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Abstract. Mobile monitoring is becoming an increasingly
popular technique to assess air pollution on fine spatial
scales, but methods to determine specific source contribu-
tions to measured pollutants are sorely needed. One approach
is to isolate plumes from mobile monitoring time series and
analyze them separately, but methods that are suitable for
large mobile monitoring time series are lacking. Here we dis-
cuss a novel method used to detect and isolate plumes from
an extensive mobile monitoring data set. The new method re-
lies on density-based spatial clustering of applications with
noise (DBSCAN), an unsupervised machine learning tech-
nique. The new method systematically runs DBSCAN on
mobile monitoring time series by day and identifies a sub-
set of points as anomalies for further analysis. When applied
to a mobile monitoring data set collected in Houston, Texas,
analyzed anomalies reveal patterns associated with different
types of vehicle emission profiles. We observe spatial differ-
ences in these patterns and reveal striking disparities by cen-
sus tract. These results can be used to inform stakeholders of
spatial variations in emission profiles not obvious using data
from stationary monitors alone.

1 Introduction

A central question of air pollution studies is to identify the
varied sources that contribute to measured pollutant concen-
trations. This question becomes more complicated in a mo-
bile monitoring context because measurements and concen-
trations vary as a function of both space and time, making
conventional source apportionment techniques such as pos-

itive matrix factorization and principal component analysis
(PCA) harder to apply effectively (Larson et al., 2017).

Recently published work took several approaches to per-
forming source apportionment on measured pollutants in a
mobile monitoring context. One approach involves using
PCA on background subtracted measurements, such as in
Larson et al. (2017), whose approach has limitations when
applied to extensive mobile monitoring campaigns because
it defines a rolling minimum across a static time window
that may not be applicable for extensive mobile monitoring
campaigns with ≈ 20–30× the temporal coverage. Other ap-
proaches have focused on using land use regression (LUR)
models to identify relationships between pollutants and land
use variables, such as in Messier et al. (2018). However,
LUR models require spatiotemporal databases of sufficient
temporal and spatial resolution for use in model training.
While recent efforts have illustrated creative methods of cre-
ating these land use databases (Qi and Hankey, 2021), use of
these models is still limited through the availability of these
databases. There is a need for the development of methods
that can identify source influences in large mobile monitor-
ing data sets at high time resolution without being subject to
the availability of land use variable databases.

Another factor that aggravates source identification in mo-
bile monitoring contexts is the nature of mobile monitoring
data themselves. If a mobile monitoring campaign were con-
ducted focusing largely on residential areas with brief ex-
cursions into traffic-congested areas, such as highways, per-
forming PCA or other dimension reduction techniques to de-
scribe patterns in the entire data set would likely return re-
sults that are weighted towards residential areas with negli-
gible source influences. This type of analysis generates so-
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lutions in which there is a demarcation between a majority
of points with little source influence and a smaller subset of
source-influenced points elevated in all pollutants, which is
not compelling if the objective is to determine the specific
sources affecting the measurements.

This raises the question of how to identify source influ-
ences within mobile monitoring time series that cover lo-
cations ranging from “background” to “highly influenced
by sources”. If one could identify source spikes or plumes
within mobile monitoring time series, one could restrict their
analysis to these plumes to categorize the different types of
sources that affected their mobile monitoring measurements.
Plume identification within mobile monitoring time series
has been addressed previously. Hagler et al. (2012) use a
rolling coefficient of variation across a 5 s time interval and
then flag points with a coefficient greater than 2. Drewnick et
al. (2012) use a different moving window algorithm that cal-
culates the standard deviation of points below a defined back-
ground threshold (σb) and flags points which are more than
3σb above the previous point. The algorithm then flags subse-
quent points, increasing the threshold necessary (by a factor
of
√
nf, in which nf is the total number of flagged points) for

flagging for every subsequent point beyond the first flagged
point. Others have addressed the plume identification ques-
tion indirectly through background estimation and removal
methods.

These methods all have drawbacks. In the data used in
the present work, the method of Hagler et al. (2012) flags
few to no points at all, suggesting that the method is sensi-
tive to the time series utilized. The algorithm of Drewnick
et al. (2012) suffers in situations where many plumes appear
consecutively to one another, frequently leading to poor per-
formance in those circumstances. Other methods depend on
a time window, which presents problems for complex, multi-
day mobile monitoring time series.

Here we discuss an algorithm to identify plumes in a dif-
ferent manner. The algorithm relies on density-based spatial
clustering of applications with noise (DBSCAN), a nearest-
neighbor clustering algorithm (Ester et al., 1996). DBSCAN
clusters points based on whether they fall into predetermined
neighborhoods with other points. The technique can cluster
points with more complicated shapes (e.g., an “S” embed-
ded in noise in two-dimensional space) and is not sensitive
to starting values compared to other clustering techniques
such as k means (Tan et al., 2019). Additionally, the algo-
rithm does not require every single point to be clustered, al-
lowing for those points that do not neatly fall into a given
cluster to be defined as noise.

The objective of this work is to establish a new method
for detecting plumes in mobile monitoring time series, val-
idate its performance, and use it to perform novel analy-
sis that elucidates the impacts of different emission sources
across census tracts in the Greater Houston area. We uti-
lize DBSCAN by envisioning daily mobile monitoring time
series collected in Houston (Miller et al., 2020; Actkinson

et al., 2021) that include black carbon (BC), carbon diox-
ide (CO2), oxides of nitrogen (nitric oxide (NO)+ nitrogen
dioxide (NO2)=NOx), and ultrafine particle (UFP) number
concentrations as large numbers of points clustered around
a four-dimensional origin with plumes scattered outwards
from this origin. In the DBSCAN context, plumes would be
labeled as noise. We first describe DBSCAN and then de-
tail how we adapt it for application to mobile monitoring
time series. To evaluate performance, we construct a vali-
dation set by manually flagging plumes via visual inspection
from a randomly chosen subset of days from the Houston
mobile monitoring campaign (Miller et al., 2020; Actkin-
son et al., 2021). We use the validation set to tune DBSCAN
and other time-series-based models and compare the perfor-
mance of all models. We apply the algorithm to the Hous-
ton mobile monitoring data set to identify anomalies, which
are then clustered into anomaly types linked to specific vehi-
cle emission sources. We tabulate the number of these dif-
ferent anomaly types by census tract and derive anomaly
frequencies, which are conceptualized as the probability of
detecting a given anomaly type during the prescribed study
period. We demonstrate differences in anomaly frequencies
in census tracts across Houston, which can be used to tailor
census-tract-specific air monitoring regulation and enforce-
ment strategies. We discuss the implications of the method,
the results, and future directions for this research.

2 Methods

2.1 Data

Data were collected during the Houston mobile monitoring
campaign and are described in detail elsewhere (Miller et al.,
2020; Actkinson et al., 2021). The campaign’s objective was
to measure air pollution on a very fine spatial scale in 35 dif-
ferent census tracts across the Greater Houston area in a 9-
month time span. Two Google Street View cars were driven
through these census tracts systematically to evaluate spatial
differences in the concentrations of seven pollutants. Previ-
ous analyses with this data set focused on identifying large
concentrations attributable to sources along specific individ-
ual roadways and on developing a technique to identify and
remove background concentrations from the time series col-
lected (Miller et al., 2020; Actkinson et al., 2021).

In the current analysis, we restrict the set of analyzed pol-
lutants to be BC, CO2, UFP, and NOx . Here, we do not con-
sider fine particle mass (PM2.5) concentration and ozone due
to the influence of secondary processes. Table S1 in the Sup-
plement provides the instruments used to measure each re-
spective pollutant. BC, CO2, and UFP measurements were
taken on 1 s time resolution, while NO and NO2 measure-
ments were taken on 5 s time resolution. With the addition
of logged global positioning system (GPS) coordinates from
each car, the campaign generated a massive spatiotemporal
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data set spanning millions of observations across the 9-month
span.

In this work, we create a multivariate data set consisting of
the four air pollution variables at 1 s time resolution, along
with corresponding latitude and longitude coordinates and
timestamps that span 277 separate days of sampling for a
total of 5 301 507 observations. The BC data were smoothed
with a 10 s time window to limit the effects of noise on sub-
sequent analysis. In the original data set, NO and NO2 were
taken on a 5 s time resolution, while CO2, BC, and UFP were
all collected at 1 s resolution. To perform analysis at a finer
temporal resolution, as well as to address missing data, we
use monotone Hermitian splines to impute missing measure-
ments up to a 6 s time gap. While previous mobile monitor-
ing studies have fused 5 s data with 1 s data by repeating the
same 5 s measurement each second across the entire inter-
val (Shah et al., 2018; Miller et al., 2020), we argue that
using continuous splines provides a more realistic estimate
of missing 1 s information in this context. Previous studies
have focused on preserving the spatial meaning of concen-
tration plotted on maps at very fine spatial intervals; here, we
are more interested in estimating temporal variations in miss-
ing concentrations, and splines are suitable tools to do so for
brief 6 s intervals. Total imputed percentages for each pol-
lutant were 1.06 %, 80.0 %, 80.0 %, 0.42 %, and 0.49 % for
BC, NO, NO2, CO2, and UFP, respectively; 90.1 % of NOx
realizations had at least one imputed measurement. Any mul-
tivariate realization with at least one missing observation in a
variable not imputed was excluded otherwise. Days in which
the cars operated had to possess a minimum of 600 measure-
ments to be included in the analysis. Using road shapefiles
available through the TigerLINE road database (U.S. Cen-
sus Bureau, 2018), we assign road categories to each of our
points based on their respective latitude and longitude coor-
dinates. To be consistent with Miller et al. (2020) and Ac-
tkinson et al. (2021), we restrict our analysis to points with
logged latitude and longitude coordinates on primary, sec-
ondary, local, and private roads, as well as ramps and service
drives, because these are roads typically relevant to an in-
dividual’s exposure. To account for GPS error, we remove
logged GPS coordinates whose nearest-neighbor distance to
a TigerLINE shapefile point is more than 30 m. Additionally,
we observed evidence of the vehicles sampling their own ex-
haust when driving to and from dead ends in a previous anal-
ysis of the data set (Miller et al., 2020). Because we do not
want to characterize our own individual vehicle’s emissions,
we remove points less than 30 m from a dead end in a road.

2.2 DBSCAN

DBSCAN is a clustering routine originally conceived by Es-
ter et al. (1996). Using two predefined parameters, epsilon (ε)
and MinPts, DBSCAN seeks to label points that have MinPts
points within a neighborhood defined with radius ε as core
points, points that do not meet the MinPts criteria but have a

core point within their ε neighborhood as border points, and
points that do not fit either of these criteria as noise.

More formally, the ε neighborhood around a point p ∈D
is defined using the notation of Hahsler et al. (2019) as

Nε(p)= {q ∈D|d(p,q) < ε}, (1)

where N is the neighborhood, D is the set of points, and d is
a distance measure such as the Euclidean distance. A point is
defined as a core point if

|Nε(p)| ≥MinPts, (2)

where MinPts is the minimum points parameter and || de-
notes cardinality. The algorithm systematically labels points
as core points, border points, or noise points depending on
these criteria.

2.3 Validation set construction

To tune parameters and evaluate algorithm performance, we
construct a validation set from the mobile monitoring data
by manually flagging visible plumes within 30 randomly se-
lected daily mobile monitoring time series (out of a possi-
ble total of 277); example validation set data are shown in
Fig. S1. The total number of points in the validation set was
564 107, which amounts to≈ 10 % of the entire set. A graph-
ical user interface in IgorPro was used to flag plumes by visu-
ally inspecting the time series for spikes in pollutant concen-
trations for each pollutant (BC, CO2, NOx , and UFP). Any
time series realization that had a spike in at least one pollu-
tant was flagged.

2.4 Algorithm description

We create an algorithm incorporating DBSCAN to label
anomalies systematically within the Houston mobile mon-
itoring campaign. Pseudo-code for this algorithm is given
in Fig. 1. The algorithm estimates ε and MinPts parameters
for daily time series in the campaign based on the number
of points in each time series and its dispersion and subse-
quently performs DBSCAN using these estimated parame-
ters. We define the MinPts parameter to be the product of
the total number of points in the daily time series, n, and a
fractional value parameter, fval. We set fval to 0.03 using the
external validation set and describe the specific procedure in
Sect. 2.6. We do not consider values of fval greater than 0.5
due to rapidly increasing computational cost and poor per-
formance at higher values. After calculating MinPts, we de-
termine ε using a k-nearest-neighbor (knn) distance ordering
procedure in which the value of k was set equal to MinPts
and in which a point is the kth nearest neighbor to another
point if the distance between the two points is the kth short-
est distance among all points. We construct an ordered knn
distance set and determine the mean and standard deviation
of the first 30 ordered distances, and we then define ε as the
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Figure 1. Pseudo-code for the DBSCAN plume detection algo-
rithm.

first distance that is greater than the mean plus 3 times the
standard deviation of the subset of previously ordered dis-
tances. We iterate through the entire set of remaining dis-
tances, adding the current distance to the subset if it does not
meet the criteria used to define ε. Once both ε and MinPts
are determined, we run DBSCAN on the daily time series
observations in which core points are labeled as normal and
both border and noise points are labeled as anomalies. An ex-
ample of labeled DBSCAN output for a scatterplot of daily
BC /CO2 time series is given in Fig. 2.

2.5 Description of other algorithms

To put the performance of the DBSCAN anomaly detec-
tion algorithm in context, we compare its labeled anoma-
lies with output from the previously described plume de-
tection technique of Drewnick et al. (2012) (referred to
as “Drewnick” moving forward) or base-case 90th-quantile
algorithms. These two base-case algorithms, the Quantile-
OR (QOR) and the Quantile-AND (QAND) algorithms,
flag points as anomalous based on criteria centered around
the 90th quantile of pollutant distributions. In the QOR
case, points are flagged as anomalous if any one pollu-
tant measurement (BC, CO2, NOx , or UFP) is above the
90th quantile for the given daily time series (if BCt > 90th
BC, CO2,t > 90th CO2, Ox,t > 90th NOx , or UFPt > 90th
UFP). In the QAND case, points are flagged as anomalous
if all pollutant measurements are greater than their respec-
tive 90th quantiles (if BCt > 90th BC, CO2,t > 90th CO2,
NOx,t > 90th NOx , and UFPt > 90th UFP). We run these al-
gorithms, along with the Drewnick algorithm, on all daily
time series to assess performance.

2.6 Using the external validation set to tune
parameters and evaluate performance

To determine an appropriate value of fval for use in the DB-
SCAN algorithm, we perform grid search on values of [0.01,
0.10] in increments of 0.01 and [0.15, 0.50] in increments of
0.05. We do not consider values above 0.5 due to computa-
tional cost and poor performance at higher values of fval. We
evaluate performance using percentage agreement, defined as∑N

i I (Pi = Vi)

N
× 100, (3)

where I (.) is the indicator function that evaluates to 1 if the
condition is true and 0 otherwise, Pi is the prediction label
at point i, Vi is the validation set label at point i, and N is
the total number of points in the validation set. Tuning re-
sults indicate that a value of 0.03 is most appropriate for fval,
which we use in subsequent analyses. In addition to the fval
parameter, we tune the quantile parameter with the external
validation set. Quantiles near the 90th return only modest im-
provements, and thus we analyze the 90th quantile.

To evaluate whether we overfit to this validation set, we
perform k-fold cross validation with the number of folds, k,
equal to five. We train our models on four out of five folds,
tuning the fval parameter such that the model performance
agreement is maximized on the testing set. We find that the
value of fval that results in superior performance is 0.03, sug-
gesting that our work above generalizes appropriately. The
k-fold cross-validation results are given in Table S2.

We also use the same validation set to compare perfor-
mance across all four algorithms examined in this study. We
evaluate the performance of each by calculating the percent-
age agreement between each algorithm’s labels and the vali-
dation set labels.

2.7 Interpretation: k-means clustering and PCA

We perform k-means clustering on the extracted anomalies
using the kmeans function available in R’s base package (R
Core Team, 2022). We set the number of centers (clusters) to
3 and choose 200 iterations with different random starts to
ensure the derived result was robust to utilized starting val-
ues. We assign cluster labels based on the cluster means to
ensure consistency in label assignment. We use prcomp avail-
able in the R base package to calculate principal component
loadings and scores for visualization (R Core Team, 2022).
We use the R packages scattermore (Kratochvil, 2022) and
tidyverse (Tidyverse, 2022) for the visualization itself. We
perform Varimax rotation using R package psych (Revelle,
2022) to compare to results from a previously published
study (Larson et al., 2017).

We create boxplots of assigned roadway trucking variables
to probe potential meanings of clustered anomalies. We ex-
tract roadway trucking variables from the Texas Department
of Transportation’s (TxDOT) roadway inventory (Texas De-
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Figure 2. Daily scatterplot example of DBSCAN labeled anomalies (red) for CO2 against BC. Points labeled as normal (black and clustered
near the origin) are approximately two-thirds of the time series realizations in this example.

partment of Transportation, 2021) with processing performed
using R package sf (Pebesma, 2018a). We average records
along the same road segment with weights equivalent to the
distance between fields in the shapefile FROM_DFO and
TO_DFO, which are distance measures representing start-
ing and ending points for those records in the shapefile. Ex-
tracted roadway variables from the shapefile include annual
average daily traffic counts (AADT), truck AADT percent-
age (TRUCK_AADT_PCT), and the number of all trucks in
AADT (AADT_TRUCKS).

2.8 Census tract assignment

To determine differences in anomaly frequency between cen-
sus tracts, we assign points (Pebesma, 2018a) to census tracts
using tract boundaries stored in a shapefile used in a previ-
ously published analysis of the same campaign data (Miller
et al., 2020; Actkinson et al., 2021). We count anomalies of
a given cluster assignment and divide by the total recorded
measurements in each polygon. Because each census tract
was sampled at different hours from one another and because
the objective of the analysis was to compare census tracts,
we implement a rescaling procedure described in detail in
Sect. S1. As part of that procedure, we restrict the compar-
isons to 19 of the 35 census tracts to measurements taken
between 08:00 and 16:00 LT (local time) and measurements
taken on weekdays. To account for different polygons con-
taining differing numbers of measurements, we divide the
total amount of rescaled anomaly types by the total num-

ber of measurements made in the census tract, deriving a
probability of encountering the specified anomaly type dur-
ing the campaign in the restricted time interval described
above. This probability represents the chance of detection of
a given anomaly during the campaign study period. Sect. S2
describes a bootstrapping procedure used to estimate errors
associated with these probabilities, which are provided in Ta-
bles S3, S4, and S5.

3 Results

3.1 External validation

We run all four algorithms – Drewnick, QOR, QAND, and
DBSCAN – on the Houston mobile monitoring campaign
data. To differentiate performance, we compare each algo-
rithm’s labeled anomalies with the anomalies of the valida-
tion set on the same subset of days, which are considered
the ground truth. We observed the algorithm to capture clean
conditions as well; the DBSCAN algorithm labeled 848 mul-
tivariate realizations with all pollutants lower than their re-
spective fifth quantiles as noise or just 0.07 % of the total
number of labeled anomalies.

Of the four algorithms, DBSCAN had the best perfor-
mance, with its labels exhibiting 86.9 % agreement with the
validation set’s labels. The QOR, QAND, and Drewnick al-
gorithms exhibit 85.5 %, 77.0 %, and 81.8 % agreement, re-
spectively. For context, an algorithm that simply labeled all
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Figure 3. Confusion matrices corresponding to the performance of (a) DBSCAN, (b) Drewnick, (c) QOR, and (d) QAND. Overall agreement
between each algorithm and the validation set was (a) 86.9 %, (b) 85.5 %, (c) 81.8 %, and (d) 77.0 %, respectively. For example, DBSCAN
and the validation efforts both label 397 035 points as normal and 93 204 as anomalous. DBSCAN labels 49 440 points as normal when the
validation efforts label them as anomalous; conversely, DBSCAN labels 24 428 points as anomalous when the validation efforts label them
as normal.

points as normal would generate 74.7 % agreement with the
validation set. Because this baseline agreement is so high, we
create confusion matrices to probe sources of agreement and
disagreement between each algorithm’s predicted anomalies
and the validation set labeled anomalies and display them in
Fig. 3. Confusion matrices compare how an algorithm cate-
gorizes points with the points’ true categories. In our work,
confusion matrices tabulate the number of points that a given
algorithm labels as normal or as an anomaly that are corre-
spondingly labeled as normal or as an anomaly in the valida-
tion set.

Figure 3 illustrates that even though the DBSCAN algo-
rithm exhibits greater overall agreement with the validation
set, it predicts anomalies less successfully compared to the
QOR algorithm. However, the DBSCAN algorithm outper-
forms the QOR algorithm in its ability to not predict normal
points as anomalous. This suggest that the QOR algorithm
captures the most anomalies but is a coarse approach to do-
ing so; the DBSCAN algorithm captures fewer anomalies but
is less likely to predict something as anomalous when it is
not. Table S6 contains counts of instances in which one al-
gorithm made a mistake of a given type when the other did
not. Table S6 provides further evidence that the DBSCAN
algorithm is inferior in its ability to label anomalous points

compared to the QOR algorithm, while the QOR algorithm is
inferior in its ability to not label normal points as anomalous.
For the purposes of further analysis, we focus our attention
on DBSCAN-derived anomalies, bringing in QOR-derived
anomalies periodically for comparison. We choose to focus
on results from DBSCAN as the approach is more conserva-
tive; it does not result in as many false positives as the QOR
algorithm and provides confidence that what is being ana-
lyzed is an anomaly. The QAND and Drewnick algorithms
do not offer superior performance over the DBSCAN and
QOR algorithms, and we do not consider them for further
analysis.

3.2 The k-means clustering and PCA

We cluster detected anomalies using R function kmeans,
which consistently yields one cluster rich in CO2 concentra-
tions (“CO2 cluster”), another cluster that contains lower (but
still higher than their non-anomaly counterparts) concentra-
tions of all four pollutants for both QOR- and DBSCAN-
derived anomalies (“transition cluster”), and a third cluster
rich in BC /NOx /UFP (“BC /UFP cluster”) concentrations.
Table 1 and Figs. 4 and S5 contain statistics describing the
contents of each cluster. The results are consistent with pre-
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Figure 4. Boxplots of clustered DBSCAN anomalies by cluster label. Red rectangles correspond to insets of CO2 and BC that are displayed
on the right side of the plot.

viously published emissions patterns associated with light
and heavy-duty vehicles. Heavy-duty, diesel-powered vehi-
cles emit more BC, NOx , and UFP per kilogram of fuel
than light-duty vehicles, often an order of magnitude or more
(Dallmann et al., 2012, 2013; Park et al., 2011; Preble et al.,
2018). Additionally, loadings from the PCA biplot in Fig. S5
when varimax rotated are consistent in split with those re-
ported in Larson et al. (2017); loadings are sequestered into
BC- or UFP-rich and CO2-rich factors, which are attributed
to heavy- and light-duty vehicle activity, respectively. These
loadings are given in Table S7.

To verify vehicle-related impacts associated with these
clusters, we extract traffic variables from the TxDOT road-
way inventory and assign these values to our clustered
anomalies based on nearest-neighbor assignment between
the logged GPS coordinates of each clustered point and the
latitude and longitude coordinates of the inventory’s features
(Texas Department of Transportation, 2021). We plot these
assignments in Fig. 5. Figure 5a contains the overall AADT
counts. Figure 5b shows percentages of trucks in the esti-
mated annual AADT counts. The high percentage of trucks

Figure 5. Boxplot of traffic attributes corresponding to anomalies
in labeled clusters (1 – “CO2 cluster”; 2 – “transition cluster”; 3 –
“BC /UFP cluster”). (a) Annual average daily traffic (AADT) by
cluster label. (b) Percentages of trucks in the annual average daily
traffic counts (AADT% Truck).

in AADT in the BC /UFP cluster suggests that the cluster
is related to trucking activity, while the lower trucking per-
centage in combination with elevated AADT compared to
the transition cluster suggests that the CO2 cluster is captur-
ing light-duty vehicle activity. Results from these boxplots

https://doi.org/10.5194/amt-16-3547-2023 Atmos. Meas. Tech., 16, 3547–3559, 2023



3554 B. Actkinson and R. J. Griffin: Detecting plumes in mobile air quality monitoring time series

Figure 6. Map depicting analyzed census tracts colored (darker indicates larger probability) by their calculated CO2 anomaly detection prob-
abilities (%). Wikimedia, 2021. Distributed under the Creative Commons Attribution-ShareAlike 4.0 license. https://foundation.wikimedia.
org/w/index.php?title=Maps_Terms_of_Use#Where_does_the_map_data_come_from.3F (last access: 11 November 2022).

Table 1. DBSCAN and QOR k-means cluster means for the four
pollutants considered.

CO2 BC NOx UFP
(ppm) (ng m−3) (ppb) (particles per cubic

centimeter, p cc−1)

DBSCAN

First cluster 556 1893 73 16 298
Second cluster 444 1540 43 15 411
Third cluster 493 6326 179 50 244

QOR

First cluster 547 2142 83 17 463
Second cluster 444 1597 42 16 616
Third cluster 495 6639 184 51 112

confirm that our clusters are linked to emissions from these
different vehicle types.

3.3 Detected anomaly type by census tract

To evaluate spatial differences in these clustered anomaly
types across the city of Houston, we tabulate anomaly types
for a subset of visited census tracts; details about the cen-
sus tracts are provided in Table S8. We report rescaled to-
tal numbers of detected anomalies of a given cluster type
(CO2 cluster for CO2-rich, transition cluster, BC /UFP clus-
ter) divided by the total number of measurements made in
that census tract. Normalizing by the total number of mea-
surements in this manner yields the probability of encounter-
ing the anomaly in the census tract during the study period,
which is from 08:00 to 16:00 LT on weekdays. Figure S6 dis-
plays bar plots showing DBSCAN anomaly detection type
probabilities by census tract, while Figs. 6 and 7 map the
census tracts colored by their CO2 and BC /UFP anomaly
detection type probabilities.

The bar plots and maps illustrate stark spatial heterogene-
ity in anomaly type. With respect to CO2 cluster anomalies,
neighborhoods in the western parts of Houston (North Rice,
South Rice, Sharpstown) consistently rank higher than neigh-
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Figure 7. Map depicting analyzed census tracts colored (darker indicates larger probability) by their calculated BC /UFP anomaly detec-
tion probabilities (%). Wikimedia, 2021. Distributed under the Creative Commons Attribution-ShareAlike 4.0 license. https://foundation.
wikimedia.org/w/index.php?title=Maps_Terms_of_Use#Where_does_the_map_data_come_from.3F.

borhoods in the eastern part of Houston (Milby Park, Clinton,
Manchester), with neighborhoods surrounding Rice Univer-
sity ranking the highest. The neighborhoods near the Rice
campus consist of busy thoroughfares that are often con-
gested with traffic from light-duty gasoline-powered vehi-
cles, especially around local rush hour (08:00 LT). With re-
gards to the BC /UFP clusters, heavily industrialized neigh-
borhoods in the eastern part of Houston near the Houston
Ship Channel (Milby Park, West Galena Park, Manchester,
Clinton) are ranked the highest, with the Milby Park census
tract exhibiting the highest probability of encountering one
of these anomaly types (10.6 %) during the study period.

Many of the BC /UFP anomaly detections occur on high-
ways; Fig. 8 illustrates the differences in BC /UFP anomaly
detection probabilities when highways are included and ex-
cluded from the analysis (Fig. S7 shows the same infor-
mation for CO2 anomalies). Even with highways removed
from the analysis, neighborhoods in the eastern part of Hous-
ton still rank consistently higher than those neighborhoods
in the western part of Houston with respect to the fre-

quency of BC /UFP anomaly detection. The mapped census
tracts show spatial discrepancies between CO2-dominated
and BC /UFP-dominated areas with respect to probability
of anomaly type detection. Table 2 details probabilities of
detecting each anomaly type by census tract, underscoring
these spatial disparities. For example, the italicized entries in
Table 2 indicate a ∼ 10× greater chance of encountering a
BC /UFP anomaly type in the Manchester census tract com-
pared to the North Rice census tract. These disparities, and
the presented evidence suggesting that the BC /UFP anoma-
lies are closely related to heavy-duty vehicles, are consis-
tent with previous modeling studies that show large con-
tributions of heavy-duty vehicles to air pollution in Hous-
ton’s Ship Channel (HSC) neighborhoods and previous work
pointing out elevated heavy-duty vehicle activity in the HSC
area (Zhang et al., 2017; Demetillo et al., 2020).
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Figure 8. Probability of detecting BC /UFP anomaly type with highways in the analysis (green, right bar for each census tract) and without
highways in the analysis (blue, left bar for each census tract).

Table 2. Tabulated anomaly detection probability type (“CO2-rich” is listed as “CO2 %”, “transition” is listed as “transition %”, “BC-
/UFP-rich” is listed as “BC /UFP %”) by census tract. For example, the italicized entries in this table indicate a ∼ 10× greater chance of
encountering a BC/UFP anomaly type in the Manchester census tract compared to the North Rice census tract.

Census tract CO2 Transition BC /UFP Total collected
% % % observations

Bayland Park 1.7 8.6 0.8 138 367
Washington Corridor 2.8 13.3 1.9 206 611
Manchester 0.8 19.6 5.6 97 374
East Galena Park 0.7 8.6 0.7 77 046
Milby Park 1.2 16.8 10.6 110 019
Sharpstown 4.6 17.8 2.8 80 560
Sharpstown South 2.2 9.5 1.3 114 595
West Galena Park 1.5 16.5 6.0 134 501
North Spring Branch 2.1 12.0 1.0 100 391
North Rice 5.8 14.4 0.6 263 585
Clinton 1.2 20.1 4.4 185 196
West Eastex 1.1 12.8 2.5 144 963
North Heights 1.4 10.4 1.4 246 103
South Rice 5.0 13.4 0.6 139 313
Harrisburg 1.0 16.9 4.2 127 736
Sharpstown North 3.6 18.7 1.2 98 743
Westchase 3.4 12.7 1.3 68 620
South Spring Branch 2.3 13.3 2.4 78 195
South Beltway Central 0.9 16.3 2.2 311 589

4 Conclusions

We discuss the successful development of a new approach
to detect plumes in mobile monitoring time series using an
anomaly detection algorithm based on DBSCAN and use the

resulting analysis to derive anomaly frequencies representa-
tive of different emission impacts in different Houston neigh-
borhoods. While previous work has implemented DBSCAN
in conjunction with deep-learning models to analyze satellite
PM2.5 measurements (Lu et al., 2021) or to define microen-
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vironments in air pollution exposure contexts (e.g., home,
work, or restaurants) (Do et al., 2021), this is the first study
to incorporate DBSCAN in plume detection efforts. The al-
gorithm offers comparable, if not superior, performance to
previously published plume detection techniques for mobile
monitoring time series and is justified in analyses warrant-
ing a conservative approach. In this work, we show how
this approach illustrates different emission impacts in cen-
sus tracts around the city of Houston. Specifically, we show
how BC and UFP anomaly frequencies were ≈ 10× greater
in census tracts in the eastern part of Houston near the HSC
compared to neighborhoods in the western part of Houston.
While it is not definitive that this cluster type represents im-
pacts from heavy-duty vehicles, as there is no observational
evidence to connect those observations to those vehicle types
directly, anomaly emission patterns are consistent with pre-
viously published studies analyzing emissions from light-
and heavy-duty vehicles (e.g., Larson et al., 2017, and ref-
erences therein). Previous studies also have shown the large
impacts of trucking on pollution in the HSC area and have
raised environmental justice concerns with the burden of pol-
lution from diesel-powered-vehicle activity (Demetillo et al.,
2020; Zhang et al., 2017). Results from this work empha-
size the need for additional investigation into trucking activ-
ity in HSC neighborhoods and, more broadly, illustrate how
mapped spatial distributions of these anomalies can be used
to inform regulatory activities.

Results from this algorithm could be incorporated into
health assessment frameworks. Clustered anomalies could be
grouped into source categories to facilitate simple exposure
estimates from different sources. Apportioning anomalies to
nearby sources and determining their frequencies would be
an interesting approach to determining whether some sources
are more harmful to health than other sources. Census-tract-
weighted probabilities of an anomaly could be employed in
random walk simulations of cumulative air pollution expo-
sure, providing a different metric to evaluate related health
effects (Tang and Niemeier, 2021). Future work could focus
on addressing serial dependency inherent in detected anoma-
lies to develop probability-based exposure estimates and the
general development of a framework that relates health out-
comes to the frequencies of these detected anomalies.

There are opportunities to improve this algorithm in future
work. For example, this algorithm should be evaluated using
different external validation methods, such as having an ob-
server sit in the vehicle and note emissions events (for exam-
ple, driving behind a heavy-duty diesel vehicle), while data
are being collected to create the validation set. Additionally,
the mobile platform could be co-located with a wide suite of
stationary instruments to enable more confidence in source
identification. Alternative nearest-neighbor clustering tech-
niques could be explored; local outlier factors could be used
to address situations where DBSCAN does not exhibit great
performance (Tan et al., 2019). An ensemble approach uti-
lizing both DBSCAN and other clustering techniques could

be investigated for improved performance (Drewnick et al.,
2012; Actkinson et al., 2021). Future work also could con-
sider aggregating data on a scale finer than a census tract to
address heterogeneity of emissions within a census tract.

Code availability. A GitHub repository containing
code used to generate the work is available here:
https://doi.org/10.5281/zenodo.7700290 (Actkinson, 2023a).

Additionally, an R Shiny application containing a graphi-
cal user interface to the software is available at the follow-
ing URL: https://bactkinson.shinyapps.io/plume_detection_with_
dbscan/ (Actkinson, 2023c). The DOI for the repository con-
taining code used to generate the Shiny app is available here:
https://doi.org/10.5281/zenodo.7700300 (Actkinson, 2023b).

The following R packages were used in the analysis and visual-
ization of results: tidyverse (https://www.tidyverse.org/; Tidyverse,
2022), ggpubr (https://CRAN.R-project.org/package=ggpubr; Kas-
sambara, 2020), caret (https://CRAN.R-project.org/package=caret;
Kuhn, 2022), dbscan (https://CRAN.R-project.org/package=
dbscan; Hahsler and Piekenbrock, 2022; Hahsler et al., 2019),
Leaflet for R (https://CRAN.R-project.org/package=leaflet; Cheng
et al., 2022), leafem (https://CRAN.R-project.org/package=leafem;
Appelhans, 2021), sf (https://CRAN.R-project.org/package=sf;
Pebesma, 2018b, a), Mapview (https://github.com/
r-spatial/mapview; Appelhans et al., 2022), scattermore
(https://CRAN.R-project.org/package=scattermore; Kratochvil,
2022), psych (https://CRAN.R-project.org/package=psych;
Revelle, 2022), base (R Core Team, 2022), and data.table
(https://CRAN.R-project.org/package=data.table; Dowle and
Srinivasan, 2021).

Data availability. Validation data sets used in this
work are available at the following Zenodo repository:
https://doi.org/10.5281/zenodo.6473859 (Actkinson and Grif-
fin, 2022).

The Texas Department of Transportation Road Inventory is
available for download here: https://www.txdot.gov/data-maps/
roadway-inventory.html (Texas Department of Transportation,
2021).

The 2018 TIGER/Line Shapefile, created and maintained by
the United States Census Bureau, is available for download here:
https://catalog.data.gov/dataset/tiger-line-shapefile-2018-county-
harris-county-tx-all-roads-county-based-shapefile (U.S. Census
Bureau, 2018).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-16-3547-2023-supplement.
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