



## Supplement of

## Field evaluation of low-cost electrochemical air quality gas sensors under extreme temperature and relative humidity conditions

Roubina Papaconstantinou et al.

Correspondence to: George Biskos (g.biskos@cyi.ac.cy, g.biskos@tudelft.nl)

The copyright of individual parts of the supplement might differ from the article licence.

## S.1 Technical information of sensors utilised

| Fable S1: Specification    |                |                                        |                         |                |                        |           |
|----------------------------|----------------|----------------------------------------|-------------------------|----------------|------------------------|-----------|
|                            | Alphasense     | Alphasense                             | Alphasense              | Alphasense     | Winsen ZE12(           | (A) [11]  |
|                            | CO-B41 [1]     | NO <sub>2</sub> -B43F [2]              | SO <sub>2</sub> -B4 [3] | OX-B431 [4]    | ZE12(A)-O <sub>3</sub> | ZE12(A)-  |
|                            |                |                                        |                         |                | ZE12(A)-               | CO        |
|                            |                |                                        |                         |                | $SO_2$                 |           |
|                            |                |                                        |                         |                | ZE12(A)-               |           |
|                            |                |                                        |                         |                | $NO_2$                 |           |
| Detection Range            | 1000           | 20                                     | 100                     | 20             | 2                      | 12.5      |
| (ppm)                      |                |                                        |                         |                |                        |           |
| Operating                  | -30 to 50      | -30-40                                 | -30 to 50               | -30 to 40      | -20 to 50              | -20 to 50 |
| Temperature                |                |                                        |                         |                |                        |           |
| range (°C)                 |                |                                        |                         |                |                        |           |
| Operating                  | 15 to 90       | 15 to 85                               | 15 to 90                | 15 to 85       | 15 to 90               | 15 to 90  |
| Humidity range             |                |                                        |                         |                |                        |           |
| (%RH)                      |                |                                        |                         |                |                        |           |
| Response time (s)          | < 25 (from 0   | <60 (from 0 to                         | < 60 (from 0            | < 60 (from 0   | ≤120                   | ≤120      |
|                            | to 10ppm)      | 2ppm)                                  | to 2ppm)                | to 1ppm)       |                        |           |
| Noise <sup>1</sup> $\pm 2$ | 4              | 15                                     | 5                       | 15             | ~15 (O <sub>3</sub> )  | ~129      |
| standard                   |                |                                        |                         |                | ~11 (SO <sub>2</sub> ) |           |
| deviations (ppb) –         |                |                                        |                         |                | ~16 (NO <sub>2</sub> ) |           |
| theoretical                |                |                                        |                         |                | ( )/                   |           |
| detection limit            |                |                                        |                         |                |                        |           |
| Cross sensitivity          | $H_2S$         | $O_3 - Cl_2$                           | $NO_2 - Cl_2 O_3$       | $Cl_2 - H_2S$  | -                      | -         |
| gas                        | -              | 5 2                                    | - CO                    |                |                        |           |
| Sensitivity from           | -50 to -200    | -10 to 50                              | 10 to 30                | 5 to 100       | -                      | -         |
| 20°C to 50 °C /            |                |                                        |                         |                |                        |           |
| zero current (nA)          |                |                                        |                         |                |                        |           |
| Lifespan                   | >36 months     | >24 months                             | >36 months              | >24 months     | 2 years                | 2 years   |
| 1                          | operation      | operation until                        | operation               | operation      | (in air)               | (in air)  |
|                            | until the loss | the loss of                            | until the loss          | until the loss |                        |           |
|                            | of 50% of      | 50% of the                             | of 50% of               | of 50% of      |                        |           |
|                            | the original   | original signal                        | the original            | the original   |                        |           |
|                            | signal (24     | (24 months                             | signal (24              | signal (24     |                        |           |
|                            | months         | warranted)                             | months                  | months         |                        |           |
|                            | warranted)     | ······································ | warranted)              | warranted)     |                        |           |
| Dimensions (mm)            | Ø32 x 16.5     | Ø32 x 16.5                             | Ø32 x 16.5              | Ø32 x 16.5     | Ø39 x 44               | Ø39 x 44  |
| Weight (g)                 | <13            | <13                                    | <13                     | <13            | 75                     | 75        |
| Cost with ISB (€)          | 134            | 139                                    | 134                     | 144            | -                      | -         |

| Table S1: Specifications of the Al | phasense and Winsen low-cost | gas sensors employed in our study. |
|------------------------------------|------------------------------|------------------------------------|
|                                    |                              |                                    |

<sup>&</sup>lt;sup>1</sup> Tested with Alphasense ISB low noise circuit.

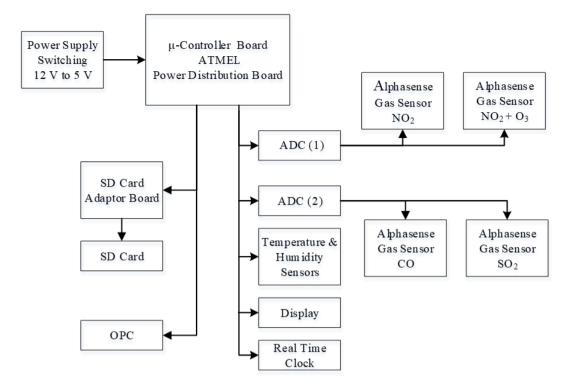



Figure S1: Schematic diagram of the circuit employed for running and recording the data of the LCSs in our study. Key: OPC, Optical particle counter; ADC: Analogue to Digital Converter.

Table S2: Type and specifications of the reference instruments employed at the air quality monitoring station used for10the field tests.

|             | СО                            | $NO_2$                   | O <sub>3</sub>              | $SO_2$                        |
|-------------|-------------------------------|--------------------------|-----------------------------|-------------------------------|
| Model       | Ecotech Serinus 30            | Ecotech Serinus 40       | Thermo Scientific 49i       | Ecotech Serinus 50            |
| Method      | infrared spectroscopy [7]     | Chemiluminescence [8]    | ultraviolet photometry [10] | ultraviolet fluorescence [9]  |
| Sample flow | 1.0 slpm                      | 0.3 slpm (0.6 slpm total | 1–3 LPM                     | 0.750 slpm                    |
| rate        |                               | flow for the NO and      |                             |                               |
|             |                               | NOX flow path)           |                             |                               |
| Precision   | 20 ppb or 0.1% of             | 0.4 ppb otherwise 0.5%   | —                           | 0.5 ppb or 0.15 % of          |
|             | reading, whichever is         | of reading, whichever    |                             | reading, whichever is         |
|             | greater                       | is greater               |                             | greater                       |
| Linearity   | Better than $\pm 1\%$ of full | $\pm 1\%$ of full scale  | $\pm$ 1% of full-scale      | $\pm 1$ % of full scale (from |
|             | scale (0-50 ppm); ±2%         |                          |                             | best straight-line fit)       |
|             | of full scale (0-200 ppm),    |                          |                             |                               |
|             | from best straight-line fit   |                          |                             |                               |
| Response    | 60 seconds to 95%             | 15 seconds to 90%        | 20 seconds (10 seconds lag  | 60 seconds to 95 %            |
| time        |                               |                          | time)                       |                               |
| Lower       | 40                            | 0.4                      | 1.0                         | 0.3                           |
| detectable  |                               |                          |                             |                               |
| limit (ppb) |                               |                          |                             |                               |

| Sensor   | Equation | Factor         |     | Temperature (°C) |     |     |     |     |      |     |      |
|----------|----------|----------------|-----|------------------|-----|-----|-----|-----|------|-----|------|
|          |          |                | -30 | -20              | -10 | 0   | 10  | 20  | 30   | 40  | 50   |
| CO-B4    | 1        | n <sub>T</sub> | 0.7 | 0.7              | 0.7 | 0.7 | 1   | 3   | -3.5 | -4  | 4.5  |
| NO2-B43F | 2        | k <sub>T</sub> | 2.2 | 2.2              | 2.2 | 2.2 | 1.7 | 1   | 0.7  | 0.3 | -2.5 |
| OX-B431  | 1        | n <sub>T</sub> | 0.9 | 0.9              | 1   | 1.3 | 1.5 | 1.7 | 2    | 2.5 | 3.7  |
| SO2-B4   | 2        | k <sub>T</sub> | 1   | 1                | 1   | 1   | 1   | 1   | 1.2  | 1.9 | 3.6  |

Table S3: Temperature correction factors used in Eq. 1 and 2 in the main manuscript. [5]

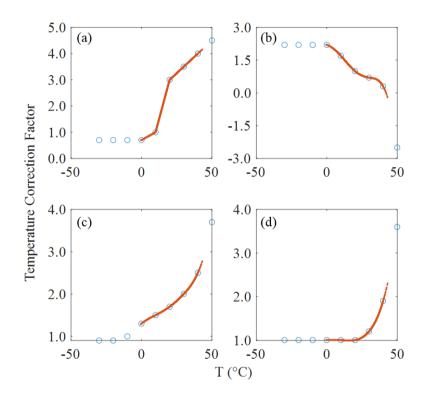



Figure S2: Linear and spline interpolations used for estimating the correction factors of the CO (a) NO<sub>2</sub> (b), O<sub>3</sub> (c) and SO<sub>2</sub> (d) Alphasense LCSs.

#### S.2 Relative errors of LCSs against reference concentrations 20

Figure S3 shows that the relative error of LCSs increases exponentially as the nominal gas concentration decreases. Also a sharp increase in the relative error is observed the further we move bellow the LoD of CO,  $NO_2$  and  $O_3$ LCSs as this is defined by the manufacturers (cf. dashed vertical lines in each plot). The relative error of the Alphasense CO LCS (Figure S3a) decreases as the reference concentration increases and reverses to negative error

values (indicated by the red data points in all the plots), underestimating the reference concentrations above a 25 certain threshold (ca. 200 ppb). Same behaviour is observed for Winsen CO sensor (Figure S3e) which starts underestimating the reference concentrations when those are above ca. 500 ppb. Both CO LCSs reach a plateau at concentrations > 1000 ppb where the relative error is ca. 65%. The Alphasense NO<sub>2</sub> LCS (Figure S3b) mostly overestimate the reference concentration while the Winsen LCS (Figure S3f) start underestimating at a concentration comparable to its LoD. The Alphasense O<sub>3</sub> LCS (Figure S3c) mostly overestimate while the Winsen 30 (Figure S3g) underestimate the reference measurements. The SO<sub>2</sub> measurements of both LCSs (Figure S3d and S3h) were admittedly higher than the reference measurements, and as discussed in the main manuscript the associated errors can be attributed to the fact that the concentrations of the gas were almost always below the LoD of the sensors, preventing any further evaluation of their performance.

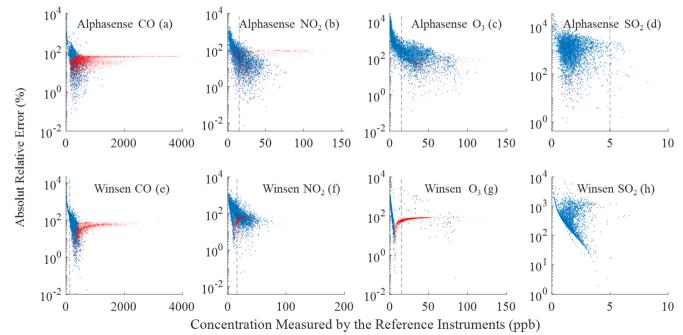



Figure S3: Absolute relative error of the measurements reported by the Alphasense (1<sup>st</sup> row) and the Winsen (2<sup>nd</sup> row) LCSs against reference measurements. Blue and red data points correspond respectively to positive and negative relative errors on an absolute scale. Vertical dashed lines indicate the limit of detection (LoD) of each LCS. The LoD values of the Alphasense CO and the Winsen SO<sub>2</sub> LCSs are respectively 4 and 15 and can thus not be visible in the respective subplots.

40

#### S.3 CO LCSs Correlation plots tagged by time

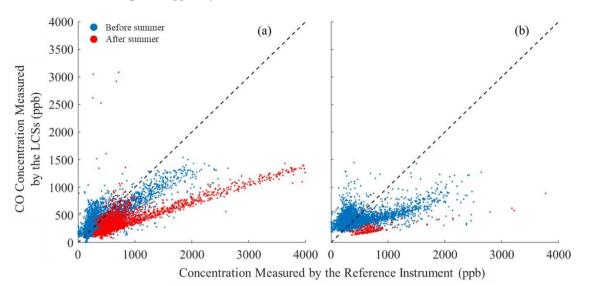



Figure S4: Correlation between the measurements recorded by the Alphasense (a) and Winsen (b) CO LCSs and those provided by the respective reference instrument. Blue and red data points indicate measurements carried out before and after the summer period, whereas the dashed lines are the 1:1 line. The two distinct data clusters (red and blue) formed for both sensors are largely due to the degradation of the sensors by their extended exposure to high temperature and low relative humidity conditions.

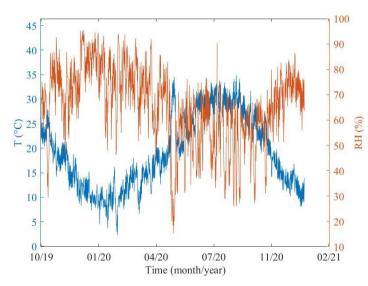
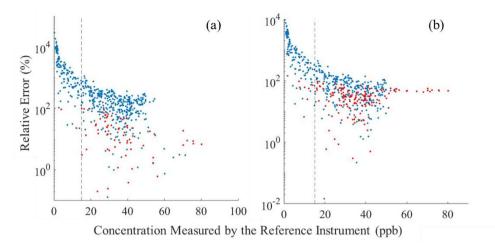




Figure S5: Time series of 12-hour averaged temperature and Relative Humidity (RH) conditions measured by the reference instruments for the period under study.

#### S.4 Alphasense O<sub>3</sub> LCS correction for NO<sub>2</sub>



- Figure S6: Relative error of the Alphasense O<sub>3</sub> LCS as a function of the respective reference measurements, when (a) NO<sub>2</sub> compensation factor ( $WE_{C_{NO2}}$ ) was subtracted from the calibration equation (i.e., Eq. 1 in the main manuscript) as suggested by the manufacturer, and (b) when this was not done (i.e. using Eq. 1 without subtracting the NO<sub>2</sub> response). Temperature and RH were chosen to be in the range of 10-20 °C and 55-75%, respectively. The vertical dashed line shows the LoD of the LCS. Blue and red coloured points indicate respectively positive and negative relative
- 60 errors on an absolute scale. The range of relative error changes from -200 to 1000% when the correction for NO<sub>2</sub> cross sensitivity is used, to -100 to 200% when it was not.

### S.5. Data Ouality Objectives

65

70

Table S4 provides the EU AO standards for the gases considered in this work. The averaging period of each gas differs as those are related to health impacts depending on exposure time. Table S4 also indicates whether the LoD values of the LCSs, are sufficient according to the guideline standards (first point discussed in Section 3.5 of the main manuscript). Evidently, all LCSs have LoD values below the guideline standard.

| Gas             | EU guideline standard | Averaging Period             | Limit of Detection (LoD) |         |  |
|-----------------|-----------------------|------------------------------|--------------------------|---------|--|
|                 | concentration         |                              | Alphasense               | Winsen  |  |
| CO              | 10 mg/m3 (~8621 ppb)  | Maximum daily 8<br>hour mean | 4 ppb                    | 130 ppb |  |
| NO <sub>2</sub> | 200 µg/m3 (~105 ppb)  | 1 hour                       | 15 ppb                   | 15 ppb  |  |
| 03              | 120 µg/m3 (~60 ppb)   | Maximum daily 8<br>hour mean | 15 ppb                   | 15 ppb  |  |
| SO <sub>2</sub> | 350 µg/m3 (~132 ppb)  | 1 hour                       | 5 ppb                    | 15 ppb  |  |

Table S4: EU guideline standard concentrations, according to Directive 2008/50/EC

Time coverage is defined as the fraction of a calendar year during which sampling shall be in operation. In order to calculate the time coverage of the LCSs based on our dataset we used the following formula:

Time coverage 
$$=\frac{N_{meas}}{N_{year}}$$
. (S1)

- Here N<sub>meas</sub> is the number of hours that measurements take place, and N<sub>vear</sub> is the total number of hours in the 75 calendar year. According to the regulations, N<sub>meas</sub> include invalid measurements, regardless of the cause (e.g., maintenance or malfunction) while for indicative measurements of  $O_3$ , time coverage is calculated only for the summer season (April - September). Data capture is defined as the fraction of valid measurements over the required number of hours that measurements have to be carried out (i.e., as required by the time coverage objective, Table S6). The data capture is determined as: 80

$$Data capture = \frac{N_{valid}}{(N_{year} \times t_{Min\_Cov})},$$
(S2)

where N<sub>valid</sub> is the number of valid hourly/daily measurements in the measurement period, and  $t_{Min Cov}$  is the minimum time coverage requirement.

| wheth           | lether mese are met by LCSs used in our study for indicative measurements. |                                                                     |              |                                                                      |              |  |  |  |
|-----------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|--------------|----------------------------------------------------------------------|--------------|--|--|--|
| Gas             | LCS                                                                        | Required minimum data<br>capture for indicative<br>measurements (%) | √/X          | Required minimum time<br>coverage for indicative<br>measurements (%) | √/X          |  |  |  |
| CO              | Alphasense                                                                 | 90                                                                  | $\checkmark$ | 14                                                                   | $\checkmark$ |  |  |  |
|                 | Winsen                                                                     |                                                                     | $\checkmark$ |                                                                      | $\checkmark$ |  |  |  |
| NO <sub>2</sub> | Alphasense                                                                 | 90                                                                  | $\checkmark$ | 14                                                                   | $\checkmark$ |  |  |  |
|                 | Winsen                                                                     |                                                                     | $\checkmark$ |                                                                      | $\checkmark$ |  |  |  |
| O <sub>3</sub>  | Alphasense                                                                 | 90 (summer Apr-Sept)                                                | $\checkmark$ | 10 (summer Apr-Sept)                                                 | $\checkmark$ |  |  |  |
|                 | Winsen                                                                     |                                                                     | Х            |                                                                      | Х            |  |  |  |
| SO <sub>2</sub> | Alphasense                                                                 | 90                                                                  | $\checkmark$ | 14                                                                   | $\checkmark$ |  |  |  |
|                 | Winsen                                                                     |                                                                     | $\checkmark$ |                                                                      | $\checkmark$ |  |  |  |

Table S5: Minimum data capture and time coverage requirements, and indication of whether these are met by LCSs used in our study for indicative measurements.

Table S6: Number of hours on which measurements took place ( $N_{meas}$ ) and number of valid hourly measurements in the measurement period ( $N_{valid}$ ) from October 2019 to December 2020. The number of total number of hours for this specific period ( $N_{year}$ ) was 10992 and for the case of O<sub>3</sub> ( $N_{summ}$ ) was 4392.

|                       |                          | N <sub>meas</sub> | $\mathbf{N}_{\mathbf{valid}}$ |
|-----------------------|--------------------------|-------------------|-------------------------------|
| СО                    | Alphasense               | 6013              | 5028                          |
|                       | Winsen                   | 4043              | 3338                          |
| NO <sub>2</sub>       | Alphasense               | 6013              | 3990                          |
|                       | Winsen                   | 4043              | 3921                          |
| O <sub>3</sub> summer | Alphasense               | 658               | 658                           |
| (Apr-Sept)            | Winsen Alphasense Winsen | 185               | 185                           |
| SO <sub>2</sub>       | Alphasense               | 6013              | 3864                          |
|                       | Winsen                   | 4043              | 3904                          |

90

TableS7:EstimatedregressioncoefficientsobtainedviaorthogonalregressionbetweenreferenceandLCSmeasurements.

|            |                 | $\boldsymbol{\theta}_{0}$ | $\theta_1$ |
|------------|-----------------|---------------------------|------------|
| Alphasense | CO              | 255                       | 0.27       |
|            | NO <sub>2</sub> | 12.5                      | 0.56       |
| Winsen     | СО              | 358                       | 0.12       |
|            | NO <sub>2</sub> | 22.6                      | 0.44       |

#### References

- 105 1. Alphasense Ltd.: CO-B4 Carbon Monoxide Sensor 4-Electrode. Technical Specification. Alphasense Ltd. Available online at: <u>http://www.Alphasense.com/WEB1213/wp-content/uploads/2019/09/CO-B4.pdf</u>, 2019.
  - Alphasense Ltd.: NO2-B43F Nitrogen Dioxide Sensor 4-Electrode. Technical Specification. Alphasense Ltd. Available online at: <u>http://www.Alphasense.com/WEB1213/wp-content/uploads/2019/09/NO2-B43F.pdf</u>, 2019.
- Alphasense Ltd.: OX-B431 Oxidising Gas Sensor Ozone +Nitrogen Dioxide 4-Electrode. Technical Specification. Alphasense Ltd. Available online at: <u>http://www.Alphasense.com/WEB1213/wpcontent/uploads/2019/09/OX-B431.pdf</u>, 2019.
  - 4. Alphasense Ltd.: SO2-B4 Sulphur Dioxide Sensor 4-Electrode. Technical Specification. Available online at:
  - 5. Alphasense, 2019. Alphasense Application Note AAN803-05: Correcting for background currents in four electrode toxic gas sensors.
  - 6. DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, 2008. Official Journal of the European Union, Available online at: https://eur-lex.europa.eu/legal-

content/EN/TXT/HTML/?uri=CELEX:32008L0050&from=en

- 7. Ecotech Serinus 30 Carbon Monoxide Analyser. Available online at: <u>https://www.ecotech.com/wp-content/uploads/2015/01/M010027-Serinus-30-CO-User-Manual-2.2.pdf</u>
- 8. Ecotech Serinus 40 Oxides of Nitrogen Analyser. Available online at: <u>https://www.ecotech.com/wp-content/uploads/2015/01/M010028-Serinus-40-NOx-User-Manual-2.2.pdf</u>
- 9. Ecotech Serinus 50 Sulfur Dioxide Analyser. Available online at: <u>https://www.ecotech.com/wp-content/uploads/2015/01/M010029-Serinus-50-SO2-User-Manual-2.2.pdf</u>
  - https://www.Alphasense.com/WEB1213/wp-content/uploads/2019/09/SO2-B4.pdf, 2019.
- 10. Thermo Scientific<sup>™</sup> Model. 49i Ozone Analyzer. Available online at: <u>https://assets.thermofisher.com/TFS-Assets/CAD/Specification-Sheets/EPM-49i-Datasheet.pdf</u>
- 11. Zhengzhou Winsen Electronics Technology Co., Ltd.: EC Gas Detection Module. User Manual V1.2— Model: ZE12. Zhengzhou Winsen Electronics Technology Co., Ltd. Available online at: https://www.winsen-

# 130 <u>https://www.winsen-</u> sensor.com/d/files/PDF/Gas%20Sensor%20Module/Industrial%20Application%20Gas%20Sensor%20Mo dule/ze12-EC-module-manualv1\_5.pdf, 2016.

100

115

120