up to 8 km) have been left out due to heavy ground

clutter contamination and unreliable estimations of Kdp. Be-
ing focused on convective precipitation, this study limits
analysis to the warm season ranging in Italy from April to
October. Bric della Croce data range from 2014 to 2020 with
5 min interval time resolution. The data inspection for qual-
ity purposes has shown that the annual maxima for the years
2015 and 2016 are unreliable due to frequent weather radar
failures during the warm season; for this reason, these years
have been excluded from the following analysis.

Arpa Piemonte also operates an automated ground weather
network made up of more than 350 rain gauges with 0.2 mm
resolution and 300 mm h−1 maximum detectable rainfall in-
tensity; 1 min rainfall observations have been available since
1988. Annual hourly rainfall maxima are derived from gauge
observations corrected for underestimations at high rainfall
intensities according to Lanza et al. (2010) and Vuerich et al.
(2009). Annual hourly rainfall maxima are manually quality-
controlled to identify possible mechanical failures and in-
complete time series. In this work, 1 min resolution tipping-
bucket rain gauges located within the two study areas and
running for at least 15 years have been used. Area A1 north
and west of the weather radar site contains 27 (24 gauges
actually used in the study) gauges, while area A2 contains
25 (23 gauges actually used in the study) gauges; the an-
nual hourly precipitation maxima concern years from 1988
to 2020.

The study area in Estonia is centered on the continental
part of the country, and it extends for about 70 km around the
radar corresponding to 16 911 km2. Estonia is a flat coun-
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try with a mean elevation of about 50 m a.s.l., and the high-
est point is 318 m a.s.l in the more hilly southeast (Fig. 1,
right map). Estonia has a temperate climate with the heavi-
est rainfall in late summer. Convective precipitation is com-
mon in the area from May to September (Voormansik et
al., 2021b). There are distinct differences in the precipita-
tion climate between continental Estonia and the islands in
the western part as the latter are much drier (Tammets and
Jaagus, 2012). This variance is caused by different thermal
regimes of sea and land surfaces. Sub-daily rainfall extremes
in the Nordic–Baltic region from rain gauges were analyzed
by Olsson et al. (2022). Variations in 1 h return levels in Es-
tonia were found in some of the stations outside of our study
area. Generally higher return levels were found in the eastern
part of the country and lower return levels in the western part.
The 1 h return levels were shown to be nearly uniform in the
central part of Estonia without significant variations in the
shape parameter (see Sect. 2.1.1), which was close to zero.
In the study area, we can thus expect a uniform precipitation
regime.

The Sürgavere radar is situated in the northern part of
Sakala Upland on top of the Sürgavere Hill (128 m a.s.l.).
The Sürgavere radar has been operational since 2008, and
a continuous archive is available with data since 2010. Un-
til May 2020, the radar performed a volume scan with eight
elevations over an up to 250 km range with 300 m range bin
resolution every 15 min. In May 2020 the scan strategy re-
ceived a major update. Since then the radar has scanned seven
elevations with a 250 km range every 5 min and the lowest
elevation with a 250 km range every 2.5 min. After careful
inspection of reflectivity and polarimetric data quality, radar
data covering 5 years (2012–2013 and 2018–2020) were in-
cluded in the study. Data from 2014, 2015, 2016, and 2017
were not included because of insufficient polarimetric data
quality to obtain reliable QPEs. The years 2014 and 2015
were excluded because of a broken waveguide limiter which
caused gradually decreasing polarimetric data quality. Data
from 2017 were left out because a broken stable local oscil-
lator (STALO) reduced the data quality to levels not usable
for QPE purposes. The year 2016 was omitted because of the
low availability of radar data due to frequent and long-lasting
radar failures (availability of 30 % for August and 85 % for
the whole summer period of that year) that would result in
unreliable annual maxima. The mean radar data availability
for the investigated 5-year period was 98 %. Only 15 min in-
terval data are used in this study to maintain homogeneity.
Kdp precipitation estimates of Estonia are derived us-

ing the Py-ART function phase_proc_lp (Giangrande et al.,
2013). Compared to the work by Voormansik et al. (2021a)
done in the same study area, some parameters of this func-
tion have been changed. The necessity of updating the pa-
rameters became inevitable because using the parameters of
the earlier work led to unrealistically high 1 h rainfall max-
ima and over-smoothed precipitation fields. The parameters
of the function that were changed were window_len, high_z,

and coeff. The first of these, window_len, allows changing
the length of the Sobel window applied to the 8dp field be-
fore calculating Kdp. When using the default window length
of 35 bins (equal to around 10.5 km in our case of 300 m
bins), the function produces less accurate results in Kdp
fields with steep gradients and large Kdp magnitudes as it
over-smooths the8dp field (Reimel and Kumjian, 2021). We
tested with various window lengths and found the length of 8
bins (equal to 2.4 km in our case) to be the optimal compro-
mise between spatial resolution and smoothness. After the
window length change, we obtained realistic-looking precip-
itation fields, but the overestimation compared to gauge val-
ues increased. This is because 8dp gradients became steeper
due to the smaller window length. To mitigate this issue we
first decreased the high_z (the high limit for reflectivity to
remove hail contamination) value from 60 dBZ used in Voor-
mansik et al. (2021a) to 50 dBZ, which is the lowest recom-
mended value by Giangrande et al. (2013). Because overes-
timation was still evident, we also reduced the Zh–Kdp self-
consistency coefficient. As stated by Kumjian et al. (2019),
Zh–Kdp consistency relationships probably do not exist in
hail and it is therefore recommended to reduce the weight of
the self-consistency constraint in the case of hail (Reimel and
Kumjian, 2021). We tested with various values and found a
coefficient value of 0.9 to produce optimal results.

The following equations have been used to derive the rain
rate from weather radar variables:

R(Zh)= 300Z1.5 (1)

from Joss and Waldvogel (1970) and

R(Kdp)= 21.0K0.720
dp (2)

from Voormansik et al. (2021a).
Horizontal reflectivity data are re-calibrated using a

method that makes use of the knowledge that Zh, Zdr (dif-
ferential reflectivity), and Kdp are self-consistent with one
another and one can be computed from two of the others.
The calibration was carried out using the theory set down in
Gorgucci et al. (1992) and Gourley et al. (2009), where the
process is described in detail. As a result, Zh bias of −2.0
to −5.0 dB depending on the data period is obtained and
added to the corresponding original reflectivity data. Data up
to 10 km from the radar were excluded because of the ground
clutter and unreliable Kdp estimation. Weighted rain gauges
operated by the Estonian Environment Agency (ESTEA) lo-
cated in the study area are used as ground truth to compare
with radar estimates. The rain gauges provide data with a
resolution of 0.1 mm and maximum detectable rainfall inten-
sity of 2000 mm h−1. Rainfall observations from 2003–2010
are available with a 1 h resolution and starting from 2011
with 10 min intervals. In this study, gauge data over 10 years
from 10 stations located in the study area from 2011 to 2020
are used. As demonstrated by Voormansik et al. (2021a), the
combined product R(Zh,Kdp) outperforms QPEs based on
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R(Zh) and R(Kdp). The weather-radar-based QPE used here
is defined as

R(Zh,Kdp)=

{
R(Zh) if Zh ≤ 25dBZ,
R(Kdp) otherwise. (3)

The evaluation of the horizontal reflectivity threshold has
been derived by optimizing results on 1 h accumulation rain-
fall in both locations, Italy and Estonia (Voormansik et al.,
2021b).

2.2 Data quality, homogeneity, and goodness of fit

In both Estonia and Italy, the annual 1 h maxima derived
from rain gauges are manually quality-controlled by EstEA
and Arpa Piemonte staff, respectively, to identify possible
technical issues or incomplete time series. L-moments are
linear functions of sampling data, and they are related to
probability-weighted moments by the equation. With respect
to conventional moments,L-moments are more robust to out-
liers and enable more secure inferences to be made from
small samples about an underlying probability distribution,
suffering less from the effects of sampling variability. Ac-
cording to Hosking and Wallis (1997), the discordancy mea-
sure D− i indicates, for site i, the discordancy between the
site’s L-moment ratios and the (unweighted) regional aver-
age L-moment ratios. Large values might be used as an in-
dication of potential errors in the data at the site. The dis-
cordancy analysis has been performed on ground data for the
three areas, identifying anomalous rain gauges in Italy. They
correspond to gauges located on road bridges or in nearby
trees, where the local environment affects rainfall measure-
ments. Those rain gauges have been excluded from the fol-
lowing analysis.

Hosking and Wallis (1997) also recommend merging ob-
servations from the individual rain gauges which come from
homogeneous regions: homogeneity implies that a scaled
data series has the same statistical distribution. The con-
vective characteristics of the 1 h annual maximum precipi-
tation, investigated here, and its weak intrinsic spatial corre-
lation also support this hypothesis for the study areas. Ho-
mogeneity tests have also been applied to evaluate the sta-
tistical coherence of the two study areas. Broadly used pro-
cedures for testing for regional homogeneity assessment are
described and compared in Viglione et al. (2007). Hosk-
ing and Wallis (1997) proposed to test the homogeneity of
pooled sites by a measure based on L-moment ratios, which
compare the between-site variation in sample L-Cv (coeffi-
cient of variation) values with the expected variation for a
homogeneous pooling group. According to the L-moments
used in the definition of the test statistics (H ), they defined
three heterogeneity measures: H1 when L-Cv is used, H2
if L-Cs is used, and H3 if L-Ck is applied. If Hi (i = 1, 2,
3) is less than one, then the region is “acceptably homoge-
neous”; if it is between 1 and 2, then the region is “possibly
homogeneous”; otherwise it is “heterogeneous”. By using

the R package “lmomRFA” (https://cran.r-project.org/web/
packages/lmomRFA/index.html, last access: 11 June 2023),
the L-moment homogeneity test has been applied in all study
areas, in both Italy and Estonia, obtainingHi values less than
1, considered acceptably homogeneous. This finding can be
explained by the relatively small extension of the study ar-
eas considered (about 60× 60 km2 for each study area) and
by their homogeneity in terms of precipitation regimes and
geomorphological characteristics.

Identifying the best probability distribution for describing
the behavior of the annual maxima data is one issue. Plots
of L–skewness and L–kurtosis values from both rain gauges
and weather radar for the three study areas with a 1 h du-
ration have been elaborated. In order to select the appropri-
ate frequency distribution function, the L-moment ratio dia-
gram method has been used. The L-moment ratio diagram is
a widely used tool for the graphic interpretation and compar-
ison of the sample L-moment ratios, L-Cs (skewness), and
L-Ck (kurtosis) of various probability distributions (Hosk-
ing and Wallis, 1997). Figure 2 shows the L-moment ratio
diagram for rain gauges (left) and for weather-radar-based
QPEs (right). The right panels of L-moment ratios have been
derived from sampling weather-radar-based QPEs 500 times
by random uniform sampling. The closeness of the regional
mean and the at-site data for the three study areas and for rain
gauges and weather-radar-based data to the GEV distribution
is evident. Accordingly, a goodness-of-fit test statistic (Hosk-
ing and Wallis, 1997) was used in identifying the best three-
parameter theoretical distribution. The goodness-of-fit test is
based on a comparison between the L-Ck sample and the L-
Ck population for different distributions. An acceptable dis-
tribution function should achieve a value of ZDIST ≤ 1.64.
For all the datasets of 1 h annual precipitation maxima de-
rived from rain gauges or from weather radar, the Gumbel
distribution is acceptable.

2.3 Extreme-value distributions

The statistics of extreme values describe the behavior of the
largest of m values: large and consequently rare values are
considered extreme. The fundamental result from the the-
ory of extreme-value statistics asserts that, regardless of the
(single, fixed) distribution from which the observations have
come, the largest ofm independent observations from a fixed
distribution will match a known distribution more closely as
m increases (extremal types theorem; Coles, 2001). Exten-
sive literature, dating back to the 1940s, deals with extreme-
value theory in its formalization and its hydrological appli-
cations: an introduction to the theory and a historical review
on this topic can be found in Papalexiou and Koutsoyiannis
(2013), Wilks (2011), and De Haan and Ferreira (2006).

Given R1 h, the random variable of annual maximum rain-
fall accumulation for an hourly duration, the cumulative dis-
tribution function is given by F(z) (Jenkinson, 1955):
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Figure 2. L-moment ratio diagrams for rain gauges (a, c, e) and for QPE weather-radar-based data (d, e, f).

F(R1 h ≤ z)= exp

(
−

[
1+ ξ

z−µ

σ

]− 1
ξ

)
(4)

with

−∞< ξ <+∞, σ > 0, −∞< µ<+∞,

defined as z : 1+ ξ(x−µ)/σ > 0, where µ, σ , and ξ are the
location, scale, and shape parameters, respectively.

According to Katz et al. (2002), the GEV distribution,
which combines three different statistical families (Gumbel,
Fréchet, and Weibull), can fit the extreme dataset with high
accuracy.

The GEV distribution unites the Gumbel, Fréchet, and
Weibull distributions into a single family to allow a con-
tinuous range of possible shapes (Früh et al., 2010; Coles,
2001). These three distributions are known as type I, II, and
III extreme-value distributions. The GEV distribution is pa-
rameterized with a location parameter (µ), scale parameter
(σ > 0), and shape parameter (ξ ). The GEV distribution is
equivalent to type I, II, and III, respectively, when the shape
parameter is equal to zero, greater than zero, and lower than
zero:

– ξ > 0 Fréchet distribution (EV2),

– ξ = 0 Gumbel distribution (EV1),

– ξ < 0 Weibull distribution (EV3).
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Based on the extreme-value theorem, the GEV distribution
is the limit distribution of properly normalized maxima of a
sequence of independent and identically distributed random
variables. Thus, the GEV distribution is used as an approx-
imation to model the maxima of long (finite) sequences of
random variables.

Several methods have been developed for the estimation
of GEV distribution parameters, including the method of
moments (MME), the method of L-moments (LME), the
method of probability-weighted moments (PWME), and the
method of maximum likelihood (MLE) (Katz et al., 2002; De
Haan and Ferreira, 2006). Hereafter, only the MLE method
has been used to estimate GEV distribution parameters from
sample data.

By inverting Eq. (4), an estimation of extreme quantiles
can be obtained being the pth upper quantile of the z distri-
bution given by F(zp)= 1−p, where zp is the return level
correlated to the return period T = 1/p. The zp-versus-1/p
plot is an effective tool to graphically observe the return lev-
els, and it is known as the return level plot.

The shape parameter controls the upper-tail behavior, but
it remains difficult to estimate on the basis of short time-
series data (a few decades for example): this happens because
there are usually few extremes exhibiting much variability.
As stated by Lazoglou et al. (2018), the Weibull distribution
(negative shape parameter) is not appropriate for precipita-
tion datasets.

The weather-radar-based rainfall annual maxima statistics
over the Netherlands calculated by Overeem et al. (2009a)
have shown that regional differences in the location parame-
ter exist for most durations. Nevertheless, due to the small
number of rainfall annual maxima, when depth–duration–
frequency (DDF) curves are derived for small areas, the un-
certainties in the DDF curves generally become larger com-
pared to the uncertainties in the average DDF curve for the
Netherlands. Recalling an increase in the standard errors
of the quantile estimates, in particular for high return peri-
ods, Buishand (1991) stresses that large standard errors are
mainly caused by the uncertainty in the shape parameter. On
the other hand, real-time operational applications, like issu-
ing of early warnings, are based on relatively low quantiles
(typically a 10–20-year return period). Within this range of
return periods, the inaccuracy is expected to be considerably
reduced (Marra et al., 2019): for these reasons in this study,
the Gumbel distribution (ξ = 0) has been assumed appropri-
ate for 1 h accumulation annual rainfall maxima.

As discussed by Overeem et al. (2009a), the spatial corre-
lation of measurements affects extreme-value statistics, lead-
ing to underestimation. The correlation between two rain
gauges is typically low for convective precipitation due to the
small spatial scales involved in convection (≈ 10–100 km2)
and the low density of the ground meteorological network
(typically on the order of one gauge every 100 km2). In the
case of weather radar observations, given the higher spatial
resolution (≈ 1 km2), the correlation between close cell grids

must be estimated and taken into account. Assuming GEV
distribution parameters are constant in each of the areas con-
sidered in this study, their estimation from all data in the
regions justifies the derivation of return periods longer than
the rainfall record (Overeem et al., 2010). This statement as-
sumes both that sample data are independent and that the pre-
cipitation regime in the studied area is uniform. To avoid data
spatial correlations, this study merely investigates 1 h rainfall
totals, disregarding longer durations.

Semi-variograms are widely used in geostatistical sciences
for evaluating rainfall spatial structure. Semi-variograms
summarize the spatial relations in the data, and they can be
used to understand within what range data are spatially cor-
related (Naimi et al., 2011).

In this study, the statistical analysis has been conducted
using the R (https://cran.r-project.org/, last access: 11 June
2023) package extRemes 2.1 (Gilleland and Katz, 2016).
The experimental isotropic semi-variogram can be derived
by taking half the average of the squared difference between
data pairs at equal distances and by assuming stationarity and
isotropy of the rainfall field (Cressie, 1993):

γ (h)=
1

2n(|h|)

n(|h|)∑
k=1

(z(xk +h)− z(xk))
2, (5)

where xk is the location of cell barycenter k and xk+h is the
location at distance h from location xk .

Figure 3 shows semi-variograms, obtained from
R(Zh,Kdp) annual hourly rainfall maxima, from April
to September in Italy for area A1 (left) and Estonia (right).

The empirical semi-variogram analysis for weather radar
observations indicates that hourly rainfall maxima decorre-
late at about 10 km in both Estonia and Italy (Fig. 3). These
results are consistent with past studies (Schroeer et al., 2018;
Dzotsi et al., 2013): convective precipitation is prevalent dur-
ing the warm season, and, consequently, the spatial correla-
tion quickly decreases with the distance between two rain
gauges. Moreover, 10 km is the typical spatial scale of con-
vective precipitation systems (meso-γ ). Different values of
semi-variances in Estonia and Italy can be explained by the
different climatic regimes, with generally weaker convective-
precipitation events in the Baltic country. Hence, to avoid
statistical oversampling and to ensure the statistical indepen-
dence of data samples, 1 h rainfall total annual maxima es-
timated by weather radar are re-sampled according to the
spatial scale of convective precipitation found. The hourly
annual rainfall maxima estimated by weather radar observa-
tions are upscaled from the original data resolution (340 m
for Italy and 300 m for Estonia) to 10 km resolution, using a
uniform random sampling algorithm.

3 Results

On the basis of the goodness-of-fit results, the observa-
tions relative to all three study areas have been fitted with
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Figure 3. Empirical variograms for hourly rainfall annual maxima based on R(Zh,Kdp) hourly rainfall estimations in Italy area A1 (a) and
Estonia (b).

Gumbel distributions. For weather radar QPEs, the fit has
been performed considering the mean L-moments, derived
from random sampling 500 times the original data at 10 km
resolution. Figure 4 shows the diagnostics from the Gum-
bel distribution fitted to 1 h rainfall total annual maxima in
Italy for area A1 (upper) and Estonia (lower), derived from
R(Zh,Kdp) estimates; from left to right, the figure shows the
density plot of the data along with the model-fitted density,
a Q–Q plot of quantiles from model-simulated data against
the data quantiles with 95 % confidence bands. Quantile–
quantile scatterplots compare empirical data and fitted cu-
mulative distribution functions (CDFs) in terms of quantiles:
in an ideal perfect fitting, all points should lie on the 1 : 1
diagonal line (Wilks, 2011).

The Q–Q plots present some departures from linearity
in correspondence to the tails, especially for Estonia data,
which are due to the increasing level of uncertainty that char-
acterizes model extrapolation at high levels. The empirical
estimates in the return level plot reflect results in Q–Q plots
lying very close to the model-based line, with results being
almost linear for low values. However, even if the return level
estimates seem convincing, the increasing confidence bands
for large return periods indicate the uncertainty that affects
the model at high levels.

Table 1 summarizes the results of fitting data samples with
Gumbel distributions by applying the maximum likelihood
estimation method (MLE) for each studied area; location and
scale parameters with their standard errors (σ/

√
n are shown.

Kolmogorov–Smirnov tests (KS tests) and Q–Q plots in-
spections (Wilks, 2011) show that fits for R(Zh,Kdp) are
more reliable than R(Zh) ones in all three study areas. This
behavior is particularly evident for the Estonia area, where
the fit distribution for R(Zh) leads to a large value of the

Table 1. Estimated Gumbel parameters, location, and scale (µ,σ )
for weather radar and gauge annual hourly maxima rainfall inten-
sities for Italy area A1 and area A2 and Estonia for weather radar
derived from R(Zh,Kdp) (WR-KDP) and from R(Zh) (WR-ZH)
and rain gauge (RG) time-series observations.

Area Source µ (mm) σ n values

WR-KDP 35.7± 1.0 15.1± 0.7 175
Italy – A1 WR-ZH 19.2± 0.7 9.5± 0.6 175

RG 30.1± 0.5 11.4± 0.4 550

WR-KDP 33.40± 0.9 11.3± 0.7 171
Italy – A2 WR-ZH 18.0± 0.6 7.7± 0.5 171

RG 25.3± 0.4 9.8± 0.3 484

WR-KDP 17.4± 0.2 5.9± 0.1 800
Estonia WR-ZH 14.6± 0.3 6.8± 0.2 800

RG 15.1± 0.6 5.9± 0.5 93

scale parameter and an anomalously low p value obtained by
KS tests.

It is well-known that record length affects the estimate of
the GEV shape parameter and that long historical time se-
ries are needed for reliable estimates. Papalexiou and Kout-
soyiannis (2013), Ragulina and Reitan (2017), Lazoglou et
al. (2018), Lutz et al. (2020), and Deidda et al. (2021) demon-
strated that the shape parameter tends to have positive values,
between 0 and 0.23 with a probability of 99 %, as sample size
increases. However, in this study, given the shortness of the
weather radar time series, for safety the scale parameter has
been set to zero, according to Papalexiou and Koutsoyiannis
(2013).
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Figure 4. Diagnostic plots for 1 h annual rainfall maxima fits derived by weather radar in Italy area A1 (a, b) and Estonia (c, d): from left to
right, density plot of the data along with the model-fitted density, Q–Q plot of the data quantiles from model-simulated data against the data
quantiles with 95 % confidence bands.

4 Discussion

Several studies have developed adjustment techniques to
correct QPEs based on weather radar observations with
rain gauge measurements (Einfalt and Michaelides, 2008;
Goudenhoofdt and Delobbe, 2009). For the first time, this
study investigates extreme precipitation estimation using
dual-polarization weather radar rainfall estimations without
any adjustment with rain gauges. It is worth recalling that the
study has been limited to relatively flat and geomorphologi-
cally homogeneous areas with high-quality dual-polarization
weather radar observations close to the ground and high-
quality 1 h rainfall total annual maxima from rain gauges.
Weather radar data quality and reliability have been carefully
checked in Voormansik et al. (2021a).

The two studied regions, Estonia and Italy, are character-
ized by different precipitation regimes, the first one colder
and the latter warmer. The different climate regimes of the
studied areas consequently reflect on fitted Gumbel distribu-
tions, determining lower return periods in Italy, given a 1 h
rainfall total. Estonia is characterized not only by few rain
gauges and by a limited historical series but also by a larger
homogeneous, flat region covered by the operational polari-
metric weather radar. In this area, the benefit of estimating
Gumbel distributions using weather radar observations af-
ter ensuring spatial independence and assuming homogene-
ity can be appreciated: the sample size derived from 5 years

of observations is about 9 times the sample size obtained by
rain gauges. These different sample sizes determine larger
standard deviations in Gumbel distribution parameter esti-
mation by rain gauges with respect to weather-radar-based
estimations.

In Italy, a dense automatic gauge network has been op-
erating since 1988, providing about 25 gauges per area and
determining a larger sample size. But the Alps and the spa-
tial variability in the climate regime, influenced by complex
orography, limit the availability of high-quality weather radar
observations to about 160–180 values. Despite the limited
availability of weather radar observations (only 5 years for
both Italian and Estonian weather radars), the comparison of
Gumbel distribution fits in these two different regions has
shown encouraging results.

Figure 5 shows return levels for 1 h rainfall at a given re-
turn time, estimated from Gumbel distributions with location
and shape parameters from Table 1 for the study areas and
estimated from R(Zh), R(Zh,Kdp) and from rain gauges.

In Italy, the different return periods between the two ar-
eas are in agreement with findings in Mezzoglio et al. (2022)
and with climate classification of the two areas reported by
Pavan et al. (2018), with area A1 more favorable to intense
precipitation than area A2. This precipitation regime, con-
firmed also by climatological lightning density (not shown),
can be justified by local geomorphology. In fact, during the
warm season, cold air comes over the Alps flowing towards
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Figure 5. Return levels for 1 h rainfall accumulation in Estonia (a) and Italy area A1 (b) and Italy area A2 (c) derived from the Gumbel
distributions. The dashed lines show confidence intervals for α = 0.05.

Table 2. The return time period estimates for 1 h rainfall accumulation for the three study areas, derived from R(Zh), R(Zh,Kdp), and rain
gauges.

Return Italy A1 Italy A2 Estonia

period WR-KDP WR-ZH RG WR-KDP WR-ZH RG WR-KDP WR-ZH RG

2 41 23 34 37 20 29 21 17 17
10 70 41 56 58 35 47 34 30 28
20 81 47 64 66 40 54 39 35 33
50 95 56 75 77 48 64 45 41 38
100 105 63 83 85 53 71 49 46 42

the Po Valley from west-northwest: the Monferrato hills east
of Turin enhance low-level convergences and strong uplifts,
causing deep convection in area A1, while study area A2 ex-
periences downwind conditions. QPEs based on the Zh–Kdp
algorithm generally provided slightly shorter return periods
with respect to gauge estimations; this behavior can be ex-
plained by the high spatial resolution of weather radar obser-
vations able to catch small-scale rain showers. However, it
could also be due to a slight overestimation of annual rainfall
maxima by weather radars, as highlighted by Voormansik et
al. (2021a), and hence needs further investigations. The dis-
tribution fits based on R(Zh) show a longer return period,
given a 1 h rainfall total, in all three areas. This return pe-
riod overestimation is dramatic in Italy, where a higher 1 h
rainfall maxima total is expected. Table 2 summarizes the re-
turn time period estimates for 1 h rainfall accumulation for
the three study areas, derived from R(Zh), R(Zh,Kdp), and
rain gauges.

The maximum 1 h accumulation for a given return time
obtained from R(Zh,Kdp) shows better agreement with val-
ues obtained by rain gauges. In the two Italian areas, the
underestimation by R(Zh) is evident and larger in area A1

than in area A2. For Estonia, R(Zh,Kdp) confirms good per-
formance, while R(Zh) confirms underestimation but also
shows an unrealistic large-scale parameter and a low statisti-
cal significance of the fit. Recalling the findings in Voorman-
sik et al. (2021a), QPEs derived by Zh show underestimation
during the warm season. However, several reasons can ex-
plain the weakness of R(Zh):

1. horizontal radar reflectivity attenuation caused by in-
tense instantaneous rainfall rates,

2. partial beam filling,

3. inappropriate reflectivity cap threshold (55 dBZ)
to avoid hail contamination (disdrometer measure-
ments reported cases of rainfall rates greater than
100 mm h−1),

4. clutter residual,

5. inappropriate drop size distribution assumed to convert
weather radar horizontal reflectivity into the rain rate.

On the other hand, R(Zh,Kdp) estimations outperform in
a strongly convective-precipitation regime like in northern
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Italy, being immune from hail contamination and rainfall at-
tenuation.

The major advantages of using weather radars for such ap-
plications are that information for unmeasured locations can
be obtained and spatial gradients of the variables of inter-
est captured. Due to the limited polarimetric weather radar
data availability in time (a few years), the present study
is limited to climatologically homogeneous areas, limiting
or losing these advantages. Nevertheless, previous studies
(Overeem et al., 2008, 2009a, b, 2010; Marra and Morin,
2015; Panziera et al., 2018; Marra et al., 2022) have ana-
lyzed weather radar QPEs based on horizontal reflectivity
data adjusted with some ground rain gauge measurements.
Here, the major innovative aspect is that the QPEs, based
on the blended algorithm R(Zh,Kdp), are obtained indepen-
dently of co-located rain gauge data availability. This study
demonstrates that, by having polarimetric rainfall estimates,
it is possible to estimate the rainfall annual maxima even in
ungauged regions. Moreover, as stated by Marra and Morin
(2015), dealing with QPEs based on radar reflectivity factor
data, the upper threshold used to limit hail contamination is
an issue in rainfall maxima estimation in warm regions, lim-
iting the instantaneous rainfall estimation typically to about
100 mm h−1. Involving Kdp for QPEs, the hail contamina-
tion issue is overcome, making QPEs independent of both
climatic region and weather radar attenuation. Future studies
will benefit from longer time series allowing investigations
in wider non-homogeneous areas.

5 Conclusions

Several studies have investigated rainfall annual maxima de-
rived from weather-radar-based QPEs obtained by the tra-
ditional Zh–R relationship with some adjustments with rain
gauges. In the past decades, dual-polarization weather data
radar observations have become available from operational
weather radars. As stated by Bringi and Chandrasekhar
(2001) and Voormansik et al. (2021a), the benefits of using
dual-polarization variables like Kdp in rainfall estimates are
evident: these QPEs are immune from weather radar miscal-
ibration, anomalous propagation, and partial beam blocking
or beam filling.

For the first time, this study investigates QPEs based
on polarimetric observations by operational C-band weather
radar located in Italy and Estonia. The most remarkable as-
pects of this study are that

– data are derived from operational C-band weather radar
without any dedicated settings,

– QPEs are derived by polarimetric observations without
any rain gauge adjustments.

As shown by Voormansik et al. (2021a), rainfall estima-
tions based on Zh–Kdp algorithms are robust and reliable,

overcoming most of the sources’ uncertainties; hence, no
corrections or adjustments with rain gauges have been ap-
plied. The annual maximum of 1 h rainfall accumulation is
typically assumed to have a GEV distribution. Given the
shortness of weather radar data, this study is limited to a
short duration (1 h) in homogeneous regions assuming par-
ent Gumbel distributions. Hence, Gumbel distribution pa-
rameters and depth–frequency curves have been derived from
the 1 h dual-polarization weather-radar-based annual rainfall
maxima. The comparison of weather radar return period esti-
mations with ones derived from gauge observations showed
a good agreement. This study demonstrates that thanks to
weather radar high spatial resolutions, even a limited time
series of weather radar observations can provide reliable esti-
mations of extreme-value-distribution parameters for annual
hourly rainfall maxima in climatologically homogeneous re-
gions. It is worth recalling that QPEs based on R(Zh−Kdp)

observations can be obtained only in cases of warm-season
precipitation events (when most intense precipitation events
occur anyway). The results shown demonstrate good agree-
ment between QPEs obtained byR(Zh−Kdp) and rain gauge
data and consistent estimations of Gumbel distribution pa-
rameters. Assuming homogeneous regions with high-quality
weather radar observations, it is shown that even limited
time-series weather radar observations can discriminate 1 h
rainfall total annual maxima between different precipitation
regimes. These results are promising especially if we recall
that the two areas in Italy are characterized by slightly dif-
ferent precipitation regimes and the applied statistical anal-
ysis can describe them properly. The main requirements for
weather radar observations applying this approach consist of
proper weather radar calibration, radar visibility, and a lim-
ited beam broadening united to a limited beam height above
the ground.

As longer rainfall time series based on dual-polarized me-
teorological data become available, more investigations into
different rainfall durations in wider and non-homogeneous
areas will be possible, allowing estimations of spatial gradi-
ents and evaluations of different statistical distributions. Sub-
hourly precipitation extremes can determine a wide range of
impacts on infrastructure, economy, and even health, caus-
ing urban flooding and triggering landslides, flash floods,
and heavy soil erosion. Hence, future works will focus on
sub-hourly rainfall accumulation intervals, estimating GEV
parameter distributions and deriving other significant return
periods.
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