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Abstract. Single-layer nonprecipitating warm clouds are in-
tegral to Earth’s climate, and accurate estimates of cloud liq-
uid water content for these clouds are critical for constraining
cloud models and understanding climate feedbacks. As the
only cloud-sensitive radar currently in space, CloudSat pro-
vides very important cloud-profiling capabilities. However, a
significant fraction of clouds is missed by CloudSat because
they are either too thin or too close to the Earth’s surface. We
find that the CloudSat Radar-Visible Optical Depth Cloud
Water Content Product, 2B-CWC-RVOD, misses about 73 %
of nonprecipitating liquid cloudy pixels and about 63 % of to-
tal nonprecipitating liquid cloud water content compared to
coincident Moderate Resolution Imaging Spectroradiometer
(MODIS) observations. Those percentages increase to 84 %
and 69 %, respectively, if MODIS “partly cloudy” pixels are
included. We develop a method, based on adiabatic parcel
theory but modified to account for the fact that observed
clouds are often subadiabatic, to estimate profiles of cloud
liquid water content based on MODIS observations of cloud-
top effective radius and cloud optical depth combined with li-
dar observations of cloud-top height. We find that, for cloudy
pixels that are detected by CloudSat, the resulting subadia-
batic profiles of cloud water are similar to what is retrieved
from CloudSat. For cloudy pixels that are not detected by
CloudSat, the subadiabatic profiles can be used to supple-
ment the CloudSat profiles, recovering much of the missing
cloud water and generating realistic-looking merged profiles
of cloud water. Adding this missing cloud water to the CWC-
RVOD product increases the mean cloud liquid water path by
228 % for single-layer nonprecipitating warm clouds. This

method will be included in a subsequent reprocessing of the
2B-CWC-RVOD algorithm.

1 Introduction

Liquid clouds are a key part of the climate system. They have
important influences on Earth’s radiative balance (Hartmann
et al., 1992), the hydrological cycle, and local and large-
scale circulations (e.g., Ma et al., 1996). Low clouds reflect
a large amount of incoming sunlight, without changing the
amount of outgoing longwave radiation by very much. Be-
cause of this, changes in the extent and properties of low
clouds have important climate feedback implications, and the
representation of clouds has long been recognized as one of
the most significant sources of uncertainty in global climate
models (e.g., Cess et al., 1989; Stephens et al., 2010; Zelinka
et al., 2016). Accurate estimates of liquid cloud water are
needed for evaluating and improving cloud models. Satellite
datasets are well-suited to this purpose because they can pro-
vide nearly global coverage using a consistent instrument.

To date, the only global-scale observations of the vertical
profiles of liquid water content (LWC) of low-altitude liquid
clouds are derived from the CloudSat satellite (Stephens et
al., 2008), carrying the 94 GHZ cloud-profiling radar (CPR;
Tanelli et al., 2008). These profiles provide utility for process
studies, validation of model output, and input for forward ra-
diative transfer calculations of shortwave and longwave ra-
diative heating profiles. For much of its lifetime (until 2018),
CloudSat was part of the A-train constellation of satellites,
a constellation that includes several other instruments capa-
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ble of measuring cloud properties. For example, one of the
instruments on the Aqua satellite is the Moderate Resolution
Imaging Spectroradiometer (MODIS), which can passively
measure various cloud optical properties (King et al., 1992).
Meanwhile, the Cloud–Aerosol Lidar with Orthogonal Po-
larization (CALIOP) on the CALIPSO satellite (Winker et
al., 2009) can detect the presence and cloud-top height of
even very thin clouds, although its signal rapidly attenuates,
so it does not possess the same profiling capabilities of CPR.
Passive microwave radiometers, such as the Advanced Mi-
crowave Scanning Radiometer for EOS (AMSR-E), which is
also on Aqua, are commonly used to estimate LWP; how-
ever, these instruments have large footprints that complicate
direct, pixel-level comparisons with CloudSat and are sensi-
tive to the liquid water path, which is difficult to decompose
into cloud and precipitation components (Lebsock and Su,
2014).

The CloudSat Radar-Visible Optical Depth Cloud Water
Content Product, 2B-CWC-RVOD (Leinonen et al., 2016)
provides CPR-based profiles of LWC, with MODIS obser-
vations of optical depth used as an additional constraint.
One shortcoming of the 2B-CWC-RVOD algorithm (here-
after simply RVOD) is that it fails to account for clouds that
are not detected by CPR. This can happen for two reasons.
First, CPR’s surface clutter extends up to the third range bin
above the surface, or about 750–1000 m (Tanelli et al., 2008).
Clouds that are mostly or entirely in this part of the vertical
column will be masked by clutter from the bright radar sur-
face backscatter. Second, CPR has a minimum detectable re-
flectivity of about −30 dBZ. If the cloud droplets are not nu-
merous or large enough to generate reflectivities of this mag-
nitude (after averaging to the CPR range resolution), then
RVOD will not generate LWC estimates for that cloud. The
combination of these two effects results in a sampling bias,
where the RVOD algorithm is weighted towards the thickest
clouds with the highest liquid water content. While it is not
the main focus of our study, RVOD also has two important
biases when precipitation is present. First, drizzle and rain-
drops are much more reflective than cloud drops so that the
RVOD algorithm cannot accurately assign a cloud water con-
tent in the presence of precipitation. Second, the algorithm
cannot determine where the cloud base is, so it assigns cloud
water content to range bins that are beneath the cloud base
where precipitation results in strong reflectivity values.

It has been noted (e.g., Christensen et al., 2013; Li et al.,
2018; Lamer et al., 2020) that CloudSat misses a non-trivial
percentage of clouds, either because the clouds are within the
radar’s surface clutter zone or because the reflectivities are
below the radar threshold. This study attempts to quantify
how much is missed and then develops a method to “fill in”
much of the missing cloud water mass using coincident ob-
servations from MODIS and CALIOP, which are more sen-
sitive to these thin clouds. Our focus in this study is on non-
precipitating, single-layer warm liquid clouds. While there
are many other types of clouds that are observed by Cloud-

Sat, this type of cloud is the most easily modeled by our
proposed combination of CALIOP cloud top plus MODIS
optical depth and effective radius. In addition, as mentioned
above, these types of clouds have profound effects on Earth’s
radiation budget. In Sect. 2, we describe the data sources used
in our study. In Sect. 3, we develop a subadiabatic cloud
model that we use to make LWC profile estimates where
RVOD estimates are not available. In Sect. 4, we calculate
how much total cloud water from these types of clouds is
missed by RVOD compared to MODIS and CALIOP, and
in Sect. 5, we evaluate the performance of the subadiabatic
model. Section 6 contains our conclusions.

2 Data

The data used in this study come from three main instru-
ments: CPR, MODIS, and CALIOP. The specific data prod-
ucts used are detailed below. For our analysis, we consider
10 years of data, from 2007–2016, but only use days when
all three instruments have valid data. This results in a total
of 489 364 826 CloudSat profiles. In all cases, we use the
R05 version of each product as obtained from the Cloud-
Sat Data Processing Center (DPC; https://www.cloudsat.cira.
colostate.edu, last access: 7 March 2023).

2.1 CloudSat

The CPR on board CloudSat is a 94 GHz nadir-pointing
radar which measures the amount of microwave radiation
backscattered by hydrometeors as a function of distance be-
tween the satellite and the Earth’s surface (Stephens et al.,
2018). It has a minimum detectable reflectivity factor of
about−30 dBZ, cross-track resolution of 1.4 km, along-track
resolution of 1.7 km, and vertical resolution of 480 m (sam-
pled every 240 m). We use radar reflectivities and geolocation
variables from the 2B-GEOPROF product (Marchand et al.,
2008) and estimates of liquid water content and cloud droplet
effective radius from the RVOD algorithm.

RVOD retrieves cloud water and ice contents from CPR
radar reflectivity observations combined with MODIS cloud
optical depths. Since MODIS cloud optical depth is only
available during the daytime, RVOD is a daytime-only prod-
uct. RVOD is based on the optimal estimation framework
(Rodgers, 2000). For each CloudSat pixel, the algorithm
seeks to retrieve a profile of hydrometeors that is consis-
tent with the observed CPR profile of radar reflectivity,
the MODIS optical depth, and a priori assumptions. See
Leinonen et al. (2016) for full details about the algorithm;
here we review only a couple of assumptions that are rele-
vant to this work.

First, note that RVOD only retrieves a CWC value where
the 2B-GEOPROF product indicates a cloud is present, even
if the MODIS optical depth is greater than zero (indicating
the likely presence of a cloud). In these cases, it is likely
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that there is a cloud but that the cloud is either too low to
be seen by CloudSat (it is hidden by radar surface clutter),
too thin to be seen by CloudSat (the cloud droplets do not
produce reflectivities above−30 dBZ), or both. Second, note
that RVOD assumes that liquid cloud droplets follow a log-
normal size distribution:

N(r)=
NT

√
2nσlogr

exp

[
−ln2 (r/rg)

2σ 2
log

]
, (1)

where r is the drop radius, rg is the geometric mean ra-
dius,NT is the total number concentration (assumed constant
throughout the column for liquid clouds), and σlog is the scale
parameter, fixed at 0.38 based on Miles et al. (2000). For a
lognormal size distribution, rg is related to the effective ra-
dius, re, by Eq. (2):

re = rg exp
(

2.5σ 2
log

)
. (2)

We use Eq. (2) to convert from the rg reported in the RVOD
files to the re that we compare against MODIS re in Sect. 4.

2.2 MODIS

The MODIS instrument is a spectroradiometer that captures
data in 36 spectral bands ranging in wavelength from 0.4
to 14.4 µm and at spatial resolutions ranging from 250 m to
1 km (Justice et al., 1998). We use MODIS data from the in-
strument onboard the Aqua satellite, which flew in formation
with CloudSat as part of the A-train during the period of this
study, providing nearly coincident observations of clouds.
Specifically, we make use of the MODIS-1KM-AUX prod-
uct produced by the CloudSat Data Processing Center (DPC).
This dataset contains a subset of MODIS MYD06 retrieved
cloud properties that are collocated with each CPR footprint.
Data are provided at 1 km resolution, and we use the 1 km
MODIS pixel whose center is closest to the center of the CPR
footprint for each matchup.

MODIS retrieves cloud effective radius and cloud opti-
cal thickness simultaneously using the bispectral technique
(Nakajima and King, 1990; Platnick et al., 2003). In this
method, a water-absorbing band is combined with a nonab-
sorbing band (either 0.65, 0.85, or 1.2 µm, depending on the
surface type). There are three versions of the retrieval using
either the 1.6, 2.1, or 3.7 µm MODIS channel as the absorb-
ing channel in the bispectral calculation. For our standard
analysis, we choose to use the 3.7 µm version, as this chan-
nel is the most strongly absorbing and thus the most sensitive
to cloud-top properties (Platnick et al., 2003). However, we
also test the effects of using the other versions in Sect. 5.
MODIS-1KM-AUX also flags some pixels as being “partly
cloudy” (hereafter referred to as PCL pixels) and gives re-
trieved re and τ for those pixels as well. In most cases, we
include PCL pixels in our analyses, although in some cases
we test the effect of withholding them.

2.3 CALIOP

The Cloud–Aerosol Lidar with Orthogonal Polarization
(CALIOP) on board the CALIPSO satellite is a two-
wavelength (532 and 1064 nm) polarization-sensitive lidar
that provides vertical profiles of aerosols and clouds at 333 m
horizontal resolution and 30 m vertical resolution (Hunt et
al., 2009). In our study, we use the 2B-CLDCLASS-LIDAR
product from the CloudSat DPC, which combines and collo-
cates CPR and CALIOP measurements for the purposes for
classifying clouds (Sassen et al., 2008). We use the variable
“cloud layer” to screen for single-layer clouds, the variable
“cloud layer top” to determine the cloud-top height, and the
variable “cloud phase” to determine whether a cloud is liquid
phase.

2.4 Auxiliary information

In order to use the subadiabatic model described in Sect. 3
to estimate cloud LWCs, we must assume a temperature and
pressure for the cloud. We use data from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) HRES
(high-resolution) forecast model. These data are collocated
with the CPR profiles and provided in the DPC’s ECMWF-
AUX product. From ECMWF-AUX we take the temperature
and pressure at cloud top, as identified by 2B-CLDCLASS-
LIDAR, and use these values as input to the subadiabatic
cloud model described in Sect. 3 and Appendix A.

3 Methods

As mentioned in the Introduction, this study is concerned
exclusively with single-layer, nonprecipitating warm liquid
clouds. To be classified as nonprecipitating, a given Cloud-
Sat pixel must not have any reflectivities above −15 dBZ
anywhere in the column (not including surface clutter).
This threshold is similar to the threshold used for the rain
flag from 2C-PRECIP-COLUMN (Haynes et al., 2009).
That algorithm uses a “near-surface” reflectivity threshold
of −15 dBZ, after accounting for attenuation. We use 2B-
CLDCLASS-LIDAR to identify pixels that have exactly one
cloud layer, are liquid phase, and have a cloud top below
5 km.

Additionally, we screen out pixels which have cloud-top
temperatures colder than 273 K (according to the temperature
profile from ECMWF-AUX and the cloud-top height from
2B-CLDCLASS-LIDAR). This is done because RVOD clas-
sifies these clouds as mixed phase, even though the CALIOP
observations suggest that the clouds are frequently composed
of supercooled liquid. This scenario proves problematic for
the RVOD algorithm. RVOD was primarily designed with
liquid clouds in mind, and for any cloud colder than 273 K,
the algorithm artificially partitions the total water path to be
a mixture of liquid and ice that depends on temperature. The
ice estimate comes from the 2C-ICE algorithm, and the result
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Figure 1. Histograms of cloud-top effective radius retrieved by
RVOD for cloud-top temperatures less than or equal to 273 K (blue)
or warmer than 273 K (red). CloudSat pixels from 2007–2016 that
are classified as single-layer liquid clouds from 2B-CLDCLASS-
LIDAR and have no CPR reflectivities above −15 dBZ in the col-
umn are included. Cloud-top height comes from 2B-CLDCLASS-
LIDAR, and the temperature at that height is taken from ECMWF-
AUX.

in many cases is an unrealistically low retrieved value of re
for the water droplets. This is demonstrated in Fig. 1. This de-
ficiency will be addressed in future releases of the RVOD by
forcing the algorithm to assume liquid cloud droplets when
CALIOP indicates the cloud is liquid phase. Here, we sim-
ply restrict our analysis to warm clouds that are unequivo-
cally liquid. After all screening, we are left with about 10.8 %
of all CloudSat pixels that are classified as nonprecipitating,
single-layer warm liquid clouds. This percentage is highly
variable regionally, as explored further in Sect. 4 (and Fig. 3).

Subadiabatic cloud model

Where RVOD does not retrieve any cloud water, but CALIOP
and MODIS both indicate the presence of a cloud, we can be
fairly confident that such a cloud exists but that it is either
too thin or too low to be detected by the CPR. The general
idea of our scheme is to use the MODIS measurements to es-
timate how much total cloud water is present in the column
and then use the cloud-top height from CALIOP combined
with some assumptions about vertical structure to apportion
the cloud water in the vertical. There are two classical ap-
proaches to this problem. The first is to assume that LWC
is vertically homogenous (e.g., Stephens, 1978). The second
is to assume that cloud water linearly increases from base
to cloud top, while cloud droplet number concentration stays
constant (e.g., Brenguier et al., 2003). This assumption corre-
sponds to adiabatic growth of cloud droplets as they are lifted
through the saturated air of the cloud. Both assumptions are
convenient as they lead to tidy expressions for the LWP of
a cloud as a function of cloud-top droplet effective radius re

and cloud optical depth τ . These expressions have the form

LWP= γ ρlreτ, (3)

where ρl is the density of liquid water with γ = 2/3 for a ver-
tically uniform cloud and γ = 5/9 for an adiabatically strat-
ified cloud (Wood and Hartmann, 2006).

However, field studies have shown that real liquid clouds
tend to fall somewhere between these two assumptions. They
have LWCs that do increase from cloud base towards cloud
top, but the rate of increase is less than that predicted by the
adiabatic model (e.g., Brenguier et al., 2000; Rangno and
Hobbs, 2005; Rauber et al., 2007; Min et al., 2012). The
study by Boers et al. (2006) was one of the first to lay out
a framework for modeling the subadiabaticity of a cloud as
a function of cloud depth. We use a simpler adjustment to
the adiabatic model, first proposed by Wood et al. (2009),
that is meant to account for entrainment, mixing, and other
processes that tend to give actual clouds subadiabatic growth
rates. In a fully adiabatic model, the LWC l of a cloud would
vary with height h above cloud base according to Eq. (4):

l(h)= c (T ,P )h, (4)

where c(T ,P ) is the moist adiabatic condensation rate at
temperature T and pressure P , given by Eq. (5),

c (T ,P )= ρair
cp

Lv
(0d−0m) . (5)

Here ρair is the air density of a fully saturated air par-
cel at temperature T and pressure P , cp = 1004 J (kg K)−1

is the specific heat of dry air at constant pressure, Lv =

2.26× 106 J K−1 is latent heat of vaporization of water,
0d= 9.8 K km−1 is the dry adiabatic lapse rate, and 0m is
the moist adiabatic lapse rate at T and P . Wood et al. (2009)
modify Eq. (4) by introducing a scaling factor, z0:

l (h)= c (T ,P )h
z0

z0+h
. (6)

With this formulation, shallow clouds tend to be closer to
adiabatic than deeper ones. We use Eq. (6) in our subadia-
batic model. In most cases we assume z0= 500 m, following
in situ data from Rangno and Hobbs (2005), although we do
test other values of z0 in Sect. 5.

The liquid water content of a cloud droplet size distribu-
tion given by n(r) is defined as

l =
4
3
πρl

∫
r3n(r)dr. (7)

The effective radius is defined as

re =

∫
r3n(r)dr∫
r2n(r)dr

. (8)

The extinction coefficient is given by

kext =

∫
Qextπr

2n(r)dr, (9)
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where Qext is the extinction efficiency. Combining Eqs. (7)–
(9) yields

kext =
3Qextl

4ρlre
. (10)

The optical depth is the integral of this equation over the
cloud depth H :

τ =
3Qext

4ρl

H∫
0

l

re
dh. (11)

If one has estimates of τ and cloud-top re, then one can use
Eqs. (6), (7), (8), and (11) to solve for H and the profile of
l(h). The details of the inversion are given in Appendix A.
It is using this procedure that we convert MODIS estimates
of τ and re into a modeled profile of cloud liquid water. The
LWP is then the integral of l(h) over the cloud depth. We note
that the MODIS retrieval itself assumes a vertically uniform
cloud in estimating τ and re, which means that these esti-
mates can be biased when the retrieval is applied to vertically
inhomogeneous clouds (Platnick, 2000). Saito et al. (2019)
find that biases due to this effect are generally small for adi-
abatic clouds. Figure 2 shows a comparison of the subadia-
batic, adiabatic, and vertically homogenous methods of dis-
tributing cloud water for a cloud with a cloud-top height of
1500 m, a cloud-top re of 15 µm, and an optical depth of 29.
It can be seen that, compared to the fully adiabatic model,
the subadiabatic model yields clouds that are slightly deeper,
with vertical gradients in LWC that are more gradual near
the top of the cloud, lower maximum LWCs, and lower cloud
droplet number concentrations.

The final step in creating subadiabatic profiles of LWC for
comparison against RVOD is to average the resulting profiles
to the resolution of CPR. To accomplish this, once we have
solved for a profile of l(h) as described above, that profile
is run through a Gaussian-weighted moving average filter.
The filter has a 6 dB window size of 480 m, corresponding to
CPR’s range resolution. The filtered profile is then sampled
every 240 m at the center of each CPR bin.

4 Comparisons between A-train estimates of liquid
cloud water

In this section we compare estimates of single-layer non-
precipitating warm (SLNPW) clouds from CPR, MODIS,
and CALIOP. We first consider estimates of cloud frequency
and then consider estimates of the total amount of water
present in these clouds.

4.1 Cloud frequency

Let us first quantify how often CloudSat pixels have retrieved
RVOD and MODIS cloud optical properties associated with
them. We note that MODIS in particular reports a significant

Figure 2. Profiles of (a) liquid water content and (b) cloud droplet
effective radius for a cloud with an optical depth of 29 and a cloud-
top effective radius of 15 µm. Each profile assumes a different ver-
tical distribution of cloud water. The blue profiles use the subadia-
batic model described in the text (with z0= 500 m), the red profiles
assume adiabatic growth of cloud droplets from base to cloud top,
and the gold profiles assume a vertically homogeneous cloud with
the same cloud depth as the adiabatic cloud. LWP is the liquid water
path of each cloud, andN is the cloud droplet number concentration
(assumed constant throughout the cloud in each case).

number of cloudy pixels with no associated cloud properties
from the optical property algorithm. It is clear when look-
ing at the collocated data that CloudSat and MODIS both
fail to report cloud properties for a significant portion of
the SLNPW clouds that are seen by CALIOP, but also that
MODIS captures many more of these clouds than CloudSat.
This can be seen in Fig. 3, which shows a map of the fraction
of CloudSat pixels that are identified as containing SLNPW
clouds by each of these satellites. From all of the maps, it is
clear that the SLNPW cloud fraction is greatest in the sub-
tropical areas to the west of the continents. These are areas
known for commonly having extensive stratocumulus cloud
decks (Klein and Hartmann, 1993). According to RVOD,
these areas only have SLNPW clouds 10 %–15 % of the time,
while MODIS reports cloud properties closer to 25 % of the
time, or up to 35 % of the time if partly cloudy (PCL) pix-
els are included. Outside of these areas where stratocumu-
lus clouds are common, the detection percentages are even
worse. Overall, for all SLNPW clouds detected by CALIOP,
only 6 % are detected by RVOD, 22 % detected by MODIS,
and 37 % detected by MODIS if PCL pixels are included.

Why are these CALIOP-detected clouds being missed
by CloudSat? One possibility that we considered was that
RVOD was missing these clouds because they are too close
to the surface and thus masked by surface clutter in the
CPR reflectivities. However, Fig. 4 demonstrates that this
is only part of the explanation. This figure shows the frac-
tion of lidar-detected SLNPW clouds detected by CloudSat
and MODIS as a function of cloud-top height. Sure enough,
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Figure 3. Fraction of all CloudSat pixels identified as cloudy by
RVOD, CALIOP, MODIS, or MODIS (including partly cloudy pix-
els) and further identified to be single-layer nonprecipitating warm
(SLNPW) clouds according to the screening procedures laid out in
the text. The bottom two panels show the difference in SLNPW
cloudy pixels between RVOD and MODIS (with and without partly
cloudy pixels included).

clouds with tops below 1 km are almost never detected by
CloudSat, but even clouds with higher tops have detection
percentages of only 10 %–20 %. Meanwhile, MODIS detects
these clouds around a third of the time (or near 40 % in-
cluding PCL pixels), without too much of a dependence on
cloud-top height. The higher MODIS detection percentages
for cloud-top heights below 500 m are likely an artifact of
the small sample size of clouds that are that shallow, while
the small bump in detection percentages at cloud-top heights
near 1500 m is likely due to the fact that this is around the
typical depth of the boundary layer over the oceans, where a
lot of the thickest SLNPW clouds tend to top out.

4.2 How much cloud water is missed by RVOD?

From the previous section, it is clear that RVOD fails to de-
tect a majority of SLNPW clouds. However, the clouds that
are missed are likely to be particularly thin, since they do not
generate large enough radar reflectivities to be seen by CPR.
Is the total amount of liquid cloud water that is missed by
RVOD significant? Once again, the answer is yes. The aver-
age SLNPW cloud LWP, averaged over all CloudSat observa-
tions (that is, including observations where there is no cloud
or the cloud is not an SLNPW cloud), is only 5.4 g m−2 for
RVOD compared to 14.4 g m−2 for MODIS (retrieved using
our subadiabatic model) or 17.5 g m−2 for MODIS including
PCL pixels. Figure 5 shows the cumulative distribution of
these averages as a function of cloud-top height. Once again

Figure 4. Fraction of all CALIOP-detected single-layer nonprecip-
itating warm clouds detected by RVOD, MODIS, or MODIS (in-
cluding partly cloudy pixels) as a function of cloud-top height.

Figure 5. Cumulative distributions of retrieved single-layer non-
precipitating warm (SLNPW) cloud liquid water path for RVOD,
MODIS, and MODIS (including partly cloudy pixels) as a function
of cloud-top height. The MODIS estimates come from our subadi-
abatic model. For each curve the numerator is the sum of the LWPs
for all SLNPW pixels with cloud-top heights up to the value given
on the x axis, while the denominator is always the total number of
SLNPW pixels in the dataset.

it is clear that, while a significant portion of the missing cloud
water comes from clouds with tops below 1 km, there is a
large gap between RVOD and MODIS cloud water even for
cloud-top heights above this level (i.e., the lines in Fig. 5 con-
tinue to diverge). Figure 6 plots the spatial distribution of the
missing cloud water. Unsurprisingly, the areas of the world
where RVOD misses the most SLNPW cloud water overlap
heavily with where SLNPW cloud fractions are highest. It
should be noted that these estimates of missing cloud water
do not include the water in the clouds that CALIOP sees but
MODIS does not, as we do not have independent estimates
of LWP for these clouds that are detected only by CALIOP.
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Figure 6. Average single-layer nonprecipitating warm cloud liquid
water path (SLNPW CLWP) retrieved from the MODIS+CALIOP
subadiabatic model, subtracted from the average SLNPW CLWP
retrieved by RVOD. In both cases the denominator in the average
is all CloudSat pixels (regardless of cloudiness), but only SLNPW
clouds are considered in the numerator.

5 Augmenting CloudSat LWC profiles using
information from MODIS and CALIOP

We have shown that the CloudSat radar (in particular, the
RVOD retrieval algorithm) misses a lot of liquid cloud water
that is seen by MODIS. It is desirable to augment the RVOD
profiles of cloud water with estimates from MODIS in areas
where MODIS detects a cloud but RVOD does not. These
MODIS-derived profiles are likely to be less accurate than
the CloudSat-derived ones (because they are not constrained
by radar observations) but are nonetheless much more useful
for model evaluation than assuming that all of these areas
of thin clouds are completely free of cloud water, as RVOD
currently does.

We first test the reliability of the subadiabatic cloud model
by constructing profiles of LWC for all SLNPW pixels in our
dataset that are seen by RVOD. The profiles are generated
using MODIS cloud-top re and τ and CALIOP cloud-top
height, according to the procedure described in Sect. 3. Then
we compare these subadiabatic estimates of liquid cloud wa-
ter against the RVOD estimates for the same pixels. Figure 7
shows RVOD estimates of LWP, column-maximum LWC,
and cloud-top re alongside the corresponding estimates from
the subadiabatic model. There is good agreement between
the two methods, especially when it comes to the integrated
LWP estimate. Note that the LWP agreement is better for
the subadiabatic model than it would be if we used the stan-
dard LWP estimates included in the MODIS-1KM-AUX data
files, as these assume a vertically uniform profile of cloud
water. There is decent agreement when it comes to the pro-
files of LWC as well; however, the subadiabatic model tends
to create clouds that are slightly less thick than the RVOD
profiles suggest. A sign of this is seen in the distributions
of column-maximum LWC shown in Fig. 7. The maximum

LWC from the subadiabatic model tends to be slightly higher
than the maximum from RVOD, indicative of a thinner cloud
with a sharper gradient in LWC. Nevertheless, the modeled
clouds are still thicker than they would be if we used the adi-
abatic model to distribute cloud water. Finally, the MODIS re
estimates tend to be a bit larger than the estimates of RVOD, a
finding that has been reported in other studies as well (Zhang
and Platnick, 2011; Painemal and Zuidema, 2011).

5.1 Case studies

Two case studies illustrate the usefulness and potential short-
falls of the subadiabatic model for filling in profiles of LWC
in areas where RVOD misses clouds. The first case is shown
in Fig. 8 and comes from 1 February 2007, when the A-train
observed a deck of low clouds off the west coast of Chile.
According to our screening criteria, the entire segment of
observations shown in Fig. 8 consists of single-layer non-
precipitating warm clouds, with CALIOP cloud-top heights
between 1 and 2 km. The fact that clouds are present is con-
firmed by the MODIS true-color image shown in Fig. 8a. The
subadiabatic model yields LWP estimates that are very sim-
ilar to RVOD for the pixels that CloudSat sees, as seen in
Fig. 8b. However, RVOD misses over half of the cloudy pix-
els. Most of these missed pixels have LWPs (as determined
by the subadiabatic model) smaller than around 75 g m−2.
Figure 8c and d show the profiles of retrieved LWC from
both RVOD and the subadiabatic model. For the clouds that
are seen by CloudSat, the cloud depths from the subadiabatic
model (in terms of the number of radar bins) are similar to
the cloud depths from RVOD. However, the modeled liquid
water content tends to be slightly more concentrated in the
top half of the cloud for the subadiabatic model. Perhaps the
biggest benefit of the subadiabatic model estimates is that it
allows us to create merged LWC profiles, as demonstrated in
panel (e). In the merged model we use the RVOD-estimated
profile of LWC where available, but, for columns that have
no RVOD retrieval, we use the estimate from the subadia-
batic model instead. For this case, the merging process cre-
ates a smooth and very plausible-looking thin layer of liquid
cloud water, with no sharp discontinuities at the edges of the
clouds that are thick enough to be detected by RVOD.

The second case comes from the Indian Ocean on 2 Jan-
uary 2007 and is shown in Fig. 9. This case includes clouds
that are slightly higher in altitude and includes some pixels
that are flagged as precipitating. Once again, as indicated
by the infrared brightness temperatures, this entire scene
consists of clouds, but RVOD detects only about half of
the cloudy pixels. For the thinner, nonprecipitating clouds,
there is good agreement between the RVOD and subadiabatic
model estimates of liquid water path (for the clouds that are
detected by RVOD). However, where rain is present, the sub-
adiabatic model yields lower estimates of LWP than RVOD.
This is not surprising, as the radar reflectivity is dominated
by the larger precipitation drops, whereas the MODIS ob-
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Figure 7. (a, c, e) Distributions of (a) cloud liquid water path, (c) column-maximum cloud liquid water content, and (e) cloud-top effective
radius, as retrieved by either RVOD or our combined MODIS+CALIOP subadiabatic model, for all single-layer nonprecipitating warm
clouds with valid RVOD retrievals. (b, d, f) Density plots comparing RVOD values of the three variables to the values retrieved from the
MODIS+CALIOP model.

servations are primarily sensitive to the smaller cloud drops.
For a precipitating cloud, the radar reflectivity will be max-
imized lower in the column, as the larger drops grow by co-
alescence and precipitate out of the base of the cloud. The
cloud depths from RVOD are significantly complicated by
the fact that precipitation particles dominate the CPR radar
return, as discussed in the Introduction, and are likely too
thick. The merged LWC model, which in this case uses the
subadiabatic model estimate for pixels flagged as precipitat-
ing as well as pixels with no cloud retrieved from RVOD,
still performs well in filling in the gaps between CloudSat-
detected clouds. However, there are some discontinuities in
the cloud thickness for the precipitating regions, which prob-
ably represents residual influence from drizzle drops that do
not quite meet our −15 dBZ threshold. In the future, we plan
to transition precipitating pixels’ cloud water content to the
subadiabatic model and have the radar derive the precipita-
tion water content following Lebsock and L’Ecuyer (2011).
For the time being we emphasize that pixels that are identi-
fied as precipitating are likely to have water contents which
are too high.

5.2 VOCALS cross section analysis

Next, we explore the performance of RVOD and the suba-
diabatic model in detecting and estimating profiles of liquid
cloud water in an area of the world dominated by a persis-
tent marine stratocumulus cloud deck. The VAMOS Ocean–
Cloud–Atmosphere–Land Study (VOCALS) was an interna-
tional research program focused on the improved understand-
ing and modeling of the southeastern Pacific climate system
(Mechoso et al., 2014). As part of VOCALS, instrumented
moorings were installed near 20◦ S, 85◦W and 20◦ S, 75◦W
(Colbo and Weller, 2007, 2009). Many previous studies of
stratocumulus clouds in this region have thus focused on the
20◦ S parallel (e.g., Serpetzoglou et al., 2008; Zuidema et
al., 2009). For our purposes, we cut a cross section centered
on 20◦ S from 90 to 70◦W and call this the VOCALS cross
section. All A-train observations included in our dataset and
within ±5◦ of 20◦ S are binned in 2◦ wide longitude bins for
plotting in Figs. 10 and 11.

Figure 10 shows the fraction of the time each CPR bin
along the VOCALS cross section contains a single-layer non-
precipitating warm cloud, as detected by CALIOP, RVOD,
or the merged model. As before, the merged model uses the
RVOD LWC profiles for clouds detected by RVOD but adds
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Figure 8. A nonprecipitating case study from 1 February 2007, CloudSat granule 4069. (a) MODIS visible imagery from NASA Worldview,
with the CloudSat ground track overlaid on top. (b) Retrieved liquid water path from RVOD (blue) and the MODIS subadiabatic model (red).
(c) Retrieved liquid water content from RVOD. (d) Retrieved liquid water content from the MODIS subadiabatic model. (e) Merged liquid
water content, with the subadiabatic model used for all pixels where RVOD has no retrieved liquid water.

the subadiabatic profiles for clouds not seen by RVOD. In
some bins, the SLNPW cloud fraction from CALIOP is near
80 %, reiterating just how prevalent those types of clouds
are in this area. The CALIOP plot also shows that the cloud
heights tend to increase as one moves further away from the
coast (i.e., east to west), consistent with the growth of the
marine boundary layer as it advects over warmer sea sur-
face temperatures (Krueger et al., 1995). RVOD alone detects
only a small portion of these SLNPW clouds, and it particu-
larly struggles to detect clouds close to the coast, which tend
to be lower and thinner. Using the merged model greatly im-
proves SLNPW cloud detection, even though a lot of clouds
that are seen by CALIOP are still missed. The gains are es-
pecially striking below 1 km and in the eastern part of the
domain.

Figure 11 shows a similar series of plots for the VOCALS
cross section, but looking at SLNPW cloud liquid water con-
tent instead of cloud fraction. Because CALIOP alone does
not give LWC estimates, only estimates from RVOD and the
merged model are compared. The average cloud liquid wa-
ter contents from the merged model are between 0.01 and
0.02 g m−3 larger than from the RVOD algorithm. Note that

those values come from averaging over all pixels, not just
pixels that contain SLNPW clouds. Similar to Fig. 10, we
see that the largest differences between the merged model
and RVOD occur closer to the coast, where the clouds tend
to be lower.

5.3 Sensitivities and uncertainties

The subadiabatic LWC profile derived from MODIS obser-
vations of re and τ depends upon both which MODIS ab-
sorbing channel is used in the bispectral technique and the
value of the scaling factor, z0, used to describe the shape of
the vertical profile. To explore the effect of these choices, we
calculated SLNPW cloud LWC profiles from the year 2016
using nine different combinations of MODIS channel and
scaling factor. Specifically, we tested using the 1.6, 2.1, and
3.7 µm MODIS channels with z0 equal to either 100, 250, or
500 m. The mean and standard deviation of several relevant
derived cloud parameters for each of the nine experiments are
given in Table 1. The 1.6 µm MODIS channel misses about
50 % of the SLNPW clouds that are detected by the 2.1 and
3.7 µm channels. This is mostly due to the fact that several of
the 1.6 µm MODIS detectors on Aqua are inoperable (Kerry
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Figure 9. A case study with precipitation from 2 January 2007, CloudSat granule 3626. The panels follow the convention introduced in
Fig. 8. In (b), the blue dots indicate CloudSat pixels for which the maximum reflectivity is greater than −15 dBZ (indicating the possibility
of precipitation). Note that the RVOD liquid water content (c) includes contributions from both the cloud and precipitation categories in the
RVOD output.

Figure 10. Percentage of all pixels that are classified as non-
precipitating warm clouds by either RVOD (a), the RVOD–MODIS
merged model (b), or CALIOP (c) for the VOCALS cross section
defined in the text. The cloud fractions are stratified by longitude (in
2◦ bins) and height (in 250 m bins). Panel (d) shows the difference
between the merged model and RVOD.

Meyer, personal communication, 2023). For pixels which are
detected by all MODIS channels, using a smaller wavelength
channel tends to give wider distributions of re and N , as well
as a slightly larger LWP, on average. For z0, using smaller
values gives larger cloud depths, smaller number concen-
trations, slightly higher liquid water paths, and lower max-
imums in LWC. The effect is much more pronounced when
comparing z0 = 100 m to z0 = 250 m than when comparing
z0 = 250 m to z0 = 500 m.

We can use these sensitivity tests to generate a crude es-
timate of the uncertainty inherent in the cloud liquid water
paths derived from the subadiabatic model. We define the
fractional uncertainty of each cloudy pixel using Eq. (12):

ε =
Wmax−Wmin

Wbest
, (12)

where Wmax is the maximum LWP estimated from the nine
sensitivity experiments, Wmin is the minimum LWP, and
Wbest is our best estimate, defined to be the estimate of the
LWP using the 3.7 µm MODIS channel and z0 = 500 m (i.e.,
the version used in the rest of this paper). The median frac-
tional uncertainty in the LWP for all SLNPW cloudy pixels
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Figure 11. Average single-layer nonprecipitating warm cloud liquid water content retrieved by (a) RVOD and (b) the RVOD–MODIS
merged model, stratified by longitude and height for all observations of the VOCALS cross section. Panel (c) shows the difference between
the merged model and RVOD.

Table 1. Single-layer nonprecipitating warm cloud detection percentage, plus the mean values of re, H , N , LWP, and column-maximum
LWC (with the standard deviations in parentheses), for each of the nine versions of the subadiabatic MODIS model described in the text.
Each version uses a different combination of MODIS channel wavelength and scaling parameter z0.

Experiment SLNPW Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) column-
cloud effective cloud number liquid water max. liquid

detection radius thickness concentration path (LWP) water content
% re (µm) H (m) N (cm−3) (g m−2) (LWC) (g m−3)

λ= 3.7 µm, z0= 500 m 57.7 % 12.1 (3.8) 135 (84) 167 (191) 53 (62) 0.16 (0.17)
λ= 3.7 µm, z0= 250 m 57.7 % 12.1 (3.8) 151 (104) 145 (164) 54 (64) 0.15 (0.16)
λ= 3.7 µm, z0= 100 m 57.7 % 12.1 (3.8) 203 (175) 104 (116) 57 (67) 0.14 (0.11)

λ= 2.1 µm, z0= 500 m 53.6 % 12.7 (4.2) 139 (86) 147 (154) 56 (64) 0.16 (0.17)
λ= 2.1 µm, z0= 250 m 53.6 % 12.7 (4.2) 156 (108) 127 (130) 57 (66) 0.16 (0.15)
λ= 2.1 µm, z0= 100 m 53.6 % 12.7 (4.2) 211 (181) 91.2 (92) 60 (69) 0.14 (0.11)

λ= 1.6 µm, z0= 500 m 25.4 % 13.2 (5.9) 142 (92) 184 (237) 59 (68) 0.18 (0.21)
λ= 1.6 µm, z0= 250 m 25.4 % 13.2 (5.9) 160 (115) 162 (208) 60 (70) 0.17 (0.18)
λ= 1.6 µm, z0= 100 m 25.4 % 13.2 (5.9) 217 (192) 121 (160) 62 (73) 0.15 (0.12)

is 0.38, with a 25th percentile value of 0.214 and a 75th per-
centile value of 0.666. Figure 12 shows that this uncertainty
tends to be smallest (typically less than 0.3) in the areas of
the world where single-layer nonprecipitating warm clouds
are most prevalent. This represents the typical uncertainty in
the LWP retrieved at each pixel; the uncertainty in the mean
LWP is considerably less. As Table 1 shows, the lowest esti-
mate for the mean SLNPW LWP from the nine experiments
is 53 g m−2, while the highest estimate is 62 g m−3, with a
fractional uncertainty of about 0.17.

6 Conclusion

Single-layer, nonprecipitating warm clouds make up about
11 % of all A-train pixels in our dataset, including a preva-
lence above 75 % over key areas of the globe dominated by
stratocumulus cloud decks. Given the radiative importance

of these clouds, it is troubling that the current RVOD product
fails to detect many of these clouds. Globally, our analysis
indicates that more than 90 % of all CloudSat pixels which at
least partially contain a single-layer nonprecipitating warm
cloud (according to CALIOP) have no cloud water content
in the RVOD product. Performance is better, but still prob-
lematic, over the stratocumulus cloud decks. While MODIS
also misses many of these thin clouds, it finds about 6 times
as many CloudSat pixels containing SLNPW clouds (if PCL
pixels are included).

This creates an opportunity to leverage coincident daytime
MODIS observations in order to augment RVOD estimates of
SLNPW cloud water. While it is common to use MODIS es-
timates of re and τ to estimate cloud liquid water path, this
study is novel in the way that profiles of cloud liquid water
content are generated. Instead of assuming a vertically homo-
geneous or adiabatically stratified cloud, we assume a sub-
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Figure 12. Map of the median fractional uncertainty in the liquid
water path estimate of all single-layer nonprecipitating warm clouds
contained within each latitude–longitude bin. The fractional uncer-
tainty is based on nine sensitivity tests using different MODIS chan-
nels and different values of z0 and is described further in the text.
Only bins with more than 50 SLNPW pixels are included.

adiabatic cloud model that, when combined with CALIOP
estimates of cloud-top height, generates a full LWC profile.
That said, our method still produces estimates of liquid wa-
ter path. One of the more striking results of the study is that,
when considering only cloudy pixels that are seen by RVOD,
the RVOD and subadiabatic model estimates of LWP agree
extremely well. This allows us to feel more confident in ex-
tending the method to produce profiles of LWC for clouds
that are too low or too thin to be detected by RVOD and to a
lesser extent to clouds which are precipitating. The case stud-
ies that we have presented indicate that when we merge the
two methods, i.e., the heritage RVOD algorithm combined
with the subadiabatic model for pixels where RVOD does not
see a cloud, we obtain smooth and realistic-looking curtains
of cloud liquid water content.

We intend to include these merged LWC profiles in the
next reprocessing of RVOD that will be produced when the
full CloudSat dataset is reprocessed at the end of the mission
towards the end of 2023. These merged profiles could be use-
ful for other products as well, such as the CloudSat FLXHR-
Lidar product (Henderson et al., 2013). This product cur-
rently uses RVOD profiles of LWC where available but uses
climatological averages for LWC and re where CALIOP de-
tects a cloud but RVOD does not. This study provides a bet-
ter method for assigning LWC based on actual MODIS ob-
servations and providing vertically resolved inputs includ-
ing a physically plausible cloud base to the radiative transfer
model.

There are several limitations to our method that must be
mentioned. For one, it does not account for clouds that are
missed even by MODIS. In these cases, it may be possible
to use the attenuated backscatter and/or the path-integrated
attenuation from CALIOP to constrain the cloud optical
depth, and with the assumption of a cloud effective radius the
method might be extended to more pixels. Since this method

relies upon measurements at near-visible wavelengths from
MODIS, it can only be used during the daytime (this is also
a limitation of the existing RVOD algorithm). We have also
not considered precipitating clouds, multilayered clouds, or
clouds with ice in them. These types of clouds all create dif-
ferent kinds of uncertainties for LWC retrievals. It is also
worth noting that the inversion method derived here, which
includes a vertically varying subadiabaticity, influences the
derived cloud droplet number concentration in addition to
the LWC profile. This sensitivity deserves future study in its
own right. There are a large number of papers that use an adi-
abatic or subadiabatic model to derive cloud droplet number
(see Grosvenor et al., 2018, and references therein).

Finally, this method of partitioning cloud LWC will be
relevant to future cloud-observing satellite missions such as
EarthCARE (Illingworth et al., 2015) and NASA’s planned
Atmosphere Observing System (AOS). Both missions will
combine a cloud-sensitive radar with a lidar and MODIS-
like instruments. EarthCARE’s radar is projected to have
better sensitivity (−35 dBZ) than CPR but will still likely
miss some thin and/or low liquid clouds (Lamer et al., 2020).
Meanwhile, AOS’s sensitivity is still being determined but is
likely to be less than CPR. In both cases, the method pre-
sented here could be used to supplement LWC profile esti-
mates.

Appendix A

Here we describe how we invert MODIS estimates of τ and
cloud-top re to obtain a profile of cloud liquid water con-
tent, l(h), using the assumptions of the subadiabatic model
outlined in Sect. 3. As derived in Martin et al. (1994) and
elsewhere, the effective radius of a droplet distribution can
be related to the liquid water content l and total droplet num-
ber concentration N (assumed to be constant throughout the
cloud) by Eq. (A1):

r3
e =

l(h)

4/3πρlkN
, (A1)

where k relates the effective radius to the volume mean ra-
dius

(
k =

r3
v
r3
e

)
and is assumed to be equal to 0.8 in accor-

dance with Grosvenor et al. (2018). Using the expression for
l(h) given in Eq. (6) and evaluating at cloud top, we arrive at
Eq. (A2):

re (H)=

[
3z0cH

4πρlkN(z0+H)

]1/3

. (A2)

Meanwhile, substituting our expressions for l(h) and re given
in Eqs. (6) and (A1), respectively, into the expression for τ
given in Eq. (11) yields the relation

τ =

(
3c
4ρl

)2/3

Qextπ
1/3(kN)1/3

∫ (
z0

z0+h
h

)2/3

dh. (A3)
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For positive h and z0, the integral on the right-hand side of
Eq. (A3) is given by∫ (

z0

z0+h
h

)2/3

dh=
3
5
h5/3

2F1

(
2
3
,

5
3
,

8
3
,−

h

zo

)
, (A4)

where 2F1 is the hypergeometric function. Substituting
Eq. (A4) into Eq. (A3) and evaluating from cloud base to
cloud top gives the following expression for optical depth:

τ =
3Qext

5

(
3c
4ρl

)2/3

(kπN)1/3H 5/3

2F1

(
2
3
,

5
3
,

8
3
,−
H

zo

)
. (A5)

Now, Eqs. (A2) and (A5) form a system of two equations
with two unknowns, N and H . However, there is no analyti-
cal solution. Instead we must numerically search for a com-
bination of (N , H ) that satisfies both conditions.

We do this by first using Eqs. (A2) and (A5) to directly
calculate re(H) and τ for narrowly spaced values of N , H ,
c, and z0. The values used are given in Table A1. Let this ta-
ble of values be known as lookup table 1 (LUT_1). Next, we
create a second pre-calculated lookup table of (N , H ) given
re(H), τ , c, and z0. We shall call this LUT_2. For LUT_2
we use the same selection of values for c and z0, as well as
evenly spaced values of reand τ (see Table A1). For each (re,
τ ) combination at given c and z0, we search LUT_1 for the
combination of (N , H ) that minimizes the sum of the abso-
lute percentage errors in re and τ . Finally, when performing
inversions on MODIS observations of re and τ , we linearly
interpolate LUT_2 to yield estimates of N and H . In very
rare cases, this process yields a cloud depth H that is greater
than the cloud-top height (that is, physically impossible). In
these cases, we iteratively increase the value of the assumed
condensation rate (c) by 1 % and re-compute H , repeating
this process until we arrive at a value of H that is less than
the cloud-top height.

In Fig. A1 we show the values ofN andH retrieved by this
method for a range of re and τ . Here we assume z0= 500 m
with a temperature of 280 K and pressure of 900 hPA (cor-
responding to c= 0.002 g m−4). We also show the difference
in retrieved N and H compared to assuming a fully adia-
batic cloud. For some (re, τ ) combinations, the differences
are small. However, for clouds with larger τ , the subadia-
batic model yields deeper clouds with lower number concen-
trations. The differences in H are greatest for clouds with
large re, and the differences in N are greatest for clouds with
small re.

Figure A1. Cloud depth H (a) and droplet number concentration
N (b) calculated by the subadiabatic cloud model for various com-
binations of optical depth and cloud-top effective radius. (c, d) Dif-
ference between the subadiabatic values of H and N and the values
that would result from assuming a purely adiabatic cloud.
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Table A1. Values used to calculate the lookup tables LUT_1 and LUT_2. LUT_1 gives re and τ as a function of N ,H , c, and z0, and LUT_2
gives N and H as a function of re, τ , c, and z0.

Parameter Lookup table(s) Values used

Droplet number concentration (N ) LUT_1 100 logarithmically spaced values from 1 to 10 000 cm−3

Cloud thickness (H ) LUT_1 10, 20, 30, . . . , 500; 550, 600, . . . , 5000 m
Cloud-top effective radius (re) LUT_2 2, 3, 4, . . . , 30 µm
Cloud optical depth (τ) LUT_2 60 logarithmically spaced values from 0.1 to 500
Adiabatic condensation rate (c) LUT_1, LUT_2 1.0, 1.2, 1.4, . . . , 4.0; 4.5, 5.0, . . . , 25 g m−3 km−1

Scaling parameter (z0) LUT_1, LUT_2 50, 100, 150, . . . , 500; 750, 1000 m
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