
Atmos. Meas. Tech., 16, 3715–3726, 2023
https://doi.org/10.5194/amt-16-3715-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using optimal estimation to retrieve winds from
velocity-azimuth display (VAD) scans by a Doppler lidar
Sunil Baidar1,2, Timothy J. Wagner3, David D. Turner4, and W. Alan Brewer2

1Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder,
Boulder, Colorado 80309, USA
2Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
3Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
4Global Systems Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA

Correspondence: Sunil Baidar (sunil.baidar@noaa.gov)

Received: 20 December 2022 – Discussion started: 2 January 2023
Revised: 31 May 2023 – Accepted: 18 June 2023 – Published: 10 August 2023

Abstract. Low-powered commercially available coherent
Doppler lidar (CDL) wind profilers provide continuous mea-
surement of vertical profiles of wind in the lower tropo-
sphere, usually close to or up to the top of the planetary
boundary layer. The vertical extent of these wind profiles is
limited by the availability of scatterers and thus varies sub-
stantially throughout the day and from one day to the next.
This makes it challenging to develop continuous products
that rely on CDL-observed wind profiles. In order to over-
come this problem, we have developed a new method for
wind profile retrievals from CDL that combines the tradi-
tional velocity-azimuth display (VAD) technique with opti-
mal estimation (OE) to provide continuous wind profiles up
to 3 km. The new method exploits the level-to-level covari-
ance present in the wind profile to fill in the gaps where the
signal-to-noise ratio of the CDL return is too low to provide
reliable results using the traditional VAD method. Another
advantage of the new method is that it provides the full er-
ror covariance matrix of the solution and profiles of infor-
mation content, which more easily facilitates the assimila-
tion of the observed wind profiles into numerical weather
prediction models. This method was tested using yearlong
CDL measurements at the Atmospheric Radiation Measure-
ment (ARM) Southern Great Plains (SGP) Central Facility in
2019. Comparison with the ARM operational CDL wind pro-
file product and collocated radiosonde wind measurements
shows excellent agreement (R2 > 0.99) with no degradation
in results where the traditional VAD provided a valid solu-
tion. In the region where traditional VAD does not provide

results, the OE wind speed and wind vector have uncertain-
ties of 3.44 and 4.33 m s−1, respectively. As a result, the
new method provides additional information over the stan-
dard technique and increases the effective range of existing
CDL systems without the need for additional hardware.

1 Introduction and background

The kinematic profile of the planetary boundary layer (PBL)
has a significant impact on disciplines throughout the atmo-
spheric sciences. Low-level wind shear can determine storm
mode (e.g., Davies and Johns, 1993) and has significant im-
pacts on aviation safety (e.g., Gultepe et al., 2019; Thobois
et al., 2018), while knowledge of the wind profile within the
PBL is a significant factor in siting wind energy installations
(Banta et al., 2013). High-temporal-resolution observations
of the wind profile are crucial for understanding numerous at-
mospheric processes. While radiosondes remain the standard
by which all profiling measuring systems are evaluated, they
are not well-suited toward capturing the evolution of bound-
ary layer wind profiles due to their substantial cost per obser-
vation and significant time required to prepare and execute
each observation. Alternative ways of observing atmospheric
wind profiles have been developed, including active remote
sensing with radars, lidars, and sodars; passive remote sens-
ing with satellites; and in situ observations with commercial
aircraft or uncrewed aircraft systems (UASs).
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To address the need for rapid sampling of the wind pro-
file in the PBL, manufacturers have developed low-powered
commercial coherent Doppler lidar (CDL) wind profilers.
These systems feature turnkey operation, are quick and easy
to deploy, and have the ability to run unattended for signifi-
cant periods of time. Fundamentally, Doppler lidars measure
the velocity of scatterers along the emitted beam (radial ve-
locity or line-of-sight velocity, LOSV); it is assumed that the
one-dimensional speed of the scatterers is the same as the
wind speed along that direction since the primary scatter-
ers are aerosols. Observations of the vertical profile of the
horizontal or three-dimensional wind vector can be retrieved
from CDL-observed radial velocities using techniques like
velocity-azimuth display (VAD) or Doppler beam swinging
(DBS). In both of these techniques, lidar measurements along
multiple non-coplanar angles are used to reconstruct the ver-
tical profile of the wind vector under the assumption that
winds are horizontally homogeneous within the volume ob-
served by the lidar and that they do not evolve during the
period (usually a minute or less) in which a set of scans is
collected. Numerous studies comparing Doppler lidar wind
profile retrievals to in situ observations from radiosondes or
instrumented towers and masts have shown that CDLs are a
reliable and effective way of measuring wind profiles in the
PBL (e.g., Choukulkar et al., 2017; Klein et al., 2015).

While the theoretical maximum range of CDLs is 10 km
or more and is only limited by the pulse repetition frequency
of the emitter and the number of range gates in the detection
system, the need for the signal to be scattered and returned to
the lidar means that the effective range is much less. CDLs
usually feature a laser emitting at 1.5 µm. This wavelength
is short enough to be sensitive to aerosols, cloud droplets,
and some precipitation but not so short that it is significantly
impacted by molecular scattering. This means it can be a
challenge to obtain wind observations at times and heights
where aerosol content is low, such as above the top of the
PBL. In practice, CDL-observed wind profiles usually ex-
tend to 1–2 km above ground level (a.g.l.). While this obser-
vation depth is more than sufficient for wind energy applica-
tions, other processes such as PBL entrainment or mesoscale
dynamics extend to higher altitudes and are difficult to as-
sess with operational CDL retrievals. Furthermore, since the
aerosol concentration is not constant, the maximum effec-
tive height of CDL-observed wind profiles varies substan-
tially throughout the day and from one day to the next. This
makes it challenging to develop continuous products that rely
on CDL profiles as the valid range is constantly changing.
Various techniques have been developed to extend the range
of wind profiles from scanning CDL, including accumula-
tion of signal power spectra estimates for direct estimation of
the wind vector without estimating radial wind velocities for
individual azimuth angles (Smalikho, 2003; Stephan et al.,
2019). Although these advanced techniques are able to ex-
tract information from noisier Doppler spectra, they are still

limited by the availability of the scatterers and, hence, do not
provide consistent vertical coverage.

In the present work, we propose an alternate method of
retrieving wind profiles from CDL observations that com-
bines the traditional VAD technique with optimal estimation
(Rodgers, 2000). This exploits the level-to-level covariance
present in the wind profile to help fill in the gaps where the
signal-to-noise ratio (SNR) of the lidar return is not strong
enough to perform the traditional VAD technique. The out-
put of this retrieval technique is a near-continuous profile of
winds up to 3 km a.g.l. that agrees very strongly with the
traditional VAD at times and heights where both are avail-
able yet still exhibits strong agreement with radiosondes at
heights where the traditional VAD technique was unable
to produce a valid result. The remainder of this paper dis-
cusses the retrieval methodology (Sect. 2), compares its per-
formance against both the traditional VAD and collocated ra-
diosondes (Sect. 3), provides a discussion (Sect. 4), and of-
fers recommendations and conclusions (Sect. 5).

2 Methodology

2.1 Traditional VAD method (VADtrad)

In the traditional VAD method (VADtrad), horizontal winds
are retrieved from scanning CDL plan position indicator
(PPI) or step-stare scans at one or multiple elevation angles
(EAs) using the VAD algorithm described by Browning and
Wexler (1968). The measured radial velocity yr at a given
range gate r is related to the three-dimensional wind velocity
vector xr by the viewing geometry. Assuming a horizontally
homogeneous wind flow and constant vertical velocity over
the sampling volume, a sinusoid is fitted to the radial veloc-
ity data at a given range gate (or range bin) to retrieve the
wind velocity components. The wind speed, wind direction,
and vertical velocity are provided by the amplitude, phase,
and offset of the sinusoid, respectively. Details of VADtrad
retrievals and wind precision estimates from a CDL can be
found in Newsom et al. (2017). Briefly, for N number of
beams with azimuth angles (θi) in the PPI or step-stare scans
at elevation angle (α) and a measurement uncertainty due to
random errors (σ), the VADtrad method is equivalent to min-
imizing

ψ2
=

N∑
i=1

(
xr fT

i − yri
)2

σ 2
ri

, (1)

with fi = [sinθi · cosα,cosθi · cosα,sinα] representing the
measurement geometry of individual beams.

2.2 Optimal estimation VAD method (VADoe)

Wind velocity components are retrieved one range gate at a
time and hence one height at a time from a set of radial ve-
locity measurements from an azimuthal scan at a given range
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gate with the VADtrad technique. While this level-by-level
retrieval can filter out individual bad radial velocity data at
each level by applying SNR thresholds or multiple passes of
the sinusoidal fit to determine outliers, it ignores the level-
to-level correlation in wind velocity that exists in the atmo-
sphere, information that can be used to inform about the char-
acteristics of the wind profile further away from the surface.
Figure 1 shows the correlation matrices for the u and v com-
ponent of wind vectors calculated from radiosonde measure-
ments at the Atmospheric Radiation Measurement (ARM)
Southern Great Plains (SGP; Sisterson et al., 2016) Central
Facility (C1) in northern–central Oklahoma for the month
of July. These correlations were calculated from covariance
matrices compiled from 15 years of radiosonde data (2004–
2019) from the ARM facility (ARM, 2001), which usually
launches radiosondes every 6 h. Since the correlation matri-
ces are symmetric about the diagonal, the lower-right half
of the panels in Fig. 1 have been replaced with the correla-
tion matrix for a single representative retrieval for a clear-sky
day in July 2019 (to be discussed later). It is clear that very
strong correlations in the prior dataset (i.e., above the diago-
nal in Fig. 1) exist for wind components at adjacent heights,
while heights that are separated by hundreds of meters still
exhibit correlations of 0.5 or more. This information can be
used to assist in retrieving the wind profile at higher altitudes
where the lidar SNR is low, provided that a sufficient num-
ber of observations are available from other sources, such as
radiosondes or aircraft, to generate the covariance matrices.

One way of integrating the level-to-level correlations with
CDL radial velocity observations to produce continuous
wind profiles is through the implementation of an optimal
estimation retrieval (OE; Rodgers, 2000). In optimal estima-
tion, a set of measurements y is related to the state vector
x, which contains parameters describing the current atmo-
spheric state, by a forward model F:

y = F(x,b)+ ε, (2)

where b represents model parameters that are not retrieved,
and ε represents the model error. In essence, the forward
model maps the state of the atmosphere to a set of vari-
ables that can be observed directly and contains the physi-
cal and instrumental factors that describe the measurements.
For many remote sensing applications, the forward model is
a radiative transfer model that converts the state of the at-
mosphere (such as profiles of temperature, water vapor, and
trace gases) to radiances at various wavelengths measured
by satellites or ground-based radiometers. Through the op-
timal estimation technique, this relationship is inverted, so
a set of observations can be used to obtain the atmospheric
state. The optimal estimation technique has been extensively
used for retrievals of atmospheric constituent profiles from
passive remote sensing measurements where the problem is
generally ill-determined (e.g., Kuang et al., 2002; Maahn et
al., 2020; Turner and Blumberg, 2019; Turner and Löhnert,
2014). Since ill-determined problems can produce an infinite

number of solutions, a priori information in the form of the
mean and covariance of the state vector is used as a constraint
to help the algorithm obtain a solution that is both physically
possible and statistically likely to occur for a particular loca-
tion and time of year.

In the present case, in which scanning CDL measurements
of radial velocities at different azimuth (θ ) and elevation (α)
angles are being used to obtain the components of the wind
vector (u, v, and w), the forward model is simply the ge-
ometry of the measurement that maps the wind vector to the
radial coordinate system. It is given by

F= [sinθ · cosα,cosθ · cosα,sinα] . (3)

If one assumes that the vertical velocity w is much smaller
than the horizontal velocity, then the contributions of w to
the radial wind vector can be neglected. The forward model
then reduces to

F= [sinθ · cosα,cosθ · cosα] . (4)

Since the forward model F is independent of the state vector
x, the Jacobian K of the forward model F with respect to
the elements of the state vector x = [u,v] is also the forward
model

K=
dF
dx
= F. (5)

Equation (2) can then be linearized as

y =Kx+ ε. (6)

The maximum a posteriori solution for Eq. (6) is

x = xa+
(

KTS−1
ε K+S−1

a

)−1
KTS−1

ε (y−Kxa) , (7)

where xa is the a priori profile, and Sa and Sε are the a pri-
ori and measurement error covariance matrices, respectively.
The VADoe retrievals are performed on a fixed vertical reso-
lution defined by the range gate size of the DL measurement.
Note that Eq. (5) has an analytical solution, which is the
VADtrad result, but provides an unreasonable solution when
the measurement SNR is low. This is the reason the VADtrad
algorithm is performed layer by layer and an SNR thresh-
old is applied. Since the present work evaluates the VADoe
retrieval at the ARM SGP Central Facility, the a priori infor-
mation is calculated from 15 years of profiles of wind speed
and direction observed by radiosondes launched at that site
to create monthly mean u and v profiles (xa) and covariances
(Sa). By using monthly a priori information instead of a sin-
gle priori dataset that spans all seasons for all retrievals, nat-
ural variation in the winds can be captured. Few locations
will have the in situ observational density that the ARM SGP
site does, but alternate sources of a priori data could include
Airborne Meteorological Data Relay (AMDAR) (Moninger
et al., 2003) observations or model output.
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Figure 1. Correlation matrices for u–u (a), v–v (b), and u–v (c) for the month of July. The upper-left half of each panel shows the correlation
of the a priori profile, while the lower-right half shows the correlation of the posterior profile for a clear-sky retrieval at 02:35 UTC on 16 July
2019.

Radial velocity uncertainty (σr) for a range gate is esti-
mated by calculating the mean of the variance of radial ve-
locity over two neighboring range gates for each azimuthal
stare. For a VAD scan with n azimuth angles, the radial ve-
locity uncertainty for the j th range gate is given by

σ 2
r
(
rj
)
=

1
3n

n∑
i=1

j+1∑
k=j−1

(
yr (θi, rk)− yr

(
θi, rj

))2
, (8)

where

yr
(
θi, rj

)
=

1
3

j+1∑
k=j−1

yr (θi, rk) . (9)

This formulation is similar to the Trial 2 radial velocity un-
certainty formulation given in Newsom et al. (2017), where
radial velocity uncertainty is calculated over consecutive
scans and neighboring range gates. This formulation was
found to result in the best agreement between wind speed
and direction precision estimates from the VADtrad algo-
rithm and sonic anemometer measurements from the collo-
cated 300 m tower at the Boulder Atmospheric Observatory
during the eXperimental Planetary boundary-layer Instru-
ment Assessment (XPIA) field campaign (Lundquist et al.,
2017). Unlike Newsom et al. (2017), the formulation given
by Eq. (8) assumes isotropy in atmospheric variance for a
given range gate. Because Eq. (8) assumes isotropy and ig-
nores SNR dependency of measurement uncertainty, the in-
strument noise component σn is added to σr to compute total
measurement error. Figure 2 shows the CDL radial velocity
precision as a function of the SNR determined from ARM
SGP C1 Doppler lidar vertical stare measurements using the
method described in Lenschow et al. (2000) and available as
part of the standard ARM vertical velocity statistics dataset
(Newsom et al., 2019a).

The total measurement error variance σε for a given view-
ing geometry i used for constructing the measurement error
covariance matrix is then given by

σ 2
εi
= σ 2

r + σ
2
ni
. (10)

Figure 2. Measurement precision as a function of the SNR for a
day showing different SNR thresholds applied for VADtrad (dotted
line) and VADoe retrievals (dashed line).

Both the maximum possible σr and σn are limited by the CDL
measurement bandwidth (±19.4 m s−1 for the SGP lidar) and
are much smaller in magnitude than the variability described
by the a priori covariance (see Fig. 1). This results in the mea-
surement being artificially weighted higher, even when the
measurement has little to no information (region to the left
of the dashed vertical line in Fig. 2). In order to overcome
this, σn values are set to a large number (100 m s−1) for an
SNR below 0.005 (∼−23 dB). This value needs to be opti-
mized depending upon the number of azimuth beams used
in the retrieval. The non-diagonal elements were set to 0, as-
suming there was no correlation between the uncertainties at
different range gates and different azimuth angles.

The solution given by Eq. (7) is a weighted mean of the a
priori profile and the information from the measurement. The
weight is given by the averaging kernel matrix A,

A=
(

KTS−1
ε K+ S−1

a

)−1
KTS−1

ε K. (11)
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The retrieval at any range gate is an average of the whole
profile weighted by the row of the averaging kernel matrix
corresponding to that range gate. The A matrix also can be
used to determine the number of independent pieces of in-
formation retrieved (often quantified as the degrees of free-
dom, or DOF) as well as an estimate of the vertical resolution
of the retrieved profile at a given level. Note that in a tradi-
tional VAD level-by-level retrieval, each range gate is con-
sidered independent, and the range gate resolution defines
the vertical resolution of retrieved profiles. For an ideal re-
trieval scenario, A is the identity matrix, the DOF equal the
number of retrieved profile layers, and the averaging kernels
peak at their corresponding altitudes. In reality, the retrieved
profile is a smoothed version of the true profile. In the case
of the scanning CDL measurements, A is close to an iden-
tity matrix throughout most of the PBL where the SNR is
relatively high. As a result, the a priori profile provides min-
imal to no constraint at those altitudes. However, at altitudes
where the measurement SNR is low, the VADoe retrieval is
capable of providing an a priori-constrained retrieval, even
below the SNR threshold usually applied to VAD retrievals.
In cases when there are very few or no valid CDL measure-
ments (e.g., a very low aerosol loading, foggy or rainy day),
the retrieved profiles are only constrained by the a priori pro-
file and, hence, follow the a priori profile. Such profiles can
easily by identified using the A matrix, DOF, or retrieval er-
ror.

One of the advantages of the optimal estimation technique
is that uncertainties from both the instrument and the retrieval
are propagated throughout the process, so an overall error
for each individual observation can be easily quantified. The
posterior error covariance matrix which includes contribu-
tions from smoothing error and measurement error is given
by

Sop =
(

S−1
a + KTS−1

ε K
)−1

. (12)

An additional source of uncertainty is the accuracy of the
forward model, which is affected by the assumption of hor-
izontally homogeneous wind flow; the isotropic turbulence
and vertical velocity component are negligible. This forward
model error is given by

Sf =Gy1f
2GT

y =Gy

[
f
(
x,b,b′

)
−F(x,b)

]2GT
y , (13)

where Gy = AK is the gain matrix; f is the idealized forward
model, which includes all the correct physics; and F is the
simplified approximation. In an ideal scenario, f

(
x,b,b′

)
=

y. Therefore, we calculated the forward model error as

Sf =Gy1f
2GT

y =Gy

[
y−Kx

]2GT
y . (14)

The total retrieval error covariance Stotal is given by

Stotal = Sop+Sf. (15)

The square root of the diagonal element of Stotal provides the
1σ uncertainty for the retrieved u and v profiles.

3 Results

ARM operates a total of five CDLs at the SGP site: one
Halo Streamline XR at the C1 facility and four Halo Stream-
line systems (Pearson et al., 2009) at extended facilities that
surround the C1 site at a distance of approximately 50 km.
Each ARM CDL makes near-continuous measurements of
radial velocity and attenuated backscatter coefficient pro-
files at a wavelength of 1.5 µm. These CDLs are sensitive to
aerosols but not molecular backscatter, and hence the mea-
surements are confined to the PBL. Details about the ARM
Doppler lidars, their operations, and data products are found
in Newsom and Krishnamurthy (2020). We used the CDL
measurements at the SGP C1 (ARM, 2010) for this study.
The Doppler lidar at the SGP C1 site that is further exam-
ined in this work operates with 30 m range gate resolution
and 1.3 s time resolution. It is typically configured to per-
form one eight-beam PPI scan at a 60◦ elevation angle ev-
ery 15 min and performs vertical stares during the remain-
ing time. The PPI scan takes approximately 40 s. Horizontal
wind profiles are retrieved from the PPI scan using the VAD
method. The ARM DL wind retrieval algorithm is described
in detail in Newsom et al. (2019b). It employs an SNR thresh-
old of 0.008 (∼−21 dB) to filter out poor-quality radial ve-
locity data before computing wind profiles.

To evaluate the performance of the optimal estimation
retrieval against real-world observations, VADoe retrievals
from the ARM SGP C1 lidar were processed for the en-
tirety of the 2019 calendar year. Normally, radiosondes are
launched from the SGP site four times a day, but the launch
frequency was doubled to eight daily sondes for the 3-month
period lasting from May through July 2019. In all, over 1600
radiosondes were collocated with Doppler lidar profiles dur-
ing the year-long study period. Each radiosonde was tem-
porally matched to the Doppler lidar profile that was taken
nearest in time to the radiosonde launch time. Radiosondes
that were launched more than 30 min from the nearest valid
lidar observation were excluded from this analysis.

An important parameter for evaluating the utility of an
optimal estimation retrieval is the information content. One
measure of this is the degrees of freedom of the signal (DFS)
which can be used to identify how many unique pieces of in-
formation are present in the retrieval as well as determine at
what altitudes the information can be found. While the OE
wind retrieval is output onto a fixed grid with 113 evenly
spaced levels from the surface to 3000 m, the fact that OE-
retrieved observations are overlapping weighted averages of
various depths in the atmosphere means that there will be
fewer than 113 uncorrelated pieces of information in the out-
put. The cumulative DFS of the retrieval at the nth level are
the sum of the first n elements of the diagonal of the averag-
ing kernel A (Eq. 11); the total DFS of the retrieval are thus
simply the trace of A. Figure 3 shows the mean and 25th
and 75th percentiles of the cumulative DFS as a function of
height for the more than 1600 OE wind profiles that were
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Figure 3. Vertical profile of the mean (solid) and 25th and 75th per-
centile (dashed) cumulative degrees of freedom of the signal calcu-
lated from the OE wind retrieval for both the u component (blue)
and v component (red).

matched to a radiosonde. On average, the total profile DFS
are approximately 15, though the variability ranges from 9.5
to 18.5, and the u and v DFS are effectively identical. Most of
the DFS are concentrated in the lowest 1000 m, with approx-
imately 10.3 DFS on average below that height, which means
the true vertical resolution of the DL is around 100 m. True
vertical resolution of the DL wind profiles can be improved
by including multiple PPIs at different EAs and increasing
the number of azimuth angles in a PPI scan. However, with
roughly 5 DFS in the OE retrieval above 1000 m, the retrieval
can still provide valuable information about an otherwise un-
der observed layer of the atmosphere. An advantage of cal-
culating the cumulative DFS and the related true vertical res-
olution profiles from the optimal estimation retrieval is that
it easily facilitates the assimilation of the observed wind pro-
files into numerical weather prediction (NWP; Coniglio et
al., 2019).

One way to evaluate the performance of the OE winds is
by examining a sample plot of the winds as measured by var-
ious systems. Figure 4 depicts time–height cross sections of
the v component of the wind on 16 May 2019. This was a
quiescent day at the SGP site with a persistent upper-level
ridge ensuring few clouds and little synoptic forcing. These
conditions enabled the formation of a low-level jet (LLJ) over
the region, with winds approaching 20 m s−1 approximately
250 m above the ground at 06:00 UTC (01:00 local time).
Since this was during the period of 3 h radiosonde launches
from SGP, enough radiosonde profiles are present to cap-
ture some of the short-term variability in the atmospheric
state. The VADtrad profiles are limited to heights approxi-
mately 1000 m a.g.l. and below. While VADtrad can resolve
the LLJ and daytime turbulence in the PBL, an insufficient
number of scatterers above those levels means that the VAD-
trad is incapable of resolving any phenomena at higher alti-

tudes. By contrast, the OE provides continuous profiles from
the surface to 3000 m a.g.l. While the information content is
not as large at these higher altitudes as noted previously, the
presence of even a few independent data points in the 1500–
3000 m range can bring new insight into processes in the en-
trainment zone and free troposphere. For example, the son-
des indicate a secondary maximum of v winds above the low-
level jet between 1000 and 2000 m. The 0.008 SNR threshold
used operationally by ARM means that this feature is missed
entirely by VADtrad. Likewise, in the afternoon hours (after
19:00 UTC) the PBL has grown too deep to be fully resolved
by the VAD, yet the OE retrieval is able to monitor the con-
tinued increase in the depth of the turbulent winds as it allows
even regions of a low SNR to be used and to have an impact
on the retrieved profile. The sondes are able to note the depth
of this layer, but the 3 h launch frequency is still too coarse to
resolve the individual elements the way the OE retrieval can.
Note that radiosonde profiles shown in Fig. 4c are interpo-
lated in time for illustration purposes. OE results in Fig. 4b
show faint vertical striping at higher altitudes where there
is little to no information available from DL. This is due to
the inherent nature of the VADoe retrieval which includes
level-to-level correlation but no time-dependent information.
Results at higher altitudes are more influenced by the near-
est good measurements compared to those further away. The
profile-to-profile difference at higher altitudes is within the
VADoe retrieval error for most cases, as shown in Fig. 4d.

3.1 Radiosonde comparisons

To facilitate intercomparisons between the radiosondes and
both VADtrad and VADoe, the same vertical grid from the
traditional VAD technique was used for the OE output, and
the radiosonde observations were averaged to that grid. Qual-
ity control measures included rejecting VAD observations
with an absolute value greater than 50 m s−1 and OE re-
trievals where the OE-derived measurement uncertainty ex-
ceeded 5 m s−1. Note that due to the stringent SNR thresh-
old (<−21 dB) applied to the VADtrad data from the ARM
database, there were no VADtrad observations with uncer-
tainty greater than 5 m s−1.

Scatter plots showing the performance of both the tra-
ditional VAD-derived CDL wind observations and the OE-
retrieved CDL winds throughout the 2019 analysis period
are shown in Fig. 5. Several important points emerge from
this figure. First, it is important to note that the VAD and
OE wind observations are almost identical for the times and
heights where both are available as the correlation coeffi-
cients between the two sets of CDL observations are 0.998
and 0.999 for the u and v wind components, respectively. In
essence, using the VADoe retrieval in place of the VADtrad
technique does not degrade the quality of the observations
but instead augments existing observations with additional
information at heights above those observed by VADtrad.
Second, the VADtrad winds appear to have a stronger cor-
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Figure 4. Time–height cross sections of the v component of the
wind on 16 May 2019 as observed by VADtrad (a), VADoe (b), and
radiosonde (c). The uncertainty in the VADoe retrieval is shown in
panel (d) with a different color scale to enhance detail. Radiosondes
were launched every 3 h at the times indicated by dashed lines in the
third panel. Radiosonde data are interpolated in time for illustration
purposes. Time is in UTC; local time is UTC−5.

relation with the radiosondes than the VADoe winds do at
first glance. However, the OE winds include many observa-
tion points where the traditional technique does not provide
an observation (N = 139 582 for OE and 59 403 for VAD). A
more appropriate analysis limits the intercomparison to only
the points that are present in both VADoe and VADtrad. In
those cases (depicted with orange points in Fig. 5b and e),
the sonde–OE correlations are functionally identical to the
sonde–traditional comparisons and have effectively the same
correlation values and standard deviations (scatter). This fur-
ther reinforces the idea that the OE winds can be used in
place of the traditional VAD winds without degrading the
near-surface observations. Finally, it is worth noting that, re-
gardless of the instruments being compared, correlations are
higher for the v component than they are for the u com-
ponent. This may be due to the fact that the flow over the
SGP site is persistently southerly, and the u wind tends to be
more variable than the v wind. Note that natural variability in
winds and turbulence results in an inherent scatter between
lidar and sonde wind measurements.

Figure 5. Scatter plots of the u component (a–c) and v component
(d–f) of wind for radiosonde vs. VADtrad (a, d, N = 59 403), ra-
diosonde vs. VADoe (b, e, N = 139 582), and VADtrad vs. VADoe
(c, f). The dotted red line represents the 1 : 1 line. Points in orange
indicate the subset of VADoe observations for which a valid VAD-
trad observation also exists.

3.2 Differences as a function of height

The mean and standard deviation of the lidar-minus-sonde
differences at a given observation height can be used to de-
termine the bias and uncertainty present in the lidar observa-
tions at that height. Figure 6 shows the vertical profile of the
bias (mean difference) and uncertainty (standard deviation
of the differences) for both the VADtrad and VADoe profiles
relative to the radiosondes throughout the lower troposphere.
It is important to note that the differences between the VAD-
trad and VADoe methods seen here are almost entirely due
to a more comprehensive set of points being observed by
the VADoe method. When only points that are valid for both
methods are used (not shown), there is effectively no differ-
ence in the bias or standard deviation for either method at
any height. This is expected given the extremely high degree
of correlation between the observed wind vectors as seen
in Fig. 5c and f. Across the various panels in Fig. 6, it is
clear that the VADoe retrievals are comparable to or better
than the VADtrad winds at all analyzed heights, especially
above typical PBL heights. With respect to the u compo-
nent (Fig. 6a), the two techniques have nearly indistinguish-
able performance in the lowest 500 m, as both have a slight
slow bias that increases from −0.18 at the lowest range gate
to −0.39 m s−1 at 800 m. The uncertainties slightly increase
over that depth, from 1.20 m s−1 at the lowest level to 1.52 at
800 m. From 500 to 1400 m, the bias remains similar for both
techniques, but the uncertainty starts to diverge as the VADoe
u uncertainty shows slightly larger values than the VADtrad
u uncertainty. Above 1400 m, substantial differences in the
performance of the two systems are present. The VADoe u
wind bias is negative but small and increasingly approach-
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ing zero with increasing height, but the VADtrad u bias be-
comes much more negative as height increases. The VADoe
u wind bias at 1500, 2000, and 3000 m is −0.58, −0.48,
and −0.24 m s−1, respectively, while the VADtrad u bias
at those heights is −0.95, −3.46, and −6.24 m s−1, respec-
tively. There is similar inflation in the uncertainty with height
above 1300 m, as the VADoe technique continues its near-
linear trend of increasing uncertainty with height, while the
VADtrad uncertainty shows marked increases once heights
exceed 1600 m. While the u bias was slow at all depths
for both techniques, the v bias is generally fast (Fig. 6b).
Like the u bias, the VADoe v bias is small at all heights.
It never exceeds 0.4 m s−1 at any height while the VADtrad
v bias steadily increases throughout the analyzed depth to
more than 3.6 m s−1 at the highest levels. At the lowest lev-
els (below 500 m) the VADoe v uncertainties are again ap-
proximately the same as the VADtrad v uncertainties. In the
middle levels (between 500 and 1600 m) the VADoe uncer-
tainties are larger, but there are many more valid points being
included in the analysis, as seen in Fig. 6f. As noted above,
the two methods agree almost perfectly when both are avail-
able, so the increase in uncertainty comes from points that
the VADtrad is unable to observe at all. There is a local max-
imum in uncertainty below 500 m for the v differences that is
not present in the u observations; this is likely an impact of
the largely meridional low-level jet frequently found over the
SGP site after sunset. The u and v components can also be
used to calculate the vector difference, which is a convenient
way of combining speed and direction error into a single pa-
rameter. These results are seen in Fig. 6c. The differences
in bias in the lowest 1600 m are largely due to differences
in observed wind speed, discussed further below. Above that
height, the VADtrad again has larger biases and uncertain-
ties than the VADoe product, largely due to the very small
number of points included for analysis above those heights.

While the retrieval is conducted in terms of u and v, it
is instructive to evaluate how the retrieval performs in terms
of wind speed and direction. These are presented in Fig. 6d
and e, respectively. The biases for both speed and direction
are effectively identical for the two observation sets below
500 m, with a value of approximately 0.5 m s−1. Above that
height, the VADoe observations show slightly more negative
speed biases than the VADtrad observations do. Again, the
speed uncertainty is slightly larger for the VADoe data un-
til 1600 m at which point the VADtrad uncertainty increases
rapidly. Direction differences show identical biases of ap-
proximately −5◦ until 1200 m, at which point the VADoe
bias becomes less negative and starts to become positive,
while the VADtrad bias becomes markedly more negative
with height.

Figure 6f also shows the number of valid intercomparisons
as a function of height by showing the number of valid lidar–
sonde intercomparisons for each lidar range gate. Here, it is
clear how rapidly the number of VADtrad observations de-
creases with height due to the decreasing concentration of

Figure 6. Vertical profiles of the bias (solid line) and 1σ uncertainty
(dashed line) for VADoe (orange) and VADtrad (dark blue) for (a)
u winds (m s−1), (b) v winds (m s−1), (c) wind vector differences
(m s−1), (d) wind speed (m s−1), and (e) wind direction (◦). Panel
(f) shows the number of valid sonde versus lidar intercomparisons
as a function of height for both algorithms.

scatterers. At 1 km a.g.l., the number of observations is only
59 % of what it was at the lowest range gate. By comparison,
the VADoe retrieval still has 98 % of the lowest-level obser-
vations. The number of VADoe observations decreases with
height due to the imposition of the 5 m s−1 gross error check
noted earlier, but it is clear that the decrease in the availabil-
ity of the VADoe product with increasing height is much less
than it is for the VADtrad wind profiles.

3.3 Differences as a function of SNR values

Since a significant advantage of the OE retrieval is provid-
ing observations at altitudes for which no VADtrad data are
available at standard values for the SNR, it is worth looking
specifically at the performance of the observations as a func-
tion of the SNR. As noted in Figs. 5 and 6, most of the spread
in the OE-minus-sonde differences is occurring for the lev-
els where VADtrad observations are not available. Figures 7–
9 illustrate differences between VADoe and radiosondes for
wind speed (Fig. 7), wind direction (Fig. 8), and wind vector
(Fig. 9) for four different bands of the SNR. As noted above,
the ARM standard cutoff for the SNR is 0.008 which cor-
responds to approximately −21 dB, and VADoe implements
a soft −23 dB cutoff by setting individual radial velocity er-
ror to 100 m s−1 for data with an SNR below −23 dB. The
data are divided approximately evenly into two groups with
a higher SNR than the −21 dB cutoff (SNR1: >−13 dB;
SNR2: −21 to −13 dB), as well as an SNR between −21
and −23 dB (SNR3) and an SNR below −23 dB (SNR4). In
order to minimize the impact of cloud returns, the highest
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Figure 7. Histograms of the VADoe retrieval-minus-radiosonde dif-
ferences in wind speed (m s−1) for four different bands of lidar
signal-to-noise ratio.

SNR group (SNR1) is limited to data from the lowest 800 m.
Note that the CDL SNR is not range-corrected, and hence
an absolute SNR threshold cannot be applied to filter for
clouds. The performances of the first three SNR bands, in-
cluding the SNR band in between the VADtrad and VADoe
cutoff (SNR3, panel c), are very similar. Wind speed biases
(uncertainties) are −0.21 m s−1 (1.96), 0.05 m s−1 (1.56),
and −0.11 m s−1 (1.51), respectively for SNR1, SNR2, and
SNR3 groups. Similarly, wind direction biases (uncertain-
ties) are −2.44◦ (47.4), −2.93◦ (46.4), and −1.50◦ (46.7)
for the three highest SNR groupings. This comparable per-
formance for those SNR groups is also highlighted in wind
vector, which combines both the wind speed and direction
differences (Fig. 9). Slightly larger uncertainty for the high-
est SNR group (SNR1) is likely due to the presence of higher
variability in wind and higher turbulence in the lower PBL,
where the CDL SNR is greatest. Observation of precipitation
droplets is another possible reasoning for the higher uncer-
tainty and the tail in the distribution at the highest SNR bin.
The comparable performance of the SNR3 group, which has
SNRs in between VADtrad and VADoe cutoffs, to the groups
with a better SNR indicates that at least some of the observa-
tions in this SNR region might potentially be available from
the VADtrad method if the SNR cutoff threshold were to be
lowered. Nonetheless this also highlights the benefit of the
VADoe retrieval where a more liberal SNR cutoff threshold
could be applied.

Figures 7–9d show observations that would not be avail-
able for VADtrad retrieval at all. As expected, both the bias
and uncertainty are higher for this SNR group. The wind
speed (direction) bias and uncertainty of this group of ob-
servations are −1.46 m s−1 (9.01◦) and 3.43 m s−1 (87.2◦),

Figure 8. As in Fig. 7 but for wind direction (◦).

Figure 9. As in Fig. 7 but for vector difference (m s−1).

respectively. The wind vector root-mean-square deviation
(RMSD) for this SNR group is 4.3 m s−1. While the VA-
Doe observations in these SNR bands depict larger biases
and greater uncertainty than the observations in better SNR
bands, the wind speed uncertainty is comparable to the Tro-
pospheric Airborne Meteorological Data Reporting (TAM-
DAR) system (Wagner and Petersen, 2021). The wind vector
RMSD of less than 5 m s−1, which is the error threshold used
in the analyses, for this SNR group further supports that the
VADoe retrieval errors are representative and can be used
to select data to meet different application requirements. For
example, VADoe data filtered for greater than 5 m s−1 error
would meet the World Meteorological Organization (WMO)
threshold requirement for horizontal wind measurements in
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the free troposphere for global- and high-resolution NWP
(WMO, 2022). Considering that only 37.1 % of the total
dataset evaluated here has an SNR better than −21 dB, the
VADoe technique provides many more usable observations.

4 Discussion

The comparisons in the previous sections show that VADoe
provides identical results to VADtrad where VADtrad results
are valid. At these levels, where most if not all of the in-
formation is coming from measurements, VADoe is math-
ematically equivalent to VADtrad. At lower SNR levels (or
higher altitudes), where VADtrad results are not available,
VADoe results compare favorably with radiosonde measure-
ments. VADoe retrievals at these levels are statistically most
likely output based on the (noisy) observations at those lev-
els, higher-quality (precision) measurements at lower lev-
els, and climatology. The VADoe retrieval provides well-
characterized uncertainty for each profile, and the corre-
sponding averaging kernels allow the determination of both
the vertical resolutions as a function of height and the maxi-
mum height up to which the retrieval is mostly independent
of the a priori profile. Thus, the retrieval errors and averaging
kernels could be used to determine data that are suitable for
a given application.

One of the biggest challenges of setting up the VADoe
retrieval is appropriately scaling the CDL radial velocity
measurement error at low SNRs to provide stable retrievals.
The CDL radial velocity measurement error is limited by
the measurement bandwidth. For example, the measurement
bandwidth for the ARM SGP CDL used here is±19.4 m s−1.
This maximum measurement error is smaller than the a pri-
ori error (standard deviation). This becomes even smaller
when you consider multiple radial velocities from different
azimuths that are included in the retrieval. If the measure-
ment errors are not inflated appropriately, measurements will
always be weighted heavily compared to a priori informa-
tion, which results in unstable retrievals. Thus, the measure-
ment error at low SNR levels needs to be appropriately scaled
accounting for number of azimuths and elevation angles in-
cluded in the retrieval and magnitude of the a priori error.

Successful implementation of VADoe retrieval requires
knowledge of the a priori mean profile and covariance. We
used radiosonde measurements to create monthly mean pro-
file and covariance. However, radiosonde measurement sites
are limited, which limits the applicability of the VADoe re-
trieval presented here to locations close to radiosonde sites.
Future work should include testing using a priori profiles
from other sources such as AMDAR and NWPs. This would
make VADoe retrieval more widely applicable and also pro-
vide high-time-resolution a priori profiles for the retrieval.

5 Summary and conclusion

Coherent Doppler lidars have many research, operational,
and commercial applications. Through deployments around
the world, they have proven to be reliable and robust instru-
ments that have significantly enhanced our understanding of
numerous processes and phenomena. However, since com-
mercially available low-powered CDLs operating at 1.5 µm
wavelength are insensitive to molecular scattering and thus
must rely on aerosol scattering, the vertical extent of the
wind profiles they observe is limited to the planetary bound-
ary layer where aerosol concentrations are greatest. However,
many key atmospheric processes are found at or above the
top of the boundary layer, which means that many CDLs
are unable to observe them with standard algorithms consis-
tently.

To provide profiles that are more vertically and temporally
continuous, an optimal estimation retrieval was created so
that established level-to-level correlations can be exploited to
gain information about the wind profile at levels higher than
those where CDLs can typically reach. This retrieval, called
VADoe, is computationally simple as the forward model is
derived from simple geometry. This method was tested us-
ing yearlong CDL measurements at the ARM SGP Cen-
tral Facility in 2019. Comparison with collocated radiosonde
and ARM operation CDL output (VADtrad) showed excel-
lent agreement. Critically, with correlations of 0.998 and
0.999 between the VADtrad and VADoe for the u and v

wind components, respectively, when both techniques are
valid (i.e., the SNR in the observations is sufficient), us-
ing an OE retrieval does not degrade the existing retrievals.
It merely provides additional information where none is
currently available. The VADoe provides useful results, al-
though with higher uncertainty, even when the SNR is too
small, and radial velocities are not reliable.

Optimal estimation retrievals have significant advantages
for data assimilation. With well-characterized uncertainties
for each observation and profiles of degrees of freedom of
the signal and vertical resolution easily obtained as part of
the retrieval, profiles from the VADoe algorithm are ready for
assimilation into numerical weather prediction without need-
ing to assume error profiles or other needed characteristics.
Further, OE provides a framework for a combined wind pro-
file retrieval from different types of collocated instruments
for wind measurements (e.g., CDL, direct detection Doppler
lidar, radar).

It is important to note that VADoe can easily be applied to
existing instruments and data. So long as the original scan
files have been retained, data collected from previous de-
ployments and field campaigns can be reprocessed using this
technique to reveal latent information that has not yet been
seen. Thus, an additional effective range from existing CDL
infrastructure can be realized with no additional capital ex-
pense.
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