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Abstract. This work introduces a model for all-sky-image-
based cloud and direct irradiance nowcasting (MACIN),
which predicts direct normal irradiance (DNI) for solar en-
ergy applications based on hemispheric sky images from two
all-sky imagers (ASIs). With a synthetic setup based on sim-
ulated cloud scenes, the model and its components are val-
idated in depth. We train a convolutional neural network on
real ASI images to identify clouds. Cloud masks are gener-
ated for the synthetic ASI images with this network. Cloud
height and motion are derived using sparse matching. In con-
trast to other studies, all derived cloud information, from both
ASIs and multiple time steps, is combined into an optimal
model state using techniques from data assimilation. This
state is advected to predict future cloud positions and com-
pute DNI for lead times of up to 20 min. For the cloud masks
derived from the ASI images, we found a pixel accuracy of
94.66 % compared to the references available in the synthetic
setup. The relative error of derived cloud-base heights is 4 %
and cloud motion error is in the range of ±0.1ms−1. For
the DNI nowcasts, we found an improvement over persis-
tence for lead times larger than 1 min. Using the synthetic
setup, we computed a DNI reference for a point and also an
area of 500m× 500 m. Errors for area nowcasts as required,
e.g., for photovoltaic plants, are smaller compared with er-
rors for point nowcasts. Overall, the novel ASI nowcasting
model and its components proved to work within the syn-
thetic setup.

1 Introduction

Clouds are a major modulator of atmospheric radiative trans-
fer, as showcased by their ability to shadow the ground. This

influence on the irradiance impacts the production of re-
newable energy through photovoltaic (PV) and concentrat-
ing solar power (CSP) plants. These fluctuations in produced
power are a limitation for the usability of PV power. Unex-
pected variations in power production pose a challenge with
respect to integration into power grids (Katiraei and Agüero,
2011). Prior knowledge of upcoming fluctuations and, there-
fore, short-term irradiance prediction can help mitigate this
drawback of PV power production (e.g., West et al., 2014;
Boudreault et al., 2018; Law et al., 2016; Chen et al., 2022;
Samu et al., 2021; Saleh et al., 2018).

As direct irradiance can be blocked completely by clouds
within seconds to minutes, knowledge of future direct irra-
diance is especially important for solar energy applications.
Diffuse irradiance depends on complex 3D radiative trans-
fer through the atmosphere. Variations in irradiance on the
ground are relevant for solar energy applications – mainly
due to variations in direct irradiance (Chow et al., 2011).
Therefore, this study is focused on direct irradiance. Now-
casting of diffuse and global irradiance is not addressed.

Multiple models for intra-hour direct normal irradiance
(DNI) nowcasting have been developed to predict the vari-
ability in direct irradiance. Many of these rely on so-called
all-sky imagers (ASIs), ground-based cameras that capture
hemispheric sky images (e.g., Chow et al., 2011; Peng et al.,
2015; Schmidt et al., 2016; Kazantzidis et al., 2017; Nouri
et al., 2022). The general idea is to extract cloud informa-
tion from these images, predict future cloud positions, and
accordingly estimate irradiance for the next minutes. The ap-
plicability of low-cost consumer-grade cameras makes se-
tups with multiple ASIs financially feasible, and the increas-
ing sizes of installed PV plants also require more measure-
ment positions to expand nowcast areas. The Eye2Sky (Blum
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et al., 2021) network showcases the widespread use of mul-
tiple ASIs for regional coverage and nowcasting.

Common tasks for ASI-based DNI nowcasting are the ex-
traction of cloud position and motion. Li et al. (2011) es-
tablished a method to classify pixels based on color values
and thresholds. A library of reference clear-sky images was
introduced to extend this method and consider different at-
mospheric conditions and background variations for the large
field of view (FOV) of ASIs (Shields et al., 2009; Chow et al.,
2011; Schmidt et al., 2016). Furthermore, convolutional neu-
ral networks (CNNs) have been proven to work beneficially
for these tasks (Ye et al., 2017; Dev et al., 2019; Xie et al.,
2020; Hasenbalg et al., 2020) when trained on densely la-
beled data. Fabel et al. (2022) demonstrated the use of a CNN
to distinguish not only clear and cloudy pixels but also fur-
ther separate clouds into three subclasses: low-, mid-, and
high-layer clouds. Moreover, Blum et al. (2022) projected
cloud masks of multiple imagers onto a common plane and
combined them for an analysis of spatial variations in irradi-
ances. Masuda et al. (2019) combined a camera model with
synthetic images of large-eddy simulation (LES) cloud fields
to derive fields of cloud optical depth from images instead of
simple cloud masks.

Setups with multiple ASIs allow for the estimation of
cloud-base height using stereography (Nguyen and Kleissl,
2014; Beekmans et al., 2016; Kuhn et al., 2018b). Nouri et al.
(2018) used four ASIs to derive height information and even
a 3D cloud representation for irradiance nowcasting. Three
ASIs were used by Rodríguez-Benítez et al. (2021) for three
independent DNI nowcasts, which were finally averaged into
a mean DNI nowcast.

Whilst measurements of irradiance through pyranometers
are point measurements, nowcasting methods are usually tar-
geted at solar power plants and, therefore, receiver areas.
Kuhn et al. (2017a) derived area irradiance values using a
camera monitoring shadows on the ground in combination
with point irradiance measurements. ASI nowcasts for areas
were found to outperform persistence for situations with high
irradiance variability (Kuhn et al., 2017b). Nouri et al. (2022)
computed ASI nowcasts for eight pyranometer measurement
sites distributed over roughly 1km2. This study found re-
duced errors if nowcasts and measurements were averaged
over all sites before error calculation in comparison with er-
rors of individual point nowcasts.

Apart from application to real-world images, Kurtz et al.
(2017) applied a DNI nowcasting model to synthetic ASI im-
ages of cloud scenes from LES models. The images were
generated using a 3D radiative transfer model. This synthetic
application comes with the advantage of optimal knowledge
of the atmospheric state and allows for extended evaluation.
The study showcased the problems introduced by the view-
ing geometry of ASIs.

In this study, we introduce a novel model for all-
sky-image-based cloud and direct irradiance nowcasting
(MACIN) and use synthetic data to validate it. This DNI

nowcasting model is based on a setup with two ASIs. We use
state-of-the-art techniques, e.g., to derive cloud masks using
a CNN that was trained on sparsely labeled data. Cloud-base
height (CBH) is derived by stereography and cloud motion
by sparse matching. The derived cloud information is fed
into a horizontal model grid using a method inspired by data
assimilation. The method has similarities to the cloud mask
combination of Blum et al. (2022) but allows the use of im-
ages from multiple time steps and is employed for nowcast-
ing future states and not just analyzing the current situation.
Predicted cloudiness states are projected to the ground and
converted into DNI. We apply the techniques to synthetic
ASI images generated from simulated LES cloud fields. This
allows us to validate the derived quantities as well as the
overall nowcast performance. Moreover, this allows for in-
depth validation of DNI nowcasts, not just for single point
measurements but also for areas, which is important for PV
and CSP plants. Section 2 describes the synthetic data used
throughout the study, the methods to derive information from
ASI images, and the MACIN nowcasting model. The quan-
tities and metrics used for validation are explained in this
section as well. Section 3 describes the validation of derived
cloud masks, cloud-base height, cloud motion, and the full
DNI nowcasting model. Results of the validation are ana-
lyzed and discussed to affirm the presented methods and ex-
plain error sources. Conclusions can be found in Sect. 4 as
well as a brief description of possible follow-up work.

2 Methods

The methods and data are described in this section. This in-
cludes an explanation of the synthetic data and all-sky im-
ages as well as the methods used to derive information about
clouds in Sect. 2.1. The DNI nowcasting model that utilizes
this information is outlined in Sect. 2.2. Reference quantities
and metrics for validation are given in Sect. 2.3.

2.1 Synthetic data and all-sky images

The synthetic data were prepared by Jakub and Gregor
(2022). This dataset is a 6h LES run computed with the Uni-
versity of California Large-Eddy Simulation (UCLALES)
model (Stevens et al., 2005). The horizontal resolution is
25m, and LES output fields are given every 10s. The initial
atmospheric profile was chosen to produce a single shallow
convection cloud layer with a cloud-base height of roughly
1000m developing from a cloud fraction of 0% in the begin-
ning to roughly 100% at the end of the simulation after 6h.
The reader is referred to Jakub and Gregor (2022) for more
details and impressions of the cloud scenes used in this study.

This dataset provides realistic cloud situations and allows
for detailed benchmarking. Cloud liquid water content (lwc)
is the most important variable of the dataset for this study.
To calculate the optical properties of clouds, the effective ra-
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dius is also needed. As the LES output field does not con-
tain this information, a fixed cloud droplet number density
of 120×106 m−3 was assumed. The effective radius of cloud
droplets was calculated following Bugliaro et al. (2011). For
simplicity, other atmospheric parameters like water vapor,
temperature, pressure, and molecular composition from the
LES output are neglected within this study, and the US Stan-
dard Atmosphere (Anderson et al., 1986) is assumed. While
these atmospheric parameters and their variations are gen-
erally not negligible for radiative transfer, the setup for this
study was simplified to focus on clouds as a major modulator
of irradiance. Within this study, the Sun was assumed to be
at a constant zenith angle of 30◦ to the south.

We assume a fish-eye camera model corresponding to the
OpenCV fish-eye camera model (Bradski, 2000) for syn-
thetic images generated from these LES cloud fields. The
parameters for this projection model were derived from the
calibration of a CMS Schreder ASI-16 camera. This ASI
features an 180◦ FOV fish-eye objective to capture hemi-
spheric images of the cloud situation. This study employs
two distinct approaches to generating all-sky images from
LES cloud scenes. We generate images with the viewing ge-
ometry derived according to the fish-eye camera model for
the ASI-16 camera. As our methods are developed to work
with cameras that are not necessarily calibrated spectrally,
the images are only roughly optimized to resemble the col-
ors of the ASI-16. We use a simple spectral camera model
with white balance, black level, gamma correction, and an
upper intensity limit to convert radiances into pixel values.

One of the image generation methods uses synthetic ra-
diances from the Monte Carlo 3D radiative transfer model
MYSTIC (Mayer, 2009), which does not introduce any sim-
plifying assumptions in radiative transfer. These radiances
can be converted into synthetic images using the camera
model. While MYSTIC radiances are physically correct, they
are computationally expensive. Computation of these radi-
ances for a single image requires multiple CPU hours; there-
fore, this approach was only used for 29 images with a res-
olution of 240 pixels× 240 pixels. In contrast, our second
approach is only a rough approximation of radiative transfer.
We use a ray-marching technology commonly applied in the
computer gaming industry (e.g., Schneider, 2018; Hillaire,
2016) to trace through volumetric media. Many small steps
along the line of sight are marched through the atmosphere
for every pixel. At every step, light scattered into the line
of sight of the simulated imager is computed using the lo-
cal optical properties of the atmosphere. This is summed up
to compute the overall light reaching the simulated imager.
Schneider (2018) computed the direct radiation from the Sun
at each step to estimate the amount of light scattered into the
line of sight of the imager. Multiple scattering is only roughly
parameterized in this approach, although it may be domi-
nant in regions of high cloud optical thickness. Therefore,
we use the original marching as well as a different method
to calculate the amount of in-scattered light. Direct and dif-

fuse irradiances are calculated with a two-stream radiative
transfer model (Kylling et al., 1995) on tilted independent
columns of the LES cloud field. For each ray-marching step,
local irradiances are used to estimate the amount of direct
and diffuse light scattered towards the simulated imager. This
technique is implemented using the OpenGL framework and
allows us to generate 960 pixel× 960 pixel images within
seconds. Generated images are interpolated to the original
ASI resolution in a post-processing step for both generation
methods. Figure 1a–c show a real-world image as well as im-
ages generated using MYSTIC and ray-marching. Because
of the low computational cost of image generation, we work
with ray-marching images throughout this work if not stated
otherwise. We derived cloud masks from both MYSTIC and
ray-marching images to confirm the usability of the latter for
our purpose.

As a first step in working with generated images, the
camera model is applied to project them onto a horizon-
tal, ground-parallel image plane. During reprojection, im-
age features may be distorted and blurred. However, repro-
jection allows one to work on an image that is plane paral-
lel to the ground, simplifying further image processing. Fig-
ure 1c and d display an image as captured by the ASI and its
projected correspondence as generated using ray-marching.
While the original ASI resolution is 1920 pixels× 1920 pix-
els, we project images to 480 pixels× 480 pixels for use
within our nowcasting model.

2.1.1 Cloud masks

The most important information to obtain from all-sky im-
ages is the classification of pixels as cloudy or clear. Convo-
lutional neural networks (CNNs), which are commonly ap-
plied for image segmentation, have also been applied to im-
ages of clouds to generate cloud masks (e.g., Dev et al., 2019;
Xie et al., 2020; Fabel et al., 2022). Our cloud mask deriva-
tion relies on CNNs as well. We used the DeeplabV3+ net-
work structure (Chen et al., 2018). The setup and training of
the CNN are outlined briefly in the following, and a more de-
tailed explanation can be found in Sect. A1 in the Appendix
along with a description of the hand-labeling process of train-
ing data. Real-world images from an ASI-16 were chosen for
this training dataset to avoid overfitting to generated ASI im-
ages of the limited LES dataset and to allow for easy future
application of MACIN to real-world setups. Note that this is
the only real measurement used throughout this study, and
measurements otherwise refer to generated ASI images and
simulated DNI. Training was done using 793 hand-labeled
projected images depicting various cloud situations. Segmen-
tation classes are “cloudy”, “clear”, and “undecided”. As the
definition of cloudy and clear areas in images is often hard
even for human observers, the CNN training is designed to
ignore undecided image regions. The CNN is set up to re-
produce the regions labeled as cloudy and clear, but it is free
to fill in regions labeled as undecided by hand without im-
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Figure 1. (a) Real ASI image captured with a CMS Schreder ASI-16 in the Bavarian countryside (48◦10′50.3′′ N, 11◦00′27.4′′ E) on 14 July
2020. (b–d) Synthetic images for an LES time of 9900s generated using (b) MYSTIC, (c) ray-marching, and (d) ray-marching followed by
projection. (e) Cloud mask derived from the projected ray-marching image and (f) LES cloud optical depth τ in the line of sight with the
additional yellow contours illustrating τthresh = 1.0. Only a few pixels are labeled “undecided” by the CNN, as depicted in panel (e).

pacting the training. Thus, the CNN fills in regions for which
the cloud state is ambiguous or indistinguishable for humans
based on its training on obvious cloudy and clear regions.
From the CNN, we obtain cloud masks as a segmentation of
an ASI image into the cloudy, undecided, and clear classes
with respective scalar values of 1.0, 0.5, and 0.0. Figure 1d
and e give a synthetic image and the derived cloud mask. For
comparison, the LES cloud optical depth (τ ) traced in the
line of sight for each pixel is given in Fig. 1f.

2.1.2 Cloud-base height from stereo matching

In order to map cloud masks to 3D coordinates, cloud-base
height (CBH) is required. For the experiments presented
here, two ASIs are located within a 500m north–south dis-
tance. Thus, for each time step, two viewing angles can be
exploited to derive the CBH. Features from simultaneous
ASI images of the same cloud scene are sparsely matched
using efficient coarse to fine PatchMatch (CPM; Hu et al.,
2016), a pixel-based pyramidal matching method. For a grid
of pixels on the first input images, DAISY feature descrip-
tors (Tola et al., 2010) are computed, and their best-matching
counterparts in the second image are determined. As a result,
we obtain a list of matched pixels from both images, which
are supposed to depict the same part of a cloud. We use the
derived cloud masks to filter matched pixels; valid matched
pixels must be marked as cloudy in the corresponding cloud

masks for both images to be accepted. Using the known cam-
era geometry, a cloud-base height can be derived for each
matched pair of pixels with the mispointing method devel-
oped by Kölling et al. (2019). This results in up to several
thousand feature positions per pair of simultaneously cap-
tured images, which theoretically allows for a fine-grained
treatment of the CBH. However, the nowcasting model pre-
sented in this study currently assumes a single cloud layer.
Therefore, an image-wide average CBH is derived from the
mean height of the feature positions.

2.1.3 Cloud motion

Cloud motion needs to be derived to predict future shading
by clouds. Using the CPM matching algorithm on consec-
utive images taken in intervals of 60s, we obtain matches
describing the displacement of features. Computed cloud
masks are used again to exclude matches lying outside of
detected cloud areas. Average image cloud-base height and
camera model are used to scale detected pixel movement to
physical velocities within the assumed plane of clouds. A
dense cloud motion field is obtained by nearest-neighbor in-
terpolation of these sparse velocities.
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2.2 Nowcasting model

The nowcasting model presented in the following uses de-
rived cloud masks, the CBH, and cloud motion to predict fu-
ture cloud situations and corresponding irradiance estimates.
Cloud masks and cloud motion are represented as variables
on a horizontal 2D grid, which will be referred to as cloudi-
ness state and velocities. The 2D grid and all input data are
assumed to be on one horizontal, ground-parallel level at the
height given by the derived CBH. Multi-level clouds are not
yet represented as such by our model. Future states of these
2D fields are predicted using a simple advection scheme. Ir-
radiance estimates are computed from these future cloudi-
ness states. All derived cloud masks and cloud motions are
combined into an optimized initial state of the horizontal 2D
fields. The nowcasting model therefore consists of three ma-
jor parts: a simple advection method, a method inspired by
data assimilation to determine the initial state, and a radiative
transfer parametrization to calculate DNI from the cloudiness
state. These three parts are explained more closely in the fol-
lowing.

2.2.1 Advection scheme

The nowcasting model is based on a 2D grid with a grid spac-
ing of 1x =1y = 10m and a number of grid points N =
M = 1600 in the x and y directions, respectively, thereby
covering 16km× 16km. Variables on each grid point are
cloudiness state (cm) and cloud velocities (u and v) in the x
and y directions, respectively. Starting from an initial state
at the first iteration t0 = 0s and a temporal resolution of
1t = 60s, future cloudiness states at times ti = t0+ i ·1t are
computed using advection as follows:

cmti+1(n,m)= cmti (ñ, m̃) , (1)
ñ= n− int(λ · u(n,m)), (2)
m̃=m− int(λ · v(n,m)), (3)

where λ=1t/1x. The coordinates (ñ, m̃) determined by
advection using physical velocities are restricted to discrete
grid coordinates and, therefore, integers. This constrains ac-
tually representable velocities to multiples of 1x/1t . Con-
tinuous boundary conditions are assumed. The same advec-
tion scheme is applied to the horizontal velocities fields
ut (n,m) and vt (n,m) as well.

2.2.2 Data assimilation

The cloud mask and horizontal velocity field from one im-
ager and time step as well as an estimation of cloud-base
height would be sufficient to initialize the advection model.
However, for each nowcast, we do have cloud masks and ve-
locities from two imagers with different viewing geometries
and multiple time steps. In order to make use of as much
information as possible for the initial state, we employ a
method similar to 4D-Var data assimilation (Le Dimet and

Talagrand, 1986) in numerical weather prediction models.
The general idea is to define a scalar function of an initial
model state that measures differences between model states
and measurements. This so-called cost function is then iter-
atively minimized to find an optimal model state for given
measurements. We reference “measurements” in this section
and the following. We thereby mean the synthetic generated
ASI images and simulated DNI values, not real measure-
ments.

The difference between model state and measurements
needs to be assessed at matching times. Model states for
multiple time steps are therefore computed from the ini-
tial state at time t0 using the previously described advec-
tion M . Model cloudiness states at time tk will be denoted
as cm(tk)=M(cm, tk) with initial cloudiness state cm. Hor-
izontal velocities u and v are described analogously. We de-
fine the cost function J for L time steps in the interval [t0, tl]
and two ASIs (p ∈ 1,2) as follows:

J (cm,u,v)=
∑
N,M

L∑
l=0

2∑
p=1

(
1
σcm
· (cm(tl)

−cmmeas,l,p
)2
+

1
σuv
·
(
u(tl)− umeas,l,p

)2
+

1
σuv
·
(
v(tl)− vmeas,l,p

)2)
+R(u,v), (4)

with measurements of cloud masks cmmeas,l,p and horizon-
tal velocities at time step l from imager p interpolated to the
model grid. Summation over all grid points is indicated by∑
N,M for better readability. The coefficients σcm = 0.1 and

σuv = 10.0ms−1 are supposed to account for uncertainties
in the respective measurements but are mainly used as tun-
ing parameters here. More complex, non-scalar coefficients
could differentiate, for example, between varying measure-
ment quality within ASI images or between different im-
agers, but they require characterization of the system, which
is usually not available. The additional regularization term
denoted as R(u,v) is used to suppress measurement errors,
especially outliers in the velocity field. In detail, it is

Ruv(u,v)= σR,uv ·
(
(∇u)2+ (∇v)2

)
, (5)

with tuning parameter σR,uv = 250s−1 chosen to smooth the
velocity field. As cloud masks are especially hard to derive
from ASI images in the bright region of the Sun, measure-
ment values are excluded from the assimilation if they are
derived from an image region of 2.5◦ around the Sun. Erro-
neous cloud mask values derived for the bright Sun and zero
velocities derived from the static Sun position are thereby
avoided. Figure 2 illustrates the measurements, first guess,
and analysis state after assimilation for an example assim-
ilation run. Due to the limited complexity of the advection
scheme and the high-resolution observations from images, a
background state is not used. Model states of previous now-
cast runs are not used within assimilation. This means that

https://doi.org/10.5194/amt-16-3257-2023 Atmos. Meas. Tech., 16, 3257–3271, 2023



3262 P. Gregor et al.: Validation of MACIN using synthetic cloud data

Figure 2. Illustration of cloud mask measurements, the derived first
guess used for assimilation, and the analysis state found by assim-
ilation for an LES time t0 = 8940s. Shown is the cloudiness state
and the inner 8km× 8km of the domain. The analysis state is less
sharp on cloud edges due to the consideration of multiple cloud
mask measurements.

successive nowcast runs are independent, as states from pre-
vious model runs for the nowcast start time are not consid-
ered in additional terms in Eq. (4). Average cloudiness state
and velocities from all measurements available at the time of
the initial state are used as a first guess for cost function min-
imization. The cost function is minimized using the bounded
L-BFGS-B algorithm (Zhu et al., 1997). For efficient opti-
mization, the advection model and cost function were imple-
mented using the PyTorch framework (Paszke et al., 2019),
which allows for automatic calculation of the adjoint of the
cost function. The optimized model state is finally used for
the actual nowcast as the initial state of the advection model.

2.2.3 Radiative transfer parametrization

Direct solar irradiance is reduced by interaction with
molecules, aerosol, and clouds. For this study, we assume
that short-term changes in direct irradiance are mainly caused
by clouds and neglect other variations. DNI is parameter-
ized using previous irradiance measurements on site as well
as predicted cloud masks. “Measurements” in the follow-
ing do not describe real-world measurements with, for ex-
ample, a pyranometer, but instead detail DNI values simu-
lated for LES scenes. The idea of the parametrization is to
derive references for occluded and non-occluded cases from
measurements. Depending on the cloudiness state, the DNI
is then interpolated from these references. Therefore, a time
series of clear-sky index (CSI) values k is constructed from
DNI measurements as the ratio of measurements and a sim-
ulated clear-sky DNIclear. From this time series, values of k
are extracted for two sub-series: occluded (k > 0.9) and non-
occluded (k < 0.1) times. We define the occluded CSI koccl
and non-occluded CSI kclear as the exponentially weighted
mean with a half-life time of 10min from respective mea-

Figure 3. Spatial setup for the synthetic experiments conducted in
this study. Shown are the ground coordinates within the LES do-
main. Synthetic all-sky images were generated at points P0, P1, and
P2. Direct normal irradiance was simulated for point P1 and area
A1. Nowcasts rely on images from P1 and P2 and predict values for
point P1 and area A1.

surement subsets. CSI values for a non-occluded and a fully
occluded Sun are interpolated linearly. A sun disk of 0.5◦

opening angle at the given Sun elevation and azimuth is pro-
jected onto the 2D model grid. The mean cloudiness state of
all grid points in the sun disk (cmsun) is used to calculate DNI
for time t as follows:

DNI(t)= DNIclear · ((1− cmsun(t)) · kclear

+cmsun(t) · koccl) . (6)

The exponentially weighted mean is used for the computa-
tion of koccl and kclear in order to smooth the latest fluctua-
tions and provide a values for all times.

2.3 Synthetic data experiment setup

The synthetic setup allows us to compare quantities de-
rived by the nowcasting model to synthetic reference val-
ues. Within this study, we simulate a setup around a fictional
500m× 500m area PV power plant. As depicted in Fig. 3,
all-sky images are generated for synthetic imagers at posi-
tions P1 and P2 centered on the northern and southern bound-
aries of this area. Direct normal irradiance values were cal-
culated for point P1 and the full 500m× 500m area A1 as
explained later on. Images are rendered with MYSTIC and
ray-marching, as explained in Sect. 2.1, for a synthetic ASI
at P0 at the southeastern edge of A1 to compare both meth-
ods. Ray-marching images for P1 and P2 are used for actual
nowcasting and all other applications in this study.

Validation quantities used within the experiments in
Sect. 3 are explained in the following. Cloud optical depth
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(τ ) is traced in the line of sight for every pixel of the cor-
responding ASI image and used to validate derived cloud
masks. By applying a threshold to the resulting τ fields, we
can calculate reference cloud masks. Figure 1f shows an ex-
ample τ field. These are used for the validation of the derived
CNN cloud masks. The cloud-base height reference is com-
puted in compliance with the view of an ASI. The last scat-
tering of light before reaching the ASI sensor gives the origin
of pixel information – in this case, cloud height as seen from
below. MYSTIC can be used not only to compute radiances
but also to obtain these scattering positions. A cloud motion
reference is hard to define, as clouds in the LES simulation –
as in nature – are not moving as solid objects but may change
size and shape or even appear and disappear. Therefore, wind
velocities at cloud level may not be an exact benchmark for
the overall observable cloud motion. Within this study, we
use the vertically integrated liquid water path (lwp) from the
LES fields as an indicator of horizontal cloud distribution.
The maximum cross-correlation between the domain-wide
lwp of two successive time steps is assumed to be a refer-
ence for average cloud motion. This reference describes the
mean displacement for all time steps of the LES cloud data.
However, clouds are convectively reshaping, growing, and
shrinking in these data, which makes this cloud motion defi-
nition vague. The synthetic data allow for a more direct vali-
dation of cloud motion. LES cloud fields can be frozen for a
time step and their position shifted. This basically simulates
scenes of pure advection without any convective effects. To
simulate this advective case for cloud motion validation, we
use two images of the same cloud scene but taken from differ-
ent positions. The choice of an assumed time difference be-
tween the images1t defines the advective cloud velocity. For
simplicity, we use images taken within a 500m north–south
distance, as represented by P1 and P2. Assuming 1t = 60s,
we obtain theoretical cloud velocities of −8.3ms−1 merid-
ionally and 0ms−1 zonally.

The Monte Carlo 3D radiative transfer solver MYSTIC
was used to compute radiances for images and true direct
normal irradiances at ground level. We calculated direct nor-
mal irradiance for two different synthetic references, as de-
picted in Fig. 3. A DNI point reference is simulated at P1, and
an area reference of the 500m×500m region A1 is simulated
with ASIs centered at the northern and southern boundaries
at P1 and P2. As a benchmark for the DNI nowcasting model,
persistence nowcasts for start time t0 and nowcast time t are
calculated from simulated DNI “measurements” at DNIP1 as
follows:

DNIpers(t)= DNImeas(t0). (7)

The metrics used for validation are the root-mean-square
error (RMSE), the normalized root-mean-square error

(NRMSE), and the mean bias error (MBE):

RMSE=

√√√√ 1
N

N∑
i=1

(
xi − xref,i

)2
, (8)

NRMSE=

√√√√ 1
N

N∑
i=1

(
xi − xref,i

xref,i

)2

, (9)

and

MBE=
1
N

N∑
i=1

(
xi − xref,i

)
, (10)

with the quantity to be evaluated x, its corresponding refer-
ence xref, and the number of values N . Additionally, we use
the pixel accuracy

PA=
CCLD+CCLR

Npx
(11)

with the number of correctly classified cloudy or clear pix-
els (CCLD and CCLR, respectively) as well as the overall
number of pixels (Npx).

3 Validation using synthetic data

3.1 Cloud masks

The CNN cloud mask model was successfully trained and
validated on hand-labeled real-world images, as explained in
Sect. A1 in the Appendix. We evaluate derived cloud masks
to show that it is reasonable to apply the cloud mask CNN
to the synthetic images in this study. We calculated the path
cloud optical depth (τ ) for all viewing angles of our ASI and
every desired time step. Together with a threshold, this gives
a reference cloud mask. To validate pixel-wise cloud classifi-
cations, we use a threshold of τthresh = 1.0 to create reference
cloud masks from τ . Values of τ ≥ τthresh are linked to cloudy
areas in these τthresh cloud masks. We evaluated CNN cloud
masks from ray-marching images for position P1 and 360
time steps at 60s intervals covering all LES times. The con-
tingency table (Table 1) displays the distribution of classes of
τthresh cloud masks against our CNN cloud masks. In general,
we find very good compliance. Each of the cloudy and clear
classes makes up about 50% of the compared pixels, which
corresponds well to the τthresh cloud masks. Cloud masks of
our CNN exhibit a slight bias towards classifying too few
pixels as cloudy. Pixel accuracy is PA= 94.66% against the
τthresh cloud masks.

Beyond ray-marching images, we calculated 29 MYSTIC
images and computed CNN cloud masks for these. By doing
the same with corresponding ray-marching images, we could
ensure that the derived cloud masks exhibit similar perfor-
mance for both image generation approaches. As MYSTIC
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Table 1. Contingency table for the cloud mask classes from the
CNN and cloud optical depth τ in the line of sight thresholded given
by τthresh = 1 as a reference. All values are given as a percentage.

Reference

τ < 1.0 τ ≥ 1.0
∑

Clear 46.43 2.54 48.97
CNN Undecided 0.22 0.25 0.47

Cloudy 2.33 48.23 50.56∑
48.98 51.02 100

images are physically correct, we conclude that the usage of
approximated ray-marching images does not affect the valid-
ity of our results.

3.2 Cloud-base height

We used data from for the entire LES scene and, effectively,
319 time steps with clouds for the validation of derived CBH.
Ray-marching images taken at P1 and P2 were used to de-
rive the CBH as in the nowcasting model. Computed scat-
tering positions give the reference CBH. As our nowcasting
model assumes a single cloud-base height, we average the
derived CBH per image pair. Figure 4a shows the derived
average CBH per image pair and the corresponding refer-
ence CBH. For these averaged heights, we obtain a MBE
for the mispointing method of 50.7m, an RMSE of 56.9m,
and a NRMSE of 4.0%. When subtracting the found bias of
50.7m from the derived image average cloud-base heights,
the RMSE could be reduced to 25.6m and NRMSE to 2.6%.
Increasing systematic error can be observed for the refer-
ence CBH up to about 1400m. A histogram of all derived
pixel heights, which are the basis for the averaged CBH, and
their reference is shown in Fig. 4b. Similar to the image-
wide average cloud-base height, derived pixel heights show
good agreement with reference heights and a small system-
atic overestimation. Reference pixel heights show a wider
distribution compared with derived values, resulting in the
stripes visible in Fig. 4. Found height errors could result from
discrete viewing directions due to the limited resolution of
images, from the projection process, and from the discrete
stepping of the image generation ray-marching algorithm.
Error sources were not investigated further, as errors are in
the range or even lower than those found in other studies
with respect to derived cloud-base heights (e.g., Nguyen and
Kleissl, 2014; Kuhn et al., 2019; Blum et al., 2021). Equally,
no additional work was done to mitigate the observed sys-
tematic errors for use in nowcasting.

3.3 Cloud motion

As wind is not necessarily an exact benchmark for cloud
motion in convective cloud scenes, we chose two ways to

validate our derived cloud motion for two cases. Cloud mo-
tion according to the LES is used as a convective case where
clouds also develop and decay. Additionally, we are inter-
ested in the performance when cloud motion is pure advec-
tion, i.e., only displacement of frozen cloud fields. This ad-
vective case allows one to derive an exact reference for cloud
motion, and the convective case allows one to validate the
quality of the derived cloud motion in the presence of clouds
that change their size and shape.

Validation of cloud motion in the convective case is done
on images every 60s for LES times from 0 to 21540s.
Figure 5 shows cloud fraction as a function of LES time.
The average displacement of the vertically integrated liq-
uid water path (lwp) between time steps is calculated us-
ing maximum cross-correlation and used as a reference. This
describes mean translation and is, therefore, a proxy for
domain-averaged reference cloud motion. Cloud motion vec-
tors derived by sparse matching are averaged per time step
and ASI and are compared against this reference. Figure 5
shows zonal and meridional winds derived for both the ASI
and the reference determined by lwp cross-correlation. The
cloud fraction derived from cloud masks of an ASI at P1
is given as an indicator of the cloud situation. Up to an
LES time of approximately 3600s, no significant visually
detectable clouds are present; therefore, no velocities are de-
rived. Up to approximately 6000s, derived velocities are rel-
atively unstable over time, with changes in estimated veloci-
ties of up to 1.7ms−1 over 60s. We relate this to the rapidly
changing nature of small convective clouds in combination
with a low cloud fraction. During this time, some of the small
clouds appear and disappear in between time steps and are,
therefore, mismatched. After approximately 6000s, derived
zonal velocities vary in a range of ±0.5ms−1 between time
steps. Zonal cloud motion close to zero matches the LES ini-
tialization without zonal wind. Meridional velocities increase
from about 3ms−1 at 6000s to a maximum of 4.7ms−1. In
general, our derived zonal velocities show a less noisy es-
timate compared with the reference. Derived velocities from
both ASIs show very similar patterns. This further affirms the
stability of the cloud motion derivation. However, we do not
have an absolute reference to benchmark derived velocities
in the convective case, as pure displacement of convective
clouds is hard to capture and may differ strongly from main
winds. We validate derived cloud velocities using artificially
advected cloud fields to overcome this limitation. The same
LES times as in the convective validation are used, but each
time step is assumed to be independent. Cloud motion is gen-
erated by freezing the cloud field and shifting it for each time
step. This results in an objective reference cloud motion. A
shift of 500m from north to south at a time difference of 60s
gives a theoretical u of 0ms−1 and v of −8.3ms−1. No ve-
locities were derived in the absence of clouds up to approx-
imately 2500 s. Afterwards, the derived velocities match the
theoretical displacements well with an RMSE of 0.019ms−1

zonally and 0.11ms−1 meridionally.
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Figure 4. Histogram of (a) image mean cloud-base height and (b) height derived for the matched pixels of all images compared against
synthetic references.

Figure 5. (a) Cloud fraction from cloud masks of the ASI at P1
for LES times. Per time step scene-averaged cloud motion derived
using cross-correlation of the lwp field of the LES simulation and
our cloud motion derivation based on feature matching for east to
west motion u (b) and south to north motion v (c).

Overall, these results prove that the derived cloud motions
are reliable for the cloud situations used in this study. This
can also be seen as a further validation of derived CBHs, as
they are necessary for the calculation of physical velocities.

3.4 DNI nowcasts

Evaluation of the nowcasting model is done using multi-
ple steps that are described and discussed in the following.
MACIN is compared against persistence to evaluate overall
performance. Additionally, variations of MACIN using ideal
cloud masks were run to investigate the implications of errors
in CNN-derived cloud masks. These variation runs will be

called “cloud mask variation” and “continuous cloud mask
variation” hereafter and explained later on. Finally, a sim-
plification of MACIN is used to assess possible benefits of
the expensive assimilation of MACIN. This variation will be
referred to as “simple variation”. For MACIN and all its vari-
ations, one nowcast run was started every 60s for LES times
from 60 to 21 540s for a total of 359 nowcast runs. The maxi-
mum nowcast lead time was chosen as 20min. Nowcast time
steps exceeding the maximum LES time of 21 600s were dis-
carded. DNI nowcasts are always derived simultaneously for
point P1 and area A1. Errors for point and area forecasts
show similar characteristics. Therefore, they are discussed
jointly in the following. If not stated otherwise, error values
are given for the point DNI with the area DNI given in paren-
theses.

Figure 6a and b show the average RMSE and MBE for
point nowcasts of persistence, MACIN, and cloud mask vari-
ation grouped by lead time. Figure 6c and d give the same
for area nowcasts. Errors of persistence and MACIN give the
overall performance of the introduced nowcasting model and
are, therefore, analyzed first. Persistence nowcasts start with-
out error at a lead time of 0min, but the RMSE increases
strongly up to approximately a constant value of 300Wm−2

(250Wm−2) after 6min. The persistence MBE increases lin-
early up to approximately 50Wm−2 and is linked to the ten-
dency of a growing cloud fraction over time. MACIN ex-
hibits a nonzero RMSE at nowcast start but a smaller in-
crease in the RMSE over time compared with persistence.
In terms of the RMSE, MACIN outperforms persistence for
lead times longer than 1min. Improvements over persistence
for these longer lead times are thereby typically on the or-
der of 50Wm−2 (50Wm−2) or more. In general, the RMSE
of nowcasts for areas is about 50Wm−2 lower than now-
casts for points. The MBE is mostly negative for MACIN,
with magnitudes in the range of the persistence MBE. The
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nonzero RMSE at a lead time of 0min may be a result of er-
roneous cloud masks in the region of the Sun, errors in the ra-
diative transfer (RT) parametrization, or smearing out during
the assimilation because of multiple time steps and viewing
geometries.

To further investigate the initial nowcast error discussed
above, a cloud mask variation of MACIN was run. Perfect
cloud masks were used as input for the nowcasting model
instead of CNN cloud masks. These perfect cloud masks
are derived from the LES cloud optical depths in the line
of sight τ (see also Sect. 3.1 and Fig. 1f) with a threshold
of τthresh = 1.0 to distinguish between cloudy and clear-sky
conditions. By using these perfect cloud masks for nowcast-
ing, the influence of cloud mask errors within the nowcasting
model can be assessed. As for the persistence and MACIN,
nowcast errors for the cloud mask variation are given in
Fig. 6. The RMSE of the cloud mask variation is very sim-
ilar to the RMSE of MACIN. This suggests that the CNN
cloud masks provide a good estimate of the cloud situation
for our nowcasting. However, the cloud mask variation out-
performs MACIN by 31Wm−2 (32Wm−2) for a lead time of
0min and converges to the RMSE of MACIN for lead times
of 3min and longer. The cloud mask variation point MBE
is initially about 0 Wm−2; therefore, the negative MBE of
MACIN, especially during the first minutes of the nowcasts,
can be associated with erroneous cloud masks in the vicin-
ity of the Sun. The minor improvement for longer lead times
when using perfect cloud masks might also be a result of the
convectively growing, shrinking, and reshaping clouds. As
the nowcasting model cannot describe these processes, per-
fectly outlining clouds in the beginning may not be that rel-
evant for longer lead times. The nonzero RMSE of the cloud
mask variation for a lead time of 0min may result from er-
rors in the RT parametrization or smearing out by assimi-
lation, as described for MACIN before. To further investi-
gate the implications of the RT parametrization, the contin-
uous cloud mask variation was run. It differs from MACIN
only with respect to the input cloud masks. In contrast to the
cloud mask variation, which gives discrete cloud mask val-
ues for clear-sky and cloudy classes, the continuous cloud
mask variation relies on cloud masks with continuous val-
ues. The RT parametrization maps model cloudiness states
linearly to DNI values. Model cloudiness states of MACIN
usually rely on CNN cloud masks with discrete values for
the three classes (clear, cloudy, and undecided), whereas ac-
tual cloud optical depth is a continuous variable. Continuous
cloud masks are used to check whether this discrete repre-
sentation causes a significant fraction of nowcast error. These
cloud masks are derived from τ used for the cloud mask val-
idation, but they comply with the exponential attenuation of
intensity in radiative transfer by cmcont = 1− exp(τ ). The
continuous cloud mask variation uses these continuous cloud
masks. The resulting errors of the continuous cloud mask
variation are not depicted, as they strongly resemble the er-
rors of the cloud mask variation with slight improvements

in the RMSE in the range of about ±5Wm−2. Therefore,
we conclude that the RT parametrization and discrete nature
of cloud masks is not a major error source, and the nonzero
RMSE for a lead time of 0min is a result of smearing out
during assimilation.

A further variation of MACIN was run to assess the ben-
efits of the assimilation scheme. Therefore, the simple vari-
ation of MACIN was run with just a single cloud mask and
velocity field from the ASI at P1 as input. The Sun region
is not masked out in the cloud mask and velocity field for
the simple variation. With this variation, we assess the possi-
ble benefits of the additional complexity and computational
cost of MACIN. The resulting errors differ from the errors
of MACIN, mainly for point nowcasts. For a lead time of
0min, the RMSE of the simple variation is about 300Wm−2.
For longer lead times, the RMSE resembles the RMSE of
MACIN but is approximately 75Wm−2 larger. The MBE
of the simple variation is strongly negative, with values of
around 75Wm−2 and even more for a lead time of 0min. As
the Sun region is not masked out in the simple variation and
the cloud mask CNN tends to classify the Sun in synthetic
images as cloudy, the initial model cloudiness state is incor-
rect in this region, and the derived DNI for a lead time of
0min gives large errors. In case of clear sky, the erroneously
cloudy detected Sun is steady; therefore, this “cloud” does
not move and gives an offset for all lead times. This ex-
plains the large RMSE offset and the large negative MBE.
We are aware that these larger errors are mainly due to the co-
location of the ASI and nowcasted point in our setup. Nev-
ertheless, this demonstrates the capabilities of our nowcast-
ing model to use multiple data sources for error reduction.
For example, when using projected images of ASIs at differ-
ent positions and superimposing one over the other for the
derived CBH, the Sun is in different regions of the images.
When we exclude, per the ASI, the immediate region of the
Sun from the used cloud mask, cloud mask information from
another ASI is used to fill in this region. Thus, erroneous
cloud masks in the region of the Sun can be mitigated by
assimilation.

In general, the nowcast quality is influenced by the vari-
ability in DNI. Completely cloud-free and also fully overcast
situations result in low variability and are simple to now-
cast. Broken clouds can cause strong variations in DNI and
are more challenging to nowcast. Therefore, other nowcast-
ing systems in the literature (e.g., Nouri et al., 2019) are
benchmarked not only on all available situations but also sep-
arately on situations grouped into eight variability classes.
This showcases the nowcast quality under different weather
conditions and variability. We investigated the performance
of MACIN by computing error metrics for subsets of the
359 nowcasts of this study. The subsets were determined by
the cloud fraction. Overall, a small absolute RMSE can be
found, especially for small and large cloud fractions, with
minor to no improvements in MACIN over persistence. Er-
rors are larger for broken clouds and medium cloud fractions,
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Figure 6. The (a) RMSE and (b) MBE for 359 point DNI nowcasts compared to DNI point reference values and evaluated per lead time.
Nowcasts were done using MACIN and the cloud mask variation. Panels (c) and (d) show corresponding error values for the area nowcasts
and DNI area reference.

and the improvement in MACIN over persistence increases
in these cases. However, the significance of these cloud-
fraction-dependent results is limited due to the small number
of nowcasts and the restriction to the shallow-cumulus LES
data. Therefore, these results are not displayed nor discussed
here in detail.

4 Conclusions

In this study, we introduced the novel all-sky-image-based
direct normal irradiance (DNI) nowcasting model MACIN,
which adapts ideas of 4D-Var data assimilation. We validated
MACIN against synthetic data from LES cloud scenes. The
nowcasting model is designed to consider setups with multi-
ple ASIs and to nowcast DNI for points and areas. We derive
cloud masks, cloud-base height, and cloud motion from ASI
images and combine these into an initial cloudiness state for
a 2D horizontal advection model. Predicted cloudiness states
are projected to the ground and converted to DNI using pre-
vious DNI values.

Cloud scenes from a shallow-cumulus cloud field com-
puted using UCLA-LES (Stevens et al., 2005) with a cloud
fraction between 0 % and 100% were used for validation and
in-depth analysis of the nowcasting system and its compo-
nents. For these cloud scenes, synthetic ASI images were
generated. The DNI at the ground was calculated for syn-
thetic point and area reference values. References for cloud
optical depth and cloud-base height were derived for the ASI
by tracing through cloud scenes. With these data, we val-
idated our methods for cloud detection relying on a CNN,
cloud-base height derivation from stereography, and cloud
motion derivation from sparse feature matching of consec-
utive images. The synthetic setup facilitated a comparison

of DNI nowcasts from MACIN against point and area refer-
ences that are usually unavailable from observations. Thus,
we could confirm previous findings of an RMSE reduction
by spatial aggregation for nowcasts by Kuhn et al. (2018a).
Overall, we find improvements over persistence. In general,
errors correspond to findings for other ASI-based nowcast-
ing systems in the literature (e.g., Peng et al., 2015; Schmidt
et al., 2016; Nouri et al., 2022). MACIN gives nonzero er-
rors for point nowcasts from the beginning, as also observed
in studies such as Schmidt et al. (2016) and Peng et al.
(2015). Deriving reference cloud masks from LES cloud op-
tical depth allowed for an attribution of the initial errors of
MACIN to imperfect cloud masks in the vicinity of the Sun,
imperfect DNI estimation, and a smoothing of the initial state
by assimilation. For applications where these initial errors
are crucial, they could easily be reduced by using persistence
nowcasts for small lead times and nowcasts of MACIN for
larger lead times, as suggested by Nouri et al. (2022). We did
not address this further as it is unlikely to be relevant for op-
erational use, given that an immediate computation of DNI
nowcast, transfer to consumers, and reaction of their system
seem unrealistic. By comparing further simplified nowcasts
relying only on a single imager, we demonstrate the capabil-
ity of the nowcasting model to make beneficial use of multi-
ple ASIs and the assimilation scheme.

A limitation of this study is the restricted set of 360min
of cloud data and a single constant Sun zenith angle. Future
work will apply the nowcasting model to real-world data to
consider manifold cloud scenes and Sun positions. This step
is necessary to further confirm the benefits of the model. Ad-
ditionally, we plan to use the synthetic setup for in-depth in-
vestigation of theoretical error sources of ASI nowcasts (e.g.,
to investigate errors introduced by using advection to predict
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future cloud states and neglecting convective development of
clouds).

Appendix A

A1 Cloud mask CNN

Convolutional neural networks (CNNs) are used frequently
in image segmentation tasks. The wide variety of possible
atmospheric conditions, light situations, and cloud types,
even within single ASI images, allows only for limited suc-
cess with classical (e.g., color- and threshold-based) methods
for cloud mask derivation. For example, Dev et al. (2019)
demonstrated the possibility of using CNNs for the segmen-
tation of all-sky images, and Fabel et al. (2022) even demon-
strated a segmentation into different classes of clouds.

For the application of a single-layer advection model, we
aim at a segmentation between cloudy and clear areas of an
image. A major piece of work is the generation of training
images. As the nowcasting model and CNN are intended for
real-world applications beyond this study, real images cap-
tured with an ASI-16 were used. This also avoids overfitting
on the limited number of synthetic ASI images generated for
the LES scene. A total of 793 real ASI images were hand la-
beled and split into a training and validation dataset of 635
and 158 images, respectively. These are normalized using the
channel-wise mean and standard deviation over all training
images. All images of both datasets were scaled to 512 pix-
els× 512 pixels. For training, random excerpts of 256 pix-
els× 256 pixels were cropped and randomly mirrored or ro-
tated by 90 ◦ to artificially increase the amount of training
data by augmentation. Hand labeling was done using a tool
that we designed for this task, which subdivided a randomly
chosen and projected ASI training image into so-called “su-
perpixels” (Achanta et al., 2012), continuous regions with
similar color information and limited distance. Each super-
pixel can be assigned to one of the three classes: cloudy,
clear, or undecided. The subdivision into superpixels allows
for faster labeling of pixels belonging together. The label-
ing tool allows for the selection of the number of superpix-
els; thus, small regions may also be labeled precisely. As
clouds and clear sky are not always precisely distinguishable
and their definition based on visual appearance is hard, we
also offered the label undecided. This label marks regions
that are hard or cumbersome for humans to classify and that
are therefore left out. In the training of the neural network,
these undecided pixels are considered as such, i.e., the CNN
is not challenged to label these regions according to poten-
tially mislabeled training data but may learn more from re-
gions where humans are sure about the proper label. Example
images from the validation set, corresponding hand-labeled
segmentation, and CNN segmentation are shown in Fig. A1.
The CNN and its training is described in the following.

Figure A1. Example images from the validation set (left column)
hand-labeled segmentation (middle column), and cloud mask pre-
dicted by the trained CNN (right column).

We chose the DeeplabV3+ (Chen et al., 2018) CNN archi-
tecture which is designed using an encoder–decoder struc-
ture, as is the U-Net architecture (Ronneberger et al., 2015)
used by Fabel et al. (2022). For the encoder, we use a
ResNet34 (He et al., 2015) pre-trained on the ImageNet
dataset (Russakovsky et al., 2014). Three output channels
were chosen associated with the three classes. Training was
done using the Adam optimizer (Kingma and Ba, 2014) with
a custom sparse soft cross-entropy loss (ssce). This ssce ac-
tively ignores pixels that are labeled as undecided in the
ground truth and only focuses on cloudy and clear pixels.
This is done using the following:

ymask,i,j = 1− ygt,i,j,undecided, (A1)
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LogSoftmax(yi,j,c)= log
(

exp(yi,j,c)∑
d exp(yi,j,d)

)
, (A2)

sscei,j =
∑

c∈{cloudy,clear}
LogSoftmax(ypr,i,j,c)

· ygt,i,j,c · ymask,i,j , (A3)

where ypr,i,j,c is the predicted value for the ith pixel of
the j th training image and the class c. Correspondingly,
ygt,i,j,c ∈ {0,1} is the ground truth value. While ssce is nec-
essary for optimization, this loss is meant to give mainly in-
termediate scores of performance of the segmentation CNN.
Therefore, a metric called mean intersection over union
(mIoU) is also used in a sparse version as follows:

I=
∑
i,j

∑
c∈{cloudy,clear}

ygt,i,jc · ypr,i,j,c · ymask,i,j , (A4)

U=
∑
i,j

∑
c∈{cloudy,clear}

(
ygt,i,j,c+ ypr,i,j,c

)
·ymask,i,j − I, (A5)

mIoU=
I

U+ ε
, (A6)

with ε = 10−7 for numerical stability. This metric is designed
to represent a ratio between correctly classified pixels in
comparison to overall classified pixels, again adapted by us
to ignore undecided ground truth pixels. It was computed af-
ter every epoch on the entire validation dataset. We used a
batch size of 26 images and a learning rate of 7× 10−5. Af-
ter 48 epochs of training, mIoU= 0.968 was reached for the
CNN as used within this study. For the prediction of cloud
masks, the label of a pixel is derived from the output channel
with the maximum value. This is mapped to scalar values as
0 for clear, 1 for cloudy, and 0.5 for undecided to obtain the
final CNN cloud masks.
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