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Abstract. Secondary organic aerosol (SOA) is a major
fraction of the total organic aerosol (OA) in the atmo-
sphere. SOA is formed by the partitioning onto pre-existent
particles of low-vapor-pressure products of the oxidation
of volatile, intermediate-volatility, and semivolatile organic
compounds. Oxidation of the precursor molecules results
in a myriad of organic products, making the detailed anal-
ysis of smog chamber experiments difficult and the incor-
poration of the corresponding results into chemical trans-
port models (CTMs) challenging. The volatility basis set
(VBS) is a framework that has been designed to help bridge
the gap between laboratory measurements and CTMs. The
parametrization of SOA formation for the VBS has been
traditionally based on fitting yield measurements of smog
chamber experiments. To reduce the uncertainty in this ap-
proach, we developed an algorithm to estimate the SOA
product volatility distribution, effective vaporization en-
thalpy, and effective accommodation coefficient combining
SOA yield measurements with thermograms (from thermod-
enuders) and areograms (from isothermal dilution chambers)
from different experiments and laboratories. The algorithm
is evaluated with “pseudo-data” produced from the simu-
lation of the corresponding processes, assuming SOA with
known properties and introducing experimental error. One of
the novel features of our approach is that the proposed al-
gorithm estimates the uncertainty in the predicted yields for
different atmospheric conditions (temperature, SOA concen-
tration levels, etc.). The uncertainty in these predicted yields

is significantly smaller than that of the estimated volatility
distributions for all conditions tested.

1 Introduction

Submicrometer atmospheric particles are of great impor-
tance due to their negative effects on public health (Pope
and Dockery, 2006; Lim et al., 2012) and their uncer-
tain influence on Earth’s climate (IPCC, 2021). Organic
aerosol (OA) contributes 20 %–90 % of the submicron par-
ticulate mass (Zhang et al., 2007) and is emitted directly
into the atmosphere as primary organic aerosol (POA) or
formed as secondary organic aerosol (SOA). SOA consti-
tutes a major fraction of the total OA in the atmosphere,
contributing more than 60 % on average (Kanakidou et al.,
2005). SOA is formed by the condensation of low-vapor-
pressure products of the oxidation of volatile organic com-
pounds (VOCs), intermediate-volatility organic compounds
(IVOCs), and semivolatile organic compounds (SVOCs).

Hundreds of mostly unknown products are formed dur-
ing the oxidation of each SOA precursor, making the de-
tailed description of the corresponding reactions and eventual
SOA formation extremely challenging. The volatility basis
set (VBS) is one approach that has been proposed to sim-
plify the system and to allow SOA simulation in chemical
transport models (CTMs). The VBS describes the volatility
distribution of OA using a set of surrogate species with effec-
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tive saturation concentrations that vary by 1 order of magni-
tude (Donahue et al., 2006; Stanier et al., 2008). Volatility is
one of the most important physical properties of SOA com-
ponents as it determines to a large extent their gas–particle
partitioning (Pankow, 1994a, b). The parametrization of SOA
formation for the VBS requires the determination of the
yields of each volatility bin (volatility distribution of prod-
ucts) and the corresponding enthalpies of vaporization.

The SOA parametrizations for the VBS have been tradi-
tionally based on fitting yield measurements (Lane et al.,
2008). The major weakness of this approach is that the re-
sulting parametrization is limited to the range of OA con-
centrations and temperatures of the measurements. In most
cases, the concentration range does not include the low con-
centrations relevant to the atmosphere, and usually most of
the experiments take place in a relatively narrow temperature
range. Pathak et al. (2007a) needed 37 smog chamber exper-
iments at different temperatures (0–45 ◦C) and atmospheri-
cally relevant concentrations to constrain the α-pinene SOA
temperature sensitivity.

A number of approaches have been used to minimize
the number of experiments needed to characterize the tem-
perature dependence of the SOA formation. Stanier et
al. (2007) developed an experimental technique with which
the temperature-controlled smog chamber could be heated
or cooled after the SOA formation, moving the system to
new equilibrium favoring evaporation or condensation re-
spectively. However, interactions of the SOA with the walls
of the system increased the uncertainties in the approach.
Stanier et al. (2008) presented an algorithm to fit the smog
chamber experiments using several volatility bins. However,
the number of experiments needed by the algorithm should
cover a wide range of concentrations and temperatures to ef-
fectively constrain the stoichiometric mass yields and the ef-
fective vaporization enthalpy.

In an effort to cover a wider concentration and tempera-
ture range, thermodenuder measurements can be used. The
thermodenuder (TD) is a common instrument developed to
characterize the volatility of atmospheric aerosols by heat-
ing them and observing the resulting changes in size, mass,
optical properties, etc. (Burtscher et al., 2001; Wehner et al.,
2002, 2004; An et al., 2007). TDs consist of a heated tube
in which the volatile particle components evaporate followed
by a cooling section with activated carbon to avoid vapor re-
condensation. The mass changes in TDs depend on the initial
SOA concentration, the residence time in the heating tube,
the vaporization enthalpy, and the mass transfer resistances.
The latter are described by the effective accommodation co-
efficient that has been traditionally used to account for resis-
tances to mass transfer not only at the surface of the particle
but also inside the particle. The evaporation rate for most par-
ticles is relatively insensitive to its value when this value is
around 1. A typical way of reporting the TD measurements is
by calculating the aerosol mass fraction remaining (MFR) at

a given temperature after passing through the TD. The MFRs
in a range of TD temperatures constitute the thermogram.

In applications in the field (Cappa and Jimenez, 2010;
Huffman et al., 2009; Lee et al., 2010; Louvaris et al., 2017a)
and in the laboratory (Kalberer et al., 2004; Baltensperger et
al., 2005; An et al., 2007; Lee et al., 2011; Cain et al., 2020),
the particles do not reach equilibrium with the gas phase in-
side the TD. Therefore, dynamic aerosol evaporation models
(Riipinen et al., 2010; Cappa, 2010; Fuentes and McFiggans,
2012) are needed for the interpretation of TD measurements.
Karnezi et al. (2014) used the time-dependent evaporation
model of Riipinen et al. (2010) to calculate the OA volatility
distribution, vaporization enthalpy, and mass accommoda-
tion coefficient from TD measurements. The authors showed
that a simple error minimization approach may not be ap-
propriate for such systems as very similar thermograms can
be obtained for multiple combinations of different parame-
ters. For this reason, their approach estimates an ensemble
of “good” solutions, from which the best estimate and the
corresponding uncertainties are derived.

Grieshop et al. (2009) suggested the combination of TD
and isothermal dilution to constrain the volatility distribu-
tion of SOA. Karnezi et al. (2014) proposed an algorithm to
include both types of measurement. The authors concluded
that the combination of the two types of measurement can
better constrain the OA volatility than each set separately.
Louvaris et al. (2017b) and Cain et al. (2020) applied this
algorithm to cooking OA (COA) and SOA respectively. Lou-
varis et al. (2017b) showed that the use of only TD measure-
ments led to overestimation of the SVOC fraction of COA,
while the use of TD and isothermal dilution data reduced
the uncertainty in the volatility distribution and the effective
vaporization enthalpy. Cain et al. (2020) conducted TD and
isothermal dilution experiments for α-pinene and cyclohex-
ene ozonolysis SOA. The SOA in these two systems had sim-
ilar thermograms but different areograms. When only ther-
mograms were used in the model, the volatility distributions
were quite similar. However, the addition of areograms re-
vealed that α-pinene ozonolysis SOA consists mostly of low-
volatility organic compounds (LVOCs) and the cyclohexene
ozonolysis SOA consists mostly of SVOCs.

To constrain the volatility product distribution of SOA
and its effective vaporization enthalpy, we combine TD and
isothermal dilution experiments with the SOA yield measure-
ments. We extend here the algorithm of Karnezi et al. (2014)
by introducing additional inputs (SOA yields) and by provid-
ing additional outputs (uncertainty in estimated yields in rel-
evant atmospheric conditions). The algorithm is tested with
“pseudo-experimental” data generated from the use of mod-
els simulating the corresponding measurement processes;
therefore the true parameters are known. The results of the
“pseudo-experiments” are corrupted so that they include ex-
perimental errors.

Atmos. Meas. Tech., 16, 3155–3172, 2023 https://doi.org/10.5194/amt-16-3155-2023



P. Uruci et al.: Estimation of secondary organic aerosol formation parameters for the VBS 3157

2 Model description

2.1 SOA formation

Gas-phase oxidation of VOCs involves a large number of re-
actions and produces a large number of products that can
condense in the particulate phase. Depending on their effec-
tive saturation concentration, they can be represented in the
1D VBS framework by

VOC+ oxidant→α1P1+α2P2+ . . .+αnPn

+ volatile products, (1)

where n is the number of the surrogate compounds (volatil-
ity bins in the VBS), Pi is the surrogate product in the ith
volatility bin, and αi is the corresponding stoichiometric
mass yield. The total SOA mass yield can be then calculated
as

Y ≡
COA

1VOC
=

n∑
i

αi

1+
(
C∗i /COA

) , (2)

where COA is the total SOA concentration, 1VOC is the
consumed concentration of the VOC, and C∗i is the effec-
tive saturation concentration of compound i. This yield equa-
tion is an extension of the two-product model by Odum et
al. (1996), replacing their semi-empirical partitioning co-
efficients with the assumption of a pseudo-ideal solution
(Strader et al., 1999). This model assumes that the system
has reached equilibrium when the yield is measured and that
the differences in molecular weights are small.

The effective saturation concentrations at different temper-
atures are given by the Clausius–Clapeyron equation:

C∗i (T )= C
∗

i (Tref)
Tref

T
exp

[
1Hvap,i

R

(
1
Tref
−

1
T

)]
, (3)

where Tref is the reference temperature in which the refer-
ence effective saturation concentration is defined (298 K in
this work) and1Hvap,i is the enthalpy of vaporization of sur-
rogate compound i.

2.2 Thermodenuder model

The time-dependent evaporation of SOA in the TD used in
this work is described by the dynamic mass transfer model
of Riipinen et al. (2010). The evolution of the total particle
mass, mp, and the gas-phase concentration of the compound
i, Ci , are given by

dmp

dt
=−

n∑
i=1

Ii, (4)

dCi
dt
= IiNtot, (5)

where n is the number of surrogate compounds,Ntot is the to-
tal number concentration of particles (assuming a monodis-

perse aerosol population), and Ii is the mass flux of com-
pound i from the gas to the particulate phase for each particle
calculated by (Seinfeld and Pandis, 2016)

Ii =
2πdpMiβmiDi

RTTD

(
pi −p

0
i

)
. (6)

Here dp is the particle diameter, R is the ideal gas constant,
Mi is the molecular weight of compound i, Di is the dif-
fusion coefficient of compound i in the gas phase at tem-
perature TTD, pi and p0

i are the partial vapor pressures of i
far away from the particle and at the particle surface respec-
tively, and βmi is a factor for the correction of kinetic and
transition regime effects (Fuchs and Sutugin, 1970):

βmi =
1+Kni

1+
(

4
3αmi
+ 0.377

)
Kni + 4

3αmi
Kni

. (7)

Here Kni is the Knudsen number of compound i and αmi is
the mass accommodation coefficient of compound i on the
particles. The partial vapor pressure of compound i at the
particle surface is given by

p0
i = xmi

C∗i RT

Mi

exp
(

4Miσ

RTTDρdp

)
, (8)

where xmi is the mass fraction of compound i in the partic-
ulate phase, C∗i is the effective saturation concentration, σ is
the surface tension (assumed to be 0.05 N m−1 in our simula-
tions), TTD is the particle temperature assumed to be the same
as in the TD, and ρ is the particle density. The effective satu-
ration concentrations at different TD temperatures are given
by Eq. (3).

Processes other than organic aerosol evaporation may af-
fect the TD measurements. For example, thermal decomposi-
tion may accelerate the transfer of organic compounds from
the particulate to the gas phase and may lead to overestima-
tion of the volatility of especially the least volatile compo-
nents of the SOA (Epstein et al., 2010; Saha and Grieshop,
2016; Stark et al., 2017). However, the corresponding param-
eters for the SVOCs and the more volatile LVOCs that are
important for atmospheric SOA modeling should be a lot less
uncertain given that they are measured in relatively low TD
temperatures. The use of isothermal dilution measurements
may also help identify cases in which the model does not in-
clude a process (e.g., thermal decomposition) that dominates
the behavior of the aerosol during heating. In this case, one
expects that the overall algorithm will have difficulties re-
producing all measurements (yields, isothermal dilution, and
evaporation in the TD).

2.3 Isothermal dilution model

In isothermal dilution experiments, an SOA sample is in-
jected into a reactor filled with clean air at room temperature.
The concentrations of both the gas- and the particulate-phase
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components are lowered due to dilution leading the system
out of equilibrium. The evaporation of SOA as a result of
isothermal dilution is also described by Eqs. (3)–(8) (Karnezi
et al., 2014), but the temperature is equal to 298 K. Evapora-
tion in a dilution chamber depends on the initial SOA mass,
time, and αm but not on 1Hvap as the particles evaporate
without a change in temperature.

The dilution ratio is an important parameter, varying typi-
cally from 10 to 20 in SOA experiments (Cain et al., 2020).
Low dilution ratios result in little evaporation and little signal
to be explored by the parameter estimation algorithm. High
dilution ratios lead to very low initial concentrations in the
dilution chamber and a lot of noise in the subsequent evapo-
ration measurements.

3 Algorithm for the estimation of VBS parameters

The algorithm of Karnezi et al. (2014) was first extended to
include an SOA partitioning model described by Eqs. (1)–(3)
together with the TD and isothermal dilution models in order
to estimate the volatility product distribution, vaporization
enthalpy, and accommodation coefficient. We discretized the
domain of the parameters and simulated all combinations of
stoichiometric mass yields (αi), 1Hvap, and αm. The yields
αi were allowed to vary from 0.0 to 0.8, with values of 0.0,
0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, and 0.8. The user of the al-
gorithm can specify an upper limit for the sum of the yields
to reduce the number of the potential solutions that the al-
gorithm will test. Combinations with the sum of the yields
exceeding 1.0 were excluded from the analysis originally.
The sensitivity of our results to setting the upper limit of the
sum of the yields equal to 2 is examined in Sect. 4.6. For
a four-product system there are 3153 and for a six-product
system 66 636 acceptable combinations. The values used for
1Hvap were from 20 to 200 kJ mol−1 with a step of 20, and
for αm, the values used were 0.001, 0.01, 0.1, and 1. As a
result 126 120 simulations are needed (computational time
of about 15 h on an office PC) for a four-product VBS and
2 665 440 for a six-product solution.

For each simulation and each type of measurement, we
calculated the normalized mean square error (NMSE) de-
fined as

NMSE=

NO∑
i=1
(Pi −Oi)

2

NO∑
i=1
Oi

, (9)

whereOi represents the ith observed value (corresponding to
a specific SOA concentration for yield measurements, tem-
perature for TD, or time for isothermal dilution), Pi the cor-
responding model-predicted value, and NO is the total num-
ber of observations from each type of measurement. For each
simulation (denoted as s), the overall error was calculated by

assuming equal weight to the set of yield, TD, and dilution
measurements and summing the corresponding errors:

Es = NMSEY,s +NMSETD,s +NMSEDil,s . (10)

The parameter combinations for which the overall error Es
is less than 5 % are identified. The best solution is then cal-
culated by averaging these solutions using the inverse error
Es as a weighting factor. The solutions that are closer to the
measurements have higher weight. Therefore, for every com-
bination of αi , 1Hvap, and αm, the algorithm calculates one
overall NMSE following Eq. (10) and all data points for each
solution get the same weighting factor. More specifically the
best estimate x is given by

x =

N∑
k

xk
1
Ek

N∑
k

1
Ek

, (11)

where xk is the estimated value of a property (mass yield of
a volatility bin, effective vaporization enthalpy, or effective
accommodation coefficient) and N is the number of combi-
nations with error below the threshold value. The uncertainty
range of the parameters is estimated by calculating the stan-
dard deviation (σ ) following Karnezi et al. (2014):

σ =

√√√√√√√√
N∑
k

[
(xk − x)

2
·

1
Ek

]
N∑
k

1
Ek

. (12)

4 Testing of the algorithm

4.1 Generation of data for evaluation

In order to evaluate the algorithm, we generated data using
the output of SOA formation, thermodenuder and isothermal
dilution models described in Sect. 2 for systems with known
volatility distribution of the products and properties. Then,
these data were “corrupted” with random errors to represent
the “noise” observed in laboratory measurements for yields,
thermograms, and areograms. As a result, there is no set of
model parameters that can reproduce all the measurements.
The yields were corrupted based on the variability in labo-
ratory measurements of Pathak et al. (2007a), by assuming a
normal distribution and standard deviation (σY ) given by

σY = 0.1Ytrue+ 0.02, (13)

where Ytrue denotes the correct yields.
For TD, the errors were calculated by assuming a normal

distribution and the standard deviation (σTD) suggested by
Karnezi et al. (2014):

σTD = 0.51MFRTD,true− 0.5
(
MFRTD,true

)2
, (14)

Atmos. Meas. Tech., 16, 3155–3172, 2023 https://doi.org/10.5194/amt-16-3155-2023



P. Uruci et al.: Estimation of secondary organic aerosol formation parameters for the VBS 3159

where MFRTD,true denotes the correct MFR values for each
TD temperature.

For dilution, the errors were calculated by assuming a uni-
form distribution and standard deviation (σDil) suggested by
Karnezi et al. (2014):

σDil = 0.05MFRDil,true+ 0.03, (15)

where MFRDil,true denotes the correct MFR values for
isothermal dilution.

Based on the above methodology, we generated “pseudo-
measurements” of yield, TD, and isothermal dilution for dif-
ferent SOA systems. The parameters used to produce the
pseudo-experimental data are summarized in Table S1 in the
Supplement. The “experimental” conditions assumed for the
TD and isothermal dilution measurements are shown in Ta-
ble S2.

In Experiment A, we test the performance of the algo-
rithm against α-pinene ozonolysis data and examine the ef-
fect of TD and isothermal dilution data. For Experiment A,
the “true” values were taken from the parametrization de-
rived by Pathak et al. (2007b) for the ozonolysis of α-pinene
under low-NOx and dark and low-RH conditions. Therefore,
these results are good fits of the measurements analyzed in
that study. The parametrization was derived assuming a four-
volatility-bin system with saturation concentrations ranging
from 1 to 103 µg m−3. The effective vaporization enthalpy
estimated in that study was equal to 30 kJ mol−1. Because
the effective accommodation coefficient was not part of the
Pathak et al. (2007b) parametrization, we assumed a value of
0.5 in this work. We used a small number of yield measure-
ments at atmospherically relevant SOA concentrations of 1,
5, 10, 20, and 40 µg m−3 (Fig. 1). For this SOA system, the
yield at 40 µg m−3 did not exceed 20 %. The thermogram in-
cludes 10 MFR data points in the temperature range of 20 to
200 ◦C. For the highest temperature, more than 70 % of the
SOA mass was evaporated. The areogram shows that the cor-
responding SOA evaporated by almost 70 % in the first 0.5 h
and more than 90 % in less than 3 h.

For Experiment B, the true values were taken from the al-
ternative parametrization proposed by Pathak et al. (2007b)
for the same oxidation system as described before. This time,
the authors used a seven-volatility-bin system with satura-
tion concentrations ranging from 10−2 to 104 µg m−3 in their
parametrization. The effective vaporization enthalpy of the
parametrization was 30 kJ mol−1, while for the accommoda-
tion coefficient we assumed again a value of 0.5. The yield,
TD, and isothermal dilution measurements of Experiment B
are generated in the same SOA mass concentration, temper-
ature, and dilution time range as in the previous pseudo-
experiment (Fig. 2).

For Experiment C, the true values were based on the
parametrization of the SOA formed during α-humulene
ozonolysis by Sippial et al. (2023). The authors measured
high SOA yields for α-humulene in the main smog cham-
ber (∼ 70 % at 60 µg m−3), and their corresponding thermo-

gram suggested that the SOA particles fully evaporated at
150 ◦C, while the areogram showed modest (20 %) evapo-
ration in the dilution chamber after 3 h. A four-volatility-
bin set with saturation concentrations ranging from 10−2 to
10 µg m−3 was used in that study to fit the measurements.
The stoichiometric coefficients of the three least volatile bins
(10−2, 10−1, and 1 µg m−3) were around 0.1 and of the most
volatile (10 µg m−3) 0.25. The vaporization enthalpy was
115 kJ mol−1, and the accommodation coefficient was 0.01
(Table S1). We assumed five yield measurements in the SOA
concentration range of 1 to 100 µg m−3 with yield values as
high as 65 % at 100 µg m−3 (Fig. 3). The corresponding ther-
mogram consisted of 10 data points, and the particles fully
evaporated at TD temperatures higher than 150 ◦C. The are-
ogram consisted of 17 data points, and only 20 % of the SOA
evaporated in the dilution chamber.

4.2 Parameter estimation for Experiments A, B, and C

We explored the performance of the algorithm for different
choices of the number of volatility bins, the range of satu-
ration concentrations, and the range of SOA mass concentra-
tion in the yield measurements. For each test, the true and the
estimated properties are summarized in Table 1.

We evaluated the performance of our parameter estimation
algorithm, comparing its predictions against both the mea-
surements and the “truth” defined as the predictions of the
original parametrization. In both comparisons, mean normal-
ized error (MNE) (Emery et al., 2017) was used as the eval-
uation metric because it has a simpler physical meaning than
NMSE.

For the evaluation against the measurements, MNEM was
defined as follows:

MNEM =
100
NO

NO∑
i=1

|ESTi −Oi |
Oi

, (16)

where ESTi is estimated by the algorithm value and corre-
sponds to a specific measured point Oi .

For the evaluation against the truth, which includes con-
ditions (e.g., temperatures or concentrations) for which there
are no available measurements, MNET was defined as fol-
lows:

MNET =
100
Nd

Nd∑
j=1

∣∣ESTj −TRj
∣∣

TRj
, (17)

where EST and TR are the estimated and the true values re-
spectively. Nd is the total number of data points included
in calculations and depends on the selected discretization
of the corresponding dependent variable (e.g., SOA concen-
tration, TD temperature, and dilution time). We used a lin-
ear discretization for the SOA concentrations (from 0.01 to
50 µg m−3 with a step of 0.01) and the TD temperatures (20
to 200 ◦C with a step of 5 ◦C but excluding zero-MFR values
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Figure 1. Measurements of Test A1 in Experiment A (red dots) and true (red line) and estimated (blue line) yields at (a) 5 ◦C, (b) 15 ◦C,
(c) 25 ◦C, and (d) 35 ◦C, with (e) TD (thermogram) and (f) dilution (areogram) values. The grey area shows the range of good solutions
obtained by our algorithm.

Table 1. True and estimated volatility distribution of the products for eight different tests. The uncertainty in the estimates (±σ ) is also
included.

Test 1Hvap log(αm) Stoichiometric coefficients (αi ) at C∗
i

(µg m−3)

(kJ mol−1) 10−2 10−1 100 101 102 103 104

True A 30 −0.30 – – 0.070 0.038 0.179 0.300 –

A1 32.9± 9.6 −0.77± 0.47 – – 0.059± 0.022 0.071± 0.052 0.252± 0.130 0.255± 0.191 –
A2 32.0± 9.8 −0.72± 0.45 – – 0.062± 0.021 0.067± 0.053 0.286± 0.132 – –
A3 32.0± 9.8 −0.72± 0.45 – 0.000± 0.000 0.062± 0.021 0.067± 0.053 0.286± 0.132 – –
A4 34.0± 9.2 −0.70± 0.46 – – 0.062± 0.021 0.082± 0.050 0.191± 0.084 0.259± 0.198 –

True B 30 −0.30 0.001 0.012 0.037 0.088 0.099 0.250 0.800

B1 33.8± 9.2 −0.95± 0.21 – – 0.052± 0.011 0.037± 0.039 0.374± 0.122 0.226± 0.176 –
B2 36.5± 7.6 −0.93± 0.26 – – 0.050± 0.000 0.051± 0.039 0.292± 0.103 0.234± 0.196 –

True C 115 −2.02 0.118 0.094 0.116 0.247 – – –

C1 104.6± 24.0 −1.74± 0.97 0.126± 0.086 0.116± 0.090 0.154± 0.116 0.216± 0.126 – – –
C2 91.2± 19.2 −2.36± 0.83 – – 0.415± 0.099 0.143± 0.117 0.137± 0.113 0.115± 0.095 –

Atmos. Meas. Tech., 16, 3155–3172, 2023 https://doi.org/10.5194/amt-16-3155-2023
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Figure 2. Measurements of Test B1 in Experiment B (red dots) and true (red line) and estimated (blue line) yields at (a) 5 ◦C, (b) 15 ◦C,
(c) 25 ◦C, and (d) 35 ◦C, with (e) TD (thermogram) and (f) dilution (areogram) values. The grey area shows the range of good solutions.

to avoid the division by zero). For the dilution time, the sam-
pling time step was not constant. We used a higher resolution
for the first 0.5 h (step of 2 min), in which the evaporation
is usually faster, and a lower resolution afterwards (step of
10 min).

Finally, we used the average relative standard deviation
(ARSD) as a metric to quantify the uncertainty in the esti-
mates (range of good solutions) using the same discretization
as in the MNET metric. The ARSD is given by

ARSD=
100
Nd

Nd∑
j=1

σj

ESTj
, (18)

where σj is the standard deviation for data point j .

4.2.1 Parameter estimation for Experiment A

In Test A1, we applied the algorithm in the same range of sat-
uration concentrations and with the same number of volatil-

ity bins as those used to produce the experimental data. The
upper bin (103 µg m−3) exceeded the maximum SOA con-
centration (40 µg m−3) in the measurement range by 1 order
of magnitude.

Figure 1 depicts the estimated and the range of the en-
semble of best solutions for the three types of measurement
for Test A1. There were 148 good solutions under the 5 %
threshold out of the 126 120 simulations (Table S3). The
density distribution of the solutions is depicted in Fig. S1.
The performance of the model for the yields at 25 ◦C was
quite encouraging with a small tendency of overprediction
for SOA higher than 10 µg m−3. The MNEM of the model
for the SOA yield measurements (given by Eq. 16) was equal
to 25 % (Table 2). The corresponding discrepancy between
the true parametrization and the measurements (due to the
measurement error that we introduced) was 21.2 % (Table 2).
This indicates that a significant part of the algorithm error can
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Figure 3. Measurements of Test C1 in Experiment C (red dots) and true (red line) and estimated (blue line) yields at (a) 5 ◦C, (b) 15 ◦C,
(c) 25 ◦C, and (d) 35 ◦C, with (e) TD (thermogram) and (f) dilution (areogram) values. The grey area shows the range of good solutions.

be explained by the uncertainty introduced into the measure-
ments.

Our algorithm can be used to calculate the SOA yield
at different concentrations and temperatures. The yields
were calculated in the atmospherically relevant range of 0–
50 µg m−3 SOA concentration and at four temperatures (5,
15, 25, and 35 ◦C) using the true parameter values and the es-
timated parameters of Test A1 (Fig. 1a–d). At 25 ◦C (Fig. 1c),
the estimated yield curve is in good agreement with the true
yield curve for SOA concentrations lower than 6 µg m−3 (er-
ror of 8 % at 6 µg m−3), but the discrepancies increase at
higher concentrations (error of 23 % at 50 µg m−3). The av-
erage MNET error between the true parametrization and the
estimated values (given by Eq. 17) was equal to 17.3 % for
yields at 25 ◦C (Table 3). The uncertainties, as expected, are
larger at lower temperatures. However, the MNET error (es-
timated yields compared to the true value) remains less than
25 % (Table 3) even at 5 ◦C, quite far from the measurement

temperature. Both MNET and MNEM were quite close to the
introduced experimental error. Their difference can be ex-
plained by both the noise introduced to the measurements
that affects MNEM and the higher number of points used to
calculate MNET.

The SOA model used in this work assumes that the sto-
ichiometric coefficients (αi) are temperature independent.
Therefore, processes which are expected to be temperature
dependent, such as formation of highly oxygenated organic
molecules (HOMs) and oligomerization (Quéléver et al.,
2019; Gao et al., 2022), are not described by our algorithm.

The algorithm provides a range of good estimates in addi-
tion to the best estimate. The range can be defined by the
lower and upper SOA yield limits of the ensemble of the
good solutions at each point. At 25 ◦C, the yield range in-
creased, as expected, at higher concentrations (yield range of
0.05 at 1 µg m−3 to 0.17 at 50 µg m−3). The average relative
standard deviation (ARSD of the estimated yields defined
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Table 2. The mean normalized error (MNE) between the mea-
surements and true values and between the measurements and the
model-estimated values for the different tests.

Test Measurements vs. Measurements vs.
truea estimated MNEM

b

Yield TD Dilution Yield TD Dilution

A1 21.2 7.6 9.4 25.0 7.0 16.69
A2 21.2 7.6 9.4 25.1 7.1 16.71
A3 21.2 7.6 9.4 25.1 7.1 16.71
A4 17.8 7.6 9.4 22.4 7.1 19.7

B1 20.5 6.9 5.6 20.6 6.0 14.7
B2 18.1 6.9 5.6 19.1 7.8 18.1

C1 8.4 11.6 1.8 6.3 12.9 3.5
C2 8.4 11.6 1.8 8.6 32.4 2.3

a Calculated by 100
NO

NO∑
i=1

∣∣Oi−TRi
∣∣

Oi
. b Calculated by Eq. (16).

Table 3. The mean normalized error between the true and estimated
values (MNET) for the different tests.

Test Yield TD Dilution

5 ◦C 15 ◦C 25 ◦C 35 ◦C

A1 24.4 21.0 17.3 13.8 5.5 19.0
A2 21.4 19.5 16.9 14.1 4.7 18.5
A3 21.4 19.5 16.9 14.1 4.7 18.5
A4 20.4 18.3 15.7 12.9 6.0 22.5

B1 31.3 21.7 13.9 8.7 4.0 13.3
B2 24.4 15.6 9.0 6.4 2.5 18.4

C1 6.2 6.8 9.6 15.5 4.4 (110 ◦C)∗ 2.7
10.6 (140 ◦C)∗

C2 18.1 9.6 7.2 11.5 9.0 (110 ◦C)∗ 3.4
27.8 (140 ◦C)∗

∗ The errors for TD were calculated up to the denoted temperature in the parentheses.

by Eq. 18) was equal to 26 % (Table 4) for the 25 ◦C case.
For the rest of the temperatures, the ARSD increased for the
lower temperatures, ranging from 24 % at 35 ◦C to 35 % at
5 ◦C (Table 4) and including in all cases the true solution.

For the TD (Fig. 1e), the model reproduced well the corre-
spondent thermogram with low errors compared to the mea-
surements with an error MNEM of 7 % (Table 2). The error
MNET compared to the true values was 5.5 % (Table 3). The
error in the TD measurements compared to the true values
was equal to 7.6 % (Table 2). Therefore, the error in the pro-
posed algorithm is quite similar to the experimental error.
The error introduced into the measurements was transferred,
as expected, to the error metrics of the algorithm.

For the isothermal dilution (Fig. 1f), the algorithm did rea-
sonably well for the first 30 min and then the evaporation
was slightly underpredicted, leading to an error in MNEM

Table 4. The average relative standard deviation (ARSD) for the
different tests.

Test Yield TD Dilution

5 ◦C 15 ◦C 25 ◦C 35 ◦C

A1 34.6 29.7 26.0 24.2 21.0 23.6
A2 32.1 28.5 25.2 23.3 21.1 23.2
A3 32.1 28.5 25.2 23.3 21.1 23.2
A4 30.8 27.2 24.5 23.3 21.0 22.1

B1 37.1 27.2 20.0 16.9 20.5 18.0
B2 33.8 25.0 18.5 15.7 18.0 15.9

C1 15.0 14.9 16.2 22.9 20.7∗ 16.5
C2 20.1 15.6 14.1 21.3 20.6∗ 9.8

∗ The ARSD for the TD MFR values were calculated in the 20–120 ◦C
temperature range.

of 16.7 % (Table 2). This MNEM value was roughly 2 times
higher than the corresponding error between the dilution
measurements and the true parametrization (Table 2). The er-
ror between the estimated and the true values of MNET was
19 %. The ARSD of 24 % (Table 4) was sufficient to include
the true solution.

The estimated volatility distribution of the products and
the effective vaporization enthalpy and accommodation co-
efficient using the three types of measurement can be seen in
Fig. 4 and Table 1. The estimated volatility distribution of the
products was in good agreement with the true values (αi ab-
solute difference of 0.01 at 1 µg m−3, 0.03 at 10 µg m−3, 0.07
at 102 µg m−3, and 0.04 at 103 µg m−3), and the estimated
uncertainties contained the correct values. There is a large
uncertainty range for the two higher volatility bins (standard
deviation higher than 0.13), indicating that yield values at
higher SOA concentrations would be needed to better con-
strain these volatility bins. The relative error in the estimated
1Hvap is 10 %. The estimated accommodation coefficient
was 0.17 compared to a true value of 0.5. The estimated un-
certainty for the effective accommodation was almost 1 order
of magnitude higher (from 0.06 to 0.51), indicating the diffi-
culty of constraining this parameter when it is close to unity
and thus the resistances to mass transfer are small.

4.2.2 Parameter estimation for Experiment B

In this section, we analyze the pseudo-experimental data of
Experiment B, which were obtained from the parametriza-
tion of the same smog chamber results used in Experi-
ment A but with more components and a much wider range
of volatilities including LVOCs, SVOCs, and IVOCs (10−2–
104 µg m−3). In Test B1, the algorithm was applied using a
four-bin VBS with saturation concentrations ranging from 1
to 103 µg m−3. In this test, we attempted to model the be-
havior of the system with a narrower volatility range than
the real one. The upper limit of the saturation concentration
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Figure 4. Estimated (bars) and true (red lines) parameter values of
Experiment A in Test A1 combining yield, TD, and isothermal dilu-
tion measurements for (a) the volatility distribution of the products,
(b) 1Hvap, and (c) αm. The error bars represent the uncertainty in
the estimated values.

range that we tested did not exceed 103 µg m−3 because Ex-
periment B took place at moderate SOA concentration levels
(up to 40 µg m−3), which means that it is practically impos-
sible to constrain the 104 µg m−3 or higher volatile bins. Fig-
ure 2 shows the results of the fitting for the three types of
measurement in this experiment. There were 82 good solu-
tions under the 5 % threshold out of 126 120 simulations (Ta-
ble S3), and the density of the solutions are shown in Fig. S2.
At 25 ◦C, the model performance for the yields is encourag-
ing (MNEM= 20.6 %). This is again pretty close to the mea-
surement error (20.5 %). By comparing the estimated and the
true yield curves at 25 ◦C, the error MNET is now 14 %. The
error increases to 31 % at 5 ◦C, far from the available mea-
surements. This is also reflected in the increase in the uncer-
tainty in our estimates with the ARSD increasing from 17 %
at 35 ◦C to 37 % at 5 ◦C (Table 4). Once more the uncertainty
range estimated by the algorithm includes the true values.

Both measured and true thermograms were well captured
by the best estimate (MNEM of 6 % and MNET of 4 %) with
an uncertainty ARSD of 20.5 %. The evaporation in the dilu-
tion chamber was a little underestimated for the first 2 h, but
then it was slightly overpredicted. The MNET for the are-
ogram was 13.3 %, and the true values were included within
the range of the estimates (ARSD of 18 %).

Figure 5 shows the results of Test B1 for the volatility dis-
tribution of the products. The true stoichiometric coefficient
for the 1 µg m−3 bin was overestimated by 0.01 by the algo-
rithm. This overestimation actually corresponds to the total
material of the 10−2 and 10−1 µg m−3 bins of the true system.
This indicates that the algorithm places the material of the
two lowest bins that are not part of the solution in the bin with

Figure 5. Estimated (bars) and true (red lines) parameter values of
Experiment B in Test B1 combining yield, TD, and isothermal dilu-
tion measurements for (a) the volatility distribution of the products,
(b) 1Hvap, and (c) αm. The error bars represent the uncertainty in
the estimated values.

the lower volatility. For the 10 and 102 µg m−3 bins, the rela-
tive errors between the estimated and true results were 58 %
and 277 % respectively (Table S4), while for the 103 µg m−3

bin, the relative error was 10 %. The 1Hvap was predicted
accurately (error of only 4 %), while αm was underpredicted
(0.1 instead of 0.5). The model compensates for the missing
volatility bins by increasing the material in the 102 µg m−3

bin and by decreasing the accommodation coefficient.
The results of Test B1 suggest that the mismatch between

the actual SOA volatility distribution and the range used for
the fits can introduce significant errors into the retrieved dis-
tribution for individual volatility bins. However, despite these
problems, the yields predicted by the derived parametriza-
tions have a much lower error than the volatility distribution.
This is a valuable insight for the strengths and weaknesses of
this and other similar SOA parameter estimation algorithms.

4.2.3 Parameter estimation for Experiment C

In Test C1, we obtained the best fits for the pseudo-
measurements of Experiment C by applying the algorithm
in the same range of saturation concentrations and with the
same number of volatility bins (four volatility bins in the
10−2–101 µg m−3 saturation concentration range) as the true
volatility distribution.

Figure 3 shows the results of the fitting for the three types
of measurement. There were 3479 good solutions under the
5 % threshold out of the 126 120 simulations (Table S3). The
density distribution of the solutions is shown in Fig. S3. The
best estimate for the SOA yields at 25 ◦C was in a good
agreement with the measurements (MNEM= 6.3 %) and the
true values (MNET= 9.6 %). For the rest of the tempera-
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Figure 6. Estimated (bars) and true (red lines) parameter values of
Experiment C in Test C1 combining yield, TD, and isothermal dilu-
tion measurements for (a) the volatility distribution of the products,
(b) 1Hvap, and (c) αm. The error bars represent the uncertainty in
the estimated values.

tures, there was a decreasing trend of the error as the tem-
perature decreased varying from 15.5 % at 35 ◦C to 6.2 % at
5 ◦C. A similar decreasing trend was observed for the un-
certainty ARSD of the estimates, which varied from 23 %
at 35 ◦C to 15 % at 5 ◦C. This behavior is the opposite of
what we observed in the previous tests, in which both errors
and uncertainties increased at lower temperatures. However,
the changes in both the error and the uncertainty are small
(change of around 7 % between the upper and lower tem-
perature for both metrics), indicating that this system is less
temperature-sensitive in this temperature range than the pre-
vious ones.

The performance of the algorithm was satisfactory com-
pared to the TD measurements (MNEM= 12.9 %). The cor-
responding error in the algorithm for the true values (MNET)
was 4.4 % for temperatures up to 110 ◦C and equal to 10.6 %
for the lower values at higher temperatures. According to
Fig. 3, the evaporation due to dilution was initially overes-
timated for the first 30 min but then underestimated (highest
MFR discrepancy of 0.05), and there is a high uncertainty
range of the corresponding estimates (MFR range of 0.46 at
3 h). However, the low dilution values resulted in low relative
errors (MNEM of 3.5 % and MNET of 2.7 %).

Figure 6 shows that the highest relative errors were cal-
culated for the 10−1 and 100 µg m−3 bins (23 % and 33 %
respectively), and smaller relative errors were calculated for
the other two bins (less than 13 %). The uncertainties were
almost of the same magnitude for all bins with standard de-
viations ranging from 0.09 to 0.13. The performance of the
model was good for 1Hvap (relative error of 7 %) but with
high uncertainty for αm.

4.3 Effect of the volatility range

In this section, we explore the performance of the algorithm
for different choices of the number of volatility bins and the
range of saturation concentrations. The analysis of the re-
sults of Test B1 has already quantified the effects of using
a narrower volatility distribution in the parameter estimation
algorithm than the one of the investigated SOA system. Ad-
ditional sensitivity tests are performed here for all cases.

In Test A2, we used three volatility bins covering the 1–
102 µg m−3 saturation concentration range instead of the four
bins used in Test A1. The narrower assumed volatility range
had a very small effect on the estimated yields at all tempera-
tures (Table 3 and Fig. S4) compared to Test A1. The change
in MNET ranged from 3 % at 5 ◦C to 0.3 % at 35 ◦C. Minor
changes were detected in the predicted thermogram (change
of 0.8 %) and areogram (change of 0.5 %) as well. The un-
certainty in the yield estimates increased by less than 2.5 %
at all temperatures. The estimated volatility distribution of
the SOA products of Test A2 changed by less than 5 % in
the two lower bins. The material in the 102 µg m−3 bin in-
creased by 15 % to account for the SOA of higher volatility
that could not be included otherwise in the estimated distri-
bution. The estimated 1Hvap was in this case 32 kJ mol−1

(2.7 % decrease), and αm decreased by 12 % with respect to
Test A1.

In Test A3, we shifted the assumed four-bin volatility dis-
tribution by 1 order of magnitude to lower values (from 1–
1000 µg m−3 in Test A1 to 0.1–100 µg m−3 in Test A3). In
this case, the algorithm distributed exactly the same material
to the 1, 10, and 100 µg m−3 volatility bins as in Test A2,
and it predicted correctly zero SOA in the 0.1 µg m−3 bin
(Table 1). The 1Hvap and αm estimated values were also un-
changed with respect to Test A2. This, in turn, led to the same
estimated yields at different temperatures (no change in the
error between the two tests).

In Test C2, we applied the algorithm against the Experi-
ment C measurements using a four-volatility-bin system in
the 1-to-103 µg m−3 range, which is 2 orders of magnitude
higher than the actual range of the true values. Figure 7
shows the results of the fitting for the three types of measure-
ment. Despite the significant mismatch of the volatility dis-
tributions, MNEM increased by only 2.3 % for the estimated
SOA yields. The error for the TD measurements increased by
20 %, while it actually decreased a little (1.2 %) for the dilu-
tion data. The errors compared to the true values increased
by less than 3 % for the temperature range 15–35 ◦C, while
it increased by 12 % at 5 ◦C. These results suggest that in
this case the estimated yields are quite robust to the assumed
volatility range. The major effect of the mismatch in volatil-
ity ranges was evident in the predicted thermogram with
overestimation of the MFR for the 60–120 ◦C temperature
range and underprediction at higher temperatures. The in-
crease in MNET for the TD MFR was 17.2 % (Table 3). The
change in the predicted areogram was marginal and led to a
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Figure 7. Yields calculated using the true parameters of Experiment C (red line) and estimated (blue line) using the parameters of Test C2
for the following temperatures: (a) 5 ◦C, (b) 15 ◦C, (c) 25 ◦C, and (d) 35 ◦C. Also shown are the (e) thermogram and (f) areogram. The grey
area shows the range of good solutions obtained by our algorithm.

small increase in MNET (error increase by 0.7 %) (Table 3).
The algorithm not only underestimated again αm (0.004 in-
stead of 0.01) but also recognized the high uncertainty in the
corresponding estimate. The algorithm distributed significant
material to the 1 µg m−3 bin (3.6 times higher than the actual
amount) in an effort to account for the absence of the 10−2

and 10−1 µg m−3 bins. The 1Hvap was underestimated with
an error of 21 %.

The results of the above tests indicate that a mismatch
between the true and assumed volatility ranges of the SOA
increases in general the estimation error but the increase is
small to modest. This is reassuring for the robustness of the
proposed algorithm.

4.4 Effect of measurements at high SOA levels

During the last decade there has been a significant shift of
the performed SOA smog chamber towards lower SOA con-
centrations. This is needed to increase the accuracy at am-
bient concentration levels. The high-SOA-concentration ex-
periments that once represented the majority of performed
experiments are becoming increasingly rare. In this subsec-
tion we examine the value of these high-concentration ex-
periments for the estimation of SOA yields under ambient
conditions.

To examine the effect of measurements at SOA levels
much higher than the atmospheric ones, we included an extra
yield measurement at 200 µg m−3 in the yield data of Exper-
iments A and B. In Test A4 and B2, we applied the algo-
rithm once again against the three types of measurement by
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using a four-volatility-bin system with saturation concentra-
tions ranging from 1 to 103 µg m−3.

In Test A4, the additional experiment at high SOA con-
centration led to an MNET of 15.7 % for the yields at 25 ◦C
(Table 3 and Fig. S5), which is lower by 1.6 % than that with-
out this experiment in Test A1. The improvement was more
significant at lower temperatures; e.g., MNET at 5 ◦C was re-
duced from 24.4 % to 20.4 %. The reduction in the ARSD
for the SOA yields ranged from 3.8 % at 5 ◦C to 0.9 % at
35 ◦C (Table 4). Figure 8 depicts the results of the model
for the yields and the volatility distribution of the products
for Test A4. The accuracy of the predicted volatility distri-
bution increased especially for the higher-volatility material.
For example, the error for the 102 µg m−3 bin was reduced
from 41 % in Test A1 to 6 % in this case (Table S3). Mi-
nor changes in the errors were detected for 1Hvap and αm
between the two tests (3 % increase and 6 % decrease respec-
tively).

Similarly to Test A4, in Test B2 we added a yield mea-
surement at 200 µg m−3 in the Experiment B set of measure-
ments. Figure 9 depicts the results of the model for the SOA
yields at 25 ◦C and the estimated volatility distribution of the
products. The use of the additional data point led to a reduc-
tion in the MNET from 13.9 % in Test B1 to 9 % in Test B2
at 25 ◦C (Table 3). Similar reductions in the MNET were ob-
served for the other temperatures, with the highest one ob-
served at 5 ◦C (lower error by 7 %) (Fig. 10). The reduction
in the ARSD for the estimated yields ranged from 3.3 % at
5 ◦C to 1.2 % at 35 ◦C (Table 4). Minor changes were ob-
served for the estimated thermogram (Fig. S6) (change in the
MNET of 1.5 %) and the uncertainty in the estimates (change
in the ARSD of 2.5 %). The error in the estimated areogram
was also small, but in this case the error increased by 5 %.
The additional data point helped decrease the errors for the
estimated mass of the more volatile SOA products (Fig. 9)
and especially for the 102 µg m−3 bin. The1Hvap and αm es-
timated values were only slightly affected by the additional
measurement.

By comparing the results of Tests B1 and B2 with Case A,
one would expect the retrieved volatility distribution of the
products to be quite similar. The differences present are due
to a large extent to the different random experimental er-
rors introduced into the two sets of measurements for Ex-
periments A and B. A second reason for the differences is
that parametrizations of the two “experiments” by Pathak et
al. (2007b), even if they were derived from the same smog
chamber experiments, have some differences. As a result, the
true yields, thermogram, and areogram in Cases A and B are
not exactly the same (Figs. 1 and 2).

These results suggest that an additional yield measurement
at high SOA levels can lead to a substantial reduction in the
error for the estimated yields at low temperatures (Fig. 10)
and also a better estimation of the SOA products with higher
volatility (102 and 103 µg m−3). These products may con-
tribute little to the SOA concentration at 25 ◦C, but their re-

actions (aging) could lead to significant additional SOA in
later stages.

4.5 Significance of each type of measurement for the
parametrization

To quantify the effect of each type of measurement on the
parameter estimation and their subsequent effect on the es-
timated SOA yields, we repeated Tests A1, B1, and C1
withholding one set of measurements. More specifically, we
provided the algorithm with the following combination of
measurements: TD and isothermal dilution, SOA yields and
isothermal dilution, and finally SOA yields and TD.

The use of only the TD and isothermal dilution data cor-
responds for all practical purposes to the previous algorithm
of Karnezi et al. (2014), which was the starting point of this
work. In Test A1, the absence of the yield measurements led
to a significant deterioration of the ability of the algorithm to
estimate SOA yields at all temperatures and concentrations
(Fig. S7). The SOA yield error in the algorithm in the 5–
35 ◦C temperature range increased from 14 %–24 % (when
all measurements are provided) to approximately 100 % (Ta-
ble S5). The corresponding uncertainty range also increased
by a factor of 4–6 (Table S6). Similar results were obtained
in the other tests.

Figure S8 shows the volatility distribution of the products,
1Hvap, and αm in Test A1. High discrepancies and uncer-
tainties were observed for the estimated stoichiometric coef-
ficients (αi), with an increase in the relative error by a factor
of 3–4 for the 1 and 10 µg m−3 bins (Table S7) compared to
the case when all three types of measurement are used.

Figures S9 and S10 show the results of the algorithm for
Test A1 when only the SOA yields and isothermal dilution
measurements are provided as inputs to the algorithm. In this
case the algorithm cannot constrain well the 1Hvap (relative
error of almost 270 % with respect to the true value) as a
result of the missing TD measurements. This led to a signifi-
cant increase in MNET for the estimated yields when moving
far from the temperature of the measurements (MNE of 65 %
at 15 ◦C and 122 % at 5 ◦C).

Figures S11 and S12 show the results of the algorithm for
Test A1 when only yield and TD measurements are provided
as inputs. In this case, there was a significant reduction in
the error for 1Hvap with respect to the previous case (from
270 % to 50 %), but it was still much higher than the 10 %
error when all three types of measurement were used. This
led to better agreement between the true and estimated yields
at lower temperatures (MNET of 23 % and ARSD of 44 %).

When comparing TD–dilution, yield–dilution, and yield–
TD results, the yield–TD combination gave the best results
out of the three pairs. The isothermal dilution measurements
are the least valuable of the three because only a relatively
small fraction of the SOA evaporates and therefore the in-
formation provided is relatively limited and focuses on the
more volatile components of the particles. Also, TD mea-
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Figure 8. (a) True (red line) and estimated (blue line) yields in Test A4 and the measurements of Experiment A (red dots) including an
additional yield measurement at 200 µg m−3. The dashed black line corresponds to the estimated yields in Test A1. (b) Estimated volatility
distribution of the products (bars) of Test A4 and the true (red lines) parameter values. The black dots correspond to the estimated volatility
distribution of the products in Test A1.

Figure 9. (a) Estimated yields (blue line) in Test B2 and measurements of Experiment B (red dots) including an additional yield measurement
at 200 µg m−3. The dashed black line corresponds to the estimated yields in Test B1. (b) Estimated volatility distribution of the products
(bars) of Test B2 and the true (red lines) parameter values. The black dots correspond to the estimated volatility distribution of the products
in Test B1.

surements are important to constrain 1Hvap well and allow
the more accurate extrapolation of the results to other tem-
peratures. However, our results suggest that the combination
of the three types of measurement leads to a major improve-
ment over either the TD–dilution approach or the yield–TD
approach.

4.6 Sensitivity to the upper limit of the sum of product
yields

The maximum sum of the VBS product yields is one of the
parameters that the user of the algorithm chooses. In the anal-
ysis so far, a value of 1 has been selected to reduce the com-
putational cost of the algorithm. Selected tests were repeated
using a maximum sum of 2 to quantify the effects of this
choice on the estimated parameters and more importantly
on the SOA yields predicted by the parametrization. For a
four-product system, there are 9191 product yield combina-

tions, and considering the discretization of 1Hvap and αm,
this leads to a total of 367 120 simulations (Table S3).

The increase in the upper limit of the sum of the yields
led to an increase in the good solutions in Tests A1, A4,
B1, B2, and C2. The additional solutions had different yields
mostly in the 103 µg m−3 bin. This led to an increase in the
mass yield of this bin by 37 % in Test A1, 47 % in Test B1,
and 29 % in Test C2 (Table S8). The uncertainties were even
higher, showing once again the difficulty of constraining the
IVOC range where there are no SOA measurements at very
high SOA concentrations. The new parametrizations had a
minor effect on the estimated yields at different temperatures
with maximum change in the MNET found at 5 ◦C (change
of 1.8 % in Test A1 and 1.2 % in Test B2) and much smaller
change otherwise (Table S9). Therefore, the use of the higher
upper limit has an effect on the estimate of the 103 µg m−3
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Figure 10. Yields calculated using the true parameters of Experiment B (red line) and the estimated (blue line) using the parameters of
Test B2 for the following temperatures: 5, 15, 25, and 35 ◦C. The blue area shows the range of good solutions obtained by our algorithm.
The dashed black line corresponds to the estimated yields in Test B1.

bin, which is quite uncertain in all cases, but has a minor
effect on the predicted SOA yields at ambient conditions.

5 Conclusions

An algorithm was developed to estimate VBS parameters
for SOA formation combining yield measurements from
atmospheric simulation chambers with thermodenuder and
isothermal dilution measurement chambers. An additional
feature of this approach is that the algorithm estimates the
uncertainty in the predicted SOA yields for different SOA
concentrations and temperatures, assisting in this way in the
design of future experiments.

The algorithm was evaluated against pseudo-experimental
data for SOA systems with known properties. The algorithm
performed quite well at reproducing the SOA yields at at-
mospherically relevant concentrations and temperatures with
errors less than 20 % for practically all cases. This was the
case even at temperatures as low as 5 ◦C and also when the
volatility range used for the parameter estimation was nar-
rower than that of the simulated SOA system. One should
note that this error was quite similar in most cases to the ex-
perimental error assumed in the construction of the measure-
ment datasets.

The errors in the retrieved SOA volatility distributions
were in general higher than those of the SOA yields. This is
due to a large extent to the existence of multiple solutions
that can result in similar yields. The accuracy of the esti-
mated mass fractions of the more volatile SOA components
improved with an additional yield measurement at high SOA
levels (e.g., at 200 µg m−3). The addition of this measure-
ment also improved the estimated yields at low temperatures.
This therefore suggests that data points at high SOA con-
centrations should also be obtained experimentally, together
with the data points at atmospherically relevant atmospheric
SOA levels.

In all cases the algorithm results in good estimates of the
effective evaporation enthalpy. On the other hand, the esti-
mates of the effective accommodation coefficient are usually
quite uncertain. The effect of the mass accommodation co-
efficient on the measured quantities is relatively small com-
pared to the other parameters (volatility distribution, effec-
tive evaporation enthalpy), making it difficult to constrain.
This conclusion is consistent with the results of Karnezi et
al. (2014). The addition of the SOA yields to the inputs does
not make much of a difference because these are not affected
by the accommodation coefficient.
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The approach combining yield, TD (thermograms), and
isothermal dilution (areograms) measurements is recom-
mended for future parametrizations of SOA formation. The
use of the results of these experiments that have been de-
signed for the measurement of SOA yields in other applica-
tions (e.g., new particle formation) should be performed with
caution. Our results indicate that the derived parametriza-
tions are able to predict the SOA yields under different at-
mospheric conditions with errors of around 20 % or less,
but the derived volatility distributions can be quite uncer-
tain. These uncertainties are higher for the tails of the distri-
bution (the low-volatility and the intermediate-volatility or-
ganic compounds). Different experiments should probably
be performed for the derivation of the VBS distribution if
for example one is interested in new particle formation and
therefore the low-volatility organics focusing on low SOA
concentration levels and the least volatile SOA components.
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