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Abstract. The EarthCARE satellite mission’s objective is
to retrieve profiles of aerosol and cloud physical and op-
tical properties using the combination of cloud-profiling
radar (CPR), high-spectral-resolution UV lidar (ATLID) and
passive multi-spectral imager (MSI) data. Based on syn-
ergistic retrievals using data from these instruments, the
3D atmospheric cloud-aerosol state is estimated and then
used to model the top-of-atmosphere (TOA) broadband ra-
diances, which may then be compared to co-incident Earth-
CARE broadband radiometer (BBR) measurements. A high-
spectral-resolution lidar enables the independent retrieval
of extinction and backscatter but, being space based, suf-
fers from relatively low signal-to-noise ratio (SNR) levels.
The ATLID FeatureMask (A-FM) product provides a fea-
ture detection mask for the existence of atmospheric fea-
tures within the lidar profiles based on a number of (statis-
tical) image reconstruction techniques. Next to this, it also
identifies those regions where the lidar beam has been fully
attenuated and where the surface backscatter has impacted
the measured lidar backscatter signals directly above the sur-
face. From the pixels assigned as clear sky (with no fea-
tures present above), the clear-sky-averaged profiles for the
three ATLID channels, the co-polar Mie channel, the total
cross channel and the co-polar Rayleigh channel are cre-
ated. These feature-free or clear-sky profiles are useful for
e.g., assessing the quality of the ATLID Level-1 (L1) atten-
uated backscatters. An important goal of the A-FM prod-
uct is to guide smoothing strategies within downstream pro-
cessors e.g., the ATLID profile retrieval (A-PRO) algorithm
which directly follows A-FM within the EarthCARE Level-
2 (L2) processing chain. Within the A-PRO algorithm, pro-
files of extinction, backscatter and linear depolarization ratio

are retrieved. However, smoothing of the ATLID L1 atten-
uated backscatter is necessary since the SNR levels present
at the ATLID native resolution are generally not sufficient
for meaningful retrievals to be conducted. At the same time,
to prevent biased retrievals, any smoothing procedure must
respect the cloud—aerosol structure and avoid mixing strong
features, e.g., clouds, and weak features, e.g., aerosol re-
gions, together. The A-FM product provides the A-PRO al-
gorithm with important information that is used to guide
various smoothing procedures. To enable the processing of
the large datasets from observation up to L2 retrievals, each
EarthCARE orbit is separated into eight frames, divided at
latitudes of 22.5°N and 22.5°S and 62.5°N and 62.5° S.
As a secondary product, A-FM outputs can be used to con-
duct a frame-by-frame evaluation of the ATLID L1 cross-
talk calibration, where an EarthCARE frame is one-eighth
of a full orbit. This evaluation can be performed by compar-
ing the retrieved clear-sky profiles to the expected channel
profiles. The A-FM product has been applied to both syn-
thetic data from the EarthCARE end-to-end simulator (EC-
SIM) and the L1 data from the Aeolus wind lidar mission.
Comparisons against the ECSIM model truth indicate that
A-FM has a percentage correctness > 90 % and is capable
of reliably detecting aerosol and cloud regions within extinc-
tions (> 10> m™1).
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1 Introduction

The EarthCARE mission (Earth Clouds, Aerosols and Ra-
diation Explorer; Illingworth et al., 2015) is a collaborative
Earth observation satellite. The responsible bodies are the
European Space Agency (ESA) and the Japan Aerospace
Exploration Agency (JAXA). The satellite is planned to be
launched in 2024, and its primary mission is to improve the
understanding of the interaction between clouds, aerosols
and atmospheric radiation and how these interactions af-
fect climate and weather. EarthCARE will fly in a sun-
synchronous orbit, with a descending-node local Equator
crossing time of 14:00, an inclination of 97°, a revisit time
of 25 d and an altitude of 393 km. The platform is comprised
of a 94 GHz Doppler cloud-profiling radar (CPR), a 355 nm
high-spectral-resolution atmospheric lidar (ATLID), a multi-
spectral imager (MSI) and a broadband longwave and short-
wave radiometer (BBR). EarthCARE science is built around
the synergistic use of these four advanced sensors (Eisinger
et al., 2023), where ATLID, CPR and MSI data are combined
in order to estimate the 3D atmospheric properties of clouds,
aerosols and precipitation, including their optical and micro-
physical properties. Forward-modeled radiative properties of
the retrieved 3D atmospheric fields can subsequently be com-
pared to the BBR measurements for near-real-time evalua-
tion of the performed retrievals (Barker et al., 2023). In or-
der to achieve these aims, a chain of individual-instrument
geophysical algorithms (L2a) and synergistic (e.g., multi-
instrument algorithms; dubbed as L.2b algorithms) have been
developed (Eisinger et al., 2023). All the EarthCARE algo-
rithms are realized as standalone processors but are designed
to fit into the overall retrieval process as their outputs are
used as high-level inputs, i.e., a priori settings, for algorithms
present later in the chain.

A lidar feature detection mask is a mask used to identify
different atmospheric features, such as clouds or aerosols.
Next to this, it also identifies regions where the lidar beam
has been fully attenuated or when the measured backscatter
in a range bin is affected by the ground surface backscat-
ter. For lidar instruments which suffer from relatively low
signal-to-noise ratios (SNRs), which includes all space mis-
sions, some type of feature mask is commonly developed and
applied. These masks are needed to provide context to the li-
dar signals. In this paper, the ATLID FeatureMask (A-FM)
L2a retrieval algorithm developed for the ATLID instrument
is described, as well as the evaluation using synthetic model
fields and data from the space-based Doppler wind lidar from
the ESA Earth Explorer Aeolus Mission (Reitebuch et al.,
2019).

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO; Winker et al., 2009) was launched
on 28 April 2006 in order to study the impact of clouds
and aerosols on the Earth’s radiation budget and climate.
The CALIPSO lidar, the Cloud-Aerosol LIdar with Orthog-
onal Polarization (CALIOP), is an elastic-backscatter lidar
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that emits linearly polarized laser light at 532 and 1064 nm
and receives both the linear polarized signals and the cross-
polarized signals at 532 nm.

For the CALIPSO lidar (Winker et al., 2009), a number
of similar feature-mask-type algorithms have been created.
Two of the products created are described here as refer-
ences. The first is the vertical feature mask (VFM; Vaughan
et al., 2009; Liu et al., 2019; Avery et al., 2020; Kim et al.,
2018), currently at version 4-21, which describes the vertical
and horizontal distribution of cloud and aerosol layers ob-
served by the CALIOP lidar. The VFM mask discriminates
aerosols and clouds based on their physical feature differ-
ences within a (averaged) profile. The need to discriminate
aerosols and clouds requires relatively large horizontal aver-
aging windows of profiles at a native resolution of one-third
up to 80km. The second CALIOP algorithm is more recent
and retrieves context-sensitive features within the lidar sig-
nals using 2D image information from neighboring lidar pro-
files (Vaillant de Guélis et al., 2021). It uses the backscatter
signals from all three available CALIOP channels and iter-
atively determines lower thresholds to find weaker features
within the image. The main advantage of this method is that
the complex shapes of aerosol and cloud features are bet-
ter preserved and masked. Even though the method imple-
mented is different, the basic idea of using image reconstruc-
tion techniques is similar to the method described in this pa-
per.

Another new approach has been created for the NASA
ICESat-2 mission, which carries the Advanced Topographic
Laser Altimeter System (ATLAS; Markus et al., 2017) op-
erating at 532nm. The aim of this mask (Herzfeld et al.,
2021) is to detect layers in the ICESat-2 data during com-
plex atmospheric situations, specifically aiming at the detec-
tion of blowing snow and thin cirrus clouds. The method
adopts a Gaussian radial data aggregation function with an
auto-adaptive threshold determination.

The A-FM provides a probability mask of whether a pixel
contains cloud and/or aerosols; it does not perform any typ-
ing information of the respective pixel. The main goals for
both the 2D approaches for CALIOP and ATLAS are the
same as that for the FeatureMask detection algorithm de-
scribed within this paper. The VFM product provides typ-
ing information of the aerosol and cloud returns, which re-
quires a far higher signal-to-noise ratio (SNR). The VFM
product combines the results from the feature finder algo-
rithm SIBYL (Vaughan et al., 2009), whereas the typing is
determined by three independent scene classification algo-
rithms, i.e., the cloud and aerosol discrimination algorithm,
the aerosol sub-typing algorithm and the cloud phase dis-
crimination algorithm (Liu et al., 2019; Avery et al., 2020;
Kim et al., 2018). Both CALIPSO and ICESat-2 operate
elastic-backscatter lidars, whereas ATLID is a high-spectral-
resolution lidar (HSRL). To benefit from the ATLID HSRL’s
ability to directly retrieve extinction and backscatter sepa-
rately, correct averaging of the data is essential. The cloud
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and aerosol classifications of any identified features are per-
formed at a later stage in the EarthCARE L2 chain.

To help guide the smoothing procedures performed in the
ATLID profile retrieval algorithm (A-PRO; Donovan et al.,
2023a) a mask at the highest possible resolution is needed
where strong (liquid layers, optically thick ice clouds, op-
tically thick aerosol regimes and surface returns) and weak
back-scattering regions (aerosol fields and thin ice clouds)
are distinguished from each other and from clear-sky regions.
This ensures that backscatter signals from liquid clouds are
not mixed with aerosol or cirrus layers.

Within the A-PRO algorithm, profiles of extinction,
backscatter and depolarization are retrieved for which the
ATLID attenuated-backscatter signal-to-noise ratios are in-
sufficient at the native ATLID resolution. Smoothing of the
ATLID signals is necessary in order to increase their asso-
ciated SNRs. Indiscriminately smoothing signals within A-
PRO, however, will result in incorrect retrievals which do
not represent the actual atmospheric state leading to, e.g., an
incorrect target classification. The A-FM product provides
the A-PRO algorithm with a field of significant detection.
This field is used within A-PRO to guide local smoothing
strategies that aim to ensure that strong and weak attenuated-
backscatter signals are not mixed together and not diluted by
smoothing clear-sky values.

The A-FM processor is the first processor in the Level-2
processing chain to be applied to the ATLID data, and thus,
its output is important for the whole ATLID processing chain.
In particular, A-FM output is used by A-PRO, and the output
in A-PRO is used to generate the synergistic lidar—radar tar-
get classification (Irbah et al., 2023) product which, in turn,
is ingested by the synergistic cloud and aerosol property re-
trieval algorithm (ACM-CAP) (Mason et al., 2022).

For the testing of all the EarthCARE processors, a number
of detailed simulated scenes have been created, using as in-
put a number of atmospheric states calculated by numerical
weather prediction (NWP) models. These model states were
subsequently transformed into EarthCARE simulator scenes
after which realistic attenuated-backscatter (L1b) signals and
associated errors for the three ATLID channels were calcu-
lated. For a full description of these scenes see Donovan et al.
(2023b). Within this paper, we focus on the so-called Hal-
ifax scene (Fig. 8) and a sub-set of this scene focusing on
the aerosol regime (the Halifax—aerosol scene; Fig. 1) for the
evaluation of the A-FM processor.

In Sect. 2, we provide a detailed description of the Feature-
Mask detection of areas with aerosol and/or cloud particles.
In Sect. 3, the performance and sensitivity of the procedure
are described using simulated EarthCARE L1b data and cor-
responding model truth from the test scenes.

In August 2018, the European Space Agency (ESA)
launched the Aeolus Earth Explorer Mission (Reitebuch
et al., 2019), carrying the first space-based Doppler wind
lidar. The main instrument on board is an ultraviolet
(UV) high-spectral-resolution lidar, the Atmospheric LAser
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Doppler INstrument (ALADIN). Even though the focus of
Aeolus is on the retrieval of line-of-sight winds, the instru-
ment measures atmospheric profiles of Mie and Rayleigh
attenuated-backscatter signals. Both A-FM and A-PRO, de-
veloped for the inversion of ATLID signals, have been
adapted for the Aeolus mission. These Aeolus-specific ver-
sions, named AEL-FM and AEL-PRO, respectively, are cur-
rently part of the Aeolus operational processing stream. In
the case of AEL-FM, the main difference with respect to A-
FM has to do with oversampling the 24 vertical bins of Aeo-
lus data to a higher vertical resolution in order to enable the
use of the A-FM procedures described below. Once the input
has been regridded, AEL-FM and A-FM are in essence simi-
lar, and only once the output has been created at high resolu-
tion does it need to be remapped to the Aeolus measurement
grid. In Sect. 4, the results for two simulated tests scenes and
one Aeolus—CALIOP collocated orbit are presented. Finally,
the conclusions are presented in Sect. 5.

2 FeatureMask retrieval algorithm
2.1 Algorithm background

The A-FM algorithm is used to determine the feature de-
tection mask based on exploiting the time-height correla-
tion of the attenuated-backscatter data while using a mini-
mum number of hard-coded or input-dependent thresholds.
This approach enables the retrieval to deal with the low
signal-to-noise ratios associated with ATLID signals at the
instrument resolution (single-pixel level). Since A-FM re-
trievals are used to guide smoothing techniques and win-
dows in later processors, the first goal is to separate strong
features from weaker features. Two complementary methods
are employed in the algorithm to retrieve the feature mask:
the median hybrid method (Russ, 2007, Chap. 4) for strong
features (Sect. 2.5) and a data-smoothing strategy based on
a simplified maximum entropy method (Smith and Grandy,
1985) for the detection of weaker features (Sect. 2.6). It was
found that employing the full maximum entropy method is
both too time consuming and does not always converge to
a single optimal smoothed image. The maximum entropy
method was deemed to focus too much on the stronger fea-
tures in the noise while missing some of the more tenuous
widespread aerosol layers. To ensure that the algorithm is ro-
bust and fast enough for the usage of space-based data, the
algorithm has been simplified and now uses four pre-defined
convolved images instead of attempting to retrieve the rigor-
ous, maximum-entropy-defined image. These four convolved
images span the entire parameter space in which any op-
timum maximum entropy image has been identified in the
evaluation period of the algorithm. Based on these two meth-
ods, coherent atmospheric structures are defined, dubbed as
features, within this work.
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Figure 1. The model extinction field used to model the EarthCARE signals (a) with the forward-modeled ATLID signals for the co-polar
Mie (b), cross-total (c) and co-polar Rayleigh (d) channels. The scene consists of a thick aerosol layer (7 &~ 0.28) in the bottom 2 km (light-
green color in panel a), a thin aerosol later between 4 and 6 km (7 ~ 2.2 x 1072, red-to-yellow color in panel a) and a few ice clouds at the

start of the scene.

The lidar deployed on the EarthCARE satellite (ATLID)
is a high-spectral-resolution (HSRL) depolarization lidar op-
erating at a wavelength of 355 nm. The instrument emits lin-
early polarized laser pulses at a rate of 51 Hz with a pulse
energy of 31-35mJ. The output beam has a divergence of
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36 urad and points 3° backwards in order to minimize spec-
ular reflection by ice cloud particles. The laser beam is
collected by a 62cm diameter telescope and is separated
into three receiver channels. The incoming signals first pass
through a polarized beam splitter separating the cross-polar
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signals from the co-polar signals. The co-polar contribution
in the return signal is subsequently separated into contri-
butions from the thermally broadened molecular (Rayleigh)
return and the spectrally narrow elastic-backscatter returns
from cloud and/or aerosol particles by means of a Fabry—
Pérot-etalon-based spectral filter.

Within the EarthCARE terminology, the former signal is
referred to as the co-polar Rayleigh return, and the latter
is referred to as the co-polar Mie return. The signals from
each channel are detected by memory-charge-coupled de-
vices (MCCDs), allowing for single-photon detection. The
vertical resolution is 103 m up to 20 km altitude and about
500 m up to 40 km altitude, with an effective along-track spa-
tial resolution of about 280 m (after onboard integration of
two consecutive lidar profiles). The profile signals will expe-
rience a vertical crosstalk of 11 % up to 20km altitude; i.e.,
11 % of the signal in a vertical pixel leaks into the neighbor-
ing pixels — see Wehr et al. (2023) for a detailed description
of the mission and the ATLID instrument.

For the cross-polar channel, the Mie and Rayleigh signals
are not separated. After cross-talk corrections and absolute
calibration (and ignoring multiple-scattering contributions),
the three ATLID channels can be related to the atmospheric
extinction and backscatter signals as follows:

Br(z) = Br(z) -exp | —2 / (am (@) +ar(@))dr’ |,

Zlid
Z

Bui(2) = fi(2) -exp | —2 f (am(@) +ar(@)) dr’ ||
Zlid

Br1(z) = (Bv.L(2) + Br.L(2))

Z
-exp —2/(aM(Z’)+aR(Z’))dr’ , 6))

Zlid

where BR is the Rayleigh co-polar attenuated backscatter,
By is the Mie co-polar attenuated backscatter, and B is
the total cross-polar attenuated backscatter. z is the atmo-
spheric altitude, and r(z) is the range from the lidar. a is
the combined aerosol and cloud extinction, and «R is the
atmospheric Rayleigh extinction. By is the co-polar Mie
backscatter, Sr is the co-polar Rayleigh backscatter, Bum, 1 is
the cross-polar Mie backscatter, and Sr, | is the cross-polar
Rayleigh backscatter. The atmospheric Rayleigh extinction
and co-polar Rayleigh backscatter are directly related to each
other and both depend on the local molecular density.

When the atmospheric state, i.e., pressure, temperature and
therefore molecular density, is known, the only remaining
unknown parameter in the Br (Eq. 1) is the aerosol and cloud
extinction profile, which can therefore be independently re-
trieved from the aerosol and cloud backscatter (8ym(z)) pro-
file. This ability to perform independent retrievals of the
backscatter and extinction profiles is the major improvement
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compared with the ability of an elastic-backscatter lidar like
CALIPSO (Young et al., 2018) or with the retrieval of the
optical depth in the case of ICESat-2 (Palm et al., 2022), for
which an extinction-to-backscatter ratio has to be assigned.

Before the aerosol and cloud extinction are retrieved, it
is usual to check where aerosol and clouds can be detected;
i.e., a feature mask needs to be created as an input to the ex-
tinction retrieval algorithm. In a noiseless and well-calibrated
HSRL system, the detection of aerosols and clouds may be
performed by calculating the backscatter ratio, which is the
ratio of the total signal with respect to the Rayleigh:

(Br + Bm) _ (Br + Bm)
Br Br

Since both signals depend similarly on the extinction and
distance, the exponential term and range dependence cancel
out when calculating the backscatter ratio. When the ratio
is greater than 1 there are aerosol or cloud particles present
in that pixel; when it is equal to 1, the return consists of
molecular-backscatter signal only. Equation (2) provides a
simple direct method for determining the lidar backscatter
profile; however, the utility of a direct application is limited
in the case of low-SNR situations.

In the case of ATLID, the measured signals are not fully
separated since the etalon is not an ideal filter; see Wehr et al.
(2023) for the filter and cross-talk characteristics. To sepa-
rate the contributions of Mie signals in the Rayleigh channel
and vice versa, a cross-talk correction is applied within the
L1 processor (Eisinger et al., 2023; do Carmo et al., 2021).
Taking into account the ATLID design and additional issues
such as the large distance to the atmospheric targets and the
limited laser power and receiver area but also the imperfect
Rayleigh—Mie separation by the ATLID HSRL spectral ele-
ments (cross talk) (Eisinger et al., 2023), the SNR ratios are
much lower than those generally associated with terrestrial
lidars. This means that, in general, averaging of the ATLID
signals is necessary in order to apply standard HSRL meth-
ods to the ATLID L1 data. When aiming to detect aerosol
and thin-cirrus-cloud regions, the signals would have to be
smoothed to the point that most of the information content
can be lost if the averaging were to be done blindly, resulting
in averaging of strong and weaker signals and clear-sky areas
together.

An example of the expected ATLID daytime signals
is presented in Fig. 1 for the Halifax—aerosol scene over
the Caribbean, consisting of an ice cloud, a thick aerosol
layer (with an aerosol optical depth (AOD) of =& (0.28)
and a thin aerosol layer between 4 and 6km height
(AOD ~2.2 x 1072). The region is part of the Halifax scene
with an enhanced marine aerosol optical thickness (Dono-
van et al., 2023b). In the top panel, the model truth input
extinction field used to simulate the ATLID signals is shown.
The three lower panels in Fig. 1 are the co-polar Mie, the
total cross-polar signals and the Rayleigh channel forward-
modeled signals, respectively. The simulations show the re-

2

Atmos. Meas. Tech., 16, 3631-3651, 2023



3636

sults for daylight conditions taking into account all expected
noise sources (instrumental effects, e.g., dark noise and ex-
ternal background noise levels).

Note that the absolute attenuated-backscatter values in the
clear sky are similar in strength to those in the elevated
aerosol layer (Fig. 1b). Simple thresholding to detect signif-
icant detections will not work in this case. The main differ-
ence between the two regimes is that the aerosol field shows
a more coherent horizontal and vertical field compared to the
high spatial variability in the clear-sky regions. The effects
of attenuation are clearly visible in the Rayleigh channel be-
low the ice clouds. The ice clouds themselves are seen in both
the co-polar Mie channel and the total cross-polar channel. In
most cases, it will not be possible to mask aerosol layers on
an isolated shot-by-shot basis, i.e., as is visible in the elevated
layer between 4 and 6 km especially. To enable the detection
of these optically thin layers, the data needs to be smoothed;
however, the backscatter signal strength from different tar-
gets can differ by up to a factor of 100. Any smoothing strat-
egy needs to take this into account to not combine informa-
tion from strong and weak returns, which results in biased,
unrepresentative retrievals for extinction and backscatter.

It is expected that the L1 ATLID attenuated backscatters
will be reasonably unbiased; i.e., the noise will be random
and uncorrelated. In addition, at the resolution of ATLID,
cloud and aerosol features are not single-pixel entities but
will extend in both the vertical and horizontal directions.
The combination of these two features (unbiased uncorre-
lated random noise and extended particulate signals) point
to the use of image reconstruction techniques. These tech-
niques can implicitly take into account information from sur-
rounding pixels. Within the ATLID-FeatureMask processor,
a combination of two techniques have been applied, i.e., the
hybrid median method to detect strong features and smooth-
ing of the remaining low-SNR data to enable the detection of
weak features.

2.2 FeatureMask definition and overview

The FeatureMask main output is a feature detection index
ranging between 0 (clear sky) and 10 (likely very thick
clouds) based on the ATLID signal probabilities. The mask
does not distinguish between different particle types but does
intend to separate areas of strong returns and weak returns
and clear-sky regions. The A-PRO processor (Donovan et al.,
2023a) digests these inputs and defines signal-smoothing
strategies based on the defined probabilities to enable the re-
trieval of extinction, lidar ratio and depolarization ratio. In
Table 1, the definition of the FeatureMask is provided with a
short and long description of each of the possible values. The
meaning and explanation of the values should be interpreted
loosely. The description is solely based upon what is to be ex-
pected based upon the absolute backscatter signals and their
signal-to-noise ratios and not based on, e.g., retrieved (unat-
tenuated) backscatter values or depolarization ratios. High
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values of attenuated backscatter, in general, are associated
with optically thick ice clouds and liquid layers, whereas
most aerosol cases show lower attenuated-backscatter values.
The detailed lidar target classification is performed within
the A-PRO processor (Donovan et al., 2023a) by the A-TC
algorithm, where the attenuated-backscatter levels combined
with temperature, extinction, depolarization and lidar ratio
are used to identify different cloud and aerosol types. The
description of how each A-FM feature index value is defined
is given in the following sections.

From a usage point of view, data between 5 and 7 can be
smoothed or grouped together when present in neighboring
pixels. Additionally, one has to ensure, i.e., by target classifi-
cation estimation, that cloud and aerosol data are not com-
bined together. For any value between 8 and 10, care has
to be taken before e.g., averaging with neighboring points.
The same holds for all values below 0. The direct surface re-
turn (—3) can be substantially larger than a low-level aerosol
field. Any smoothing of a (sub-)surface point in the backscat-
ter retrieval can have a large impact on the resulting retrieved
values and subsequent retrievals like aerosol type. Likewise,
adding clear-sky pixel values in the smoothing effort will
dilute the smoothed backscatter signals and can result in
similar incorrect type classification. For the retrieval of the
weaker features of the FeatureMask, a number of smooth-
ing techniques and statistical approaches are employed when
determining dynamic thresholds.

The ATLID FeatureMask processor follows a number of
operations which will be described in more detail in the sec-
tions below and are depicted in Fig. 2. The incoming data
are first checked for continuity in time (i.e., that there are no
gaps in the L1 ATLID data stream). The standard deviation
of the noise levels between 20 and 40 km is calculated to be
used as a reference value, and the surface pixels are retrieved
(Sect. 2.3). Based on this, a surface mask is defined, flagging
all (sub-)surface affected pixels (FM = —3). All remaining
lidar signals are subsequently converted to signal probabil-
ities (Sect. 2.4), and the strongest probabilities are defined
as FM = 10. Using the hybrid median method, the strong
features (FM =7-9) and attenuated regions (FM = —1) are
retrieved based on the co-polar Mie and Rayleigh channel
signals, respectively (Sect. 2.5). The remaining weaker fea-
tures (FM = 5-8) are retrieved using a combination of it-
erative smoothing and determination of dynamic thresholds
(Sect. 2.6). Finally, after all retrieved masks have been com-
bined, a consistency check is performed to detect weak fea-
tures next to strong features that may have been otherwise
missed (Sect. 2.7).

In the case of EarthCARE, an orbit is divided into eight
frames, and within A-FM, each frame is subdivided in hor-
izontal along-track blocks of around 1120km, containing
around 4000 profiles, with an overlap margin between the
blocks of 100 profiles (=28km). These blocks are pro-
cessed independently in parallel, and the results are com-
bined just before the FeatureMask is written to the product
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Table 1. FeatureMask definition, with the first column showing the true output values from the algorithm. The second column provides a
hand-waving classification, and the third column provides an explanation of how this should be interpreted.

Value Meaning Explanation

10 Dense clouds Mie signals are very strong, indicating cloud returns from liquid or optically thick ice clouds.

8-9 Dense aerosols or clouds ~ Mie signals are strong and most likely from clouds, although high optically thick aerosols
can get to these values.

6-7 Aerosol or thin clouds Mie signals from optically thin (cirrus) or attenuated clouds and aerosol regions should
reside here.

5 Low-altitude aerosols Set to bins for which overlying aerosol features are most likely connected to the surface

14 Likely clear sky

Low Mie signals, indicative of clear air — differences between these values are due to

removed features after additional checks.

0 Clear sky Very low Mie signals are expected to come from clear air.
-1 Attenuated Fully attenuated pixels are found through the Rayleigh channel signals.
-2 No retrievals Set in the case of a gap in lidar signals or L1 data not trusted (due to calibration,
miss pointing or otherwise).
-3 Surface Pixel found by the surface retrieval — these may include pixels above the surface affected by

the surface returns.

file. This should ensure that, within each block, enough pix-
els are available to enable statistical approaches and to still
have a similar-enough local atmospheric state. The size of
the blocks is configurable and will be evaluated once actual
ATLID data are available.

In the case of missing or invalid L1 profiles, a choice
has to be made whether the features on both sides of these
gaps can be considered to be continuous or should be treated
separately. In the case of aerosol fields, the spatial correla-
tion lengths have been investigated by correlating backscat-
ter profiles between European Aerosol Research Lidar Net-
work (EARLINET) ground stations and CALIOP overpasses
(Grigas et al., 2015). This showed a fairly good correlation
of around 0.86 within a 100 km overpass radius. In the case
of A-FM, it is assumed that weak (aerosol) signals cannot
be smoothed beyond a conservative 60 km gap. When a gap
exceeds this horizontal length, the low-SNR data-smoothing
operation to detect weak features is performed separately on
each side of the gap.

2.3 Surface detection

The co-polar Mie backscatter signal from the surface can
be significantly higher compared with the atmospheric re-
turns just above the surface. With the horizontal and verti-
cal smoothing of the data required to perform any retrievals
for a noisy system like ATLID, all pixels which are contam-
inated by surface returns need to be masked. This is carried
out by creating a surface mask. The starting point for this
mask comes from the digital elevation model (DEM - from
the ESA EO-CFI ACE-2 database, with an accuracy that is
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always better than +16 m) height provided with the ATLID
L1b data files. The ATLID signal has a vertical resolution
of approximately 103 m with a vertical range bin crosstalk
of 11 % up to 20km altitude (do Carmo et al., 2021); i.e.,
11 % of the signal in a vertical pixel leaks into the neighbor-
ing pixels. Secondly, the onboard summing of two consecu-
tive lidar profiles is envisaged as standard during the mission.
Both effects can cause surface returns to propagate into the
range bin above the actual surface and therefore find their
way into the smoothed aerosol signals if not correctly de-
tected and masked out. To ensure that no surface signals af-
fect the smoothing of data, a conservative surface-influenced
height mask is defined on a profile-by-profile basis. For each
profile, first, the co-polar Mie peak range gate is located by
searching from the lowest pixel up to two pixels above the
one in which the DEM altitude is located. This surface peak
has to be greater than 3 times the average signal noise in the
co-polar Mie channel between 20 and 40 km. If the latter con-
dition is not met, the beam is assumed to be attenuated, and
the surface pixel is set to the DEM pixel. Once the surface
peak (igurf) has been assigned, the backscatter signal in the
adjacent pixel above is checked by comparing this to the sur-
face value itself, the value at iy, + 2, and the average of the
Mie channel signals between igyf + 3 and igyf + 8. The sur-
face height is raised by one pixel when all of the following
conditions apply:

Bisut+1) > 0.75 x B(isurf),
Blsurt + 1) > Bisut+ 3t isurt +8),
Blsurt+1) > 5 x B(isurr +2).
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Define strong features from
Mie-HM probabilities

Define (sub-)surface mask

Retrieve Pye> Py

Mie_FFT

X
Kernel_FFT

Determine attenuated regions
from Rayleigh-HM

Define weak-feature mask from
the 4 smoothed images

Output:
Netcdf & Header
files

Figure 2. Flow diagram illustrating the main A-FM processor steps. Yellow boxes represent input and output files, light-blue boxes represent
the calculations performed, and dark-blue boxes represent the extraction of information from the calculations. The left column depicts the
calculation of signal probabilities and the determination of strong features, the center column focuses on the smoothing of the remaining
signals, and the right column depicts the subtraction of the weaker features from the smoothed images. Finally, all information is combined

(bottom center).

The first condition compares the signal with respect to the
surface peak, and the remaining two aim to evaluate whether
the backscatter in the pixel above the surface is indeed higher
than expected with respect to the pixels just above or whether
it is part of a vertically extended aerosol/cloud layer above
the detected surface.

Once pixels are defined as being (sub-)surface, they are
no longer used in the subsequent feature detection proce-
dures. The main disadvantage of this could be that, poten-
tially, low and shallow features like fog and blowing snow
can be missed and will not be reported as features but as
surface. Once any of these features are more vertically ex-
tended, the second and third conditions are aimed at keeping
the surface at the highest Mie peak around the DEM value.
This part of the processor will be extensively evaluated once
ATLID provides real data and will be updated to provide the
best possible low-altitude feature detection while at the same
time ensuring that surface backscatter is conservatively iden-
tified.

Atmos. Meas. Tech., 16, 3631-3651, 2023

2.4 Converting attenuated-backscatter signals to signal
probabilities

As was depicted in Fig. 1, the dynamic range of backscatter
signals can span a number of orders of magnitude for opti-
cally thick clouds, while for targets such as diffuse aerosol
fields, the signals approach instrument noise levels. In order
to linearize the scale of the signal strength, signal probabili-
ties are used within the algorithm, which takes into account
both the signal strength and its local noise. In this work, it
is assumed that Gaussian statistics are a reasonable approx-
imation for the detected ATLID signals. If this is found not
to be the case after launch and if the relevant information is
available, this step can be updated to the correct statistical ap-
proach. Both the signals and noise levels for each of the three
ATLID channels are available in the L1b products (Eisinger
et al., 2023). A number of error estimates, i.e., total, propor-
tionality, systematic and random errors, are defined in the L1
file; it is assumed that the random errors used within this pro-
cessor represent the signal standard deviations. In this case,
the probability of detection can be calculated as
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where S is the signal, oy is the standard deviation of the sig-
nal, and Py is the detection probability. This integral can be
re-written using the error function (erfc) to
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To enable the detection of very strong single-pixel events,
i.e., the direct backscatter from small optically thick liquid
(e.g., cumulus) clouds, the pixels with Mie signal probabil-
ities very close to 1 (high signal with relatively low noise;
Py > PJiM, where PN = 0.9999 is used for the EarthCARE
test scenes) are set within the feature mask (FM) to a value
of 10 (certain target detection).

2.5 Detection of strong features

The most important task of this part of the algorithm is to
correctly detects edges with e.g., no smoothing beyond the
features or cutting corners. This will assist in defining the
smoothing strategies used in the A-PRO (Donovan et al.,
2023a) processor and ensure that liquid cloud signals will
not be mixed with neighboring aerosol regions during signal-
binning and signal-smoothing operations. Accordingly, this
part of the algorithm relies on the application of an edge-
preserving technique known as a hybrid median (HM) filter
(Russ, 2007, Chap. 4). The HM-filtering procedure preserves
lines and corners that are erased or rounded by conventional
median filtering.

Once the surface pixels are known, a hybrid median (HM)
filter is applied to the detection probabilities in the entire im-
age on a pixel-by-pixel basis. The HM filter spans an n x m
box, where n and m are odd integers greater than 5, equiva-
lent to 1400 m horizontal and 500 m vertical boxes, and rep-
resent ATLID along-track and vertical range gate pixels, re-
spectively. The size of the median filter (i) is configurable
through a configuration file, and two sizes of filter are ap-
plied, i.e., m x m and m x 3, after which the detected features
are combined. The along-track-oriented m x 3-box-shaped
filter specifically targets the detection of horizontally dis-
tributed thin features, e.g., stratocumulus decks. This is de-
scribed in more detail later within this section. In the exam-
ples shown within this paper, a value of 11 has been adopted
for both n and m. This configuration parameter was shown
to provide the optimal value for the detection of cloud edges
and the filling of internal small feature gaps using available
test scene data. The operational value will be determined
once the actual EarthCARE L1b data have been character-
ized and calibrated.
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Figure 3. Two examples of hybrid median kernels used for find-
ing strong features. Panel (a) shows a square filter of 5 x 5, and
panel (b) shows an example of a horizontally oriented kernel
(11 x 3). The thick colored lines depict the pixels for which the me-
dian values in the center pixel (light blue) are calculated. The sizes
denote differences between cell centers for the shown filters.

The value of the center pixel returned by the HM filter is
retrieved by calculating the median values of the two diago-
nals, the horizontal and vertical rows within this box, using
the kernels in Fig. 3, after which the median value of those
four median values is determined. As this latter median is
calculated from an even number of values, the third value of
the sorted array (not the mean of two values in the center)
is used. Those pixels either flagged as (sub-)surface or non-
valid L1b data are neither calculated nor taken into account
in the calculation of the median of neighboring pixels.

The HM filter is very effective in removing single noise
events and filling small gaps within stronger features. As
only median values are used, there are no smoothing edge
effects. The hybrid median algorithm is run iteratively five
times to ensure that the image has converged, i.e., that there
are no changes in the image between this iteration and the
next. This posterizing of the image (Russ, 2007, Chap. 4),
where the pixel values are updated at each iteration, is a pos-
itive side effect of the HM method and ensures that regions
become more uniform and that edges between regions be-
come more abrupt. This procedure is performed separately
for the co-polar Rayleigh and co-polar Mie signals. The re-
sulting Mie image is used for the detection of strong features;
i.e., those pixels with a value above a user-defined thresh-
old (within this paper, a value of 34 % is adopted) are set as
a strong-feature return, resulting in FM values of 7, 8 or 9
depending on the absolute hybrid median pixel value. The
co-Polar Rayleigh image is used for the detection of attenu-
ated regions; i.e Rayleigh pixels with a hybrid median value
<40 % are set to be fully attenuated [FM = —1].

In Fig. 3, examples of the HM filters used for detecting
the strong coherent features are shown. The pixels connected
with thick lines are used for the median calculation for the
gray center pixel.

The only coherent structures which will not be detected
using the m x m kernel are structures with a vertical or hor-
izontal width of a few pixels. Particularly, the detection of
high optically thick water clouds (supercooled layers, stratus
or cumulus) is at risk since they show up in lidar signals as
horizontally oriented thin structures of &~ 2 pixels thick be-
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fore the backscatter signal is completely attenuated. To en-
sure the detection of these important structures, the hybrid
median technique is applied a second time using an m x 3
box, ensuring that features of only two pixels thick, e.g., wa-
ter clouds, are detected.

The results from the two different HM size filters are com-
pared, and the additional features in the m x 3 hybrid median
results are added to the m x m mask. The square mask is
considered to be the basic masking routine as it takes into
account both vertical and horizontal coherence and is ca-
pable of filling in larger gaps. If only the m x 3 version is
used, the strong features in Fig. 1 are still detected but with
a higher variability and more noisy behavior within the fea-
tures. The resulting converged hybrid median results for the
aerosol scene signals in Fig. 1 are depicted in Fig. 4. The top
panel shows the co-polar Mie signal probability after con-
verting the co-polar Mie signals using Eq. (4); the middle
panel shows the resulting signals after five iterations of the
hybrid median filter procedure. The bottom panel depicts the
Rayleigh signal probabilities. The Rayleigh signal probabili-
ties can reach very low values at high altitudes as the signals
become low, whereas the relative noise levels do not change.
Parts of a profile can only be set to be fully attenuated for
those pixels below a detected Mie feature. In the example
shown here, this is only the case at the very start of the scene.
The procedure is applied to both the co-polar Rayleigh and
co-polar Mie data separately. Using the combination of sig-
nals in the co-polar Mie and the total cross-polar channel has
been looked at but was discarded as a viable option. There
are three main reasons for this. Even though the detection of
depolarizing features, i.e., ice clouds or dust aerosols, may
benefit from this combination, the SNR of the combined sig-
nal will become lower for all other pixels. Secondly, the two
channels are calibrated separately, which can introduce a lo-
cal bias for regions in between calibration targets. Thirdly,
the cross channel contains both particulate and molecular-
backscatter signals which will reduce the feature contrast,
especially closer to the surface where the integrated molecu-
lar attenuation is highest. The resulting Rayleigh mask (not
shown) identifies the regions for which the lidar signals are
completely extinguished (FM values of —1), while the co-
polar Mie images are used to detect regions which have
aerosol or cloud particles.

2.6 Detection of weak features

With the high signal-to-noise features determined, the next
step is to search for coherent structures within the remaining
part of the co-polar Mie image. For this we start with the orig-
inal co-polar Mie probability images (Pa mic; Eq. 4) and cre-
ate the weak-feature probabilities ( Pym, mie) image. The first
step is to remove all the probabilities where strong features
and (sub-)surface and fully attenuated pixels were detected
and to swap these with realistic weak-feature values. To ac-
complish this, the previous detected strong-feature pixels are
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filled in using a linear interpolated value of the averaged sig-
nals (Biop, bor) above and below the already detected feature

within the column. The By, and By, values are calculated
using a 5 x 5 box of the remaining P4 mje pixels. The sub-
surface regions are filled in a similar manner, with the lowest
pixel set to the background noise value. The reason for this
replacement strategy is to ensure that weaker edges of strong
features (not detected by the HM procedure) are not fully
smoothed out by the clear-sky pixels surrounding them but
have relatively stronger signals towards the strong features.

As the most obvious features are already detected and only
a noisy image remains, a very simple convolution method
is needed to check for the presence of more coherent fea-
tures within the noisy data. Within the algorithm, the filled-
in Pym mie 2D array is iteratively convolved using a hori-
zontally oriented 2D Gaussian normalized kernel, where the
horizontal and vertical standard deviations (in pixel num-
bers) can be set by the user. In the ATLID examples pro-
vided in this paper, values of 11 along-track ATLID pixels
x 1.5 vertical range gates are used. The iterative smoothing
is performed in Fourier space, making each convolution a
simple matrix multiplication. For four specific configuration-
specified iteration counts (N;1—Nj4), the inverse Fourier
transformation is performed, providing images of smoothed
probabilities (P; mie), where i is the iteration number. Each
of these smoothed images is checked for the availability of
coherent features. In general, for the ATLID-modeled EC-
SIM scenes, the useful range of iterations runs from 25 up
to 170 convolutions, where the inverse fast Fourier transform
(FFT) was performed for i = 35, 70, 140 and 170. The low-
est three retrieved convoluted images are used to detect the
medium strong features (FM values of 7) while any images
constructed beyond 150 smoothing convolutions is used to
determine very low signal to noise aerosol features (FM val-
ues of 6). In the commissioning phase, the inverse FFT image
numbers will be evaluated and updated where necessary.

As the noise is assumed to be Gaussian, the resulting con-
volved noisy signals are also Gaussian. The Gaussian nature
of the smoothed field is exploited in the next step in the al-
gorithm, where a dynamic threshold is retrieved in order to
separate clear-sky pixels from aerosol or cloud pixels. From
the different convolved P; e images, the one-dimensional
detection probability histograms are calculated and exam-
ined. The histogram in Fig. 5 depicts the number of pix-
els within a signal probability bin, normalized to the his-
togram maximum. The histogram maximum is determined
by the clear-sky pixels since most of the pixels in the atmo-
sphere do not contain enough aerosols to enhance the co-
polar Mie backscatter signals. On the left side of the his-
togram peak, one finds the pixels which originally had very
low or negative backscatter values and which have not been
smoothed enough. On the right side of the peak, one finds
the pixels which have enhanced Mie backscatter values and
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Figure 4. Panel (a) depicts the co-polar Mie signal probabilities from Eq. (4) using the attenuated-backscatter signals shown in Fig. 1b.
Panel (b) is the resulting image after the HM routine using an 11 x 11 size square filer; any additional thin-layer features were detected using
an 11 x 3 horizontally oriented HM filter. Panel (c) represents the Rayleigh channel signal probabilities. Note that the figures are shown in
pixel number since the procedure is defined in pixel number count and not in SI units of length. The adopted thresholds used for the Mie
channel (34 %) and Rayleigh channel (40 %) are indicated by the change from the blue color pallet to the yellow-red color pallet.

10° 10°
(a) (b)
g 1071+ g 10714
o o
=1 =3
(V) %)
o O
] o
el °
() (]
N N
g 10724 g 1072 i
S S !
= = :
1
1
1
i
1073 T T T T T T L 1073 T T T 1 T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Co-Polar Mie Probability [-] Co-Polar Mie Probability [-]

Figure 5. Example of two of the probability histograms for one of the regions after 40 (a) and 80 (b) convolutions. The blue lines show the
smoothed probability data, the gray lines show the multi-Gaussian fit, and the dashed black line shows the retrieved threshold P;. The red
line depicts the fit to the central Gaussian noise peak. All pixels with a probability P; yjie > P are retrieved as part of a feature.
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which could, in principle, be associated with aerosol or low-
backscatter cloud returns.

In Fig. 5, two examples of P; mje histograms are shown
(blue lines) after 40 and 80 convolutions, respectively, with
the 2D Gaussian-smoothing kernel. In order to separate the
noise peak from the feature signals, as depicted on the right
side, a multi-Gaussian fit (gray line) is performed on the his-
togram, and from this, the retrieval of the clear-sky single-
Gaussian noise peak (red line) is performed. Once the multi-
Gaussian fit exceeds the noise peak by more than a config-
urable threshold value (e.g., 8 or 10), the clear-sky versus
Mie particle probability threshold is defined, which is de-
picted by the dashed line. Since the histograms and subse-
quently the multi-Gaussian fit differ from frame to frame,
this Mie particle threshold depends on the local conditions.
This ensures that the final threshold used for the particle vs.
molecular pixels is flexible and defined by the data, i.e., back-
ground noise, and not by a pre-defined fixed value.

In Fig. 5, the signals from the low-SNR pixels start with
a shoulder on the noise peak (signal probability & 0.25) and
show larger deviations beyond = 0.3. When the shoulder ex-
ceeds the noise peak by a factor of 10 (ratio of the gray and
red lines), the threshold for this segment of the observed
frame is determined. All pixels which make up the area on
the right side of this threshold are defined as part of a feature.
Since this is a statistical approach and holds for individual
pixels, it means that neighboring pixels will not, per defini-
tion, be selected. However, in practice, due to the smoothing,
neighboring pixels will have similar values, and the proce-
dure tends to fill in complete (e.g., distributed-aerosol) re-
gions.

2.7 Combining the strong and weak features

As described in the previous sections, the detection of strong
and weak features have been addressed using very different
procedures. This may result in potential gaps between these
two types of detected features; e.g., there may be a small
gap between a liquid cloud layer (detected using the HM fil-
ter approach) and the surrounding aerosols (detected using
the Gaussian-smoothing-filter approach). A second problem
which can arise is small gaps in the detected weak features
due to the statistical nature of the approach. A third issue
has to do with the wavelength of ATLID. Since the molecu-
lar attenuation in the UV becomes significant at low altitudes
due to the increasing atmospheric density profile and the rel-
atively large molecular Rayleigh extinction cross-section at
355 nm, the signal-to-noise ratio of ATLID signals can be-
come especially low close to the surface even without clouds
being present at higher altitudes. In those cases where a layer
of weak features is detected close to the surface, it is ex-
tended to the surface with a lower FeatureMask index level
(FM =)5). Finally, there is the chance of a gap occurring be-
tween strongly attenuating features like ice and liquid clouds
in the Mie signals and the detection of attenuated areas as-
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sessed using the Rayleigh signal. In this case, the attenuated
region is extended upwards to the lowest pixel with a Fea-
tureMask value > 6 within each column.

To deal with the issues just described, a combined-feature
mask (CFM) is created, combining the weak- and strong-
feature mask. The merging is performed by applying the hy-
brid median m x m routine iteratively five times on top of
the retrieved combined-feature mask. The resulting mask is
compared to the original CFM. All features filled in due to
the hybrid median filtering are added to CFM; all features
that disappear for FM between 5 and 7 receive a penalty of
1 to 3 points, bringing them into the range between FM =1,
4] on their detection status.

The final retrieved FeatureMask for the signals, shown in
Fig. 1, is shown in Fig. 6. In the top panel, the Feature-
Mask output is shown; the bottom panel depicts which part
of the algorithm the results originate from. The thick ma-
rine aerosol layer and the thicker ice clouds at the start of
the scene are found mostly using the HM filter step. The
thinner elevated aerosol layer is found by the weak-feature-
smoothing part of the algorithm (convolution images 1 to
4). The white contour lines in the top panel depict those re-
gions for which the model truth extinction values are equal to
1 x 107°m~!. As can be seen, the upper edge of the model
extinction field is closely followed in most cases (except be-
low the ice cloud and the upper-right side).

3 Algorithm performance and sensitivity

Over the years, many verification metrics have been devised
for comparing forecasts with observations that are commonly
used in the field of meteorology. In this section, the verifica-
tion indices or scores used for the verification of the Fea-
tureMask are described. Details of some of these methods
can be found in Fuller (2004). When looking at a forecast
event that either occurs or does not occur, the events can
be represented by a 2 x 2 contingency table. Each individ-
ual event is categorical, non-probabilistic and discrete. Ex-
amples of this type of forecast include rain versus no rain
or a severe-weather warning. In this case, it is the detection
of a feature (forecast) versus pixels where the input model
does have an extinction > 10"°m~! (observed). From the
appropriate contingency tables, a number of statistical prop-
erties can be calculated, like the percent of forecasts that
are correct (PC=0.91 for the scene discussed above); the
hit rate (HR =0.68); or the false-alarm ratio (FAR =0.02)
and more complex combinations of the latter, like the Hei-
dke skill score (HSS =0.74; Heidke, 1926). The percentage
of detected pixels for this scene for each different processor
step is as follows: direct detection — 0.1 % (Sect. 2.4), hybrid
median — 52.8 % (Sect. 2.5), convolution — 34.3 % (Sect. 2.6),
and combining strong and weak — 12.8 % (Sect. 2.7). The fact
that significant percentages of detections are supplied by both
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Figure 6. FeatureMask results for the attenuated-backscatter signals shown in Fig. 1. Panel (a) shows the FeatureMask (filled in contours)

with the white contour lines on top depicting an extinction of 1 x 100

m~! of the input model fields. Panel (b) indicates for each pixel from

which part of the processor the results originate. Since all procedures are performed in pixel space, the lower image is shown in the profile
and altitude number count; note that the latter reaches the full 40 km height and has not been cut off at 20 km. The dashed line indicates the

two regions which were retrieved in parallel by the algorithm.

the hybrid median and convolution procedures indicates that
both procedures are required.

The detailed ATLID simulations based upon model scenes
(Donovan et al., 2023b) provide a useful opportunity to eval-
uate the FeatureMask algorithm in this manner and to per-
form sensitivity tests on the available configuration parame-
ters.

The performance is evaluated in two ways: once looking
at the fraction of detected pixels, which have a positive ex-
tinction due to cloud and/or aerosols, and once looking at the
fraction of detected pixels with respect to the actual co-polar
Mie signals. The first relates more to what extinction lev-
els are detectable, and the second relates more to how well
can we detect features. In both cases, the pixels which have
been retrieved as fully attenuated have been removed from
the sample. In Fig. 7, the fraction of detected pixels with re-
spect to the model extinction is plotted in the left panel. A
normalized histogram of the model extinction field has been
added as a reference. The black line shows that, above ex-
tinction values of 10~ m~!, most of the pixels are detected.
For higher extinctions, the detection rate goes slightly down
again. This has to do with the attenuation of higher-lying
aerosol layers and/or ice clouds, which reduces the SNR and
therefore the detectability of the layers below. The fraction
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of detection follows the model extinction histogram between
8 x 1077 and 8 x 10~ m™". This is related to the 2D fea-
ture detection; however, it never surpasses the 50 % detec-
tion rate in this regime. The dashed yellow line indicates the
fraction of missed features above the highest-lying detected
pixels and depicts the sensitivity of detecting the top of an
aerosol layer at a particular extinction. Any false detections
are shown in a single column at an extinction of 10~" m~!
since the FAR is only 0.02 and is not visible here. In the panel
on the right, the fractions of detection of all non-attenuated
pixels with a positive model extinction are shown. A normal-
ized histogram of clear-sky co-polar Mie signals has been
added as a reference. This histogram depicts the noise of
the measurements. Note that features are detected at negative
signal levels. This is due to the 2D smoothing and gap-filling
techniques applied within the algorithm. The fraction of de-
tection is greater than 50 % for signals > —10~6sr— ' m~!.
Finally, a scaled histogram of all the signals of the attenu-
ated pixels is provided. This again follows the distribution
of the clear-sky noise and is indicative of the fact that no
usable signals can be found in these. The non-detected pix-
els and falsely detected pixels follow the clear-sky histogram
as well, again indicating why these pixels were not detected
with respect to the background noise. There may be some
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Figure 7. Fraction of detected (black line) and undetected pixels (red line) with respect to the input model extinction fields which were used
to forward model the ATLID L1b signals (a). The dashed yellow line shows the fraction of undetected pixels above the highest detected pixel
within each column. The normalized model extinction distribution is shown as a gray histogram. In panel (b), the same information is shown
with respect to the attenuated Mie backscatter signals with the normalized histogram of the clear-sky signals in gray in the background.
Additionally, the distributions of falsely detected pixels and fully attenuated pixels are provided.

room for improvement on the right side of the histogram
with regard to the non-detected pixels with signal strength
>2x 10~ %sr~! m™!, but this will have to be evaluated using
campaign data and after launch in the commissioning phase.

4 Algorithm results
4.1 Halifax scene

Specific simulated test scenes have been created from model
output data in order to test the full chain of EarthCARE
processors (Donovan et al., 2023b). One of these scenes is
called the Halifax scene. The 6000 km long frame starts over
Greenland (nighttime conditions), crosses Atlantic Canada
and ends in the Caribbean (daytime conditions). The scene
starts with clouds over the Greenland Ice Sheet, followed
by high backscatter and extinction clouds down to 50° N. A
high-altitude ice cloud regime starting over Atlantic Canada
down to 35°N is followed by a low-level cumulus cloud
regime embedded in a marine aerosol layer below an elevated
continental pollution layer at an altitude of around 5 km. The
aerosol scene discussed earlier is based on the last part of this
scene. The cloud information comes from high-resolution
cloud-resolving model output (Qu et al., 2022), while the
aerosol information is taken from the CAMS model (Peuch
et al., 2022).

In Fig. 8, the Halifax scene is presented in more detail,
starting with the model input extinction field, followed by
the forward-modeled co-polar Mie and Rayleigh fields, and
finally the retrieved FeatureMask following the methods de-
scribed above.

Most of the features present in the Halifax scene can
be directly seen back in the FeatureMask, where the top
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of the features nicely follow the extinction field values
around A~ 10~°m~!, except from the very optically thin
aerosol layer between latitudes of 63 and 51°N and al-
titudes between 5 and 6 km. By eye, one can distinguish
this tenuous aerosol region, but the smoothing routines can-
not expose the feature with an average AOD of 0.007
(mean extinction 5.9 x 10~ m~! and maximum extinction
of 9.0 x 107° m~") as this is too tenuous to be retrieved as
a continuous feature, and only a few pixels are found. In
general the retrieval nicely follows the edges of the features,
and there are relatively few false alarms (FAR: 0.01) and a
relatively high hit rate (HR =0.76) and Heidke skill score
(HSS =0.81). One thing that is also visible in the figure is
that no strong differences are expected between daytime and
nighttime conditions for the ATLID data. The percentage of
detected pixels for the Halifax scene for each processor step
is as follows: direct detection — 4.2 % (Sect. 2.4), hybrid me-
dian — 39.6 % (Sect. 2.5), convolution — 44.2 % (Sect. 2.6)
and combination of strong and weak — 12.0 % (Sect. 2.7).
Overall, the strong features comprise 43.8 % of all detected
pixels, with similar values observed for the Baja and Hawaii
scenes (Donovan et al., 2023a).

Another way to show whether all features have been de-
tected is by averaging horizontally all pixels that are clas-
sified as (likely) clear sky (FM values of O to 4) with no
detected feature pixels present above. What one should ex-
pect is that, in the case of a clear atmosphere, there are
no detected particulate scatterers; i.e., the average co-polar
Mie channel signals should be O at all altitudes. The to-
tal cross-polar profile, however, includes the cross-polarized
returns from both the particulate and molecular particles,
where the latter is directly related to the local molecular den-
sity. The clear-sky signal for the cross-polar channel should
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thus follow a scaled atmospheric density profile corrected for
the Rayleigh transmission profile. In Fig. 9, the three clear-
sky profiles for the three channels are shown. The Mie sig-
nals oscillate around 0 above 9km and show an enhance-
ment of 1.5x 1078sr ! m~! between 5 and 10km. The
Rayleigh channel follows the density profile until the increas-
ing molecular density impacts the signals at 355 nm due to at-
tenuation. The cross-polar channel follows a scaled Rayleigh
profile, indicating that the signal comes directly from the lin-
ear cross-polarization from the molecular backscatter. It does
show that no features containing ice particles or dust-like
aerosols have been missed.

Both the co-polar Mie and total cross-polar channels do
show enhancements in the lower kilometer; these signals
come from regions which have a low co-polar Mie SNR due
to the relatively high molecular attenuation at 355 nm near
the surface. This leads to a lower probability of feature detec-
tion. However, when averaged over an entire frame, there is
a positive signal. Between 5 and 8 km, the averaged co-Mie
signal shows a small enhancement which originates mostly
from the tenuous aerosol layer between latitudes of 65 and
50° (Fig. 8) and which was not detected by the Feature-
Mask procedure. These averaged profiles are standard out-
puts from the processor and will be used for checking the
cross-calibration performed for the ATLID instrument L1b
processor once EarthCARE is in space.

As previously explained, one of the main reasons for the
FeatureMask is to guide the implementation of smoothing
strategies for, especially, optically thin features. The separa-
tion of strong and weak features is not only of importance
but is also necessary to ensure that no surface signals are
mixed with aerosol signals when calculating aerosol opti-
cal properties. In Fig. 10, a zoomed view is provided for
the area around the detected pixels affected by surface re-
turns in the Halifax scene. Shown are the 16 pixels around
the detected lidar surface pixel for each profile, indicated by
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S; the retrieved FeatureMask for these pixels; and the statisti-
cal properties of the surface and adjacent vertical pixels. The
lidar surface pixel can, in general, be detected by eye in the
figure as the strongest signal within the profiles that occurs
either at pixel index [S] or [S — 1] in case the pixel above
the actual surface is deemed to be influenced by the surface
backscatter (see Sect. 2.3 for the description of surface de-
tection). Statistically, the pixel above the surface return ex-
hibits a similar attenuated-backscatter histogram to the sur-
face pixel and the pixel below the detected surface between
1072 < BMie < 1074 m™! st ! however, the latter two also
peak at higher backscatter values due to the surface returns.
In those cases where the pixels below the lidar surface have
a higher absolute value, it is assumed that the detected lidar
surface pixel is still dominated by the true surface. The lack
of strong signals in the pixel above the lidar surface return
indicates that these can be safely used when smoothing sig-
nals. Note that, on the right side of the FeatureMask, over
the Caribbean, the low-altitude aerosol pixels are indicated
in gray. These pixels have been set to a FeatureMask value
of 5 due to the overlying aerosol pixels and not their absolute
signals themselves. The atmospheric attenuation at 355 nm
often strongly attenuates the signals while it is likely that the
aerosol field is extended all the way to the surface. By sepa-
rating these pixels this way, it provides users of the product
a means to decide whether the underlying signals should be
used for their specific needs or not.

4.2 Using Aeolus data for evaluating the A-FM
methods.

In August 2018, the European Space Agency (ESA)
launched the Aeolus Earth Explorer Mission (Reitebuch
et al., 2019, 2020). Aeolus caries an ultraviolet UV high-
spectral-resolution lidar, the Atmospheric LAser Doppler IN-
strument (ALADIN). ALADIN, like ATLID, measures the
atmospheric backscatter from air molecules and particles in
separate channels; however, the ALADIN instrument is opti-
mized to measure the line-of-sight (los) wind profile observa-
tions in the troposphere and lower stratosphere. The los wind
component is measured by detecting the direct Doppler shift
induced by the atmospheric movements with respect to the
satellite. The main detection channels aboard ALADIN are
referred to as the Mie and Rayleigh channels (the Rayleigh
channel itself is comprised of two spectral-filter elements). In
the Mie channel,the signal is detected in a spectrally resolved
manner, and the wavelength shift of the particle backscatter
can be detected. The molecular signals are detected using two
offset Rayleigh channels, each covering one of the wings of
the thermally broadened molecular-backscatter returns. The
ratio of these wings is used to measure the Doppler shift of
the detected molecular Rayleigh scattering, i.e., the los wind
component.

For ALADIN a relatively low range resolution (minimum
250 m up to 2km) and low number of vertical bins (24) are
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pixel.

available, resulting in a maximum altitude up to about 20 km
in general. The per-bin vertical resolution of the 24 bins can
be controlled and changed dynamically. ALADIN emits cir-
cularly polarized light, and the cross-polarized return signal
is not measured; only the co-polarized is detected. Next to
the los winds, atmospheric optical properties are provided as
a secondary product; however, being an HSRL, ALADIN is
able to independently retrieve the particle extinction, the co-
polarized particle backscatter coefficients and therefore the
co-polarized lidar ratio.

ALADIN data provide an opportunity for testing the Fea-
tureMask algorithm described in this paper. The proce-
dures described within this paper rely on edge detection and
smoothing in both the horizontal and the vertical and were
not designed to cope with a small number of vertical pixels
with changing resolution within the profile and also between
subsequent profiles. In order to create signals which can be
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used by the FeatureMask algorithm, the data are first trans-
formed to a constant vertical resolution grid starting at the
lowest altitude within the orbit up to the maximum altitude
of the Mie grid for that orbit.

For those pixels that are distributed over multiple verti-
cal bins, within the newly defined high-resolution grid, the
low-resolution signals have an added random normal com-
ponent using the errors reported in the Aeolus L1 product.
The main reason for this step is to ensure that single high-
backscatter returns with relatively large errors do not spread
out over a large number of pixels but have values related to
the local error estimates. The high-resolution Rayleigh and
Mie signals are subsequently fed into the FeatureMask pro-
cedure as described earlier. The resulting high-resolution re-
trieved FeatureMask is finally downgraded to the original
grid, adopting the highest retrieved FeatureMask value when
multiple pixels are combined within a low-resolution pixel.

Atmos. Meas. Tech., 16, 3631-3651, 2023
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Figure 11. Comparison of a CALIPSO and Aeolus overpass (Orbit 3991) on 1 May 2019 over the tip of Somalia (east Africa) towards Yemen.
Panels (a)—(d) show the CALIPSO 532 nm backscatter quick looks, with the second row being the corresponding VFM mask. Panels (e) and
(f) show the 355 nm Aeolus backscatter and AEL-FM results for the overpass a few hours later. Both the dust layer and ice clouds are clearly
visible in both instruments’ L1 data and retrieved by their respective feature finders.

The resulting procedure has been added to the current Aeo-
lus operational L2a processor (Flament et al., 2021) as the
Feature_Mask_Index from the AEL-FM processor output.
It has been providing operational results since version 3.15
from mid-2022 together with the first version of the AEL-
PRO processor, which is the Aeolus version of the A-PRO
(Donovan et al., 2023a) processor. This shows nicely how
procedures developed for one ESA explorer mission can be
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adapted for other missions. In Fig. 11, a comparison of the
AEL-FM results is shown for a collocated Aeolus overpass
with CALIPSO. The time difference between the two mis-
sions is roughly 4h, and obviously, specific features will
have changed within this time span. However, in those cases
where long-lived events are present, the FeatureMask results
can still be evaluated against the high-resolution CALIOP
retrievals. In this particular case, the two satellites flew over
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the tip of Somalia (east Africa) towards Yemen on 1 May
2019. There was a thick dust layer up to an altitude of 5km
surrounded by ice clouds. Over the Indian Ocean (left side
of the image), a number of liquid clouds were visible with
low-level marine aerosols. On the right side, the CALIPSO
signals and VFM mask (Vaughan et al., 2009) show liquid
cloud layers which are not visible in the Aeolus data. This
can be due to either the difference in overpass time or the
fact that the two observation sheets are not fully collocated
in space. Both the dust and ice clouds are nicely captured by
both the FeatureMask and the VFM mask and can be seen by
eye in the respective L1 images. A number of these cases are
currently being examined in terms of both the detectability
and the detailed retrieval of microphysical aerosol and cloud
properties as part of the Aeolus L2 evaluation.

5 Conclusions

The Earth Clouds Aerosol and Radiation Explorer (Earth-
CARE) mission is a combined ESA-JAXA mission to be
launched in 2024 and has been designed with sensor syn-
ergy playing a key role in order to retrieve cloud, aerosol and
radiation products. A system of 17 geophysical algorithms
(L2) have been designed to work in a chain to perform the
best possible 3D reconstruction of the cloud and aerosol at-
mospheric state.

In this paper, the ATLID feature mask algorithm (A-FM)
has been described, the main task of which is to separate
regions with particle returns from molecular-backscatter re-
gions only. It is the first processor in the ATLID HSRL chain
and the only one providing its results at the native lidar grid.
The output FeatureMask enables the ATLID profile retrieval
processor (A-PRO) to design optimal binning strategies to
minimize the number of shots required for reaching high-
enough SNR and ensure that no clear-sky and strong surface
or cloud backscatter returns are mixed with tenuous aerosol
or ice cloud layers. A-FM has been based on a number of
(statistical) image reconstruction techniques.

One of the first steps performed is the detection of the sur-
face mask, which includes all pixels affected by the surface
backscatter. The current implementation has been conserva-
tive in the sense that all pixels above the surface which have
a high-enough elevated backscatter signal with respect to the
pixels above are classified as surface return contaminated.
This may include near-surface feature occurrence within a
few 100 m from the surface, i.e., fog and blowing snow. Once
enough ATLID data are available, an attempt will be made
to improve upon the surface mask and to provide an im-
proved low-height feature detection. Next to this mask, the
integrated surface returns are written out which, in the future,
are intended to be directly used in the retrieval of aerosol op-
tical depth (AOD) from the lidar signal reflected from the sea
surface (e.g., He et al., 2016).
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The A-FM algorithm has been evaluated thoroughly us-
ing the synthetic test scenes (ECSIM; Donovan et al., 2023b)
and ALADIN L1 data from the Aeolus wind lidar mission.
The test scenes allow for a direct comparison of the result-
ing FeatureMask to the model truth fields used as input to
the simulator. These comparisons indicate that the mask has
a percentage correctness > 90 % and is capable of reliably
detecting aerosol regions with extinctions > 107> m~!.

For the Aeolus mission, the A-FM processor has been re-
formed into the operational Aeolus FeatureMask (AEL-FM)
processor, which is part of the official level-2a Aeolus pro-
cessor. The AEL-FM processor contains most of the core el-
ements of the A-FM processor, and its successful implemen-
tation and subsequent evaluation based on more than 1 year
of data provide good insight into the processor core and its
capabilities.

Finally, the A-FM outputs will provide a direct way to
evaluate the ATLID channel calibration in the L1b data. For
the L1b verification, the average clear-sky signal profiles for
the three ATLID channels, the co-polar Mie channel, the to-
tal cross-polar channel and the co-polar Rayleigh channel,
have been created. These profiles will indicate for each frame
whether the calibration of all cross-talk parameters has been
well performed.

Data availability. The EarthCARE Level-2 demonstration prod-
ucts from simulated scenes, including the L1b data and the A-FM,
A-PRO and A-LAY products discussed in this paper, are available
from https://doi.org/10.5281/zenodo.7117115 (van Zadelhoff et al.,
2022). The Aeolus L2a products are available at https://earth.esa.
int/eogateway/catalog/aeolus-12a-aerosol-cloud-optical-product
(ESA, 2023). The CALIPSO images were taken from
https://www-calipso.larc.nasa.gov/products/lidar/browse_

images/production/  (last access: 10 December 2022;
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_VFM-
STANDARD-V4-20, NASA/LARC/SD/ASDC, 2018;

https://doi.org/10.5067/CALIOP/CALIPSO/LID_L1-
STANDARD-V4-10, NASA/LARC/SD/ASDC, 2016).
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