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Abstract. Robust quality control is a prerequisite and an es-
sential component in any data application. That is especially
important for time series of environmental observations such
as air quality due to their dynamic and irreversible nature.
One of the common issues in these data is constant value
episodes (CVEs), where a set of consecutive data values re-
mains constant over a given period. Although CVEs are of-
ten considered to be an indicator of sensor failure or other
measurement errors and are removed during quality control
procedures, there are situations when CVEs reflect natural
environmental phenomena, and they should not be removed
from the data or analysis. Assessing whether the CVEs are
erroneous data or valid observations is a challenge. As there
are no formal procedures established for this, their classifi-
cation is based on subjective judgment and is therefore un-
certain and irreproducible. This paper presents a novel test
procedure, i.e., constant value test, to estimate the probabil-
ity of CVEs being valid data. The theoretical foundation of
this test is based on statistical characteristics and probability
theory and takes into account the numerical precision of the
data values. The test is a data-driven (parametric) approach,
which makes it usable for time series analysis in different en-
vironmental research domains, as long as serial dependency
is given and the data distribution is not too different from
Gaussian. The robustness of the test was demonstrated with
sensitivity studies using synthetic data with different distri-
butions. Example applications to measured air temperature
and ozone mixing ratio data confirm the versatility of the
test.

1 Introduction

Millions of sensors monitor the environment every day, and
their data are used in many applications such as trend anal-
ysis (Fang et al., 2013; Mills et al., 2016, 2018; Chang et
al., 2017; Fleming et al., 2018; Lefohn et al., 2018) and fore-
casts (Gardner, 1999; Zhang et al., 2012; Debry and Mal-
let, 2014; Zhou et al., 2019) to provide important informa-
tion on global challenges such as climate change, air quality,
soil degradation, etc. The measurement process can be in-
terpreted as sampling from a true distribution of atmospheric
state variables, for example, temperature or air pollutant con-
centration, at a given location. Each measured value is an
estimation of “truth” that has been obtained through a set
of data samples (Grant and Leavenworth, 1996). A common
feature of many environmental time series is the fact that the
true distribution changes with time. This makes such mea-
surements irreproducible.

Measured data can be contaminated by various errors such
as systematic, random, non-representative and gross errors
(Gandin, 1988; Steinacker et al., 2011). These errors can
arise from poor sensor calibration, long-term sensor drift,
noise, non-resolvable processes by an observational network,
and mistakes during data processing, decoding or transmis-
sion. Some of these errors arise from unpredictable natural
phenomena such as floods, fire, frost and animal activities
(Campbell et al., 2013) that cannot be documented in ev-
ery detail. Although many efforts are devoted to develop-
ing advanced analytical tools and methods, these errors can
have deleterious effects on the statistical analyses. For in-
stance, outliers, i.e., values far outside of the norm for a vari-
able or population, can increase the error variance or reduce
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the power of statistical tests (Osborne and Overbay, 2004).
Specifically, constant value episodes (CVEs) can decrease
the normality when the assumption of a normal distribution
must be satisfied, for example, in linear regression. Thus,
even the most sophisticated statistical model can be vulnera-
ble against unknown and potentially erroneous data. If such
errors in the data are not identified by applying quality con-
trol (QC) procedures, the information obtained from the data
will be misleading, and the results from scientific data analy-
ses can be unreliable and biased. Therefore, robust QC proce-
dures are an essential component in the data production chain
and a requirement for having a more reliable quantification
of trend or other statistical analysis.

Many research initiatives and environmental monitoring
programs have thus established standards and guidelines for
QC procedures. Most of them rely on visual screening of
data, and therefore personal inspection, and on manual elim-
ination of erroneous values based on empirical knowledge
and investigator experiences. Several advanced tools such
as GCE (Scully-Allison et al., 2018), CoTeDe (Castelão,
2016), and AutoQC (Good et al., 2022) and comprehensive
user manuals such as QARTOD (Bushnell et al., 2019) and
WMO-AWS (Zahumenský, 2004) have been developed with
precise rules to overcome this subjectivity. However, their ap-
plication is often limited to a few variables or specific data
sets, for example, from limited geographic regions with rel-
atively homogenous conditions. This, in turn, can be prob-
lematic if one wants to assemble global data sets of various
environmental variables. For example, in the Tropospheric
Ozone Assessment Report (TOAR), a global database with
ground-level ozone measurements at more than 10 000 loca-
tions around the world, was built with data from more than
30 different contributors (Schultz et al., 2017). Different QC
procedures at these agencies and sites led to increased uncer-
tainty in the assessment. At this scale of data, manual inspec-
tion methods are not only error prone but also impractical. It
is therefore desirable to develop a more generic, robust and
data-driven approach for the QC of environmental monitor-
ing time series.

The focus of this study is to develop a QC test for CVEs as
the first element for such data-driven QC. CVEs are a com-
mon feature in air quality time series and other environmen-
tal data sets. As an example, in a specific 35-year-long ozone
time series with hourly sampling, CVEs with a length of 2
occurred 20 313 times. Therefore, about 6.7 % of the data
values are CVEs, meaning that such incidents are expected
to occur naturally about 16 times per 10 d in the hourly data.
The CVEs with a longer length, e.g., 3, 4 and 5, occur 6190,
2887 and 1681 times, respectively, and so the proportion of
these incidents are 4.85, 2.26 and 1.31 for 10 d hourly data
time series. While they can be detected through a persistence
test, a qualified judgment whether such data are erroneous
or not is a difficult undertaking. If CVEs are excluded from
the data (Horsburgh et al., 2015; Gudmundsson et al., 2018),
the results of the analysis, such as model–data comparisons

(Bey et al., 2001; Horowitz et al., 2003; Dawson et al., 2008;
Emmons et al., 2010; Lamarque et al., 2012; Rasmussen et
al., 2012; Tilmes et al., 2012; Im et al., 2015; Schnell et
al., 2015; Lyapina et al., 2016; Sofen et al., 2016), can be-
come biased. That can be an issue in (re)analysis products
(Inness et al., 2019; Hersbach et al., 2020), where assimila-
tion processes reduce misfits between observations and their
modeled values. If the models correctly capture CVE events,
excluding the CVEs will lead to a type I error. On the other
hand, if CVEs originating from instrument malfunctions are
included in the analysis, that will raise type I and type II er-
rors and likely raise unreliable results.

This study presents a new (QC) test procedure, i.e., con-
stant value test (CVT), which estimates the probability of a
CVE representing valid data. Data users can select a thresh-
old of an acceptable probability depending on their scientific
study or data analysis task. The CVT is entirely data-driven
and makes very few assumptions about the properties of the
underlying values’ distribution and probability density func-
tion (Gaussian). Currently, the method is valid for data with
a Gaussian frequency distribution. Possible extensions of the
method are discussed in the conclusions section. In principle,
it is possible to use the technique of statistical simulations to
examine how the CVE probabilities change for non-Gaussian
distributions. However, this is beyond the scope of this paper.
Due to its generality, the test is applicable for a wide variety
of environmental variables with a serial dependency (auto-
correlation). The article structure is as follows: the method
(CVT) is described in Sect. 2. In Sect. 3, the approach is
evaluated using synthetic data for demonstration purposes.
The results of three real test cases are discussed in Sect. 4.
And, finally, conclusions are given in Sect. 5.

2 Methodology

Before describing the proposed method, we briefly sum-
marize some issues with existing methods. In existing QC
frameworks, the persistence test is typically defined based
on the minimum expected variability, but this requires
prior knowledge about the true statistical distribution of the
measurements. For example, Zahumenský (2004) has de-
fined that air temperature measurements shall be flagged as
“doubtful or suspected value” if the measured variable varies
by less than 0.1 K over 60 min. Such a priori assumptions
may lead to false data labeling when environmental condi-
tions are exceptionally stable and the true data variability is
reduced for some period of time. For instance, temperature
variation of 0.1 K can occur in the morning when radiative
forcing is small, e.g., on a foggy day in autumn. In mea-
surements of air pollutant concentrations, longer periods of
zero values can be found if the measured concentrations are
below the instrument detection limit or if chemical conver-
sion leads to a complete removal of a species. For example,
ground-level ozone concentrations at urban sites remain zero
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for several hours if there is a high level of nitrogen oxide
emission.

The assessment of CVEs will also have to depend on the
numerical precision or resolution (res), which is the number
of significant digits with which an observation is recorded
(Chapman, 2005). For example, historical measurements of
ground-level ozone (Azusa station) in the EPA Air Quality
System (AQS) in the 1980s were reported with a resolution of
8 ppb (parts per billion). Another pollutant in the EPA AQS
database for which reporting precision has changed over time
since 1980 is carbon monoxide at the Fresno station (Califor-
nia state). So, it is not uncommon to find episodes of several
hours when all measurements are reported as the same value,
and it would be implausible to remove all of them as “erro-
neous measurements”.

The CVT takes these considerations into account and pro-
vides a data-driven approach with very few a priori assump-
tions. It consists of two main procedures: first, CVEs need to
be found and the length of the episodes must be recorded,
then, in the second step, the probability of each CVE be-
ing a period of valid data with low variability is estimated.
While the first procedure can be simply implemented by tak-
ing the differences of consecutive values, a possible compli-
cation arises if the time series contains missing data or if the
data were irregularly sampled. While the software accompa-
nying this paper has a provision to deal with missing data,
we ignore the second issue for the purpose of this paper and
require that the time series has been sampled at regular in-
tervals. The following method description focuses on the es-
timation of the likelihood that two or more constant values
occur in reality and are thus not necessarily resulting from
measurement or data processing errors.

2.1 Statistical background

To describe the joint process of a given time series, we as-
sume such a stochastic process can be represented as a mul-
tivariate Gaussian distribution (Tong, 1990; Rencher, 2002).
LetX = (x1, . . .,xn) be a series of random variables; the joint
probability density function of a multivariate Gaussian distri-
bution, N (µ6), can be written as

fX (x1, . . .,xn)=
exp

(
−

1
2 (x−µ)

T6−1(x−µ)
)

√
(2π)k|6|

. (1)

Here,µ is an n×1 mean vector and6 is an n×n positive def-
inite covariance matrix. In the stationary case, without loss
of generality, µ can be assumed to be a constant, and 6 can
be represented as multiplication of a finite constant variance
σ 2 and a (auto)correlation matrix {i = 1, . . .,n;j = 1, . . .,n},
with ∅(ij)= 1 if i = j (diagonal) and 0≤∅(ij)≤ 1 if i 6= j
(off-diagonal) for a given time series.

Long range approximation of an environmental time se-
ries is generally unnecessary and computationally expensive
(e.g., Wincek and Reinsel, 1986; Guttorp et al., 1994; Niu,

1996; Fioletov and Shepherd, 2003; Kumar and De Ridder,
2010). Here we use an assumption that an environmental
time series is auto-correlated and can be approximated by
an autoregressive (AR(1)) process (Tiao et al., 1990; Weath-
erhead at al., 1998, 2000; Reinsel et al., 2002). The definition
of an AR(1) process, the xi , i.e., data value at time i, can be
written as

xi = const+∅xi−1+ εi . (2)

Here, εi is a white noise, and const is an offset. With the as-
sumption of the AR(1) process, the correlation matrix can be
approximated by one parameter, ∅, since Corr(Xi,Xi−h)=
∅|h| (the correlation between any two points is only depen-
dent on the time interval, h); thus, the stochastic process can
be governed by three parameters, i.e., µ, σ 2 and ∅.

The general likelihood of an AR(1) process can be approx-
imated using the first-order Markov property as

p(x1, . . .,xn)= p(x1)
∏n

k=2
p(xk |xk−1) , (3)

where p(x1) is the density of initial state, which is not critical
in this study, because the focus is placed on the probability of
a consecutive state that is identical to the previous value, i.e.,
the second term, and p(xk |xk−1) represents the probability
distribution of xk depending only on xk−1. The above equa-
tion is a general form without a distributional assumption. To
derive the explicit form for the Gaussian case, we start from
a univariate and a bivariate probability density function:

f (xk−1)=
1

σ
√

2π
exp

(
−

1
2

[
(xk−1−µ)

2

σ 2

])
, (4)

f (xk−1,xk)=
1

2πσ 2
√

1−∅2
exp

(
−

1
2
(
1−∅2

)[
(xk−1−µ)

2

σ 2 +
(xk −µ)

2

σ 2

−
2∅(xk−1−µ)(xk −µ)

σ 2

])
. (5)

Then the conditional probability distribution of Xt given
Xt−1 = c can be derived by the Bayes’ theorem and written
as (see Appendix A)

p(xt |xt−1 = c) ∼ N
(
µ+∅(c−µ),

(
1−∅2

)
σ 2
)
, (6)

where c is an arbitrary constant. The implication of such a
formulation is that the resulting probability is also a function
of c: if the statistical model parameters (µ,σ 2,∅) are fixed,
a shorter distance of c from the mean, µ, will result in a rel-
atively higher probability density than those are far away.
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2.2 Constant value episode (CVE) probability

The estimation of the CVT probability consists of the follow-
ing two steps.

Step 1. Deriving a joint probability density. For a series of
(dependent) events, Ak with 1≤ k ≤ n, the joint density of
probability can be described through a product of multiple
conditional probabilities as

p(An ∩ . . .∩A1)= p(A1)
∏n

k=2
p
(
Ak |∩

k−1
j=1Aj

)
= p(A1)

∏n

k=2
p(Ak |Ak−1) . (7)

The first equality yields from the chain rule of the joint dis-
tribution (Schum, 2001); the second equality is a special case
of an AR(1) process.

Step 2. Imposing a distributional assumption to the joint
probability distribution. From Eq. (6), the probability of con-
secutive values in a series with Gaussian probability density
can be determined by

P(CVEt=1,c 6=0)= p(xt = c |xt−1 = c)

=

c+res/2∫
c−res/2

1

σ

√
2π
(
1−∅2

)
exp

(
−

1
2

[
((c−µ)−∅(c−µ))2(

1−∅2
)
σ 2

])
. (8)

The integral reflects the fact that digital data are recorded
with finite numerical precision. Then, according to the prop-
erty of an AR(1) process, the probability of a CVE with a
length of t can be calculated through P(CVE1) raising to the
power of t − 1 as

P(CVEt,c 6=0)=

( c+res/2∫
c−res/2

1

σ

√
2π
(
1−∅2

)
exp

(
−

1
2

[
((c−µ)−∅(c−µ))2(

1−∅2
)
σ 2

]))t−1

. (9)

Since this equation is designed for a constant event, so the
marginal probability remains a constant for each CVE. To
diminish the influence of CVE onµ, they were excluded first,
then the µ, σ and ∅ were calculated.

For non-normal cases, the explicit parameterization of a
non-independent joint distribution is difficult to derive due
to mathematical challenges and often does not have a closed
form. The non-parametric alternative is to use empirical dis-
tribution (Epanechnikov, 1969; Waterman and Whiteman,
1978) or kernel distribution (Hwang et al., 1994; Duong
and Hazelton, 2005), but this approach is not desirable for
database management at this stage because it is difficult to
develop a unified framework that is adequate for all situa-
tions. Besides, the empirical distribution estimates a proba-
bility without taking into account auto-correlation, i.e., inde-
pendent of the adjacent data points.

The AR(1) assumption can be relaxed by increasing the
order of autocorrelation without too much complexity. For
example, for an AR(2) process, one could specify the covari-
ance matrix in Eq. (1) as

6 =

∣∣∣∣∣∣
σ 2 σ 2∅1 σ 2∅2
σ 2∅1 σ 2 σ 2∅1
σ 2∅2 σ 2∅1 σ 2

∣∣∣∣∣∣ (10)

and modify Eq. (7) in step 1 as

p(An ∩ . . .∩A1)

= p(A1)p (A2 |A1)
∏n

k=3
p(Ak |Ak−1,Ak−2) , (11)

then update the conditional probability parameterized by
(µ,σ 2,∅1,∅2) in step 2. The more general extension of the
autoregressive model is out of the scope of this study and can
be referred to in Box et al. (2015).

For the variables with extra incidences of zero such as ni-
trogen oxides (NO, NO2) and ozone, the lower interval of
the integration in Eq. (9) was changed from c− res to 0. Note
that in reality “zero” values in measurements may actually be
recorded as small positive or negative numbers. This detail is
ignored in the following because there is no universally ap-
plicable correction available. Some data sets may require a
linear or non-linear bias correction, while for other data sets
a simple cutoff, e.g., set to zero if | value |< threshold, may
be more appropriate.

3 Model sensitivity test

The P in Eq. (9) is affected by the parameters µ, σ , ∅, c,
t and res. A simulation study was developed to evaluate the
sensitivity of P to each parameter. Several experiments were
conducted by generating a synthetic data series to demon-
strate the influence of each parameter. For each experiment,
the CVT was performed over a range of possible values.

A set of first-order autoregressive, AR(1), time series with
hourly time steps and a length of 240 values (10 d) was gen-
erated using Eq. (2) and a random noise generator. As a ref-
erence case (ref), we set µ= 10, σ = 4 and ∅= 0.8. The
numerical precision was defined as 0.01. Four sets of CVEs
with the same length (t = 3) were added to this time series.
The distance of the CVE from the mean, i.e., c−µ, was given
as 0, 1, 2 and 3σ (see Fig. 1). In this figure, four CVEs are
illustrated with a color code, i.e., red, blue, cyan and black,
which are shown with boxes. The P varies from 7.67×10−6

for the first CVE to 4.77× 10−7 for the fourth (last) CVE.
As stated in Sect. 2.1, the value of P decreases as c−µ in-
creases. CVEs which are further away from the mean are less
likely to occur in nature.

To assess the effect of t on P , a set of values ranging from
2 to 10 were selected for the t . All other parameters were
fixed as in the baseline time series. As expected from Eq. (9),
the P decreases exponentially with t (Fig. B1a). Note that
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Figure 1. A synthetic AR(1) time series with Gaussian data distribution and four arbitrarily selected CVEs of length t = 3, with µ= 10,
σ = 4, ∅= 0.8, and c−µ= 0, 4, 8, and 12, respectively. The CVEs are shown using a color code, i.e., red, blue, cyan and black. The
numerical precision (res) is chosen as 0.01.

the slope of this exponential decrease depends on c−µ. The
larger the c−µ, the larger would be the slope. That is in
agreement with Fig. 1, where the P decreases as the CVE
gets further from the mean. However, the probability of find-
ing two consecutive data points with the same value is about
1 : 300, i.e., in a year-long time series such incidents are ex-
pected to occur naturally about once per year if the sampling
resolution is daily and about 25 times if the sampling resolu-
tion is hourly.

To investigate the non-linear influence of σ on P in
Eq. (9), a range of values, i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2,
3, 4, 5, 10 and 20, were set as σ , while other parameters
remained unchanged. In this scenario, the P changes from
1.22× 10−2 for the smallest σ to 8.93× 10−8 for the largest
one (Fig. B1b). By using Eq. (9), it thus becomes possi-
ble to estimate likelihoods for naturally occurring CVEs for
data sets with different variability, in contrast to classical ap-
proaches, which use a fixed variability threshold.

The most interesting parameter to consider in the CVT is
the lag-1 auto-correlation (∅). A sensitivity experiment with
several additional time series was performed to assess the
sensitivity of P with respect to ∅ (Fig. B1c). In this figure, P
ranges from 1.23×10−10 to 2.5×10−3. The larger the ∅ (i.e.,
stronger persistence), the larger would be the probability of
naturally occurring CVEs. The estimated probability is very
sensitive to ∅ as it approaches 1. At the limit value of 1,
Eq. (9) is undefined. If ∅= 0, the time series only consists
of noise, so it is less probable to get any CVEs.

Another parameter influencing P is the data digital resolu-
tion (res) or precision, where the data have been recorded in a
fixed numerical precision (number of decimals) or as integers
with possible rounding to the nearest multiple of 5, 10, etc.
This parameter is shown in Eq. (9), where the resulting prob-
ability is integrated over the range of values from c− res/2
to c+ res/2.

To investigate the sensitivity of the P to the res param-
eter, the baseline time series was resampled by using sev-
eral resolutions, i.e., 0.0001, 0.0002, 0.0005, 0.001, 0.002,

0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2 and 5. As shown
in Fig. B2a for the example of res= 5, larger res leads to
additional CVEs, and it becomes harder to distinguish valid
episodes from erroneous incidents. But here, to isolate in-
fluence of res on P , first the data were truncated to a new
resolution, then the CVEs were added to the data. The CVT
results are shown in Fig. B2b, in which the P changes from
4.77× 10−11 to 7.57× 10−1. This shows that by increasing
the res, the P increases, meaning that if the data are recorded
in a coarse resolution, there is a higher chance to count those
data as valid data.

An experiment with several scaling factors, i.e., fc= 0.1,
0.2, 0.5, 1, 2, 5 and 10, was performed to check the robust-
ness of the CVT to the different data transformations. In this
experiment, the CVEs were added first; then the scaling, i.e.,
x(t)× fc, was applied; and the data were truncated to a new
numerical resolution given by res× fc. Scaling changes other
parameters such as µ or σ , except ∅, which remains invari-
ant. Figure B1d shows the robustness of the CVT output (P )
with scaling. It is important to note that Eq. (9) is robust to
the other data transformation such as normalization and stan-
dardization (see Appendix C).

A combined sensitivity analysis was performed to illus-
trate the effect of the parameters σ , ∅ and res in Eq. (9), i.e.,
the conditional probability for two consecutive values was
evaluated over a range of conditions (σ and ∅ from 0.01 to
0.99, and res of 0.01, 0.1 and 0.5), with µ− c = 0. The re-
sults are shown in Fig. 2 and can be interpreted as an upper
limit for P that two successive values are valid data because
µ− c = 0 represents the maximum of the Gaussian distri-
bution in Eq. (9). Using the chain rule from Eq. (11), these
results can easily be extrapolated to longer CVEs. As Fig. 2
shows, the probability of finding two valid consecutive data
points with the same value decreases rather quickly with in-
creasing standard deviation σ . The ∅ has limited influence
up to values of around 0.7. Above this threshold, the like-
lihood of a two-value CVE increases drastically. A coarser
numerical resolution makes it more likely to encounter con-
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stant values in reality. At res similar to σ , the length, t , of the
CVE will have to be much larger than 2 to reliably classify
it as erroneous. In practical applications, one would gener-
ally set a threshold for the acceptable probability first. The
information provided in Fig. 2 can then help to identify typ-
ical parameters of the time series, where this threshold will
be reached.

4 Results and discussion

Two data time series were retrieved from the Tropospheric
Ozone Assessment Report (TOAR) database (Schultz et
al., 2017) to illustrate the practical use of the CVT. This
database holds in situ measured data time series for ground-
level ozone in hourly time resolutions. We selected the time
series of ozone mixing ratio at the Azusa station (34◦8′ N,
117◦55′W) in California that has data from the 1980s, when
the data were recorded with a resolution of 8 ppb. Besides
this, the TOAR database contains data for meteorological
variables at some stations. We selected one temperature
time series at the Cape Grim station, Tasmania (40◦68′ S,
144◦69′ E). This station is located at an altitude of 94 m di-
rectly on the coast, and it is a Southern Hemisphere back-
ground site with an extensive record back into 1980. The
station primarily measures air which has passed over the
Southern Ocean for several days. So, temperature variations
at this site are often of small amplitude. Data series of carbon
monoxide at the Fresno station (36.78◦ N, 119.77◦W) were
obtained from the EPA AQS database. This data was reported
with a precision of 1 ppm in 1980 and later in 2022 with a
higher precision of 0.001 ppm. The precision changes might
have arisen from the method detection limits (0.5 and 0.001),
measurement methods (instrumental non-dispersive infrared
and instrumental gas filter correlation Teledyne API 300 EU)
or method types (non-FRM and FRM; Federal Reference
Method) detailed in their data files.

4.1 Temperature

Temperature is one of the key variables relevant to air qual-
ity research. For example, temperature is often used as a pri-
mary predictor for smog-related air quality. For demonstra-
tion of the CVT in a real data situation, 10 d of a temperature
time series were selected. The µ, σ and ∅ of the selected
10 d time series are 12.55, 1.59 and 0.94, respectively. The
recorded numerical resolution of the data is 0.01. The time
series along with the probability, P , of each value being a
valid observation is shown in Fig. 3. Altogether, 18 CVEs
are visible in Fig. 3, 15 of them with t = 2, 2 with t = 3 and
1 with t = 4.

The CVEs occur at more or less regular times in the early
morning, e.g., 04, 05 and nighttime hours, e.g., 10, 21, 22
and 23 (see Fig. 4). That can be because of the local meteo-
rological phenomena at this site, where the temperature has

little variance. Therefore, these CVEs are less likely to be
erroneous data.

The probabilities estimated by the CVT are above 0.2 in
most cases, which means that if the CVEs were to be flagged
as erroneous data, one would err in one out of five cases
and throw out the valid measurements. The CVE on 18 Jan-
uary yields the lowest probability (0.008), in line with the
expectation of the human data analyst because it is a sparse
CVE with four consecutive values (t = 4). This example il-
lustrates that it will generally be impossible to define a uni-
versal threshold for P but that instead it depends on the use
case. For example, in a data quality control workflow at the
originating institution, one may decide to rule out data with
P < 10−4 but have a data curator cross-check the measure-
ments with larger P . In contrast, when these data are inte-
grated in a larger analysis consisting of many stations, one
might apply the CVT to rule out data with P < 10−3 or even
P < 10−2 to increase the statistical robustness of the analy-
sis.

Other criteria for selecting a threshold for P could be cli-
mate regions. In the polar regions, the diurnal cycle of the
temperature in summer could be quite high, but coastal sites
in that area with a dense fog might have morning periods
when the temperature is rather constant. The first shows a
larger σ than the latter, so the P will be less in the polar than
the coastal sites, assuming all other parameters are constant
(as shown in Fig. B1b). One may adopt a smaller threshold
for P in polar than in coastal sites. Or for the same climato-
logical region with constant temperature values at night or in
the day, when the diurnal cycle reaches maximum or mini-
mum, the CVT would give CVEs a lower probability, as they
are further from the mean (larger c−µ). So, the P of the
CVEs at extrema can be less than the CVEs with the same t
in this series.

4.2 Ozone

Ozone near the ground is an air pollutant that is detrimental
to human health and vegetation growth. Ozone measurement
techniques have evolved over time, and it can therefore be
challenging to assess the data quality of a decade-long mon-
itoring data set, such as that from the Azusa station in Cal-
ifornia, U.S. (34◦8′ N, 117◦55′W), that contains a relatively
long data record from 1980 to 2016.

Figure 5 shows a 10 d example from this measurement se-
ries for the year 1990, with the µ, σ and ∅ of 16.55, 17.32
and 0.79, respectively. During the early period, the data were
reported in a low resolution, here an interval of 8 ppb. As a
consequence, the time series contains many CVEs, and most
of them are probably valid. In contrast, for the year 2012
when the data are recorded in a higher data resolution, i.e.,
1 ppb, the number of the CVE is small (see Fig. D1). As
mentioned in the introduction, urban ozone time series often
show very low values (effectively zero), which are, however,
recorded as small positive or negative values, here +2 ppb.
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Figure 2. Conditional probabilities to find a measured value xt given xt−1 for three different numerical resolutions, i.e., (a) res= 0.01,
(b) res= 0.1 and (c) res= 0.5. In this figure, the σ and ∅ range from 0.01 to 0.99.

Figure 3. Temperature time series at the Cape Grim station (40◦68′ S, 144◦69′ E) from 10 to 20 January 1983. Black and blue lines show
the temperature value (◦C) and its associated probability, P , in Eq. (9), respectively. In this figure, the time is shown in UTC. The P is not
affected by the unit conversion, i.e., degrees Celsius (◦C) to kelvin (K). The data were retrieved from the TOAR database.

Figure 4. The number of CVEs occurring for the different hours in
a day, i.e., h= {0. . .23}, for the temperature time series shown in
Fig. 3.

Figure 5 shows the probabilities between 3.12×10−10 and 1
for these episodes, which have values of 2 ppb. There are also
three CVEs, with large t (≥ 8) and very low ozone mixing ra-
tios of 2 ppb, which are shown with red circles in Fig. 5. This

illustrates the issue of zero-bounded data mentioned in the
methodology. The CVT can recognize such cases, and the
associated probabilities are 3.12× 10−10, 2.22× 10−7 and
2.48× 10−8, for the CVE1, CVE2 and CVE3, respectively.
That would prevent such (valid) values from being flagged
or filtered as erroneous data, in contrast to the second part of
the time series in Fig. 6 (for the year 2011), which exhibits
sparse occurrence of episodes, i.e., 21 CVEs where 17, 2, 1
and 1 CVEs with the t = 2, 4, 7 and 9, respectively. In most
cases (17 episodes), the CVEs consist of only two consecu-
tive values (t = 2). The estimated probability for these cases
is between 2.15×10−2 and 9.9×10−2 (Fig. 6). One episode
during 18 November 2011 consists of nine constant values
of 2 ppb. The estimated P for that incident is 4.6× 10−14,
and this episode would indeed raise the suspicions of trained
data analysts because such a pattern in the data would require
a rather special explanation (see Fig. D3).

Figure 5 also illustrates the problem with missing data
values that was mentioned in the beginning of Sect. 2. On
18 November, there is a gap in the time series where the data
point has been excluded, and the values to the left and right
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Figure 5. Time series of the ozone mixing ratio at the Azusa station, California, from 10 to 20 November 1990 (black) and the CVT test
results (blue). During this period, the data were recorded in intervals of 8 ppb, i.e., res= 8, so that valid CVEs are frequent. In total, this
time series contains 45 CVEs as 27, 6, 3, 3, 1, 1, 1 and 1 episode, with the t = 2, 3, 4, 5, 6, 8, 9, and 11, respectively. The red circles (or
ovals) highlight three examples of zero-ozone incidents (here 2 ppb) with a large length (t ≥ 8) in this series. The cyan circles highlight the
probability of the respective CVEs. The orange circle highlights a CVE with a length of 4 that contain a gap of missing data points.

Figure 6. As Fig. 5 but from 10 to 20 November 2011, when the data were recorded with a numerical resolution of 1 ppb, i.e., res= 1. The
red circle shows one example of missing data points in the data time series. The µ, σ and ∅ of the data in this figure are 19.9, 10.73 and
0.84, respectively.

of this episode are identical. If these values were not treated
correctly, they would be counted as a CVE episode with a
length of 8 and probability of 2.58× 10−7, which is shown
with an orange circle in Fig. 5. Although such incidents could
raise suspicions, they are not (and should not be) detected by
the CVT. An independent test needs to be designed for such
situations.

4.3 Carbon monoxide

Exposure to elevated carbon monoxide harms the human
body, in particular those who suffer from heart diseases. This
air pollutant also affects some greenhouse gases, e.g., car-

bon dioxide and ozone, which are linked to climate change
and global warming. A 10 d example of the measured carbon
monoxide at the Fresno station is shown in Fig. 7. Despite
the high precision of the data for the year 2022 (res= 0.001,
see Fig. D4), data were recorded with a resolution of 1 ppm
in 1980. These data contain fewer CVEs but with a larger t
(19 CVEs with t = 2. . .34) in comparison to the ozone series
in Fig. 5. That could be associated with a longer lifetime of
carbon monoxide than that of ozone. This reflects that most
of the CVEs in the carbon monoxide series are valid. The
CVT discerns this and estimates a larger P for this data, in
which the smallest P is 0.001 for the CVEs, with t = 14 and
values of 0 ppm.
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Figure 7. Time series of carbon monoxide at the Fresno station, California, from 1 to 11 January 1980 (black) and the CVT test results
(blue). During this period, the data were recorded in intervals of 1 ppm, i.e., res= 1, so that valid CVEs are frequent. In total, this time series
contains 19 CVEs as 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 3 and 2 episodes with the t = 34, 27, 21, 18, 15, 14, 12, 11, 10, 5, 4, 3 and 2, respectively.
The µ, σ and ∅ of the data in this figure are 0.79, 0.45 and 0.65, respectively.

5 Conclusions

Environmental time series are valuable and essential data
sources for scientific assessment of air quality and climate
change. One of the issues in these data is the occurrence of
the constant value episodes (CVEs). These episodes are often
considered to be indicative of sensors’ malfunctions or other
measurement errors and are excluded from the data via qual-
ity control (QC) procedures. However, these episodes can be
due to the natural environmental phenomena, and they are
indeed valid observations. Thus, distinguishing whether the
CVEs are erroneous or valid data is accompanied by large
uncertainty.

This study presented a theoretical concept and evaluation
for a data-driven constant value test (CVT), which takes into
account the typical evolution of environmental state variables
such as air temperature, ozone mixing ratio or carbon monox-
ide as time series with serial dependence. Based on the calcu-
lus of a marginal, joint and conditional Gaussian probability
density, one can estimate the probability of constant value
episodes (CVEs) of length t to occur in reality and use this
information to flag data as potentially erroneous. The thresh-
old for such flagging needs to be selected by the data ana-
lyst. Together with the batch size for processing pieces of the
time series (in our examples, the full length of the depicted
data was used; for practical applications on longer time se-
ries, we recommend sample sizes in the order of 100), these
are the only a priori parameters needed. Examples with syn-
thetic and real data demonstrate that the CVT captures many
aspects which a trained data analyst would consider in the
QC of such time series. But as a data-driven approach, it
will reveal data inconsistencies (here, CVEs due to measure-
ment or data processing errors) in automated data processing
workflows, and it may assist manual data quality control by
making it possible to provide a fine-grained warning to the

data analyst that something may be wrong with the measure-
ments based on a probabilistic score.

The test first detects CVEs by testing for zero difference.
Then, it evaluates the distribution parameters mean (µ), stan-
dard deviation (σ ) and lag-1 auto-correlation (∅), as well as
the numerical resolution of the data in user-defined portions
(batches) of the time series. Given these parameters, the con-
ditional probability for two consecutive identical values is
computed and integrated over the interval given by the nu-
merical resolution of the recorded data. Using the chain rule
for the non-independent conditional probability, this proba-
bility can easily be scaled to arbitrary lengths of CVEs.

The novelty of this approach is its foundation in statis-
tical theory and the concept of estimating the probability
of a data sample to occur naturally. This distinguishes the
method from classical approaches where more or less arbi-
trary thresholds need to be defined prior to testing. Such pre-
defined thresholds can be dangerous if conditions change,
for example, when the same thresholds are applied to data
from different world regions, climatic zones or seasons. The
method is robust against such changes, and its application
requires little background knowledge about the specific data
set under investigation. The method is therefore well suited
for having robust and automated QC systems, for example,
in smart sensor networks, where human intervention is not
feasible.
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Appendix A

The inference of conditional probability of bivariate normal
distribution
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Appendix B

Figure B1. Sensitivity of P to the (a) CVEs length, i.e., t = 2, 3, 4, 5, 6, 7, 8, 9 and 10. Other parameters are fixed as µ= 10, σ = 4, ∅= 0.8
and c−µ= 0, 4, 8 and 12. (b) Standard deviation, i.e., σ = 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5, 10 and 20. Other parameters are fixed as
µ= 10, t = 3, ∅= 0.8 and c−µ= 0, 4, 8 and 12. (c) Lag-1 autocorrelation, i.e., ∅= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.91, 0.92,
0.93, 0.94, 0.5, 0.96, 0.97, 0.98 and 0.99. Other parameters are fixed as µ= 10, σ = 4, t = 3 and c−µ= 0, 4, 8 and 12. (d) Sensitivity of P
to scaling factor, i.e., fc= 0.1, 0.2, 0.5, 1, 2, 5 and 10. Other parameters are fixed as ∅= 0.8 and t = 3. The same color codes are applied as
those in Fig. 1.
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Figure B2. (a) The modified time series (res= 5) where ref time
series were resampled with rounding to the nearest of five. That
includes more CVEs than the ref in Fig. 1. (b) Sensitivity of P to
the digital numerical precision, i.e., res= 0.0001, 0.0002, 0.0005,
0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2 and 5. Other
parameters are fixed as µ= 10, σ = 4, ∅= 0.8, t = 3 and c−µ=
0, 4, 8 and 12. The same color codes are applied as those in Fig. 1.

Appendix C

If the data are normalized, i.e., (x− xmin)/(xmax− xmin)

Figure C1. As Fig. 1 but the data time series are normalized, µ= 0.5, σ = 0.15, ∅= 0.8 and res= 0.004.

If the data are standardized, i.e., (x−µ)/σ

Figure C2. As Fig. 1 but the data time series are standardized, µ=−0.07, σ = 0.94, ∅= 0.8 and res= 0.002.
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Appendix D

Figure D1. Time series of the ozone mixing ratio at the Azusa station, California, from 10 to 20 November 2011. During this period, the
data were recorded in intervals of 1 ppb, i.e., res= 1. µ= 19.9, σ = 10.73 and ∅= 0.84.

Figure D2. As Fig. 6, but the missing values are not treated. So, the orange circle shows two CVEs, which have been merged to one incident
with a longer length (t = 8).

Figure D3. Number of CVEs (
∑
t) of different length, i.e., t =

{0, . . .,9}, for the ozone time series of the year 2011 (shown in
Fig. 6).
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Figure D4. As Fig. 7 but from 1 to 11 January 2022, when the data were recorded with a numerical resolution of 0.001 ppm, i.e., res= 0.001.
This series shows three CVEs with the length of 2, i.e., t = 2. The µ, σ and ∅ of the data in this figure are 0.62, 0.4 and 0.88, respectively.
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