
Atmos. Meas. Tech., 16, 3363–3390, 2023
https://doi.org/10.5194/amt-16-3363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Incorporating EarthCARE observations into a multi-lidar cloud
climate record: the ATLID (Atmospheric Lidar)
cloud climate product
Artem G. Feofilov1, Hélène Chepfer1, Vincent Noël2, and Frederic Szczap3

1LMD/IPSL, Sorbonne Université, ENS, PSL Research University, École polytechnique,
Institut Polytechnique de Paris, CNRS, Paris, France
2Laboratoire d’Aérologie (Laero), Observatoire Midi-Pyrénées, Université Toulouse 3, CNRS, IRD, Toulouse, France
3Laboratoire de Météorologie Physique (LaMP), UMR 6016, CNRS, Aubière, France

Correspondence: Artem G. Feofilov (artem.feofilov@lmd.polytechnique.fr)

Received: 31 October 2022 – Discussion started: 18 November 2022
Revised: 28 February 2023 – Accepted: 15 May 2023 – Published: 5 July 2023

Abstract. Despite significant advances in atmospheric mea-
surements and modeling, clouds’ response to human-induced
climate warming remains the largest source of uncertainty
in model predictions of climate. The launch of the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) satellite in 2006 started the era of long-term
spaceborne optical active sounding of Earth’s atmosphere,
which continued with the CATS (Cloud-Aerosol Transport
System) lidar on board the International Space Station (ISS)
in 2015 and the Atmospheric Laser Doppler Instrument (AL-
ADIN) lidar on board Aeolus in 2018. The next impor-
tant step is the Atmospheric Lidar (ATLID) instrument from
the EarthCARE (Earth Clouds, Aerosols and Radiation Ex-
plorer) mission, expected to launch in 2024.

In this article, we define the ATLID Climate Prod-
uct, Short-Term (CLIMP-ST) and ATLID Climate Product,
Long-Term (CLIMP-LT). The purpose of CLIMP-ST is to
help evaluate the description of cloud processes in climate
models, beyond what is already done with existing space li-
dar observations, thanks to ATLID’s new capabilities. The
CLIMP-LT product will merge the ATLID cloud observa-
tions with previous space lidar observations to build a long-
term cloud lidar record useful to evaluate the cloud climate
variability predicted by climate models.

We start with comparing the cloud detection capabilities of
ATLID and CALIOP (Cloud-Aerosol Lidar with Orthogonal
Polarization) in day- and nighttime, on a profile-to-profile
basis in analyzing virtual ATLID (355 nm) and CALIOP

(532 nm) measurements over synthetic cirrus and stratocu-
mulus cloud scenes. We show that solar background noise
affects the cloud detectability in daytime conditions differ-
ently for ATLID and CALIPSO.

We found that the simulated daytime ATLID measure-
ments have lower noise than the simulated daytime CALIOP
measurements. This allows for lowering the cloud detection
thresholds for ATLID compared to CALIOP and enables
ATLID to better detect optically thinner clouds than CALIOP
in daytime at high horizontal resolution without false cloud
detection. These lower threshold values will be used to build
the CLIMP-ST (Short-Term, related only to the ATLID ob-
servational period) product. This product should provide the
ability to evaluate optically thin clouds like cirrus in climate
models compared to the current existing capability.

We also found that ATLID and CALIPSO may detect sim-
ilar clouds if we convert ATLID 355 nm profiles to 532 nm
profiles and apply the same cloud detection thresholds as
the ones used in GOCCP (GCM-Oriented CALIPSO Cloud
Product; general circulation model). Therefore, this approach
will be used to build the CLIMP-LT product. The CLIMP-LT
data will be merged with the GOCCP data to get a long-term
(2006–2030s) cloud climate record. Finally, we investigate
the detectability of cloud changes induced by human-caused
climate warming within a virtual long-term cloud monthly
gridded lidar dataset over the 2008–2034 period that we ob-
tained from two ocean–atmosphere coupled climate mod-
els coupled with a lidar simulator. We found that a long-
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term trend of opaque cloud cover should emerge from short-
term natural climate variability after 4 years (possible life-
time) to 7 years (best-case scenario) for ATLID merged with
CALIPSO measurements according to predictions from the
considered climate models. We conclude that a long-term li-
dar cloud record built from the merging of the actual ATLID-
LT data with CALIPSO-GOCCP data will be a useful tool for
monitoring cloud changes and evaluating the realism of the
cloud changes predicted by climate models.

1 Introduction

Clouds play an important role in the radiative energy bud-
get of Earth. The radiative effect of clouds is twofold: on the
one hand, clouds reflect some of the Sun’s radiance during
the day, thus preventing surface warming. On the other hand,
high thin clouds trap some of the outgoing infrared radiation
emitted by the surface and re-emit it back to the ground, thus
contributing to its heating. Overall, at a global scale, clouds
contribute to cooling Earth radiatively, but quantifying pre-
cisely this global effect as well as the influence of clouds
on Earth’s radiative budget everywhere requires knowing the
coverage of clouds, as well as their geographical and verti-
cal distributions, temperature, and optical properties. Cloud
properties are expected to change under the influence of cli-
mate warming, leading to changes in the amplitude of the
overall cloud radiative cooling. But how cloud properties
change as climate warms is uncertain (e.g., Zelinka et al.,
2012, 2016; Chepfer et al., 2014; Vaillant de Guélis et al.,
2018; Perpina et al., 2021). Cloud feedback uncertainties are
an important contributor to climate sensitivity uncertainty
and therefore limit our ability to predict the future evolution
of climate for a given CO2 emission scenario (e.g., Winker et
al., 2017; Zelinka et al., 2020).

Global-scale round-the-clock satellite observations of
Earth’s atmosphere provide invaluable information that im-
proves our knowledge of current clouds’ properties and helps
us to evaluate the cloud description in climate models in cur-
rent climate simulations. Among the remote sensing tech-
niques, active sounding plays a special role because of its
high vertical and horizontal resolution and high sensitiv-
ity. The launch in 2006 of the Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observation (CALIPSO; Winker
et al., 2010) satellite started the era of operational spaceborne
optical active sounding of Earth’s atmosphere for clouds
and aerosols. It was followed by the CATS (Cloud-Aerosol
Transport System) lidar on board the International Space Sta-
tion (ISS) in 2015 (McGill et al., 2015) and the Atmospheric
Laser Doppler Instrument (ALADIN) lidar on board Aeo-
lus in 2018 (Reitebuch et al., 2020; Straume et al., 2020).
The next important step is the Atmospheric Lidar (ATLID)
instrument (do Carmo et al., 2021), from the EarthCARE
(Earth Clouds, Aerosols and Radiation Explorer) mission

(e.g., Héliere et al., 2017; Illingworth et al., 2015), expected
to launch in 2024. With this lidar, the scientific community
will continue receiving invaluable vertically resolved infor-
mation of atmospheric optical properties needed for the esti-
mation of cloud occurrence frequency, thickness, and height.
Cloud profiles deduced from CALIOP (Cloud-Aerosol Lidar
with Orthogonal Polarization) observations have been widely
used to evaluate the cloud description in climate models (e.g.,
Nam et al., 2012; Cesana et al., 2019) and have provided
leads to improve this description (e.g., Konsta et al., 2012).
To avoid any discrepancy in cloud definition between models
and observations and to allow for consistent comparisons be-
tween clouds simulated by climate models and observed by
satellite, the Cloud Feedback Model Intercomparison Project
(CFMIP) has developed the CFMIP Observation Simulator
Package (COSP1; Bodas-Salcedo et al., 2011), which was
followed by COSP2 (Swales et al., 2018). These packages in-
clude a lidar simulator (Chepfer et al., 2008; Reverdy et al.,
2015; Guzman et al., 2017; Cesana et al., 2019) that mim-
ics the measurements that would be obtained by spaceborne
lidars if they were overflying the atmosphere simulated by
a climate model. In parallel to the COSP lidar simulator,
a Level 2 and 3 cloud product named CALIPSO-GOCCP
(GCM-Oriented CALIPSO Cloud Product; general circula-
tion model; Chepfer et al., 2008, 2010, 2013; Guzman et
al., 2017; Cesana et al., 2019) was designed to ensure scale-
aware and definition-aware comparison between simulated
and observed clouds.

Despite the similarity of the measuring principle of ATLID
and CALIOP lidars – the emitter sends a brief pulse of laser
radiation to the atmosphere, and the receiver registers a time-
resolved backscatter signal collected through its telescope
– the sensitivity of both lidars to the same clouds is differ-
ent. This is explained by differences in observational geome-
try; in wavelength, pulse energy, and repetition frequency; in
telescope diameter and detector type; in the capability of de-
tecting molecular backscatter separately from the particulate
one; in vertical and horizontal resolution and averaging; and
so on. Since the CALIPSO-GOCCP algorithm cannot be ap-
plied directly to ATLID data, a specific algorithm had to be
developed which generates the ATLID cloud product CLIMP
(Climate Product).

The present paper describes the design of CLIMP and its
associated algorithm, developed with the following two goals
in mind.

1. On short timescales, such as the period of the ATLID
operation, CLIMP should help improve the current
evaluation of cloud description in climate models be-
yond CALIPSO. From this perspective, CLIMP should
take advantage of ATLID capabilities compared to
CALIPSO from the point of view of evaluation of
clouds in climate models while maintaining compliance
with the COSP lidar framework.
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2. On long timescales, CLIMP should enable building a
merged CALIPSO–ATLID long-term lidar cloud prod-
uct, in which the same clouds are detected despite the
instrumental and orbital differences between ATLID
and CALIOP. From this point of view, CLIMP should
maximize consistency with GOCCP. The GOCCP–
CLIMP long-term dataset should describe more than
20 years of cloud profiles at a global scale, which
will enable the study and evaluation in climate mod-
els of inter-annual variability in cloud profiles due to
multi-annual climate variations (e.g., El Niño, North At-
lantic Oscillation, Madden–Julian Oscillation). Its anal-
ysis will moreover make possible the detection of cloud
changes because of human-induced climate warming, as
well as their evaluation in climate model simulations.

Therefore, CLIMP will be composed of two datasets
named CLIMP-ST (Short-Term) and CLIMP-LT (Long-
Term). They will mainly differ in their cloud detection
threshold, as we will see later in the text. This threshold is
parameterized in COSP lidar and can easily be changed when
comparing simulated data to CLIMP-ST and CLIMP-LT.

The CLIMP product and algorithm inherit from the ap-
proach developed for CALIPSO-GOCCP. This algorithm
processes Level 1 (L1) data in exactly the same way as the
COSP lidar simulator does. GOCCP is part of the CFMIP-
OBS (observations) database included in Obs4MIPS (Obser-
vations for Model Intercomparisons Project; Waliser et al.,
2020) for model evaluation. Differences between GOCCP,
NASA, and JAXA (Japan Aerospace Exploration Agency)
CALIOP cloud products were documented in Chepfer et al.
(2013) and Cesana et al. (2019).

The three key elements of the GOCCP algorithm, which
need to be kept when developing CLIMP, are the following.

i. Lidar profiles are not averaged horizontally before cloud
detection to (1) keep consistency with the subgrid mod-
ule SCOPS (Subgrid Cloud Overlap Profile Sampler;
Klein and Jacob, 1999) included in COSP that is re-
quired to respect the Eulerian framework of climate
model simulations and (2) avoid overestimation of the
cloud fraction in shallow clouds (e.g., Chepfer et al.,
2008, 2013; Feofilov et al., 2022).

ii. Lidar measurements are averaged vertically every
480 m to improve the signal-to-noise ratio (SNR) while
maintaining consistency with CloudSat data used for
comparison with COSP radar outputs (Marchand et al.,
2009; Haynes et al., 2007). This value of 480 m can be
different in CLIMP as it can be changed in COSP lidar,
but averaging the lidar signal vertically before cloud de-
tection should remain the way to increase ATLID SNR
when needed for climate mode evaluation.

iii. Cloud detection thresholds are chosen for consistency
with COSP lidar and to prevent false cloud detections

in CALIOP L1 daytime data at full horizontal resolu-
tion and 480 m averaged vertical resolution. The cloud
detection threshold can be modified in CLIMP but then
should also be modified in COSP lidar. This threshold
needs to be constant over a full dataset and cannot be
scene-dependent.

We would like to stress that the main two purposes of this
article are (a) to compare two spaceborne lidars in terms of
cloud detection and the signal-to-noise ratio for given obser-
vational conditions and (b) to develop a method for merg-
ing the data from several spaceborne lidars into a continuous
cloud record to detect long-term changes and get a seamless
cloud climatology. We assume that the calibration of the in-
struments is performed dynamically on board the satellites
and that the calibration coefficients and crosstalk parameters
are known with high accuracy. In this case, we can study
the theoretically achievable cloud detection for a given ex-
perimental setup, which is defined by a number of param-
eters like telescope diameter, transmission of the system,
solar-noise filtering, detector type, and so on. For the sake
of simplicity, we do not discuss the depolarized component
of the radiation backscattered by particles, assuming that it
is backscattered the same way at these wavelengths and that
one can always consider a sum of parallel and perpendicular
backscatter for cloud detection.

The structure of the article is as follows. In Sect. 2,
we briefly describe the differences and similarities between
ATLID and CALIOP, the formalism necessary to understand
the analysis presented in the next sections, and the cloud vari-
ables used in this study. Section 3 describes the physical el-
ements that matter for the development of CLIMP-ST, us-
ing synthetic cloud scenes (Sect. 3.1) and a numerical chain
which simulates lidar profiles observed by CALIPSO and
ATLID over the cloud scenes at full spatial resolution and
instantaneous timescales (Sect. 3.2). In this section, we also
pay specific attention to the estimates of lidar signal noise.
Then we define the cloud detection scheme of CLIMP-ST
(Sect. 3.3), and we try to answer whether ATLID might bet-
ter observe optically thinner clouds in daytime than CALIOP
at full horizontal resolution, a useful capability for evalu-
ating the description of cirrus in climate models. Section 4
describes the physical elements that matter for the develop-
ment of CLIMP-LT. Section 4.1 presents the cloud detec-
tion scheme used in CLIMP-LT to detect the same cloud as
CALIPSO-GOCCP, despite the instrumental differences be-
tween ATLID and CALIOP. Then we analyze a long-term
(multi-decadal, monthly averaged), global-scale space lidar
virtual dataset built from climate models and COSP lidar
simulation (Sect. 4.2) to illustrate how a merged CLIMP-LT–
CALIPSO-GOCCP dataset could help evaluate climate mod-
els’ predictions of multi-decadal cloud changes (Sect. 4.3).
We conclude in Sect. 5.
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2 Two spaceborne lidars, lidar equation, and cloud
detection

2.1 Differences between CALIOP (CALIPSO) and
ATLID (EarthCARE) spaceborne lidars

CALIOP, a two-wavelength polarization-sensitive near-
nadir-viewing lidar, provides high-resolution vertical profiles
of aerosols and clouds (Winker et al., 2010). Its initial orbital
altitude was 705 km (now 688 km to match that of Cloud-
Sat), and its orbit is inclined at 98.05◦. The lidar overpasses
the Equator at 01:30 and 13:30 LST (local solar time). It uses
three receiver channels: one channel measuring the 1064 nm
backscatter intensity and two channels measuring orthogo-
nally polarized components of the 532 nm backscattered sig-
nal. Cloud and aerosol layers are detected by comparing the
measured 532 nm signal return with the return expected from
a molecular atmosphere (see the definitions later). The other
instrumental parameters of this lidar are described in Table 1
(see also Fig. 1 of Hunt et al., 2009, for a block diagram of
CALIOP).

The goals of the EarthCARE mission are “to retrieve ver-
tical profiles of clouds and aerosols, and the characteris-
tics of their radiative and microphysical properties to de-
termine flux gradients within the atmosphere and fluxes
at the Earth’s surface, as well as to measure directly the
fluxes at the top of the atmosphere and also to clarify the
processes involved in aerosol-cloud and cloud-precipitation-
convection interactions” (Héliere et al., 2017; Illingworth et
al., 2015). The ATLID instrument on board the EarthCARE
satellite will measure the attenuated atmospheric backscat-
ter with a vertical resolution of ∼ 100 and ∼ 500 m in
the altitude ranges of 0–20 km and 20–40 km, respectively.
ATLID is a polarization-sensitive, high-spectral-resolution
lidar (HSRL), which can separate the thermally broad-
ened molecular backscatter (Rayleigh) from the unbroadened
backscatter from atmospheric particles (Mie) (Durand et al.,
2007; see also Fig. 2 of do Carmo et al., 2021). This helps
ATLID retrieve extinction and backscatter vertical profiles
without assuming the extinction-to-backscatter ratio (as in
CALIOP retrievals), which is poorly known, especially for
aerosols (e.g., Rogers et al., 2014).

When considering signal quality and performance, some
parameters are in favor of CALIOP (telescope diameter, en-
ergy per pulse, solar-filter bandwidth), whereas others favor
ATLID (altitude, noise level). In the next section, we show
how these differences affect the detectability of clouds. We
excluded the multiple scattering coefficient from the table
since it is an important and complex parameter of lidar in-
strument which depends on its several parameters. Instead,
we discuss it in a dedicated paragraph below.

2.2 Lidar equation

The formalism used in this work was described in Feofilov et
al. (2022). In this section, we repeat only the basic definitions
needed for understanding the material presented below. Since
we will discuss both conventional (non-HSRL) and HSRL
lidars, we will introduce necessary quantities in parallel and
label them correspondingly: the molecular, particulate, and
total components will get the indices “mol”, “part”, and “tot”,
respectively.

An atmospheric lidar sends a brief pulse of laser radiation
towards the atmosphere. The lidar optics collect the backscat-
tered photons and drive them to a detector. The detected sig-
nal is time-resolved: supposing each photon traveled straight
forward and back, each time bin corresponds to a fixed dis-
tance from the lidar to the atmospheric layer where backscat-
tering occurred. The propagation of laser light through the at-
mosphere and backwards to the detector is described by the
following lidar equation:

ATB(λ,z)=
(
βmol (λ,z)+βpart (λz)

)
× e
−2
∫ z
Zsat(αmol(λ,z′)+ηαpart(λ,z

′))dz′ , (1)

where ATB stands for attenuated total backscatter
(m−1 sr−1), βmol (λ,z) and βpart (λ,z) are the wavelength-
dependent molecular and particulate backscatter coefficients
(m−1 sr−1), αmol (λ,z) and αpart (λ,z) are the extinction
coefficients (m−1), Zsat is the altitude of the satellite, λ is the
wavelength, and η is a multiple scattering coefficient (e.g.,
Platt, 1973; Garnier et al., 2015; Donovan, 2016).

For the HSRL lidar, one can write similar equations for the
attenuated radiance backscattered from atmospheric particles
and molecules (APBs and AMBs), respectively:

APB(λ,z)= βpart(λz)× e
−2
∫ z
Zsat(αmol(λ,z′)+ηαpart(λ,z

′))dz′ , (2)

AMB(λ,z)= βmol (λ,z)× e
−2
∫ z
Zsat(αmol(λ,z′)+ηαpart(λ,z

′))dz′ . (3)

For cloud definition, we will also need to define the attenu-
ated molecular backscatter for clear-sky conditions:

ATBmol (λ,z)= βmol (λ,z)× e
−2
∫ z
Zsat

αmol(λ,z′)dz′ . (4)

The physical meaning of η in Eqs. (1)–(3) is an increase in
the number of photons remaining in the lidar receiver field
of view (FOV) besides the ones directly backscattered by the
layer, and its value depends on the type of scattering me-
dia, FOV of the telescope, and laser beam divergence. The
typical value of η varies between 0.5 and 0.8 for commonly
used lidars (Chiriaco et al., 2006; Chepfer et al., 2008, 2013;
Garnier et al., 2015; Donovan, 2016; see also Appendix B
of Reverdy et al., 2015). Setting η to 1 means no multiple
scattering and would correspond to an infinitely narrow FOV
telescope combined with an infinitely small laser beam di-
vergence. In CALIOP cloud products up to version 3, the
η was set to 0.6 for ice clouds, whereas for version 4.10 a
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Table 1. Specifications of the CALIOP and ATLID spaceborne lidars considered in this article. We gathered specifications from Hunt et
al. (2009) for CALIOP and from do Carmo et al. (2021) for ATLID. PMT: photomultiplier tube, APD: avalanche photodiode.

Parameter Symbol CALIOP ATLID

Altitude (km) Z 688a 393
Orbital inclination (◦) I 98.05 97.050
Wavelength (nm) λ 532, 1064 355
Pulse repetition frequency (Hz) PRF 20 51 (25.5)b

Horizontal distance between profiles (m) 1x 333 285
Finest vertical resolution (troposphere) (m) 1z 30 100
Telescope diameter (m) dtel 1.0 0.6
Telescope field of view (µrad) ϕ 130 64
Energy per pulse (mJ) Epulse 110 35 (70)b

Footprint (m) dfp 90 29
Laser beam divergence (µrad) θ 100 45
Solar-filter bandwidth (nm) 1λ 0.04, 0.475 0.71 (0.35)c

Solar-filter transmission ξfilter 0.85 0.87
Total optical-system transmission ξrec 0.67, 0.68 0.62
Detector type PMT, APD CCD
Detector efficiency γ 0.11,0.4 0.79 mol, 0.75 part
Excess noise factor ENF 1.46 1.44
Single-shot noise scale factor (square root of photoelectrons) NSF 5.14 1.0
Dark current (photoelectrons per second) Ndark 1331, 1.85× 107 153
Readout noise (photoelectrons) RON 3–5 < 3

a The nominal orbit altitude at launch was 705 km but was lowered to 688 km in September 2018 to maintain formation flying with CloudSat. b The
original pulse repetition frequency of ATLID laser is 51 Hz at the energy of 35 mJ per pulse, but the measurements will be doubled on board the
satellite (do Carmo et al., 2021), so one can consider the effective frequency and energy per pulse to be equal to 25.5 and 70 mJ, respectively. c The
solar-filter bandwidth of ATLID is 0.71 nm, but the transmission function of the Mie channel is approximately half of that, so one should calculate the
solar noise in this channel with a narrower effective filter width.

temperature-dependent coefficient was used, which varied in
between 0.46 and 0.78 (Young et al., 2018). For water clouds,
the η values are derived from the relationship developed in
Hu et al. (2006) (also see Table 4 in Young et al., 2018). A
detailed modeling of η for different cloud types observed by
CALIOP and ATLID (Shcherbakov et al., 2022) shows that η
depends on the cloud thickness and type and that the ATLID
values are somewhat higher than those of CALIOP. Based on
these works, we set a fixed value of η to 0.6 for CALIOP
and to 0.75 for ATLID. This is an approximation, and a more
complex approach might be required for processing real data,
but our tests show that the conclusions of the present work do
not change if we vary η within ±0.1 either for CALIOP or
for ATLID (but not for both).

2.3 Cloud detection and cloud variables

To characterize the scattering properties of the atmosphere,
it would be convenient to use some ratio of attenuated
backscatter values (Eqs. 1–4), which would have a clear
physical interpretation. Due to attenuation of AMBs below
the clouds, using it in the denominator is counterproductive,
so the ATBmol (λ,z) is used instead, and the scattering ratio
(SR) is defined as

SR(532nm,z)=
ATB(532nm,z)

ATBmol (532nm,z)
. (5)

Considering a single-pulse profile measurement, we define a
layer as cloudy if the following two conditions are met:

SR(532nm,z) > 5
and

ATB(532nm,z)−ATBmol (532nm,z) > 2.5× 10−6 m−1 sr−1. (6)

The second condition in Eq. (6) comes from the fact that the
molecular backscatter in the upper troposphere is weak and
the fluctuation in ATB might cause a false cloud detection
if only SR is used. With the second condition, the cloud de-
tection is more robust. This definition is used in CALIPSO-
GOCCP (e.g., Chepfer et al., 2008, 2010, 2013), and we sug-
gest keeping it for other lidars to ensure consistency between
cloud products as discussed later.

In application to ATLID, this will mean using the val-
ues recalculated to 532 nm of ATB, which will be estimated
from Eq. (1): βpart(355nm,z) and αpart (355nm,z) retrieved
from the measurements (Eqs. 2 and 3) and βmol(532nm,z)
and αmol (532nm,z) retrieved or estimated from pressure-
temperature profiles from reanalysis. In the numerical
experiment below, we calculated ATBmol (532nm,z)=
βmol (532nm,z)× e−2

∫ z
Zsat

αmol(532,z′)dz′ using the available
pressure-temperature profiles and the formalism provided in
Feofilov et al. (2022). Here, we reproduce Eq. (8) of this pa-
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per:

SR′ (532nm,z)=

(
βmol (532,z)+βpart(355,z)

)
×

e
−2
∫ z
Zsat

(
αmol(532,z′)+η355αpart(355,z′)

)
dz′

βmol (532,z)× e−2
∫ z
Zsat

αmol(532,z′)dz′
. (7)

In this conversion, we assume that the spectral dependence
of particulate backscatter (βpart(λ) and αpart (λ)) is weak at
the wavelengths used in this study. In Beyerle et al. (2001) it
is stated that this is generally true for cirrus. In Voudouri et
al. (2020), the values at two wavelengths agree within (rela-
tively large) error bars. Therefore, we do not attempt to com-
pensate for the spectral dependence. The only area where
we noticed that this approach does not work for real data
is the polar stratospheric region, where a direct application
of Eq. (7) leads to an overestimation of polar stratospheric
clouds (PSCs) (Fig. 8b of Feofilov et al., 2022).

For the cloud properties, we use the same variables as
in CALIPSO-GOCCP (Chepfer et al., 2010): cloud fraction
CF(z), opaque cloud cover Copaque, and opaque cloud height
Zopaque. If a given atmospheric layer was observed multiple
times or if it was sampled vertically at several points, we de-
fine the cloud fraction profile CF(z) in a usual way:

CF(z)=
Ncld(z)

Ntot(z)
, (8)

whereNcld(z) is the number of times the conditions of Eq. (6)
is met and Ntot(z) is the total number of measurements in
this layer. The opaque cloud cover Copaque is used in long
time series and is defined over the 2◦× 2◦ latitude–longitude
gridded data as follows:

SR(z) < 0.06;Copaque =
Nopaque_prof

Ntotal_prof
, (9)

where the first condition triggers the opaque cloud detection
(Guzman et al., 2017), Nopaque_prof is the number of verti-
cal profiles for which an attenuation corresponding to a pres-
ence of opaque cloud was found, and Ntotal_prof is the total
number of measurements in a 2◦× 2◦ grid box. For an indi-
vidual lidar profile, Zopaque corresponds to an altitude of full
attenuation of backscattered signal, whereas for gridded data,
Zopaque is an opaque-cloud-cover-weighted sum (Guzman et
al., 2017).

3 The CLIMP short-term dataset

In this section, we search for useful cloud information re-
garding model evaluation that can be retrieved from the
ATLID but cannot be obtained from the CALIPSO data. For
this purpose, we use high-resolution cloud scenes (Sect. 3.1),
simulate how they would be observed by ATLID and
CALIPSO (Sect. 3.2), and compare the SR(z) profiles seen
by the two lidars (Sect. 3.3) and the clouds detected by the
two instruments (Sect. 3.4). To address the comparability of

clouds observed by two spaceborne lidars, we used the ex-
isting methodology (Reverdy et al., 2015; Feofilov et al.,
2022) but with a much finer-scaled cloud model, updated
instrumental parameters of ATLID, and a new simulation
chain which estimates noise at the detector level and prop-
agates it to the cloud product level (the details are provided
in Sect. 3.2.2 below). The main question we sought to an-
swer in this section was whether ATLID can better observe
optically thinner clouds than CALIPSO in daytime, a useful
capability for evaluating thin cirrus clouds in climate mod-
els (e.g., Berry et al., 2019). At the same time, we checked
whether the chosen cloud detection parameters and instru-
mental properties affect the detection of highly inhomoge-
neous low-level thick clouds.

3.1 Cloud-generating model

The 3DCLOUD model (Szczap et al., 2014) generates three-
dimensional (3D) spatial structures of stratocumulus and fair-
weather cumulus and cirrus that share some statistical prop-
erties observed in real clouds such as the inhomogeneity pa-
rameter ρ (standard deviation normalized by the mean of
the water content) and the Fourier spectral slope β̂ close to
−5/3 between the smallest scale of the simulation to the
outer scale Lout (where the spectrum becomes more flat).
We assume that water content follows a gamma distribution.
3DCLOUD_V2 presented in Alkasem et al. (2017) is based
on wavelet framework instead of the Fourier framework.
First, 3DCLOUD assimilates meteorological profiles (hu-
midity, pressure, temperature, and wind velocity) and solves
drastically simplified basic atmospheric equations in order
to simulate 3D water content. Second, the Fourier filtering
method is used to constrain the intensity of mean water con-
tent, ρ, β̂, and Lout, which are values provided by the user
(Hogan and Illingworth, 2003; Kärcher et al., 2018).

Conditions of simulations to generate the stratocumulus in
this study (see Fig. 1) are identical to those used in Szczap
et al. (2014) for the DYCOMS2-RF01 case (the first research
flight of the second Dynamics and Chemistry of Marine Stra-
tocumulus) for the marine stratocumulus regime (Stevens et
al., 2005). We have only changed the number of voxels in the
x, y, and z directions to Nx =Ny = 1000 and Nz = 50, re-
spectively. The corresponding spatial resolutions were set to
1x =1y = 100 m and1z = 24 m, respectively. The vertical
extension of the simulated area is still Lz = 1200 m, but the
horizontal extensions for this study are Lx = Ly = 100 km.

If the number of voxels is large, the 3DCLOUD and
3DCLOUD_V2 are very time-consuming (see Table 1
in Szczap et al., 2014) and cannot assimilate the frac-
tional coverage for cirrus clouds. Therefore, we developed
3DCLOUD_V3 to overcome these two drawbacks for a cir-
rus cloud. This model will be published elsewhere. Here, we
present only an outline of the 3DCLOUD_V3 algorithm.

To increase the calculation speed in 3DCLOUD_V3, we
generate clouds using modified statistical tools developed as
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Figure 1. Examples of the stratocumulus generated with 3DCLOUD: (a) 2D ice water path and (b) its volume rendering.

part of stage 2 of 3DCLOUD. The first stage of 3DCLOUD
(i.e., the step of solving simplified basic atmospheric equa-
tions, which is very time-consuming) is no longer carried out
in 3DCLOUD_V3. Thereby, 3DCLOUD_V3 can be seen as
a purely stochastic cirrus cloud generator. The user has to
provide, in addition to Nx , Ny , Nz, 1x , 1y , and 1z, the
mean ice water path (IWP); Lout; the shape of the vertical
profile of ice water content (IWC), ρ(z), and β̂(z) and of
horizontal wind velocity components u(z) and v(z); and fi-
nally the cloud fraction CF. The shape of the vertical profile
of IWC can also be stipulated (rectangular, upper triangle,
lower triangle, and isosceles trapezoid; Feofilov et al., 2015).
The algorithm works as follows:

1. The 3D isotropic field with a Gaussian probability den-
sity function (PDF) is generated from a 3D inverse
Fourier transform assuming a random phase for each
Fourier amplitude and a 3D spectral energy density with
1D spectral slope β̂ close to −5/3 between the smallest
scale of Lout.

2. The 2D Gaussian PDF is transformed into a 2D Gamma
PDF at each z level, satisfying the values of IWC(z),
ρ(z), and β̂(z).

3. There is horizontal displacement, at each z level, of 2D
IWC (to simulate fall streaks) computed from u(z) and
v(z), based on the model of sedimentation proposed by
Hogan and Kew (2005). In 3DCLOUD_V3, the user can
choose the value of the sedimentation velocity: either
constant or as a function of IWC (see formula in Fig. 12
in Heymsfield et al., 2017). Alternatively, the wind ve-
locity vertical profile can be computed from a constant
value of the vertical wind shear prescribed by the user;
in this case, the user also has to provide the “generated-
level height” as explained in Hogan and Kew (2005).

4. The vertical profile of the cloud cover is iteratively mod-
ified in order to obtain the CF value prescribed by the
user.

Figure 2 demonstrates the examples of 2D IWP and the
3D IWC volume rendering of the cirrus generated with
3DCLOUD_V3, where Nx =Ny = 1000, Nz = 100, 1x =
1y = 100 m, and 1z = 20 m. The mean IWP is set to
1 g m−2. The IWC vertical profile shape is “rectangular”. The
geometric depth is 2 km. The outer scale is Lout = 20 km. We
set the constant vertical wind shear to 5 m s−1 km−1 in the x
and y directions, and the generated-level height is 400 m un-
der the cloud top. The inhomogeneity parameter of IWC is
ρ = 0.4. The spectral slope β is equal to −5/3. Figure 2c
shows the gamma-like PDF of the IWC (we ignored null val-
ues), and Fig. 2d shows the mean power spectra of IWP (and
IWC) along x and y directions (and z direction), with the 1D
spectral slope close to −2.0 (−1.3) between Lout = 20 km
and the finest spatial resolution. As expected, values of the
spectral slope of IWP are smaller than those of IWC (i.e., the
IWP signal is “smoother” than the IWC signal) because IWP
is the vertically integral quantity of IWC. One can note that
the IWC spectral slope is slightly smaller than the prescribed
theoretical value β̂ =−5/3 because of the many null values
of the IWC; we plan to remove this bias in the final version
of 3DCLOUD_V3.

3.2 Numerical chain to simulate cloud observations by
CALIOP and ATLID at high resolution

3.2.1 Creating pseudo orbits

We performed the following numerical experiment, outlined
in the flowchart in Fig. 3. First, we created a gridded global
atmosphere from the output of the U.S. Department of En-
ergy’s Energy Exascale Earth System Model (E3SM) atmo-
sphere model version 1 (EAMv1; Rasch et al., 2019) for the
conditions of autumn equinox in the Northern Hemisphere.
Since we wanted to address both high- and low-level cloud
detection, we picked up only the tropical part of the orbit be-
tween 5◦ S and 5◦ N and used this data as a set of smooth
“background” profiles. Since this model does not provide the
small-scale variability needed for our experiment, we used
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Figure 2. Examples of cirrus generated with 3DCLOUD_V3: (a) ice water path and (b) its volume rendering; (c) IWC PDF; (d) mean
1D power spectrum of IWP (red curves) and of IWC (blue curve) following the x, y and z direction (solid, dash–dot and dashed line,
respectively). A theoretical power spectrum with spectral slope β̂ =−5/3 is added (dashed black line). A dotted vertical black line indicates
the outer scale Lout = 20 km.

the subgrid model described in Sect. 3.1, which generates
realistic cloud profiles at a grid comparable or finer than
the distance between two consecutive footprints of studied
lidars. To address the most challenging observation condi-
tions, we picked up two cloud types: (1) thin cirrus clouds
with optical depths (τ) of about 0.03–0.1 per layer (Sassen
and Comstock, 2001) and (2) stratocumulus clouds with their
high horizontal variability and large optical depths (up to 30
but with about one-third of semi-transparent clouds). These
clouds were simulated using an updated 3DCLOUD_V3
model (see Sect. 3.3) and provided as gridded sets of ice
water content (IWC) and liquid water content (LWC) values
for cirrus and stratocumulus clouds, respectively. We do not
consider another challenging case, a thin-cloud layer above
a highly reflective cloud, but the daytime noise estimated
for the stratocumulus scene will give an idea of what back-
ground noise will be interfering with the useful cloud signal
in this case.

These gridded sets were converted to pseudo orbits by slic-
ing them along the diagonal lines and arranging the slices
into “lidar curtains”, each comprising 20 000 individual pro-
files and split into daytime and nighttime parts with 10 000
profiles each. This way we got almost seamless cloud dis-
tributions, which followed the variability prescribed by the
3DCLOUD_V3 model and at the same time resembled parts

of real lidar orbits. We show the most representative parts of
these pseudo orbits in Figs. 4 and 5 for cirrus and stratocu-
mulus clouds, respectively, and we discuss them below.

With these two datasets covering both the daytime and
the nighttime scenes, we performed a full series of simula-
tions, explained in Fig. 3. Namely, we fed the high-resolution
atmospheric inputs described above to the CALIOP and
ATLID simulators (Chepfer et al., 2008; Reverdy et al.,
2015) included in the Cloud Feedback Model Intercom-
parison Project Observational Simulator Package version 2
(COSP2) simulator (Swales et al., 2018). These simulators
do not account for instrumental noise effects, so their out-
puts were processed by a third part of the simulation chain
(Fig. 3), which estimates noise and its propagation in the li-
dar system.

3.2.2 Estimating lidar signals and noise

As mentioned above, the outputs of COSP2 simulator are
the noise-free APB (355nm,z) and AMB (355nm,z) pro-
files for ATLID and noise-free ATB (532nm,z) profiles for
CALIOP, both calculated at a horizontal resolution of 300 m
and vertical resolution of 20 m. To estimate the noise for
these profiles and to propagate it further to SR (532nm,z)
for CALIOP and to recalculated SR′ (532nm,z) for ATLID,
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Figure 3. Flowchart explaining the numerical experiment on comparing clouds retrieved from CALIOP and ATLID observations. Green
boxes list the input and output data. Black text between boxes describes actions performed on each dataset. Blue text in the boxes marks
the datasets used in the estimation. White text in square brackets in the boxes indicates horizontal (H ) and vertical (V ) resolutions of the
datasets. Note that the ATLID SR′ values are estimated at 532 nm (see Sect. 2.3).

we calculated the signals from scratch using the correspond-
ing instrumental parameters introducing measurement noise
as follows.

We start with a laser emission and estimate the number of
emitted photons per sounding pulse, measured at the output
of the sounding unit:

Nem =
Epulse

hc/λ
× ς, (10)

where Epulse is the energy per laser pulse, h is Planck’s con-
stant, c is the speed of light, λ is the wavelength, and ς is
an effective coefficient of optical throughput of the emission
path of the lidar. In the present work, it is assumed that there
is no optical loss in the emission path and ς is equal to 1.
The numerical solution of the Eqs. (1)–(3) yields the number
of photons per range gate (ti ti +1ti), which we will denote
as ti , coming through the CALIOP receiver or through the
ATLID receiver before splitting into molecular and particu-
late components in the HSRL module (compare to Eqs. 2 and
3):

N tot
rec (ti)=N

mol
rec (ti)+N

par
rec (ti) , (11)

Nmol
rec (ti)=Nem×βmol (i)×1zi ×�(zi)× ξrec

× e
−2
∑i
j=0(αmol(j)+ηαpart(j))1zj , (12)

N
par
rec (ti)=Nem×βpar (i)×1zi ×�(zi)× ξrec

× e
−2
∑i
j=0(αmol(j)+ηαpart(j))1zj , (13)

�(zi)= π ×
(dtel/2)2

z2
i

, (14)

where Nmol
rec (ti)and Npar

rec (ti) are the photons backscattered
by molecules and particles, respectively;�(zi) is an altitude-
dependent solid angle with zi corresponding to the time of
flight ti between the satellite and the measured layer i; and
ξrec is the receiver’s transmission.

For an HSRL lidar, the molecular and particulate com-
ponents are supposed to be registered individually, but this
separation is not ideal because of the crosstalk between the
channels: a part of molecular backscatter comes at the same
wavelength as the original laser radiance and it “contami-
nates” the particulate channel, which is centered at this wave-
length. Overall, the HSRL system is characterized by four
crosstalk coefficients, Cmm, Cpp, Cmp, and Cpm. The first two
show a contribution of the molecular and particulate chan-
nels to themselves, and in the ideal HSRL they should be
equal to 1. The second pair shows how much energy “leaks”
from a molecular channel to a particulate one and vice versa.
In an ideal HSRL, these coefficients would be equal to 0.
In the operational retrieval, these coefficients will be deter-
mined through a continuous calibration procedure performed
on the orbit. For this exercise, we estimated these coefficients
from the Fabry–Pérot interferometer spectral curves (Cheng
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Figure 4. Example of cirrus cloud input data from the 3DCLOUD
model used in the simulation: (a) ice water content (IWC), with
night corresponding to one piece of the orbit; (b) IWC, with day
corresponding to another piece of the orbit; (c) accumulated optical
depth starting from the cloud top at night; (d) same as (c) during
the day; (e) cloud mask at night; and (f) cloud mask during the day.
We set the cloud mask to 1 whenever IWC> 0. The cloud masks
presented here are called the “reference dataset” in the rest of the
paper.

Figure 5. Same as Fig. 4 but for stratocumulus cloud scenes. Note
the color scale difference between Figs. 4 and 5.

et al., 2013): Cmm = 0.815, Cpp = 0.60, Cmp = 0.185, and
Cpm = 0.40. In the case of a non-ideal HSRL, the number of
photoelectrons produced by each detector per range gate is
as follows:

Nmol
det (ti)= γ × ξrec×

(
Nmol

rec (ti)× cmm+N
par
rec (ti)× cpm

)
, (15)

N
par
det (ti)= γ × ξrec×

(
Nmol

rec (ti)× cmp+N
par
rec (ti)× cpp

)
, (16)

where γ and ξrec are the detector’s quantum efficiency and
transmittance of the optical path, respectively. To come back
to “pure” Nmol

rec (ti) and Npar
rec (ti) used in the retrieval, one has

to solve this system:

Nmol
rec (ti)=N

mol
det (ti)× ka+N

par
det (ti)× kb, (17)

N
par
rec (ti)=N

mol
det (ti)× kc+N

par
det (ti)× kd, (18)

ka =
cpp

κ
;kb =

−cpm

κ
;kc =

−cmp

κ
; kd =

cmm

κ
;κ

= γ × ξrec×
(
cmmcpp− cpmcmp

)
. (19)

Besides the components related to atmospheric backscatter
properties, the Nmol

det (ti) and Npar
det (ti) are affected by “para-

site” solar backscattered photons during the daytime, which
are not correlated with the laser shots. To estimate the so-
lar background add-on to Nmol

det (ti) and Npar
det (ti), one has to

solve the radiative transfer equation for the radiation emitted
by the Sun, backscattered by air and particles in the atmo-
sphere and by the surface in the direction of the spaceborne
lidar, and attenuated by the atmospheric layers:

Nsol (ti)= 1ti ×N
TOA
sol (λ)×

[
Ratm

sol +R
surf
sol

]
, (20)

Ratm
sol =

0∫
Zsat

(
βm (z)×φm (SZA)+βp (z)×φp (SZA)

)
× cos(SZA)−1

× exp

−2

z∫
zsat

(
αm
(
z′
)
+αp

(
z′
))

cos(SZA)−1dz′

dz, (21)

Rsurf
sol = Asurf×φsurf (SZA)× exp

−
z∫

zsat

(αm (z)

+αp (z)
)

cos(SZA)−1dz
}
×

0∫
Zsat

(
αm (z)+αp (z)

)
dz, (22)

where NTOA
sol (λ) is the top-of-atmosphere solar flux at wave-

length λ and for filter width 1λ; Ratm
sol and Rsurf

sol represent
the proportion of the incoming solar radiance reflected in the
direction of lidar; φm (SZA), φp (SZA), and φsurf (SZA) are
the scatter plots for the angle between the Sun and the nadir
view of lidar for molecular scattering, scattering on particles,
and scattering from the surface, respectively; zsat is the al-
titude of a satellite; and Asurf is the surface albedo. We as-
sumed Lambertian scattering from the surface with albedo
equal to 0.08 for ocean and 0.15 for land (arbitrary values),
we used Rayleigh scattering phase function for the molecular
component, and we used the geometric-optics phase function
approximation for particulate scattering.

The solar photons pass through the optical system and
HSRL, hit the detectors, and produce the “solar-noise pho-
toelectrons”:

Nmol
det.sol. (ti)= γ × ξrec× ξmol.sol.×Nsol (ti) , (23)

N
par
det.sol. (ti)= γ × ξrec× ξpar.sol×Nsol (ti) , (24)

where ξmol.sol. and ξpar.sol. represent the convolution of the
solar-filter spectral curve with the interferometric spectral
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curve for a given channel (see the comment on solar-filter
bandwidth in Table 1). In addition to solar noise, there is al-
ways a dark current of the detector (Ndark) and readout noise
(RON) which are added to the signal. Since the Nmol

det.sol. (ti)

and Npar
det.sol. (ti), Ndark, and RON are registered along with

Nmol
det (ti) and Npar

det (ti) during daytime, they enter Eqs. (15)
and (16) and affect the retrieval. For the non-HSRL lidar:

Ndet.sol. (ti)= γ × ξrec× ξtot.sol.×Nsol (ti) , (25)

where γ and ξrec stand for the corresponding parameters of
non-HSRL lidar and ξtot.sol. represents the transmission coef-
ficient of a solar rejection filter, which is equal to a ratio of an
integral of the spectral transmission curve of the filter to a full
spectral width of the filter. A quick back-of-the-envelope es-
timate of the ratio of solar photons coming to the particulate
detector of ATLID to the number of solar photons reaching
the surface of CALIOP’s detector per same sampling interval
is
NTOA

sol (355nm)× d2
tel.ATLID × d

2
fp.ATLID ×Z

2
CALIOP × ξrec.ATLID × ξpar.sol.

NTOA
sol (532nm)× d2

tel.CALIOP × d
2
fp.CALIOP ×Z

2
ATLID × ξrec.CALIOP × ξtot.sol.

=

(1162.8× 355)× 0.62
× 6902

× 292
× 0.62× (0.35× 0.87)

(1900.0× 532)× 1.02
× 3932

× 9020.67× (0.04× 0.85)
= 0.38. (26)

So, at first sight, the ATLID retrieval should be less solar-
contaminated than CALIOP. But, this ratio alone is not
enough for such a conclusion because the solar photons
should be compared to the useful signal. Below, we show the
results of simulations for two atmospheric scenarios which
consider two-way radiative transfer both for solar radiance
and for lidar sounding radiance and add the noise of the re-
maining detection path.

Now, when all the components of the signal are known, we
can estimate the daytime and nighttime signal and noise and
propagate them to the retrieved parameters. It is important
to mention that the instruments compared in this work use
the detectors of different types. Namely, the CALIOP lidar
uses a photomultiplier tube (PMT), whereas the ATLID li-
dar detects the backscatter with the help of a charge-coupled
device (CCD). Besides different characteristics like gain or
dark current (see Table 1), these detectors are not the same
in terms of applicable noise statistics (Liu et al., 2006). Even
though the incoming photon flux distributions for both instru-
ments are Poisson, the photoelectrons produced by the PMT
do not follow a strict Poisson distribution. It is known that
for Poisson-distributed signals, a one-to-one relationship ex-
ists between the mean and the variance of the photocurrent.
As Liu et al. (2006) show, the mean and the variance of the
PMT photocurrent are also proportional but not one to one,
and the corresponding noise scale factor (NSF) has to be ap-
plied to estimate random errors for lidar systems using PMTs
or avalanche detectors. The NSF is linked to an excess noise
factor (ENF), but it is not equal to it. For the PMTs with
identical gain factors m for each dynode, the ENF is given
by (Kingston, 1978; Liu and Sugimoto, 2002)

ENF=
m

m− 1
. (27)

For the analog detection, the NSF in the multiplied photo-
electron domain can be either calculated from the detector’s
ENF and gain or estimated from the solar-noise-dominated
signals (Liu et al., 2006):

NSF=
σ(Ndet)
√
(Ndet)

=

√
var(Ndet)
√
(Ndet)

, (28)

where σ(Ndet), var(Ndet), and 〈Ndet〉 are the standard devia-
tion, variance, and mean of the signal, respectively. The NSF
value provided in the CALIPSO L1 version 4.10 files is equal
to 5.14. However, using this value in synthetic-noise calcu-
lations leads to an overestimation of the daytime noise, so
for the calculations below we took a more conservative value
of NSF= 3.16. One can write the expressions for the vari-
ances of CALIOP and ATLID signals in the analog detection
domain through the number of photoelectrons calculated for
each channel:

var
(
Nmol

det

)
= ENF×

(
Nmol

det +Ndark+N
mol
det.sol.

)
+RON, (29)

var
(
N

par
det
)
= ENF×

(
N

par
det +Ndark+N

par
det.sol.

)
+RON, (30)

var
(
N tot

det
)
= NSF2

×
(
N tot

det+Ndark+N
tot
det.sol.

)
+RON. (31)

We draw the reader’s attention to the fact that the detector’s
parameters in Eq. (31) are not equal to those in Eqs. (29)
and (30) and that for real calculations one has to use the val-
ues from Table 1 or a similar source. The variances of molec-
ular, particulate, and total incoming photon fluxes, which are
finally used in the optical property retrievals, are estimated
in accordance with the standard error propagation formulae
applied to the equations above:

var(AMB)= k2
a × var

(
Nmol

det

)
+ k2

b × var
(
N

par
det
)
+ 2

× ka× kb× cov
(
Nmol

det N
par
det

)
, (32)

var(APB)= k2
c × var

(
Nmol

det

)
+ k2

c × var
(
N

par
det
)

+ 2× kc× kd× cov
(
Nmol

det N
par
det

)
, (33)

var(ATB)=
1
κ2 × var

(
N tot

det
)
, (34)

where the cov(Nmol
det N

par
det ) represents the covariance of

molecular and particulate channels. This term is required be-
cause the signals in the channels are coupled through non-
zero crosstalk.
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When the variances are known, the original noise-free
AMB, APB, and ATB profiles are modified by random noise,
which is modulated by the standard deviation calculated from
the variances, and the results are saved. If horizontal or verti-
cal signal averaging is involved, the noise is scaled inversely
proportional to a square root of the number of samples within
the averaging interval.

3.2.3 Useful lidar signals and their SNRs

To address the information content of the backscattered ra-
diance, it makes sense to define a useful signal and to esti-
mate the SNR for this signal. For CALIOP the useful signal
is represented by ATB(λ,z) (see Eq. 1), whereas ATLID can
measure the molecular and particulate backscattered radi-
ances separately, so it would be logical to call the APB(λ,z)
(see Eq. 2) a signal which carries the information about the
cloud and look at its SNR. For the sake of simplicity, we
do not discuss here the perpendicular channels of these two
space lidars assuming that the backscattered depolarized ra-
diance is detected the same way, and adding the processing
of this component to the formalism above would not change
the conclusions of this work. Another aspect that we do not
discuss here is the change in cloud microphysics, which can
also affect the cloud detection and cloud radiative effects. We
consider and model only the cloud occurrence, cloud cover,
and cloud detectability.

For the simulated CALIOP signals, we estimate SR(z) at
532 nm and CF(z) according to Eqs. (6) and (7). The sim-
ulated ATLID signals are converted to equivalent 532 nm
SR′(z) (see Sect. 2.2 and Feofilov et al., 2022). Then we cal-
culate CF(z) for ATLID using Eqs. (6) and (7) with the same
thresholds, and then we analyze the resulting cloud fraction.

To quantify the lidar cloud detection agreement and dis-
agreement regarding the reference cloud dataset, we dis-
tinguish four cases: (1) when the lidar detects the actually
cloudy layer as cloudy (YES_YES case); (2) when there is
no cloud and the lidar does not detect a cloud (NO_NO);
(3) when the lidar does not detect an existing cloudy layer
(YES_NO or false negative); and (4) when the lidar detects a
cloud, whereas the layer does not contain a cloud (NO_YES
or false positive). We will define their occurrence ratios as

RYES_YES (z)=
NYES_YES(z)

Ntot(z)
;

RNO_NO (z)=
NNO_NO(z)

Ntot(z)
;

RYES_NO (z)=
NYES_NO(z)

Ntot(z)
;

RNO_YES (z)=
NNO_YES(z)

Ntot(z)
. (35)

The sum of all four ratios in Eq. (35) yields unity. A per-
fect match between the cloud distribution in the atmosphere
and the product retrieved from the measurement would be

when RYES_YES (z)+ RNO_NO (z)= 1 and RYES_NO (z)=

RNO_YES (z)= 0.

3.3 Simulated ATLID and CALIPSO lidar profiles
over cirrus and stratocumulus scenes

The most representative parts of pseudo orbits generated with
the help of the 3D_CLOUDV3 model (Sect. 3.3) are shown
in Figs. 4 and 5 for cirrus and stratocumulus clouds, respec-
tively. We arbitrarily split the “cloud curtain” generated from
the output of this model (Sect. 3.2) to “daytime” and “night-
time” by setting the solar zenith angle (SZA) to 45 and 120◦,
respectively. These values are not linked with the cloud for-
mation mechanisms in the 3D_CLOUDV3 model; they are
just needed for a second half of the simulator chain (see
noise-related boxes in Fig. 3). In Fig. 4a and b, one can see
a fine structure of modeled cirrus clouds. Looking at Fig. 4c
and d, one can say that the clouds are optically thin. This
combination makes the detection of the clouds marked in
Fig. 4e and f challenging.

The stratocumulus clouds shown in Fig. 5 belong to an-
other category of challenging observations. The clouds are
closely spaced along the horizontal axis, and at the same time
they are optically thick: about two-thirds of the clouds have
optical thickness larger than 3 (Fig. 5c, d), but the scene also
contains about one-third of semi-transparent clouds like the
ones that were reported in Leahy et al. (2022). From Fig. 5c
and d, one can conclude that at present there is no space-
based measurement that can retrieve all the optical properties
of cloud layers shown in Fig. 5e and f. Another problem of
these clouds is that their horizontal averaging might bias the
estimated cloud fraction (see, e.g., Fig. 4 and discussion of
Feofilov et al., 2022).

In Figs. 6 and 7, we demonstrate the differences between
two lidars for four scenes (cirrus/stratocumulus clouds,
day/night) using the simulated backscatter signal. For the
cirrus cloud scene (Fig. 6), both the ATB(532nm,z) of
CALIOP and the APB(355nm,z) of ATLID show a de-
tectable signal in the areas marked by a cloud mask in Fig. 6e
and f. But if one defines the signal detection level as 3σ ,
one will see that a part of thin clouds will be missing. This
is not surprising since we compare a “pure” modeled cloud
with its noisy representation in the measuring system. What
can be estimated from the image is the potential reliability
of cloud detection from ATLID and CALIOP: according to
the SNR values (Fig. 6g, h vs. c, d), the APB(355nm,z) sig-
nal from ATLID (Fig. 6e, f) reaches higher SNR values than
the ATB(532nm,z) signal from CALIOP (Fig. 6a, b). This
hints at the fact that the cloud detection from this instrument
might be somewhat better than that from CALIOP and that
one can lower the detection threshold and still get the cloud
instead of noise. This is a subject of one of the experiments
described below. As for the daytime vs. nighttime difference,
we do not see a big change between the left-hand side and
right-hand side panels for ATLID (Fig. 6e–h), whereas the
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Figure 6. Signals and signal-to-noise ratio for the cirrus cloud
scene. CALIOP: (a) ATB (532 nm, z) at night for one piece of
the orbit, (b) ATB (532 nm, z) during the day for another piece of
the pseudo orbit, (c) SNR at night, and (d) SNR during the day.
ATLID: (e) APBs (355 nm, z) at night, (f) APBs (355 nm, z) during
the day, (g) SNR at night, and (h) SNR during the day. Note that
the scene contains only these clouds and a clear sky below. For the
reflective clouds beneath the cirrus layer, the daytime noise will be
higher (see the right-hand side panels of Fig. 7).

CALIOP shows higher noise in Fig. 6b and d. We note here
that the calculations were performed for the cases when only
a thin cirrus cloud was present in the atmospheric column,
whereas the rest of it corresponded to clear-sky conditions.
In the real world, though, the second cloud layer beneath cir-
rus might increase the solar noise (see the right-hand side
panels of Fig. 7), and this will adversely affect the thin-cloud
detection, especially from the CALIOP measurements. This
is explained by a larger field of view of the CALIOP lidar
(see Table 1). In our exercise, we wanted to estimate the best
achievable results for a given cloud scene for each instrument
and to compare the lidar performances. This way, the conclu-
sions made below for the daytime scenes refer to the minimal
differences between the two instruments. As for the stratocu-
mulus clouds (Fig. 7), both the signals and SNRs are strong
for both lidars, day and night. The altitudes beneath these
clouds correspond to areas without a useful signal: at these
heights, the signal is already attenuated by a cloud above, and
the attenuation is so strong that even the cloud base is not vis-
ible at optical wavelengths (e.g., Guzman et al., 2017). An-
other remarkable feature shown in this plot is higher daytime
noise for CALIOP (Fig. 7b, d). Even though this high noise
level does not affect the stratocumulus cloud detection itself,
it might affect the aforementioned higher-level cloud detec-
tion, and, from this point of view, ATLID has an advantage
over CALIOP.

Summarizing, one can say that the ATB(532nm,z) sig-
nals of CALIOP and the APB(355nm,z) signals of ATLID
carry similar type information for the same cloud scenes, but
their SNRs suggest (a) that the daytime cloud detection from
ATLID should be more reliable and (b) that one can lower the

Figure 7. Same as Fig. 6 but for stratocumulus cloud scenes.

detection threshold for this instrument without admixing nu-
merous noise-triggered clouds. Let us now see how the signal
quality transforms into the product quality and, in particular,
to cloud detection quality.

3.4 Capability of ATLID to better detect optically
thinner clouds than CALIPSO

Here, we describe the test we performed seeking to answer
whether the cloud detection limits (Eq. 6) defined in Chep-
fer et al. (2010) could be lowered to detect thinner clouds.
For this test, we followed the second half of the flowchart
(Fig. 3) and calculated the SR(532nm,z) for CALIOP and
the CALIOP-like SR(532nm,z) for ATLID (Eqs. 2–3), but
we changed the cloud detection thresholds of Eq. (6) to the
following ones:

SR(532nm,z) > 3
and

ATB(532nm,z)−ATBmol (532nm,z) > 1.5× 10−6 m−1 sr−1. (36)

Then we estimated the cloud fractions and statistical agree-
ment with the source cloud data (Eqs. 6, 7). The threshold
in the left-hand side of Eq. (36) implies that the particulate
backscatter in a layer, which we call a cloudy one, is twice
the molecular one.

The threshold in the right-hand side of Eq. (36) corre-
sponds to the absolute values of ATB(532nm,z) recalculated
for SR(532nm,z)= 3 at the height of 8 km (Chepfer et al.,
2010), but overall the rationale for selecting these very val-
ues is based on the SNR values levels we observed in the test
simulations. Further lowering the threshold will lead to an in-
creased number of false-positive cloud detections in ATLID.

Since the “native” CALIOP profiles are averaged over
three points above 8 km, we applied an averaging procedure
over ∼ 1 km distance to all simulated signals and repeated
the analysis. To compare apples to apples in terms of sig-
nal statistics, we averaged over four CALIPSO shots and
over two effective ATLID shots, yielding the actual average
over 1330 and 1140 m, respectively. To reduce the number of
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Figure 8. Scattering ratio and cloud detection estimated for cirrus
clouds observed by CALIOP using Eq. (36): (a) scattering ratio at
night, (b) cloud detection at night, (c) scattering ratio during the
day, and (d) cloud detection during the day. Note the color scale
difference for (a) and (c) compared to (b) and (d).

plots, we do not show the instantaneous profiles without the
averaging, but in Table 2 we provide the estimates for them
(seek columns marked with “Averaged” with N ).

In Fig. 8a and b, the SR(532nm,z) has the same patterns
as the ATB(532nm,z) signals in Fig. 6a and b. But the day-
time noise is more pronounced in this presentation, partially
because of the chosen color scale. However, not all the noise
from Fig. 8b propagates to Fig. 8d. This is because of a sec-
ond condition of Eq. (36): the variations are partially filtered
out by imposing a condition on the ATB(532nm,z) signals
with respect to ATBmol (532nm,z). Still, the daytime scene
contains a lot of false detections marked by red in Fig. 8d.
The overall characteristics of CALIOP cloud detection for
this scene estimated over the whole simulated cloud dataset
can be found in the second and sixth columns of Table 2. The
bottom two lines of this table refer to the detectability of a
cloud in the whole layer: if some values of the SR(532nm,z)
triggered cloud detection, we calculated the cloud fraction
similar to Eq. (7) and then compared the resulting series
of cloud fractions with the reference one defined from the
source dataset. The “total score” line refers to the cloud de-
tection statistics and is defined in the caption. As one can
see, the strong daytime noise of CALIOP prevents the cor-
rect cloud detection, mostly due to large number of false-
positive cloud detections (NO_YES). The bias and the RMS
(root mean square) rows show the biggest change when pass-
ing from nighttime to daytime conditions.

The same analysis performed for ATLID (Fig. 9) shows
less daytime noise (compare Fig. 9b to Fig. 8b), and the cloud
detection quality for the clouds defined using Eq. (36) is bet-
ter than that of the CALIOP (compare Fig. 9d to Fig. 8d). The
corresponding columns of Table 2 tell us that for ATLID the
number of false detections during day and night is approx-
imately the same, whereas for CALIOP using the Eq. (36)
for the detection dramatically increases the number of false

Figure 9. Same as Fig. 8 but for ATLID.

detections during daytime. We should also stress here that
the obtained result is a lower estimate because we used the
scenes without underlying clouds, which could reflect more
solar radiance and further contaminate the observations. For
these scenes, the difference between ATLID and CALIOP
will be even larger.

The same type plots built for the stratocumulus clouds
(Figs. A1 and A2 in the Appendix A for CALIOP and
ATLID, respectively) show a different picture. Strong signals
and large SNRs shown in Fig. 5 help to unambiguously iden-
tify the cloud. The large fraction of underestimated clouds
shown in blue in Figs. A1cd and A2cd corresponds to cloud
parts below the opaque cloud top layer, which are not ac-
cessible for the instruments observing the scene from above.
As with cirrus clouds, the false-detection rate is higher for
CALIOP during daytime.

For CALIOP, the 1 km averages reduce the number of false
detections and improve the total score for daytime simula-
tions for cirrus. For ATLID with its lower daytime noise,
the averaging procedure does not change the cloud detection
quality that much. For the stratocumulus clouds, the averag-
ing procedure is not required for ATLID since sometimes it
can lead to overestimating the cloud fraction (e.g., Chepfer
et al., 2008; Feofilov et al., 2022). For CALIOP, it improves
the score because of suppression of sporadic noise-induced
“clouds” above the real cloud layer (Fig. A1d).

Overall, the ATLID-related columns in Table 2 demon-
strate more consistency between daytime and nighttime
cloud amounts and reference data than the CALIOP-related
ones, and ATLID daytime cloud quality is better than that
of CALIOP, whereas the nighttime results are compara-
ble. Our tests show that if the CALIOP-like solar filter
were used in ATLID, one could lower the thresholds of
Eq. (36) down to SR(532nm,z) > 2 and ATB(532nm,z)−
ATBmol (532nm,z) > 1.0×10−6 m−1 sr−1 without losing the
quality of cloud retrievals, whereas the same thresholds ap-
plied to CALIOP would give completely unacceptable results
for daytime conditions.
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Table 2. Cloud detection statistics for CALIOP and ATLID when the cloud definition corresponds to SR(532nm,z) > 3 and ATB(λ,z)−
ATBmol (λ,z) > 1.5× 10−6 m−1 sr−1 (Eq. 36). The bias and RMS values are defined for the clouds detected in the columns (see text), and
we define the total score in percent as 100%× (1− (YES_NO+NOYES)/(YES_YES+NO_NO)). Ci: cirrus clouds, Sc: stratocumulus
clouds.

Lidar CALIOP ATLID

Day/night Night Day Night Day

Cloud Ci Sc Ci Sc Ci Sc Ci Sc

Averaged N Y N Y N Y N Y N Y N Y N Y N Y
YES_YES 7 7 8 8 8 7 10 9 8 8 8 8 7 7 8 8
NO_NO 80 78 82 86 69 72 68 80 83 81 86 86 78 78 86 86
YES_NO 10 14 6 6 13 18 4 5 9 11 6 6 13 15 5 5
NO_YES 2 0 4 0 10 3 18 6 0 0 0 0 2 0 0 0
Total score 85 85 88 93 56 71 69 87 91 89 94 93 81 83 94 94
Bias 11 −4 −1 −6 21 11 16 2 −5 −8 −6 −6 8 2 −5 −5
RMS 18 13 8 6 23 21 9 6 10 9 6 6 21 18 6 5

Of course, the examples considered in this section do
not cover the whole range of high-, middle-, and low-level
clouds, but they draw a line between the threshold values that
can be used for cloud definition for CALIOP and ATLID and
show that the difference is linked to noise characteristics of
the instruments. This result suggests that ATLID should be
able to better observe optically thinner clouds than CALIOP
in daytime at full horizontal resolution.

To illustrate this point, we used the available dataset
for cirrus and estimated the minimal detectable backscatter
(MDB) for ATLID in terms of equivalent ATB(532nm,z)
for comparison with CALIOP values obtained for 5 km
horizontal averaging of cirrus measured at 15 km height
(McGill et al., 2007). For this numerical experiment, we
used noisy APBs and noise-free AMBs to keep the consis-
tency with our approach of cloud detection using only one
noisy component, the particulate one. For this horizontal
averaging, we obtained MDB= 3.0± 1.0× 10−7 m−1 sr−1

for the nighttime and MDB= 4.0± 1.0× 10−7 m−1 sr−1 for
the daytime in equivalent ATB(532nm) values, whereas
for CALIOP we obtained MDB= 4.0± 2.0× 10−7 m−1 sr−1

for the nighttime and MDB= 1.3± 0.2× 10−6 m−1 sr−1

for the daytime in its native ATB(532nm). The daytime
value estimated for CALIOP is in good agreement with
the measured one (McGill et al., 2007), whereas the es-
timated nighttime value is somewhat lower than the mea-
sured MDB= 8.0± 1.0× 10−7 m−1 sr−1. From this compar-
ison, we cannot conclude that the ATLID will provide better
sensitivity to thin clouds during nighttime, but we can con-
clude that its daytime thin-cloud detection at 5 km averag-
ing capacity should be comparable to that of CALIOP for
the nighttime, and this will be an important achievement for
daytime vs. nighttime cloud comparison. Using the cloud de-
tection thresholds defined by Eq. (36) and refined for the real
data flow using the methodology outlined above, the CLIMP
short-term product will be produced.

4 The CLIMP long-term dataset

4.1 Capability of CLIMP and CALIPSO-GOCCP to
detect the same clouds

One of the overarching goals of our study is to develop a
method for merging the data from several spaceborne lidars
into a continuous cloud record to detect long-term changes
and get a seamless cloud climatology. Since the low thresh-
old tested in the previous section revealed the sensitivity mis-
match between the two instruments, we had to test whether
the cloud detection thresholds developed for CALIOP (Chep-
fer et al., 2010) are applicable to ATLID and whether the
clouds retrieved using these thresholds are consistent be-
tween the two lidars. For this exercise, we followed the same
scheme as in the previous section, but this time the clouds
were defined in Eq. (6) as in Chepfer et al. (2010) and
the follow-up works (e.g., Cesana et al., 2019; Guzman et
al., 2017).

Figure 10 demonstrates the daytime and nighttime scatter-
ing ratios above the detection thresholds (Eq. 6) and the cor-
responding cirrus cloud detection statistics for CALIOP. The
SR(532nm,z) in Fig. 10a and b demonstrates the same pat-
terns as the ATB(532nm,z) signals in Fig. 6a and b. As ex-
pected, this time the daytime noise is less pronounced (com-
pare Fig. 10b to Fig. 8b). Still, the daytime scene contains a
certain number of false detections marked in red in Fig. 10d.
The same analysis performed for ATLID (Fig. 11) also
shows somewhat less noise in daytime (compare Fig. 11b to
Fig. 9b). The cloud detection quality of ATLID is like that
of CALIOP (see Table 3). In this setup, the ATLID is just
slightly better than CALIOP with its somewhat higher rate
of false detections during the day (compare panels c and d
of Figs. 8, 9, 10, and 11 and the corresponding columns in
Table 3). For stratocumulus clouds (Figs. 1 and 5), with their
strong signals, the agreement between CALIOP and ATLID
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Figure 10. Scattering ratio and cloud detection statistics estimated
for cirrus clouds observed by CALIOP using Eq. (6): (a) scattering
ratio at night, (b) cloud detection at night, (c) scattering ratio during
the day, and (d) cloud detection during the day. Note the color scale
difference for (a) and (c) compared to (b) and (d).

is also better than for the clouds defined by Eq. (36) (compare
panels c and d of Figs. A1, A2, A3, and A4). The 1 km av-
eraging further improves the agreement between the datasets
(Table 3).

Summarizing, using the thresholds (Eq. 6) to define the
clouds makes the cloud datasets from CALIOP and ATLID
comparable. Further adjustment will be needed for real
ATLID data to compensate the effects of the diurnal cycle
(Noel et al., 2018; Chepfer et al., 2019; Feofilov and Stuben-
rauch, 2019). Other compensations might be required when
the real ATLID data become available. Since there is a high
chance that there will be no overlapping period for these two
satellite instruments, an intercalibration procedure will be re-
quired. For this, one can use the average cloud amount for
low, middle, and high clouds in different zones (tropics, mid-
dle latitudes, and polar) to track the changes and to intro-
duce feedback to the cloud detection algorithm. This way,
the number of cases measured for each zone will be high,
and the uncertainty will be low. The daytime and nighttime
observations should be considered separately to address the
diurnal cycle and daytime noise issues. In the sections below,
we assume that the intercalibration has been performed and
that the cloud datasets agree.

4.2 Numerical chain to simulate long-term lidar record
and method to quantify time of emergence

The previous section shows that ATLID and CALIOP data
may be merged to build a long-term dataset, even though
their instrumental or orbital differences might necessitate
further reconciliation. Here we suppose perfect reconcilia-
tion will eventually be reached, and we build a long-term
space lidar synthetic dataset spanning more than 30 years
to examine when a change in cloud properties attributable
to human-induced warming would be detectable in the lidar

cloud record according to climate model simulations. This
approach is directly inspired by the one pioneered in Chep-
fer et al. (2018) and later expanded in Perpina et al. (2021).

We use climate predictions from IPSL-CM6 (Institut
Pierre Simon Laplace climate model; Boucher et al., 2020)
and CESM2 (Community Earth System Model; Hurrell et
al., 2013), two ocean–atmosphere coupled GCMs which
took part in Climate Model Intercomparison Project (CMIP)
Phase 6 (Eyring et al., 2016). We use predictions that start in
2008 and end in 2034 and follow the RCP8.5 (Representa-
tive Concentration Pathway) scenario, which tracks the ob-
served CO2 emissions closely (Schwalm et al., 2020). Pre-
dictions are provided as monthly grids with spatial resolu-
tions of 1.27◦× 2.5◦ on 79 vertical levels (IPSL-CM6) and
1.25◦× 0.94◦ on 40 vertical levels (CESM). On these pre-
dictions of atmospheric conditions, we apply the COSP1.4
lidar simulator (Sect. 3.2), which generates on similar spa-
tial grids the monthly averaged cloud properties that would
be observed by a spaceborne lidar flying over the simulated
atmosphere. In addition to the simulation steps described in
Sect. 3.2, here, as a first step of the simulation, for each grid
box of the GCM-created atmosphere an ensemble of subgrid-
scale profiles are stochastically generated by the Subgrid
Cloud Overlap Profile Sampler (Klein and Jakob, 1999).
Each of these profiles is fed to the COSP simulator, which
generates a synthetic lidar profile, on which cloud detection
is performed. All subgrid-scale cloud detection profiles are
eventually averaged to generate a single vertical profile for
each grid box (see Chepfer et al., 2008, for details).

From the synthetic cloud properties, we considered two
climate diagnostics whose trend should be related to climate
change: first the fraction of opaque clouds Copaque, defined
as the number of lidar profiles in which an opaque cloud is
detected in a given latitude–longitude grid box divided by
the total number of profiles sampled in the same grid box.
Opaque clouds are responsible for the majority of cloud ra-
diative effects in the tropics (Vaillant de Guélis et al., 2017),
and the cloud amount has been identified as one of the main
drivers of cloud feedbacks on climate (Zelinka et al., 2016);
thus the fraction of opaque clouds should be closely tied to
climate change. Second, we considered the altitude of full
attenuation Zopaque (Guzman et al., 2017) averaged over all
opaque profiles in every grid box. The vertical distribution
of clouds is closely linked to their longwave radiative im-
pact and to climate change (Vaillant de Guelis et al., 2018),
and their altitude is expected to increase by several hun-
dred meters per century (Richardson et al., 2022). Altitude is
among the cloud properties whose change is expected to be
detectable the earliest using active remote sensing (Chepfer
et al., 2014; Takahashi et al., 2019; Aerenson et al., 2022).

From the GCM predictions, the COSP lidar simulator gen-
erates monthly grids of Copaque and Zopaque that we spa-
tially average over the tropics (30◦ S–30◦ N) to get monthly
time series. We deseasonalize those time series to get their
monthly anomalies over the 2008–2034 period. For any time
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Table 3. Cloud detection statistics for CALIOP and ATLID in the case when the cloud is defined as SR(532nm,z) > 5 and ATB(λ,z)−
ATBmol (λ,z) > 2.5× 10−6 m−1 sr−1 (Eq. 6).

Lidar CALIOP ATLID

Day/night Night Day Night Day

Cloud Ci Sc Ci Sc Ci Sc Ci Sc

Averaged N Y N Y N Y N Y N Y N Y N Y N Y
YES_YES 7 6 7 8 7 6 9 8 7 6 7 7 6 6 7 8
NO_NO 82 77 86 86 72 73 79 85 82 80 86 86 79 77 86 86
YES_NO 11 17 6 7 15 20 5 6 10 14 7 7 15 18 6 6
NO_YES 0 0 0 0 6 1 7 1 0 0 0 0 0 0 0 0
Total score 88 81 93 93 67 75 85 93 89 85 93 93 83 80 94 94
Bias −2 −12 −6 −7 13 −2 3 −5 −8 −9 −7 −7 −4 −10 −6 −6
RMS 14 11 6 6 22 20 7 5 9 9 6 6 18 17 6 5

t along these time series, the record length is equivalent to
the period between 1 January 2008 and t , and we computed
the trend w(t) as the linear regression of the time series of
anomalies over that period. The uncertainty σw(t) in the trend
w(t) at time t was computed, as in Chepfer et al. (2018), as

σw (t)= σN

√
1+ϕ
1−ϕn

−
3
2 , with n being the number of years in

the record at time t , ϕ being the lag−1 autocorrelation coeffi-
cient of the series between 0 and t , and σN being the standard
deviation of the noise remaining in the series between 0 and
t once it has been deseasonalized and the autocorrelated part
has been removed.

The following analysis focuses on the tropical regions
(30◦ S–30◦ N), where the atmospheric circulation will be im-
pacted by the weakening of the Hadley and Walker circula-
tions expected in the upcoming century by most climate pre-
dictions (Davis and Rosenlof, 2012; Su et al., 2014; Kjells-
son, 2015; Chemke, 2021). These changes will have impor-
tant effects on the spatial distribution of tropical clouds (Su
et al., 2014), which provide the basis for our climate diagnos-
tics. Cloud opacity is one of the cloud properties most closely
linked to their radiative impact (Zelinka et al., 2012), which
explains why our diagnostics are based on the properties of
opaque clouds (as in Perpina et al., 2021). The results below
assume it will be possible to process ATLID measurements
in such a way that CLIMP and GOCCP cloud properties are
consistent.

4.3 How many years of ATLID observation are
required in addition to CALIPSO to evaluate the
climate model prediction of cloud changes?

Figure 12 shows how the uncertainty in the retrieved trend
for Copaque changes with the length of the record of lidar-
based cloud properties, starting in 2008, according to pre-
dictions from IPSL-CM6 (blue) and CESM1 (orange). The
uncertainty is generally the largest and fluctuates most when
the record is short and decreases and stabilizes as the record
gets longer. At any time t if we require a 95 % confidence

Figure 11. Same as Fig. 10 but for ATLID.

level in the prediction and assume trends are normally dis-
tributed, the real trend will lie in the w(t)± 2σw(t) inter-
val. The sign of the trend will be robust once

∣∣∣ w(t)σw(t)

∣∣∣> 2.
This is when the uncertainty in the trend becomes small com-
pared to the trend itself and marks the time of emergence of
cloud change induced by anthropogenic warming. This oc-
curs earlier for strong, stable trends and might never occur
for very small trends or trends whose sign changes over time.
Times of emergence in the Copaque time series are indicated
in Fig. 12 with triangles for three confidence levels (50 %,
70 %, and 95 %). Reaching a reliable sign requires a longer
record if the required confidence level is strong.

According to predictions from IPSL-CM6 (blue), a reli-
able trend should emerge from the natural variability at a
50 % to 70 % confidence level between 2030 and 2032. In
other words, IPSL-CM6 predicts that revealing a reliable
long-term trend in the fraction of opaque clouds would re-
quire an uninterrupted spaceborne lidar record of 22 years,
which would be achievable if EarthCARE operates for at
least 7 years. Reaching 95 % confidence levels on the re-
trieved trend would require extending the record beyond
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Figure 12. Evolution of the uncertainty in the Copaque trend as a
function of the length of the spaceborne lidar record, according to
atmospheric conditions predicted by IPSL-CM6 (blue; Laboratoire
de Météorologie Dynamique, LMD) and CESM (orange) in the pe-
riod between 2008 and 2034 following the RCP8.5 scenario. The
first 2 years of the record (2008–2010) are considered in the anal-
ysis, but trend uncertainties during that period are very large and
are masked in the figure to improve the legibility of later years.
CALIPSO’s (CAL) planned end of operation (2023) is marked by
a vertical blue line. Supposing EarthCARE (EC) begins operation
right afterward, its nominal 3-year operation point is marked by a
vertical purple line, and an optimistic 10-year operation point is
marked by a vertical black line.

25 years, most probably through another spaceborne lidar
mission further in time. CESM1, meanwhile, predicts that
a reliable long-term trend in the fraction of opaque clouds
(at similar confidence levels between 50 % and 70 %) would
be reached between 2025 and 2027, requiring 2 to 4 years
of EarthCARE operation. A highly reliable trend (95 % con-
fidence levels) would be detectable in 2029, after 6 years
of EarthCARE operation. In summary, if a 50 % confidence
level is acceptable, detecting a reliable trend would either
be possible within the EarthCARE nominal operation time
frame (2 years after launch), according to CESM1, or require
EarthCARE to operate 4 years beyond its planned lifetime,
according to IPSL-CM6.

If we consider the Zopaque diagnostic (Fig. 13), the IPSL-
CM6 model now predicts a trend will be detectable at high
95 % confidence levels in 2024, i.e., 1 year into EarthCARE’s
nominal operation period. Meanwhile, according to CESM1
predictions, detecting a reliable trend (even at a modest 50 %
confidence level) would require EarthCARE operating for
8 years, 5 years beyond its nominal operation time frame.
This very fast detection of a reliable Zopaque trend predicted
by IPSL-CM6 is consistent with how this model expects im-
portant and fast changes in the vertical distribution of opaque
clouds in the tropics (Perpina et al., 2021).

We sum these results up in Table 4, which in addition pro-
vides similar record lengths to detect reliable trends when
considering grid boxes dominated by either low or high
clouds. Tropical low opaque clouds include sparse shallow
cumulus (Konsta et al., 2012) and optically thicker stratocu-
mulus along the western coasts of continents (Guzman et
al., 2017), both confined to the boundary layer and most
frequent in subsidence regions. By contrast, tropical high
opaque clouds are more localized and strongly correlated

Figure 13. Same as Fig. 12 but for the altitude of opacity Zopaque
instead of Copaque.

with deep convection. Since both kinds of clouds are driven
by very different processes, it is not unreasonable to assume
they will probably evolve differently in the upcoming cen-
tury, which justifies their separate studies. In practice, we
identified grid boxes dominated by low clouds as those where
Zopaque was below 3 km and high-cloud grid boxes as those
whereZopaque was above 3 km. The results, shown in Table 4,
suggest that the nominal ATLID (EarthCARE) operation will
be enough to validate or invalidate the trends in opaque tropi-
cal low clouds predicted by CESM. It will be possible to val-
idate or invalidate other model-based cloud predictions only
if EarthCARE performs beyond its nominal lifetime (which
is not impossible, as CALIPSO demonstrated) or if mea-
surements from a follow-up spaceborne lidar mission after
ATLID are included in the cloud profile record. These re-
sults are consistent with the trends, uncertainties, and times
of emergence found when conducting a relatively simpler
comparison of HadGEM2-A (Hadley Centre Global Envi-
ronment Model) predictions in current vs. +4 K conditions
(Chepfer et al., 2018). Needless to say that the treatment of
any follow-up mission (e.g., Atmosphere Observing System,
AOS; Aeolus-2) will require the compensation for all the dif-
ferences between the lidars like it is done in this work.

As stated up front, these results depend on rather strong
hypotheses of perfect continuity and perfect intercalibration
between the consecutive spaceborne lidars that provide the
measurements from which the cloud properties are derived.
Imperfect continuity would occur if, for instance, Earth-
CARE starts operation later than CALIOP stops. The miss-
ing years in the record would delay the detection of a reliable
trend by at least the same time period (Chepfer et al., 2018).
Perfect intercalibration supposes the effects of instrumen-
tal differences in technical specifications (wavelengths, pulse
energy, field of view, etc.) and orbital characteristics (local
time of overpass, altitude) on lidar measurements are recon-
ciled somehow. For instance, ATLID operates at 355 nm and
CALIOP operates at 532 nm, and the impact this has on mea-
surements can be reconciled by converting the ATLID signal
at 532 nm as done in the current study, but the costs of this
conversion are not completely understood and will require re-
examination when actual ATLID data are available. Imper-
fect intercalibration could lead to offsets in one spaceborne
lidar’s record compared to the other and would increase the
uncertainties in the retrieved trends. Increased delays be-
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Table 4. When will a spaceborne lidar record starting in 2008 be long enough to enable a reliable detection (at 70 % confidence level) of
Copaque or Zopaque trends according to predictions from IPSL-CM6 or CESM? The required years of EarthCARE operation are shown in
parentheses, supposing they begin in 2023. The monthly evolution of the trend uncertainties for low and high clouds are provided in Figs. B1
and B2 of Appendix B.

Copaque Zopaque

IPSL-CM6 CESM IPSL-CM6 CESM

All clouds 2030 (7 years) 2027 (4 years) 2021 2034 (11 years)
Low clouds only (< 3 km) No trend 2024 (1 year) No trend 2025 (2 years)
High clouds only (> 3 km) 2027 (4 years) 2031 (8 years) 2018 No trend

tween the operation of both instruments would complicate
their intercalibration. The different local times of overpass
(01:30 and 13:30 local solar time, LST, for CALIPSO; 06:00
and 18:00 LST for EarthCARE) are also quite problematic,
since each instrument will sample clouds at a different phase
of their diurnal cycle (Noel et al., 2018; Chepfer et al., 2019;
Feofilov and Stubenrauch, 2019). In particular, this will im-
pact high clouds related to deep convection that exhibit a
marked diurnal cycle. It is out of the scope of the present
work to evaluate how this change could bias the retrieved
long-term trends. The same applies to a follow-up lidar mis-
sion, which may or may not operate at the same orbit with
the same local solar time of overpass and may or may not
measure the depolarized backscatter.

Finally, the times of emergence presented here must not
be understood as definite but as predictions by climate mod-
els. It is worth noting, for instance, that, according to pre-
dictions from IPSL-CM6, a reliable trend should already be
readily detectable in the existing record of Zopaque that is
today only built on CALIOP (CALIPSO) (Table 4). Such
a trend has not been identified yet. This is consistent with
the fact that in current climate conditions IPSL-CM6 overes-
timates the altitude of opaque clouds in tropical convective
regions and brings them significantly higher (+ 2 km) near
the end of 21st century (Perpina et al., 2021). Such rapid
changes are not present in CESM predictions. These impor-
tant model differences highlight the crucial need for contin-
ued long-term cloud lidar observations able to monitor the
actual cloud changes and disambiguate model predictions.

5 Conclusions

This study presents the physical basis for the ATLID cloud
climate product named CLIMP. This product builds on previ-
ous work on CALIPSO, a space lidar dedicated to cloud and
aerosol observations like ATLID. CALIPSO data have been
used for 16 years to evaluate the description of clouds in cli-
mate models using a dedicated product named GOCCP and
a dedicated lidar simulator named COSP lidar. The present
work also builds on recent work on AEOLUS, a space li-
dar with HSRL capability operating in the UV, like ATLID.

Based on this legacy, we have defined the CLIMP-ST (Short-
Term) and CLIMP-LT (Long-Term) products, both dedicated
to cloud climate studies. Both contain the same variables as
GOCCP (see Table D1 in Appendix D) on the same horizon-
tal and vertical resolutions, but CLIMP-ST and CLIMP-LT
have different cloud detection thresholds because they aim to
tackle slightly different science objectives.

The CLIMP-ST product is designed to make full use of
the ATLID capability for evaluating cloud description in cli-
mate models. CLIMP-ST is expected to contain optically thin
cloud detected in daytime conditions at full resolution that
were not observed by former space lidars at such high spa-
tial resolutions during daytime. This new information, if con-
firmed in actual data, will help make progress regarding our
current understanding of processes tied to thin ice clouds in
the climate system. It will help evaluate the description in
climate models of optically thin clouds in regions where they
are frequent and important for climate, for example in the
tropics and polar regions.

The CLIMP-LT product is designed to detect the same
clouds as CALIPSO-GOCCP. Merging CLIMP-LT with
GOCCP will allow for building a multi-decadal cloud pro-
file record, useful to monitor the cloud inter-annual natural
variability and cloud changes induced by human-caused cli-
mate warming. This record, if quality is sufficient, will be
useful for evaluating climate prediction of cloud changes and
for helping reduce uncertainties in model-based climate feed-
backs and climate sensitivity.

To design CLIMP-ST and CLIMP-LT, we examined the
differences between CALIOP and ATLID, space lidars that
operate at different wavelengths and use different observa-
tion techniques and detectors. We sought to answer two ques-
tions. (1) Can the HSRL capability of ATLID help recon-
cile its cloud retrievals with the CALIOP record? (2) Does
the cloud product retrieved from ATLID observations com-
pare well with the one retrieved from CALIOP observa-
tions, and if so, how many years of ATLID observations
are needed to detect trends in opaque cloud cover or alti-
tude of opaque clouds, assuming ATLID operation will fol-
low CALIOP without a gap?

To answer these questions, we coupled the outputs of the
3DCLOUD model with the COSP2 simulator and added in-

https://doi.org/10.5194/amt-16-3363-2023 Atmos. Meas. Tech., 16, 3363–3390, 2023



3382 A. G. Feofilov et al.: The ATLID cloud climate product

strumental noise for two cloud scenes, thin cirrus clouds at
∼ 15 km in the tropics and stratocumulus clouds at ∼ 1 km
height. CALIOP and ATLID orbits over these cloud scenes
were simulated both for nighttime and daytime conditions, at
full vertical and horizontal (1/3 km) resolution and at 1 km
horizontal resolution. Then, we applied a wavelength con-
version algorithm to ATLID observations to convert UV lidar
profiles into 532 nm lidar profiles and added synthetic noise
generated for each instrument in accordance with its charac-
teristics.

We addressed the first question for CLIMP-ST.
We showed that the lower daytime noise of ATLID
allows for applying more sensitive thresholds for
cloud detection (SR(532nm,z) > 3 ; ATB(532nm,z)
−ATBmol (532nm,z) > 1.5× 10−6 m−1 sr−1) than for
CALIPSO at full spatial resolution in daytime without intro-
ducing a bias. This suggests that ATLID may provide new
information on optically thin clouds at daytime conditions at
full spatial resolution.

We addressed the second question for CLIMP-
LT. We search for consistency between ATLID
and CALIPSO-GOCCP in cloud detection;
therefore we applied the same cloud detection
threshold (SR(532nm,z) > 5 ; ATB(532nm,z)
−ATBmol (532nm,z) > 2.5× 10−6 m−1 sr−1) to both
instruments, then their nighttime cloud products are compa-
rable, whereas the daytime CALIOP clouds are characterized
by a somewhat higher false-detection rate. This suggests
ATLID and CALIPSO might observe the same clouds,
with some adjustment in the cloud detection scheme. Then
we analyzed 24 years of predictions from two general
circulation models (IPSL-CM6 and CESM2) in the RCP8.5
scenario, coupled with the COSP lidar simulator. We show
that IPSL-CM6 predicts the opaque-cloud-cover trend de-
tection will require 7 years of ATLID operation besides the
existing CALIOP cloud dataset, whereas CESM2 predicts
the opaque-cloud-cover trend can be detected in 4 years. For
the clouds above 3 km altitude, these numbers change to 4
and 8 years, respectively, and for the altitudes below 3 km
the IPSL-CM6 clouds indicate no trend and CESM cloud
trend detection will require 1 year of ATLID operation.
These differences in climate predictions highlight the need
for a multi-decadal cloud lidar record.

The current results rely on a comparison of exactly the
same atmospheric scenes “virtually observed” by two space
lidars, and they were obtained in the framework of com-
paring the cloud detection capabilities of these two instru-
ments. However, the comparison of the actual ATLID mea-
surements with actual CALIOP ones will face with an un-
compensated difference linked to the sampling of local solar
time by CALIOP and ATLID. The difference in the diurnal
cycle will bias the detected cloud amount and height. This
is a separate issue that should be compensated for, and this
should be a subject of a separate work. Moreover, the com-
parison of actual ATLID measurements with CALIOP ones
will probably face unexpected differences other than the ones
foreseen in this paper. Therefore, the CLIMP algorithm will
require an adjustment after ATLID launch to take those into
account.

That being said, this study suggests that it is likely that
ATLID will provide new information useful to help evalu-
ate cloud description in climate models beyond the existing
space lidar observations. Moreover, merging the ATLID data
with the CALIOP data will probably provide important in-
formation on cloud response to climate warming.
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Appendix A

Figure A1. Scattering ratio and cloud detection statistics es-
timated for stratocumulus clouds observed by CALIOP using
Eq. (36): (a) scattering ratio at night, (b) cloud detection at night,
(c) scattering ratio during the day, and (d) cloud detection during
the day.

Figure A2. Same as Fig. A1 but for ATLID.

Figure A3. Scattering ratio and cloud detection statistics es-
timated for stratocumulus clouds observed by CALIOP using
Eq. (6): (a) scattering ratio at night, (b) cloud detection at night,
(c) scattering ratio during the day, and (d) cloud detection during
the day.

Figure A4. Same as Fig. A3 but for ATLID.
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Appendix B

Figure B1. Same as Fig. 12 but with a separate analysis of the altitude of attenuation (ZFA) of (a) high-level clouds and (b) low-level clouds.

Figure B2. Same as Fig. 13 but with a separate analysis of (a) high-level clouds and (b) low-level clouds.
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Appendix C

Table C1. Variable definitions for the ATLID cloud product. Variables are of the type real (float64) unless specified otherwise. Shaded
variables are used as dimensions. L1b: Level 1b.

Variable name Unit Dimension Remarks

Time_UTC s Ntime Same unit as in the ATLID L1b file
Altitude m NZ
Levels m Nlev (4)
Flags Unitless Nflags (6)
Lon ◦ Ntime
Lat ◦ Ntime
Surface_elevation m Ntime From DEM and/or lidar ground return
Temperature ◦C Ntime × NZ From ECMWF in ATLID L1b
Pressure hPa Ntime × NZ From ECMWF in ATLID L1b
Scattering_ratio Unitless Ntime × NZ
Layer_identification_mask Unitless (int8) Ntime × NZ See Table D2
Quality_flags 0/1 (int8) Ntime × NZ × Nflags See Table D3
Cloud_presence 0/1 (int8) Ntime × Nlev Nlev cloud flag at specific vertical levels

Nlev= 0 – anywhere in the profile
Nlev= 1 – at low levels
Nlev= 2 – at mid levels
Nlev= 3 – at high levels

Table C2. Layer identification mask description.

Bin Corresponding SR values

0 Fully attenuated region:
SR < SR_bins [0] (default 0.01)

1 Clear-sky region: SR_bins [0] <
SR < SR_bins [1] (default 1.2)

2 Unclassified region: SR_bins [1] <
SR < SR_bins [2] (default 3.0)

3 to 11 Cloud region: SR > SR_bins [2]
The actual bin number provides information on
SR intensity within the cloud, with 3 being the weakest
signal and 11 being the strongest signal. Defaults are as follows.

3 4 5 6 7 8 9 10 11

5 7 10 15 20 25 30 40 50
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Table C3. Quality flag indicator.

Flag value Explanation

0 Missing or unreliable data, according to crosstalk information from ATLID
Level 1b; if Mie, Rayleigh, geolocalization, or atmospheric quality are not good
enough, the profile will be rejected and be considered missing or unreliable

1 Data located below the surface elevation

2 Noisy data, according to molecular calibration; if the calibration R is not within
range, the entire profile is flagged as noisy

3 Conflicting cloud detection indicators in the upper troposphere:
SR< 3 and 1ATB> 1.5× 10−6 m−1 sr−1

4 Presence of very bright clouds (SR> 50) anywhere in the profile

5 Negative SR (SR< 0); can appear in fully attenuated cloud mask (SR< 0.01)
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Code and data availability. We do not present the code in this
work. The “lidar-consistent opaque cloud fractions and altitude of
attenuation” dataset used in this work is available for download at
https://doi.org/10.5281/zenodo.8059374 (Noel et al., 2023).
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