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Abstract. Satellite observations of dry-column methane
mixing ratios (XCH4) from shortwave infrared (SWIR) solar
backscatter radiation provide a powerful resource to quantify
methane emissions in service of climate action. The TROPO-
spheric Monitoring Instrument (TROPOMI), launched in Oc-
tober 2017, provides global daily coverage at a 5.5× 7 km2

(nadir) pixel resolution, but its methane retrievals can suf-
fer from biases associated with SWIR surface albedo, scat-
tering from aerosols and cirrus clouds, and across-track vari-
ability (striping). The Greenhouse gases Observing SATellite
(GOSAT) instrument, launched in 2009, has better spectral
characteristics and its methane retrieval is much less sub-
ject to biases, but its data density is 250 times sparser than
TROPOMI. Here, we present a blended TROPOMI+GOSAT
methane product obtained by training a machine learning
(ML) model to predict the difference between TROPOMI
and GOSAT co-located measurements, using only predic-
tor variables included in the TROPOMI retrieval, and then
applying the correction to the complete TROPOMI record
from April 2018 to present. We find that the largest correc-
tions are associated with coarse aerosol particles, high SWIR
surface albedo, and across-track pixel index. Our blended
product corrects a systematic difference between TROPOMI
and GOSAT over water, and it features corrections exceed-
ing 10 ppb over arid land, persistently cloudy regions, and
high northern latitudes. It reduces the TROPOMI spatially

variable bias over land (referenced to GOSAT data) from
14.3 to 10.4 ppb at a 0.25◦× 0.3125◦ resolution. Validation
with Total Carbon Column Observing Network (TCCON)
ground-based column measurements shows reductions in
variable bias compared with the original TROPOMI data
from 4.7 to 4.4 ppb and in single-retrieval precision from
14.5 to 11.9 ppb. TCCON data are all in locations with a
SWIR surface albedo below 0.4 (where TROPOMI biases
tend to be relatively low), but they confirm the dependence
of TROPOMI biases on SWIR surface albedo and coarse
aerosol particles, as well as the reduction of these biases in
the blended product. Fine-scale inspection of the Arabian
Peninsula shows that a number of hotspots in the original
TROPOMI data are removed as artifacts in the blended prod-
uct. The blended product also corrects striping and aerosol/-
cloud biases in single-orbit TROPOMI data, enabling bet-
ter detection and quantification of ultra-emitters. Residual
coastal biases can be removed by applying additional filters.
The ML method presented here can be applied more gener-
ally to validate and correct data from any new satellite instru-
ment by reference to a more established instrument.
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1 Introduction

Methane is a strong greenhouse gas that is responsible for
a third of the increase in the global mean surface air tem-
perature from 1750 to 2019 (Szopa et al., 2021). Its high
global warming potential and short atmospheric lifetime of
only 9 years (Prather et al., 2012) make it an attractive mit-
igation target to address near-term climate change (Nisbet
et al., 2020). Monitoring progress in methane mitigation re-
quires knowledge of worldwide emissions, but these are still
highly uncertain (Saunois et al., 2020). Global satellite ob-
servations of atmospheric methane provide important top-
down information to improve emission inventories by in-
version of chemical transport models (CTMs) to relate con-
centrations to emissions (Palmer et al., 2021). The Green-
house gases Observing SATellite (GOSAT) has been in space
since 2009 and provides mature and accurate retrievals, but
they are relatively sparse (Parker et al., 2020). The TROPO-
spheric Monitoring Instrument (TROPOMI) was launched
in 2017 and provides global daily coverage, but it is more
subject to biases than GOSAT because it uses a different
spectral viewing window, has a coarser spectral resolution,
and relies on an array of detectors (Jacob et al., 2022).
Here, we apply machine learning (ML) to produce a blended
TROPOMI+GOSAT product that uses GOSAT to correct bi-
ases in the TROPOMI data and enables more reliable appli-
cation of these TROPOMI data for the global inference of
methane emissions.

Methane can be observed from space by nadir mea-
surement of the spectrum of backscattered sunlight in the
shortwave infrared (SWIR) spectral range. There are strong
methane absorption features at 1.65 and 2.3 µm, enabling re-
trieval of the atmospheric methane column with near ver-
tically uniform sensitivity from the top of the atmosphere
down to the surface under clear-sky conditions (Frankenberg
et al., 2005). Normalization of this methane column to the
dry air mass yields a dry total column-averaged mixing ratio
of methane (XCH4) as the standard retrieved quantity (Jacob
et al., 2016). Retrievals can be biased when spectral structure
in the surface albedo is misinterpreted as methane absorp-
tion (Jongaramrungruang et al., 2021). Poorly resolved, opti-
cally thin scatterers, including aerosols and cirrus clouds, as
well as stray light from adjacent reflective surfaces can also
bias methane retrievals (Aben et al., 2007; Butz et al., 2010;
Schepers et al., 2012).

The susceptibility of methane retrievals to surface and at-
mospheric scattering effects depends on several factors, in-
cluding the spectral resolution of the instrument and the
choice of SWIR band. GOSAT measures in the 1.65 µm band
with a 0.06 nm spectral resolution, enabling accurate retrieval
of methane using the proxy approach that takes advantage
of CO2 absorption in that same band (Parker et al., 2011).
The CO2 proxy approach multiplies the XCH4/XCO2 ratio
retrieved without consideration of atmospheric scattering by
a local XCO2 value from a CTM calibrated with observa-

tions. This takes advantage of the much smaller variability
in XCO2 than in XCH4 and largely cancels surface and at-
mospheric artifacts. A limitation of the proxy approach is
the assumption of accurate prior XCO2, which can introduce
biases when CO2 and methane are co-emitted from a flare,
for example. The proxy approach has demonstrated accuracy
(Buchwitz et al., 2015), and the GOSAT retrievals are ma-
ture. GOSAT utilizes a Fourier transform spectrometer with
mechanical cross-track pointing, providing a uniform spec-
tral response for its observations and consistent high-quality
data from 2009 to present (Kuze et al., 2016). The main lim-
itation of GOSAT is that its observations are sparse, taken in
10.5 km diameter pixels spaced about 270 km apart with a re-
turn time of 3 d. The GOSAT data have been used extensively
for inversions of methane emissions on global and continen-
tal scales with a 100–500 km resolution (Turner et al., 2015;
Maasakkers et al., 2019; Janardanan et al., 2020; Western et
al., 2021; Maasakkers et al., 2021; Qu et al., 2021; Worden
et al., 2022; Feng et al., 2022), but they cannot effectively
access finer scales.

TROPOMI provides global daily coverage in continuous
5.5× 7 km2 (nadir) pixels, increasing the data density rela-
tive to GOSAT by more than 2 orders of magnitude through
the use of an imaging grating spectrometer. It measures in the
2.3 µm band, where the CO2 proxy approach is not possible,
with a spectral resolution of 0.25 nm. Retrieval of XCH4 by
TROPOMI employs a full-physics approach in which surface
albedo and atmospheric scattering properties are retrieved to-
gether with XCH4, utilizing additional information from the
near-infrared (NIR) band of TROPOMI (Butz et al., 2012).
Aliasing between these parameters in the retrieval can pro-
duce artifacts that bias the inference of methane emissions
(Barré et al., 2021; Qu et al., 2021; Jacob et al., 2022). Re-
cent improvements to the operational retrieval produced by
the Netherlands Institute for Space Research (SRON) have
reduced some of these biases (Lorente et al., 2021, 2023). An
independent TROPOMI retrieval by the University of Bre-
men (Schneising et al., 2019, 2023) applied an ML correc-
tion to a methane climatology to remove retrieval biases, but
this may bias the product if the correction to climatology is
not appropriate.

Our blended TROPOMI+GOSAT methane product aims
to eliminate biases from the TROPOMI data by using co-
located GOSAT methane retrievals from 4 years of observa-
tions (2018–2021) to train an ML model for predicting the
TROPOMI−GOSAT XCH4 difference, relying only on pre-
dictor variables included in the TROPOMI methane product.
This allows us to apply the TROPOMI−GOSAT correction
to the complete TROPOMI dataset (2018–present) to form
the blended product. The ML model also identifies the main
sources of bias in the TROPOMI data to guide further im-
provements in the retrieval. The methods presented here are
not specific to TROPOMI and GOSAT and could be applied
to any other satellite instrument pairs.
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2 Construction of the blended TROPOMI+GOSAT
product

Table 1 summarizes the GOSAT and TROPOMI data used in
the construction of our blended TROPOMI+GOSAT prod-
uct, including the GOSAT v9.0 proxy retrieval from Parker
et al. (2020) (quality flag of 0) and the TROPOMI v02.04.00
operational product based on Lorente et al. (2023) (qual-
ity assurance value of 1, albedo bias correction applied).
It is standard practice to evaluate satellite methane prod-
ucts with ground-based XCH4 observations from the Total
Carbon Column Observing Network (TCCON) (Wunch et
al., 2011). We do so here for the GOSAT and TROPOMI re-
trievals using the 24 TCCON sites available in the GGG2020
version of the data during 2018–2021, adjusting all retrievals
to common vertical profiles and averaging kernel sensitivi-
ties as described in Appendix A. Details of the evaluation
with TCCON data are given in Appendix B, and results are
given in Table 1. All of the TCCON sites are over land
and most are at northern midlatitudes. We calibrate GOSAT
to have a global mean bias of 0 ppb relative to GGG2020
TCCON data, subtracting 9.2 ppb from all retrievals. This
follows Parker et al. (2020) but updates the TCCON data ver-
sion that is calibrated against from GGG2014 to GGG2020.
TROPOMI has a global mean bias of 6.0 ppb relative to
TCCON. The standard deviation of the satellite−TCCON
difference for individual retrievals gives a measure of re-
trieval precision and is 14.9 ppb for GOSAT and 14.5 ppb for
TROPOMI. Most critical for inversions is the spatially vari-
able bias, which reflects artifact data features that inversions
could interpret as emissions. Variable bias is commonly diag-
nosed with TCCON data as the standard deviation of the tem-
porally averaged satellite−TCCON differences for individ-
ual stations. Table 1 gives variable biases relative to TCCON
of 5.2 ppb for GOSAT and 4.7 ppb for TROPOMI, which
are lower than the 10 ppb threshold defined by Buchwitz et
al. (2015) for successful regional inversions. However, the
spatial coverage of TCCON stations for estimating this vari-
able bias is very limited, as the stations are mainly located
in regions of moderate SWIR surface albedo where retrieval
biases tend to be low (Lorente et al., 2021). A full global di-
agnostic of variable bias based on TROPOMI−GOSAT dif-
ferences shows much larger values depending on region (Qu
et al., 2021; Jacob et al., 2022).

We compute TROPOMI−GOSAT differences
1(TROPOMI−GOSAT) for all co-located individual
retrievals from 30 April 2018 to 31 December 2021, ad-
justing all retrievals to common prior vertical profiles and
averaging kernel sensitivities as described in Appendix A.
Co-location is defined by pixel centers≤ 5 km apart and
retrieval times≤ 1 h apart, resulting in 170 576 pairs for
the 4 years including 156 939 pairs over land and 13 637
over water. Data are much sparser over the oceans, and they
are limited to lower latitudes because of the requirement
for specular reflectance in the glint retrieval. The standard

deviation of the difference for individual data pairs is
17.4 ppb.

Figure 1 shows the average difference
1(TROPOMI−GOSAT) for 2018–2021, plotted on a
2◦× 2.5◦ grid for visualization purposes. The global mean
bias of TROPOMI relative to GOSAT taken as reference
is 3.6 ppb over land and 12.0 ppb over water. Despite the
low global mean bias over land, there are large areas with
differences of over 20 ppb, including over bright surfaces
(North Africa), persistently cloudy areas (Amazon, Congo,
and Southeast Asia), and snow-covered surfaces (high
northern latitudes).

We quantify a spatially variable bias for TROPOMI rela-
tive to GOSAT using the same definition as used for TCCON
(spatial standard deviation of the temporally averaged differ-
ences). We do this for spatial resolutions of 0.25◦× 0.3125◦

and 2◦× 2.5◦, typical of regional and global inversions, re-
spectively. We separate land and water because users con-
ducting inversions may choose not to use the glint data over
water. At a 0.25◦× 0.3125◦ resolution, we find variable bi-
ases of 13.5 ppb over land and 14.7 ppb over water, whereas
we find variable biases of 12.1 ppb over land and 11.6 ppb
over water at a 2◦× 2.5◦ resolution. These variable biases
imply that inversions using GOSAT or TROPOMI would
produce significantly different results. Variable biases do not
decrease much in going from 0.25◦× 0.3125◦ to 2◦× 2.5◦,
suggesting that most of the biases are large-scale regional
features.

We use the co-located GOSAT and TROPOMI data
for 2018–2021 to develop a predictive ML model for
1(TROPOMI−GOSAT) that can be applied to correct the
TROPOMI data with reference to the GOSAT data. The
model uses the 30 predictor variables listed in Table 2, which
are all TROPOMI retrieval parameters included with the
individual XCH4 observations, so that the correction can
then be applied to the full TROPOMI dataset as a func-
tion of those parameters. We split the 170 576 co-located
data pairs into two sets. The pairs for 2018–2020 are used
to train the predictive model (training dataset). The train-
ing minimizes a loss function of the mean-squared error
that describes the difference between predicted and true
1(TROPOMI−GOSAT) values. The pairs for 2021 are used
for independent evaluation of the predictive model (test
dataset).

We considered three candidate ML methods (Random For-
est, LightGBM, and XGBoost) that rely on ensembles of de-
cision trees (Kingsford and Salzberg, 2008). Random For-
est grows an ensemble of decision trees using a bootstrapped
sample of training data and subset of features for each deci-
sion tree. The averaged predictions from the forest of trees
form the model prediction (Breiman, 2001). LightGBM and
XGBoost are different implementations of gradient-boosted
decision tree algorithms in which decision trees are grown se-
quentially with each iteration predicting the residual between
the observation and the sum of all previous decision trees (Ke
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Table 1. TROPOMI and GOSAT data used for the blended TROPOMI+GOSAT product.

GOSAT TROPOMI

Retrieval version UoL v9.0a Operational v02.04.00b

Local overpass time 13:00 13:30
Pixel size 10.5 km diameter 5.5× 7 km2 c

Pixel separation 260–280 km none
Coverage global global
Return time 3 d 1 d
Retrieval type CO2 proxy at 1.65 µm full physics at 2.3 µm
Number of retrievals per dayd 1443 372 167
Mean biase 0.0 ppbf 6.0 ppb
Variable biase 5.2 ppb 4.7 ppb
Single-retrieval precisione 14.9 ppb 14.5 ppb

a Parker et al. (2020). Only observations with a quality flag of 0 are used. b Lorente et al. (2023). Only
observations with a quality assurance value of 1 are used. Albedo bias-corrected data
(“methane-mixing_ratio_bias_corrected”) is used. c At nadir; 7× 7 km2 before 6 August 2019. d Average for
30 April 2018–31 December 2021. e Based on differences with TCCON data (version GGG2020) as derived
in this work. See Appendix B for details. Variable bias is the spatial standard deviation of the temporally
averaged differences for individual TCCON stations. Retrieval precision is the standard deviation of the
differences for individual retrievals. f In this work, we calibrate the UoL v9.0 product to zero global mean bias
relative to TCCON (version GGG2020), subtracting 9.2 ppb from all retrievals.

Figure 1. Average difference 1(TROPOMI−GOSAT) between co-located GOSAT and TROPOMI observations for 2018–2021, plotted
on a 2◦× 2.5◦ grid for visibility. Co-location criteria are observation times within 1 h and pixel centers within 5 km. The GOSAT and
TROPOMI observations have been adjusted to common prior estimates and averaging kernel sensitivities to enable meaningful computation
of differences (Appendix A). Mean bias and variable bias of TROPOMI relative to GOSAT are shown inset separately over land and water
(data over water are from the glint product). Mean bias and variable bias are calculated as the respective spatial average and standard deviation
of the temporally averaged 1(TROPOMI−GOSAT) data on the specified grid (0.25◦× 0.3125◦ or 2◦× 2.5◦).

et al., 2017; Chen and Guestrin, 2016). It is not necessary
to normalize the predictor variables from Table 2 for any of
these methods. To choose the best predictive model, we used
their implementation in Microsoft’s Fast and Lightweight
AutoML Library (FLAML) (Wang et al., 2021). FLAML is
designed to select the ML model (both method and hyperpa-
rameters) that would perform best on the test data. To keep

the test data independent, FLAML evaluates models with 10-
fold cross validation on the training data (with the 10 folds
determined by dividing the data sequentially). LightGBM
performed the best, XGBoost was a close second, and Ran-
dom Forest displayed the worst performance by a significant
margin. We perform a Z-score transform on model predic-
tions to account for systematic bias in ensemble-tree-based
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Table 2. TROPOMI retrieval parameters used to predict 1(TROPOMI−GOSAT).a

Predictor variable Units

1. Solar zenith angle ◦

2. Relative azimuth angle ◦

3. Across-track pixel indexb –
4. Surface classificationc –
5. Surface altitude m
6. Surface roughness m
7. U10 wind speedd m s−1

8. V10 wind speedd m s−1

9. XCH4 a priori ppb
10. Cirrus reflectancee –
11. XCH4 precisionf ppb
12. Fluorescenceg photons s−1 cm−2 nm−1 sr−1

13–14. CO column and precision molecules cm−2

15–16. H2O column and precision molecules cm−2

17–18. Aerosol size distribution parameter and precisionh –
19–20. Aerosol height and precisioni m
21–22. Aerosol column and precision particles cm−2

23–24. SWIR surface albedo and precisionj –
25–26. NIR surface albedo and precisionk –
27. SWIR aerosol optical thickness –
28. NIR aerosol optical thickness –
29. SWIR chi-squarel –
30. NIR chi-squarel –

a All 30 parameters in this table are provided together with XCH4 as part of the individual operational v02.04.00
TROPOMI methane retrievals. They are used in the LightGBM machine learning (ML) algorithm to predict
1(TROPOMI−GOSAT) for individual TROPOMI retrievals. b The retrieval also provides satellite viewing angle, but
this is redundant with the across-track pixel index. c Surface classification for land is from the 1 km resolution Global
Land Cover Characteristics Data Base Version 2.0 (USGS, 2018) and for water from the 250 m resolution data from
Carroll et al. (2009) as explained by Apituley et al. (2022). We use the information from bit 0 and 1, giving this parameter
four possible values: 0 – land, 1 – water, 2 – mostly land (with some water), and 3 – mostly water (with some land).
d Zonal and meridional wind speeds at 10 m altitude. e From the Visible Infrared Imaging Radiometer Suite (VIIRS).
f Precision as given in the TROPOMI retrieval product only includes the effect of noise in the measured radiance and is
much smaller than the retrieval precision given in Table 1 from validation with TCCON data (Lorente et al., 2021).
g Fluorescence emission at 755 nm. h Negative power law exponent (α) for the aerosol size distribution represented as
n(r)∼ r−α , where n is the number size distribution function and r is particle radius (Hasekamp et al., 2022). Larger
values of α correspond to a finer aerosol. i Central height of the Gaussian aerosol altitude distribution (Hasekamp et
al., 2022). j Shortwave infrared (SWIR) at 2305–2385 nm. k Near-infrared (NIR) at 757–774 nm. l Quantifies goodness of
fit for the retrieval in the SWIR or NIR spectral band.

approaches at extreme values, as was done by Ouyang et
al. (2023) and is explained by Belitz and Stackelberg (2021).

We applied the SHapley Additive exPlanations (SHAP)
approach to determine the contributions of the in-
dividual variables in Table 2 to the prediction of
1(TROPOMI−GOSAT). SHAP analysis partitions individ-
ual model predictions to the different predictor variables, giv-
ing each a SHAP value (in units of ppb) that add up to the de-
viation of the model prediction from the average prediction
across a given dataset. We use the TreeExplainer method for
our SHAP analysis (Lundberg et al., 2020). The SHAP val-
ues for the predictor variables can be used to understand in-
dividual predictions or can be aggregated across a larger set
of data. They do not fully resolve correlation across predic-
tor variables, which can complicate interpretability (Aas et
al., 2021; Silva et al., 2022).

Figure 2 ranks the predictor variables of Table 2 by their
average absolute SHAP values across the training dataset.
The most important predictors of 1(TROPOMI−GOSAT)
are the aerosol size distribution parameter (given by the
negative power law exponent), the across-track pixel index,
the CO column precision, and the SWIR surface albedo.
SWIR aerosol optical thickness is strongly correlated with
the aerosol size distribution parameter (R2

= 0.72), but the
SHAP analysis does not resolve this correlation. Similarly,
CO column precision is driven by the underlying SWIR
surface albedo (R2

= 0.68) which we view as the actual
cause of 1(TROPOMI−GOSAT). Although one might ex-
pect arid surfaces to generate large dust particles, we find that
SWIR surface albedo is not correlated with the aerosol size
distribution parameter (R2

= 0.04). The importance of the
across-track pixel index reflects the striping patterns present
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Figure 2. Predictors of1(TROPOMI−GOSAT) ranked in order of
importance. The figure shows the top 10 predictor variables for the
ML model of 1(TROPOMI−GOSAT) among all predictor vari-
ables included in the TROPOMI retrieval dataset (Table 2). The
contributions of individual variables are defined by their mean ab-
solute SHAP values (in units of ppb) and are shown here as global
mean absolute values along with medians and the interquartile range
(IQR) for the training data of 2018–2020.

in TROPOMI retrievals, which change from orbit to orbit
(Borsdorff et al., 2018, 2019). Additionally, the across-track
pixel index provides information about the viewing geom-
etry of TROPOMI. Cirrus reflectance does not rank among
the top 10 predictors of 1(TROPOMI−GOSAT) in Fig. 2
but can be important for individual scenes, as will be shown
later.

Figure 3 further examines the SHAP values for the aerosol
size distribution parameter (with smaller values indicating
larger particles) and SWIR surface albedo. TROPOMI data
appear to be biased low with respect to GOSAT when parti-
cles are large, which is a recognized source of error for full-
physics retrievals (Butz et al., 2010; Schepers et al., 2012).
Despite already undergoing a bias correction with respect to
albedo (Lorente et al., 2021), TROPOMI data are biased low
relative to GOSAT at high SWIR surface albedo.

3 Evaluation of the blended TROPOMI+GOSAT
product

Figure 4 shows the ability of the ML model to predict
1(TROPOMI−GOSAT) for the 2021 testing data that the
model was not trained on. The correction is successful over-
all, with a coefficient of determination (R2) of 0.53 and a
root-mean-square-error (RMSE) of 12.4 ppb. Random noise
necessarily limits the quality of the fit for individual pairs.
The RMSE is smaller than would be expected from the
precision of 1(TROPOMI−GOSAT) derived by adding
the precisions of the individual TROPOMI (14.5 ppb) and
GOSAT (14.9 ppb) retrievals relative to TCCON in quadra-
ture (20.8 ppb; Table 1). This implies that the TROPOMI and
GOSAT retrieval precisions derived from TCCON are not
fully random but are partly predictable on the basis of the
TROPOMI retrieval parameters.

Despite the bias correction applied by the Z-score trans-
form from Belitz and Stackelberg (2021), we see (from
Fig. 4) a tendency for the ML model to underestimate the
high tail of the observed distribution and overestimate the
low tail. This is a recognized problem in ML algorithms that
aim to provide a good model of the mean (Zhang and Lu,
2012).

Figure 5 displays the observed global distribution of
1(TROPOMI−GOSAT) for the 2021 test data and the resid-
ual distribution (observed− predicted) after correction with
the ML model. As the model was not trained on these data,
the data can be used for an independent global evaluation of
the reduction in the mean and variable bias of TROPOMI
relative to GOSAT. Much of the original regional structure
in the TROPOMI bias has disappeared or is greatly reduced.
The variable bias over land decreases from 14.3 to 10.4 ppb
at a 0.25◦× 0.3125◦ resolution and from 13.1 to 9.1 ppb at
a 2◦× 2.5◦ resolution. The mean bias is reduced over water,
going from 13.7 to −2.7 ppb at a 0.25◦× 0.3125◦ resolution
and from 11.9 to −3.2 ppb at a 2◦× 2.5◦ resolution.

After forming the full blended TROPOMI+GOSAT prod-
uct for the 2018–2021 period (described below), we per-
form an independent evaluation with the TCCON data
for that period covering 24 sites (Fig. 6). The evalua-
tion procedure is described in Appendix B. This allows
us to carry out a comparison to the evaluations of the
original TROPOMI and GOSAT retrievals with the same
TCCON data. We find that the retrieval precision is im-
proved from 14.5 ppb in the TROPOMI data to 11.9 ppb in
the blended TROPOMI+GOSAT product, both surpassing
GOSAT’s precision of 14.9 ppb. The variable bias is slightly
reduced from 4.7 ppb in the TROPOMI data to 4.4 ppb for
the blended TROPOMI+GOSAT product. The mean bias de-
creases from 6.0 to−2.9 ppb. Individual station comparisons
are shown in Table B2. All stations except for two see a re-
duction in the standard deviation of 1(satellite−TCCON).

The blended TROPOMI+GOSAT product shows only a
modest improvement in error statistics at TCCON sites, but
this is because these sites are all in locations with a SWIR
surface albedo lower than 0.4. As shown in Fig. 3, the largest
TROPOMI biases are for SWIR surface albedos higher than
0.4 (15 % of all TROPOMI data). Beyond the simple eval-
uation, the TCCON data allow us to test our previously de-
rived relationships of TROPOMI retrieval biases to retrieval
parameters, including the SWIR surface albedo and aerosol
size parameter found to be important (Figs. 2, 3). In Fig. 7,
we show the standard deviation of satellite−TCCON differ-
ences as a function of these two parameters. For both param-
eters, the spread of the satellite−TCCON difference is lower
at all parameter values. Consistent with Fig. 3, the largest im-
provements are for large aerosols (small values of the aerosol
size parameters) and away from moderate SWIR albedo.

Table 3 summarizes the error statistics of the
blended TROPOMI+GOSAT product referenced to the
GOSAT dataset for 2021 (separately for land and water,
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Figure 3. Contributions to 1(TROPOMI−GOSAT) from the aerosol size distribution parameter and the SWIR surface albedo in the
TROPOMI retrievals. The aerosol size distribution parameter is the negative exponent of the assumed power law aerosol size distribution in
the TROPOMI retrieval (Table 2) and decreases as the contribution from large particles increases. The SWIR surface albedo is for the 2305–
2385 nm wavelength range. Negative values are for water scenes where the SWIR surface albedo is calculated differently in the retrieval
(Lorente et al., 2022). The figure shows the SHAP-inferred contributions of the two parameters to the predicted 1(TROPOMI−GOSAT)
values for individual data pairs (counts) in the 2018–2020 training dataset of the ML model.

Figure 4. Ability of the ML model to predict
1(TROPOMI−GOSAT) on the test data from 2021. The co-
efficient of determination (R2) and root-mean-square error
(RMSE) are shown inset.

0.25◦× 0.3125◦ and 2◦× 2.5◦) and the TCCON dataset for
2018–2021. Mean biases are low. Variable bias relative to
TCCON is low (4.4 ppb), but this reflects the favorable lo-
cations of the TCCON stations as discussed above. Variable
bias relative to GOSAT is about 10 ppb. This is sufficiently
low that inversions of the blended TROPOMI+GOSAT
product to infer methane emissions should be consistent

Table 3. Summary of error statistics for the blended
TROPOMI+GOSAT product.∗

Reference dataset Mean Variable
bias bias

(ppb) (ppb)

GOSAT (2021, 0.25◦× 0.3125◦, land) −0.6 10.4
GOSAT (2021, 0.25◦× 0.3125◦, water) −2.7 12.5
GOSAT (2021, 2◦× 2.5◦, land) −0.7 9.1
GOSAT (2021, 2◦× 2.5◦, water) −3.2 9.5
TCCON (2018–2021, GGG2020) −2.9 4.4

∗ Error statistics are for the differences between the blended TROPOMI+GOSAT
product and the reference dataset.

with inversions of GOSAT data (Buchwitz et al., 2015).
The blended TROPOMI+GOSAT product benefits from the
TROPOMI coverage to produce a data density 250 times
higher than GOSAT.

4 Overview of the blended TROPOMI+GOSAT
product

We produced a blended TROPOMI+GOSAT product by ap-
plying the predictive model for 1(TROPOMI−GOSAT) to
the complete operational v02.04.00 TROPOMI data product.
The correction is implemented as 1(TROPOMI−GOSAT)
subtracted from the TROPOMI data. The blended prod-
uct contains all successful TROPOMI retrievals from April
2018 to present. Figure 8 shows the global distribution of
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Figure 5. TROPOMI−GOSAT XCH4 differences (1(TROPOMI−GOSAT)) for co-located data in 2021, plotted on a 2◦× 2.5◦ grid for vis-
ibility. Values are annual means. The 2021 observations (a) are used as test data for the ML model trained to predict1(TROPOMI−GOSAT)
from 2018–2020 data. Panel (b) shows the residual 1(TROPOMI−GOSAT) after removing the predicted values from the observations.
Panel (b) is equivalent to 1(blended−GOSAT). Mean bias and variable bias are calculated as described in Fig. 1.

the blended product for 2021 and the corrections to the
TROPOMI retrieval. We see a systematic downward correc-
tion over the oceans (−12.9± 8.3 ppb) except in persistently
cloudy regions near the Equator. Over land, the correction av-
erages −5.5± 8.0 ppb. It is highest over bright arid surfaces,
which are known to be difficult for TROPOMI retrievals
(Lorente et al., 2021; Schneising et al., 2019). We also see
large corrections at high northern latitudes that are season-
ally driven (see below) and over tropical wetlands (Ama-
zon, central Africa) where TROPOMI data are particularly
sparse (Qu et al., 2021). Data south of 60◦ S (where the cor-
rection averages −16.2± 9.6 ppb) are excluded from these
statistics and visualizations because of a lack of GOSAT data
for evaluation. However, they are included in the blended
TROPOMI+GOSAT data available for download.

Our correction is built on top of the TROPOMI operational
v02.04.00 data that have already been bias-corrected with re-
spect to SWIR surface albedo (Lorente et al., 2021). We com-
pare these corrections in Appendix C.

Figure 9 shows the seasonal variation in the correction for
2021. Upward correction over arid surfaces due to SWIR
surface albedo is consistent across seasons, but there is still
seasonality in the correction over these regions driven by
dust emission (and thus the aerosol size parameter). As a
result, the correction over North Africa is largest in the bo-
real spring–summer, and the correction over the East Asian
deserts is largest in late boreal winter, reflecting the season-
ality in dust emission (Shao and Dong, 2006; Senghor et
al., 2017). There is large seasonal variation in the correction
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Figure 6. TCCON stations with 2018–2021 data mapped on the mean TROPOMI SWIR surface albedo for 2021. The TROPOMI data are
annual means and are plotted on a 1◦× 1◦ grid with data south of 60◦ S cropped for visualization purposes. Gray areas have no TROPOMI
data. Site locations are listed in Table B1.

Figure 7. Application of TCCON data to evaluate satellite XCH4
retrieval biases in relation to retrieval parameters. The figure shows
the standard deviations of satellite−TCCON differences for differ-
ent bins of the TROPOMI retrieval parameters found to be impor-
tant causes of retrieval bias (Fig. 2): aerosol size parameter (a, 0.2
bins) and SWIR surface albedo (b, 0.05 bins). Results are for the
2018–2021 period at the 24 TCCON sites in Fig. 6 (excluded sites
are explained in Appendix B) and compare the TROPOMI oper-
ational v02.04.00 retrieval and the blended TROPOMI+GOSAT
product.

at high northern latitudes because of the low SWIR albedo of
snow- and ice-covered surfaces.

Figure 10 illustrates the correction over the Arabian Penin-
sula with annual mean oversampled data on a 0.01◦× 0.01◦

grid. The TROPOMI operational v02.04.00 XCH4 data show
patterns that correlate with SWIR surface albedo, such as the
XCH4 gradients across Sudan and Saudi Arabia. These are
removed in the blended product. The original data also show
a number of hotspots over Iraq and Saudi Arabia that are re-
moved in the blended product. These artifact enhancements
tend to be related to the TROPOMI aerosol size distribution
parameter, but they are more persistent than would be ex-

pected from aerosol plumes, suggesting that surface features
might be aliasing into the aerosol retrieval. Other hotspots,
such as those over Iran, are intensified in the blended prod-
uct due to the high albedo in the region.

The TROPOMI operational v02.04.00 data show some
coastal artifacts that are apparent in Fig. 10 and that are not
always fully corrected in the blended TROPOMI+GOSAT
product. Coastal scenes are difficult to retrieve in full-physics
algorithms because of the subpixel albedo contrast between
dark water and bright land. Despite our correction, Fig. 10
shows that some coastal areas have persistent biases, most
evidently along the southern coast of the Gulf of Aden. The
ability of the ML model to correct coastal biases may be lim-
ited by the diversity of coastal conditions and the small num-
ber of TROPOMI and GOSAT coastal data pairs available
for training. Data users can choose to mitigate coastal bias
by filtering out a subset of TROPOMI scenes that contain
both land and water (Appendix D).

Our blended product also corrects transient biases from
striping and atmospheric scattering that may affect single-
scene observations of hotspots and plumes. This is illustrated
in Fig. 11 with a single-orbit scene (no temporal or spatial
averaging) over Algeria on 15 December 2019 featuring a
plume from an oil/gas ultra-emitting facility previously iden-
tified in the TROPOMI data by Lauvaux et al. (2022). There
is strong striping along the orbit track in the original single-
orbit data from TROPOMI (Liu et al., 2021; Schneising et
al., 2023), and this is substantially reduced in our product.
The plume, shown in the center of Fig. 11, was partially over-
lain by cirrus clouds (observed by VIIRS) that were not fil-
tered out in the TROPOMI retrieval and caused a low bias in
the retrieved XCH4. Our blended product corrects this cloud
bias, enabling a better characterization of the plume to infer
the source rate.
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Figure 8. Blended TROPOMI+GOSAT product for 2021 (a) and correction to the TROPOMI operational v02.04.00 product (b). The data
are annual means and are plotted on a 1◦× 1◦ grid with data south of 60◦ S cropped for visualization purposes. Gray areas have no TROPOMI
data. The color bar in the bottom panel saturates at ±30 ppb, but there are outliers ranging from −48.1 ppb (East Siberian Sea) to +44.5 ppb
(over the equatorial western Pacific).

Figure 9. Seasonal correction to the TROPOMI data in the blended TROPOMI+GOSAT product. The figure shows the differences with
the TROPOMI operational v02.04.00 product averaged for each season in 2021. Data are plotted on a 1◦× 1◦ grid with data south of 60◦ S
cropped for visualization purposes.
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Figure 10. Blended TROPOMI+GOSAT and TROPOMI operational v02.04.00 data oversampled to a 0.01◦× 0.01◦ grid over the Arabian
Peninsula. Values are 2021 annual means. Also shown are the aerosol size distribution parameter and the SWIR surface albedo from the
TROPOMI operational v02.04.00 retrieval. Oversampling to increase spatial resolution was done with the tessellation method following Zhu
et al. (2017). Gray areas have less than 10 individual satellite observations contributing to the average.

5 Conclusions

We presented a new blended TROPOMI+GOSAT methane
product that corrects spatially variable biases and artifacts
in the TROPOMI satellite instrument observations of atmo-
spheric methane (XCH4) by using high-quality GOSAT ob-
servations as a reference. Our blended product improves the
reliability of inversions of TROPOMI data to infer methane
emissions and identify methane super-emitters in single-orbit
and time-averaged observations. It includes the full dataset of
TROPOMI retrievals from April 2018 to present and is avail-
able for download (see the “Data availability” section).

The blended product was generated by training a ma-
chine learning (ML) model (LightGBM) to predict the differ-
ence 1(TROPOMI−GOSAT) between co-located GOSAT
and TROPOMI methane retrievals for 2018–2020, using
TROPOMI retrieval parameters as the sole predictor vari-
ables. This enabled subsequent application of the ML model
to compute 1(TROPOMI−GOSAT) for the full ensem-
ble of TROPOMI data. The most important predictors of
1(TROPOMI−GOSAT) were found to be aerosol size,
SWIR surface albedo, and across-track pixel index. The cor-
rections are largest for observations with high albedos and
coarse particles. Systematic downward correction averaging
12.9 ppb was found over water where the GOSAT XCH4
glint retrievals are lower than TROPOMI.

Evaluation with independent ground-based TCCON
XCH4 data shows that our blended TROPOMI+GOSAT
product reduces the global mean bias in the TROPOMI data
from 6.0 to −2.9 ppb, the variable bias from 4.7 to 4.4 ppb,
and the single-retrieval precision from 14.5 to 11.9 ppb.
However, the TCCON data are spatially limited and, in par-
ticular, do not sample regions with SWIR surface albedos
larger than 0.4 where the largest TROPOMI biases rela-
tive to GOSAT are found. Nevertheless, evaluation with the
TCCON data confirms that TROPOMI retrieval biases are re-
lated to the SWIR surface albedo and aerosol size parameter
and that the blended TROPOMI+GOSAT product success-
fully reduces these biases. Global evaluation of the blended
TROPOMI+GOSAT product relative to GOSAT for 2021 as
an independent test dataset shows a reduction in variable bias
over land from 14.3 to 10.4 ppb on a 0.25◦× 0.3125◦ grid
(as might be used for regional inversions) and from 13.1 to
9.1 ppb on a 2◦× 2.5◦ grid (as might be used for global in-
versions).

Annual mean corrections in the blended product relative
to the TROPOMI operational v02.04.00 data exceed 10 ppb
over the oceans, desert regions (notably North Africa), per-
sistently cloudy regions (notably tropical wetlands), and sea-
sonally snow-covered regions (notably high northern lati-
tudes). Large-scale corrections are mostly driven by SWIR
surface albedo. Fine-scale inspection of the Arabian Penin-
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Figure 11. Methane ultra-emitter plume detection in single-orbit TROPOMI data. The figure shows a scene over Algeria sampled by orbit
number 11252 on 15 December 2019. Missing data are shown in gray. The enhancement in the center of the image was identified by Lauvaux
et al. (2022) from TROPOMI data as a plume from an ultra-emitting oil/gas facility with an approximate location at the white circle marker.
The TROPOMI operational v02.04.00 retrieval (a) shows extensive striping and low values surrounding the plume that are biases from cirrus
cloud reflectance (c). This is effectively corrected in the blended TROPOMI+GOSAT product (b, d).

sula reveals a number of annual mean hotspots in the original
TROPOMI data that are removed in the blended product as
artifacts. Some coastal artifacts remain in the blended prod-
uct that can be filtered out at the discretion of the user.

The blended product also increases the quality of the
single-orbit TROPOMI data by reducing striping and remov-
ing transient biases from aerosol plumes and cirrus clouds.
This can increase confidence in the identification of ultra-
emitters from TROPOMI hotspots and the quantitative inter-
pretation of plume observations to infer point-source rates.

Our correction will be applicable to all past and future op-
erational TROPOMI v02.04.00 data (as well as v02.05.00, as
it features no changes relative to v02.04.00). Users can down-
load our blended TROPOMI+GOSAT product for 2018–
present (see the “Data availability” section) or apply the cor-
rection themselves to the operational product. A new version
of the TROPOMI retrieval would require the ML algorithm
to be retrained.

The ML framework presented here can be extended to any
pair of satellite instruments in which one instrument pro-
vides a dense dataset while the other provides a more ac-
curate but sparser dataset for the same variable. This situa-
tion often arises with a new satellite launch, as retrievals take
time to mature, and an older, more established instrument

may have been previously validated. Application of our ap-
proach to identify biases with the new instrument provides
a far more spatially extensive evaluation than the traditional
approach using surface sites or aircraft profiles. It also en-
ables the identification of the critical retrieval parameters that
should be improved in the new instrument. Finally, it gener-
ates a blended product that corrects data from the new instru-
ment.

Appendix A: Adjustment of TROPOMI, GOSAT, and
TCCON data to common averaging kernel sensitivities
and prior vertical profiles

Unbiased intercomparison of XCH4 values retrieved from
TROPOMI, GOSAT, and TCCON requires adjustments for
the different averaging kernel vertical sensitivities and prior
vertical CH4 concentration profiles used in the retrievals and
reported as part of the retrieval products. We follow Schneis-
ing et al. (2019) and Buchwitz et al. (2022) to make these
adjustments.

The following notation will be used. Column-averaged
dry-air mixing ratios of methane (XCH4) are denoted as c
(with units of ppb). Vertical profiles of CH4 subcolumn mix-
ing ratios for pressure levels indexed by l are denoted as xl
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and are either retrieved (xlr ) or prior estimates (xla) (with units
of ppb). Vertical profiles of averaging kernels describing sen-
sitivity are denoted by Al and are dimensionless. Pressure
weights that map vertical profiles xl to XCH4 are denoted
as h and are dimensionless. Subscripts G, T, and F denote
GOSAT, TROPOMI, and TCCON, respectively. 1 denotes
the XCH4 differences between pairs of instruments after ad-
justment to the same vertical sensitivities and prior estimates.

The GOSAT retrieval has more vertical pressure levels (19
or 20 depending on the retrieval) than TROPOMI (12, de-
noted pressure layers). It is, therefore, better to interpolate xl

from GOSAT to TROPOMI, following the principle of us-
ing the coarser vertical grid when comparing two different
satellite retrievals (Rodgers and Connor, 2003). To calculate
1(TROPOMI−GOSAT), we first calculate what value c∗T
TROPOMI would have retrieved with GOSAT’s prior pro-
file.

c∗T = cT,r+
∑
l

hlT

(
1−AlT

)(
xlG,a− x

l
T,a

)
(A1)

Next, we calculate what value c∗G GOSAT would have re-
trieved with TROPOMI’s vertical sensitivity.

c∗G =
∑
l

hlT

(
xlG,a+

(
xlG,r− x

l
G,a

)
AlT

)
(A2)

Because the retrieved vertical profile of CH4 is not reported
for GOSAT, we estimate it here by scaling the prior profile
by the ratio of retrieved to prior XCH4 values.

xG,r = xG,a
cG,r

cG,a
(A3)

Equations (A1) and (A2) require GOSAT’s prior profile
to be on the same pressure grid as TROPOMI. Interpola-
tion is conducted from the 19 or 20 GOSAT pressure lev-
els to the 12 TROPOMI pressure layers for this purpose.
Equations (A1), (A2), and (A3) are then used to calculate
1(TROPOMI−GOSAT).

1(TROPOMI − GOSAT)= c∗T− c
∗

G (A4)

The same procedure is used to calculate
1(GOSAT−TCCON) and 1(TROPOMI−TCCON).
TCCON uses 51 pressure levels for its retrieval. For
1(GOSAT−TCCON), we use TCCON’s prior pro-
file and GOSAT’s averaging kernel sensitivities. For
1(TROPOMI−TCCON), we use TCCON’s prior profile
and TROPOMI’s averaging kernel sensitivities. An equation
analogous to Eq. (A3) is used to estimate the retrieved
TCCON CH4 profile. Thus, Eqs. (A5) and (A6) calculate
1(GOSAT−TCCON) and 1(TROPOMI−TCCON).

1(GOSAT − TCCON)

=

[
cG,r+

∑
l

hlG

(
1−AlG

)(
xlF,a− x

l
G,a

)]

−

[∑
l

hlG

(
xlF,a+

(
xlF,r− x

l
F,a

)
AlG

)]
(A5)

1(TROPOMI − TCCON)

=

[
cT,r+

∑
l

hlT

(
1−AlT

)(
xlF,a− x

l
T,a

)]

−

[∑
l

hlT

(
xlF,a+

(
xlF,r− x

l
F,a

)
AlT

)]
(A6)

Appendix B: Evaluation with TCCON data

We evaluated the GOSAT, TROPOMI, and blended
TROPOMI+GOSAT products with the independent TCCON
data for 30 April 2018–31 December 2021, correcting for
retrieval differences in prior information and vertical sensi-
tivities (Appendix A). We use the TCCON GGG2020 data
version (https://tccondata.org, last access: 18 March 2023)
and consider all 24 stations that have reported measurements
covering our study period (Fig. 6, Table B1).

The general evaluation framework is to identify co-
located satellite and TCCON XCH4 retrievals and com-
pare these pairs. When evaluating TROPOMI or the blended
TROPOMI+GOSAT product, satellite and TCCON pairs are
defined to be those within 1 h and 100 km of each other and a
surface elevation difference of no more than 250 m (some of
the TCCON stations are on mountaintops). When evaluating
the GOSAT product, satellite and TCCON pairs are defined
to be those within 2 h and 500 km of each other and a surface
elevation difference of no more than 250 m. For all compar-
isons, a reduced radius of 50 km is used for the Edwards sta-
tion (Schneising et al., 2019). We find 632 683 TROPOMI–
TCCON data pairs and 31 093 GOSAT–TCCON data pairs.
The TROPOMI–TCCON data pairs are also used to evaluate
the blended TROPOMI+GOSAT product.

For each station, we take the mean and standard devia-
tion of all values of 1(satellite−TCCON) to yield a sta-
tion bias and station precision. The mean bias is the aver-
age of the station biases. The variable bias is the standard
deviation of the station biases. The retrieval precision is the
average of the station precisions. These metrics are calcu-
lated for 2018–2021 and for all TCCON stations listed in
Table B1 and mapped in Fig. 6. Using a threshold of 100
satellite and TCCON pairs for a station to be used, Izaña,
JPL, Ny-Ålesund, and Réunion Island are excluded from
the TROPOMI and blended TROPOMI+GOSAT analyses,
while Izaña, JPL, and Ny-Ålesund are excluded from the
GOSAT analysis. The station biases and precisions by sta-
tion are shown in Table B2.
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Table B1. TCCON stations used for evaluation of the satellite data.

Site (lat, long) Elevation (km a.s.l.) Data reference

Bremen (53.10, 8.85) 0.03 Notholt et al. (2022)
Burgos (18.53, 120.65) 0.04 Morino et al. (2022c)
East Trout Lake (54.35, −104.99) 0.50 Wunch et al. (2022)
Edwards (34.96, −117.88) 0.70 Iraci et al. (2022)
Eureka (80.05, −86.42) 0.61 Strong et al. (2022)
Garmisch (47.48, 11.06) 0.74 Sussmann and Rettinger (2023)
Hefei (31.90, 117.17) 0.03 Liu et al. (2022)
Izaña (28.30, −16.50)a,b 2.37 García et al. (2022)
JPL (34.20, −118.18)a,b 0.39 Wennberg et al. (2022a)
Karlsruhe (49.10, 8.44) 0.12 Hase et al. (2022)
Lamont (36.60, −97.49) 0.32 Wennberg et al. (2022d)
Lauder (−45.04, 169.68) 0.37 Sherlock et al. (2022), Pollard et al. (2022)
Nicosia (35.14, 33.38) 0.19 Petri et al. (2023)
Ny-Ålesund (78.92, 11.92)a,b 0.02 Buschmann et al. (2022)
Orléans (47.97, 2.11) 0.13 Warneke et al. (2022)
Paris (48.85, 2.36) 0.06 Te et al. (2022)
Park Falls (45.95, −90.27) 0.44 Wennberg et al. (2022b)
Pasadena (34.14, −118.13) 0.23 Wennberg et al. (2022c)
Réunion Island (−20.90, 55.49)b 0.09 De Mazière et al. (2022)
Rikubetsu (43.46, 143.77) 0.38 Morino et al. (2022a)
Saga (33.24, 130.29) 0.01 Shiomi et al. (2022)
Sodankylä (67.37, 26.63) 0.19 Kivi et al. (2022)
Tsukuba (36.05, 140.12) 0.03 Morino et al. (2022b)
Xianghe (39.75, 116.96) 0.04 Yang et al. (2020), Zhou et al. (2022)

a Excluded from the GOSAT evaluation due to a low number of pairs for comparison. b Excluded from the TROPOMI and blended
TROPOMI+GOSAT evaluations due to a low number of pairs for comparison.

Table B2. Comparison of satellite products with XCH4 measured at TCCON stations.∗

GOSAT TROPOMI Blended

Site µ (ppb) σ (ppb) µ (ppb) σ (ppb) µ (ppb) σ (ppb)

Bremen 0.3 14.3 7.6 13.4 −2.3 9.7
Burgos −1.2 11.0 6.6 15.0 −8.1 9.8
East Trout Lake 1.6 18.6 10.4 20.7 4.2 14.0
Edwards −1.4 10.6 −0.9 10.2 −7.4 8.0
Eureka 14.2 20.2 17.3 15.6 −2.3 16.5
Garmisch 0.8 15.9 13.1 15.1 6.3 13.3
Hefei 3.0 21.3 7.0 13.1 −1.7 12.2
Izaña – – – – – –
JPL – – – – – –
Karlsruhe −3.9 14.8 4.6 14.2 −4.4 10.6
Lamont −0.5 14.0 2.6 12.1 −2.9 10.4
Lauder −1.7 9.7 −0.3 15.1 −8.9 10.9
Nicosia −0.6 12.6 5.2 13.4 −4.4 11.7
Ny-Ålesund – – – – – –
Orléans −1.2 12.6 5.3 12.6 −3.6 9.7
Paris −3.2 13.7 5.0 13.0 −3.8 10.9
Park Falls 3.0 15.3 2.7 17.2 −0.9 13.7
Pasadena −7.5 15.4 0.4 13.9 −11.7 11.8
Réunion Island −9.4 10.6 – – – –
Rikubetsu 9.9 17.0 8.3 15.5 3.2 13.2
Saga −2.1 14.6 12.9 13.1 0.3 12.2
Sodankylä 1.6 16.4 4.9 19.9 0.3 12.9
Tsukuba −4.9 13.2 3.1 10.8 −4.0 10.1
Xianghe 3.1 20.3 4.1 15.5 −5.4 15.6

∗Mean (µ) and standard deviation (σ ) of the satellite−TCCON difference in XCH4 for co-located data over
the 2018–2021 period. Station locations are listed in Table B1 and shown in Fig. 6. Satellite and TCCON data
have been corrected to the same prior estimates and averaging kernel sensitivities (Appendix A). Dashes
indicate insufficient co-located data (see text).

Atmos. Meas. Tech., 16, 3787–3807, 2023 https://doi.org/10.5194/amt-16-3787-2023



N. Balasus et al.: Blended TROPOMI+GOSAT 3801

Appendix C: Comparison to the operational TROPOMI
bias correction

As described in Lorente et al. (2021), the operational
v02.04.00 TROPOMI data include a bias correction for
SWIR surface albedo. In our study, we have used
these data as our starting point for the computation of
1(TROPOMI−GOSAT). This adds a bias correction on top
of a previous bias correction. It is of interest to examine the
extent to which the previous bias correction was insufficient.

The operational SWIR surface albedo correction is derived
using the “small area approximation”, in which a few re-
gions are selected around the globe where variation in SWIR
surface albedo is observed but variation in XCH4 is not ex-
pected. Referencing Aben et al. (2007), an albedo of 0.2 is
selected as the best conditions for the retrieval, and the cor-
rection is derived so that all retrievals in these regions match
the retrieval at a SWIR surface albedo of 0.2.

Figure C1 shows the TROPOMI data before the opera-
tional albedo bias correction as well as the magnitude of this
correction. The sum of the two figures gives the TROPOMI
operational v02.04.00 data used in this study. Comparing the
operational albedo bias correction to Fig. 6 suggests that it
is pushing values of XCH4 to be too low over bright surface
(North Africa and the Arabian Peninsula) and to be too high
over dark surfaces (snow-covered scenes).

Figure C1. TROPOMI operational v02.04.00 XCH4 product for 2021 before the operational albedo bias correction (a) and the operational
albedo bias correction (b). The data are annual means and are plotted on a 1◦× 1◦ grid with data south of 60◦ S cropped for visualization
purposes. Gray areas have no TROPOMI data. In the operational files, the top plot corresponds to “methane_mixing_ratio” and the sum of
the top and bottom plot corresponds to “methane_mixing_ratio_bias_corrected”.

Appendix D: Filtering coastal TROPOMI scenes

Retrieval pixels that include both land and water are prob-
lematic because of the subpixel albedo contrast. This can re-
sult in coastal biases, including for lakes and large rivers,
that are not always successfully removed in our blended
TROPOMI+GOSAT product. For example, in Fig. D1a,
there are enhancements of XCH4 that outline the coast of
North Africa. This can be fully avoided by filtering out all re-
trievals with a “surface_classification” value of 3 (pixel con-
tains mostly water with some land) and retrievals with a “sur-
face_classification” value of 2 (pixel contains mostly land
with some water), but this excludes 8 % of the global data.
Filtering out all pixels with a surface_classification value of
3 (0.3 % of data) and the subset of retrievals with a sur-
face_classification value of 2 and a SWIR chi-square value
greater than 20 000 (see Table 2) largely corrects coastal ar-
tifacts while excluding only 0.6 % of the data. Figure D1b
shows the pixels that are removed by this filter, and Fig. D1c
shows the blended product after removal of these pixels. We
keep these coastal pixels in our blended product and leave it
to the user to decide what filters to apply.

https://doi.org/10.5194/amt-16-3787-2023 Atmos. Meas. Tech., 16, 3787–3807, 2023
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Figure D1. Filtering of coastal pixels in the blended TROPOMI+GOSAT XCH4 product. Panel (a) shows the unfiltered data over North
Africa, oversampled on a 0.01◦× 0.01◦ grid and averaged for 2021. Panel (b) shows our coastal filter excluding all pixels with a sur-
face_classification value of 3 and the subset of pixels with a surface_classification value of 2 and a SWIR chi-square value greater than
20 000 (Table 2). Panel (c) shows the filtered data. Grid cells with less than 10 individual observations contributing to the oversampled
average are shown in gray in the top and bottom panels.
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Code availability. The code used for all portions of this project is
available at https://github.com/nicholasbalasus/blended_tropomi_
gosat_methane (last access: 9 August 2023) and archived on Zen-
odo at https://doi.org/10.5281/zenodo.8136738 (Balasus, 2023b).

Data availability. The blended TROPOMI+GOSAT
methane product data are available for April 2018–
present on Harvard Dataverse at https://dataverse.harvard.
edu/dataverse/blended-tropomi-gosat-methane (Balasus,
2023a). The TROPOMI data used here are available at
https://s5phub.copernicus.eu/dhus/#/home (ESA, 2023) for
April 2018–present. The GOSAT data used here are available
at https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb
(Parker and Boesch, 2020) for 2009–2021. The TCCON data were
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