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Abstract. Our global understanding of clouds and aerosols
relies on the remote sensing of their optical, microphysical,
and macrophysical properties using, in part, scattered so-
lar radiation. Current retrievals assume clouds and aerosols
form plane-parallel, homogeneous layers and utilize 1D ra-
diative transfer (RT) models. These assumptions limit the de-
tail that can be retrieved about the 3D variability in the cloud
and aerosol fields and induce biases in the retrieved prop-
erties for highly heterogeneous structures such as cumulus
clouds and smoke plumes. In Part 1 of this two-part study,
we validated a tomographic method that utilizes multi-angle
passive imagery to retrieve 3D distributions of species us-
ing 3D RT to overcome these issues. That validation charac-
terized the uncertainty in the approximate Jacobian used in
the tomographic retrieval over a wide range of atmospheric
and surface conditions for several horizontal boundary con-
ditions. Here, in Part 2, we test the algorithm’s effectiveness
on synthetic data to test whether the retrieval accuracy is
limited by the use of the approximate Jacobian. We retrieve
3D distributions of a volume extinction coefficient (σ3D) at
40 m resolution from synthetic multi-angle, mono-spectral
imagery at 35 m resolution derived from stochastically gen-
erated cumuliform-type clouds in (1 km)3 domains. The re-
trievals are idealized in that we neglect forward-modelling
and instrumental errors, with the exception of radiometric
noise; thus, reported retrieval errors are the lower bounds.
σ3D is retrieved with, on average, a relative root mean square

error (RRMSE) < 20 % and bias < 0.1 % for clouds with
maximum optical depth (MOD) < 17, and the RRMSE of
the radiances is < 0.5 %, indicating very high accuracy in
shallow cumulus conditions. As the MOD of the clouds in-
creases to 80, the RRMSE and biases in σ3D worsen to 60 %
and −35 %, respectively, and the RRMSE of the radiances
reaches 16 %, indicating incomplete convergence. This is ex-
pected from the increasing ill-conditioning of the inverse
problem with the decreasing mean free path predicted by RT
theory and discussed in detail in Part 1. We tested retrievals
that use a forward model that is not only less ill-conditioned
(in terms of condition number) but also less accurate, due
to more aggressive delta-M scaling. This reduces the radi-
ance RRMSE to 9 % and the bias in σ3D to −8 % in clouds
with MOD ∼ 80, with no improvement in the RRMSE of
σ3D. This illustrates a significant sensitivity of the retrieval
to the numerical configuration of the RT model which, at
least in our circumstances, improves the retrieval accuracy.
All of these ensemble-averaged results are robust in response
to the inclusion of radiometric noise during the retrieval.
However, individual realizations can have large deviations
of up to 18 % in the mean extinction in clouds with MOD
∼ 80, which indicates large uncertainties in the retrievals in
the optically thick limit. Using less ill-conditioned forward
model tomography can also accurately infer optical depths
(ODs) in conditions spanning the majority of oceanic cumu-
lus fields (MOD< 80), as the retrieval provides ODs with
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bias and RRMSE values better than −8 % and 36 %, respec-
tively. This is a significant improvement over retrievals using
1D RT, which have OD biases between −30 % and −23 %
and RRMSE between 29 % and 80 % for the clouds used
here. Prior information or other sources of information will
be required to improve the RRMSE of σ3D in the optically
thick limit, where the RRMSE is shown to have a strong spa-
tial structure that varies with the solar and viewing geometry.

1 Introduction

Remote-sensing retrievals of cloud and aerosol properties
are important contributors to our understanding of cloud and
aerosol processes and constraining the emergent behaviour
of these processes on Earth’s climate (Bellouin et al., 2020;
Sherwood et al., 2020). As atmospheric modelling has be-
come more complex, there has been an increased demand
for high-quality observations to constrain the uncertain pro-
cesses within the models and inform model development
(Morrison et al., 2020). New observational techniques are re-
quired that can provide robust statistics of small-scale, spa-
tially resolved cloud and aerosol microphysical parameters,
so that their controlling processes can be constrained in both
high- and low-resolution modelling.

In Part 1 of this study (Loveridge et al., 2023a), we de-
scribed a remote-sensing retrieval technique with the poten-
tial to meet these needs by providing 3D instantaneous snap-
shots of volumetric properties of the atmosphere at the reso-
lution of passive imagery. Our method uses multi-angle im-
agery and the spherical harmonics discrete ordinates method
(SHDOM; Evans, 1998) for modelling 3D radiative trans-
fer (RT) to constrain the 3D properties of atmospheric par-
ticles, such as effective particle radius and mass concentra-
tion (Levis et al., 2020; Tzabari et al., 2022), in a process
called tomography (Arridge and Schotland, 2009; Martin et
al., 2014). Our retrieval algorithm for the tomography prob-
lem directly builds upon earlier work in making such re-
trievals tangible and computationally efficient through the
use of approximate Jacobians of 3D radiative transfer that
enable the use of efficient gradient-based local optimization
methods (Levis et al., 2015, 2017, 2020). We have made our
method publicly available in the software package called At-
mospheric Tomography with 3D Radiative Transfer (AT3D;
Loveridge et al., 2022), which was developed from the re-
search software used in Levis et al. (2015, 2017, 2020) called
pySHDOM.

Our tomographic algorithm retrieves 3D properties and
makes use of 3D RT. In doing so, it relaxes the twin assump-
tions of independent pixels and homogeneous plane-parallel
clouds that cause significant biases in operational retrievals
of cloud microphysical properties (Marshak et al., 2006;
Kato and Marshak, 2009; Zhang et al., 2012; Lebsock and
Su, 2014; Ahn et al., 2018; Fu et al., 2019; Painemal et al.,

2021; Fu et al., 2022). Another key advantage of the method
is that it does not rely on expensive active remote sensing
for retrieving volumetric information, as in other methods
(Fielding et al., 2014). Instead, the method only relies on rel-
atively inexpensive passive imaging in the solar part of the
spectrum. It thereby enables wide swath widths and high-
resolution retrievals with high signal-to-noise ratio and high
sensitivity to scattering particles in the size range of atmo-
spheric clouds and aerosols (Dubovik et al., 2011; King and
Vaughan, 2012; Ewald et al., 2021). These benefits position
the tomographic retrieval as a means of filling the observa-
tional gap that exists for the highly heterogeneous fields of
cumulus clouds that are climatically important (Sherwood et
al., 2014).

It is still unclear exactly how effective tomography will be
across the range of scattering regimes present in the Earth’s
atmosphere. The development of tomographic retrievals in
atmospheric science is at an early stage, where numerical
tests have yet to consider the full complexity of Earth’s at-
mosphere and surface (Martin and Hasekamp, 2018; Levis
et al., 2020; Doicu et al., 2022b; Tzabari et al., 2022). This
two-part study contributes to further our understanding of the
effectiveness of cloud tomography. In Part 1 of our study, we
evaluated the accuracy of our approximate Jacobian for the
first time and established the theory behind its effectiveness.
We identified a number of issues that may occur when apply-
ing the approximate Jacobian to solve a cloud tomography
problem using local optimization, particularly due to the non-
linearity of the problem and the loss of sensitivity of the mea-
surements in the diffuse scattering limit (Levis et al., 2015;
Martin and Hasekamp, 2018; Forster et al., 2021; Davis et
al., 2021). Our goal here in Part 2 is to test the efficacy of our
proposed retrieval algorithm for retrieving a 3D volume ex-
tinction coefficient across a wide range of scattering regimes,
though still in idealized conditions. For the first time, we
compare cloud optical depths inferred from the tomographic
retrieval against those retrieved using a 1D radiative trans-
fer model. In Sect. 2, we formulate the tomography problem
and review relevant past work on inverse radiative transfer,
summarizing key discussions and results from Part 1 where
appropriate. Section 3 presents our idealized methodology to
test the efficacy of the retrieval numerically. We test our re-
trieval on synthetic radiances calculated from stochastically
generated clouds and examine the influence of the cloud opti-
cal depth on the retrieval accuracy. We also explore the influ-
ence of using an approximate forward model and introduc-
ing radiometric noise on the retrieval accuracy. Our results
are presented in Sect. 4, and we discuss their implications in
Sect. 5 and highlight important areas of future work in the
development of tomographic retrievals. We present our con-
clusions in Sect. 6.
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2 Background

The objective of the tomographic retrieval, as formulated in
AT3D, is to select a state vector (a) that parameterizes a dis-
crete representation of the atmospheric optical or physical
properties and best fits the available measurements (y) and
any prior knowledge of the unknown state. The selection of
the best-fitting state vector is done by minimizing the scalar
cost function, which penalizes a misfit against observations
in a generalized, least-squares sense.

χ2
= (y−F (a))T S−1

ε (y−F (a))+R(a) (1)

In this expression, Sε , is the error covariance matrix of
the residual between the measurements (y) and the forward
model F (a) and accounts for both measurement uncertainty
and forward model uncertainty. R(a) is a differentiable reg-
ularization term that reflects prior knowledge about the un-
known state vector. The forward model F (a) consists of a
solution of the 3D RT equation (RTE) and a sampling opera-
tion that provides the forward-modelled Stokes vector at the
positions and angles sampled by a sensor during the acquisi-
tion of the measurements, i.e. y.

The solution to the inverse problem can be stated formally
as the selection of the state vector ã that minimizes the cost
function subject to box constraints. The box constraints are
vectors of lower bounds (l) and upper bounds (u) on each
element of the state vector to ensure a valid range for phys-
ical variables. For example, liquid water content or volume
extinction coefficient should be non-negative. We then have
the following:

ã = argmin
a

χ2, s.t. l ≤ a ≤ u. (2)

A local minimization method such as the limited-memory
Broyden–Fletcher–Goldfarb–Shannon method for bounded
minimization (L-BFGS-B; Byrd et al., 1995) solves Eq. (2)
for a locally optimal state vector. Figure 1 presents a
flowchart of this process. To use such a method, we need to
be able to compute the gradient of the cost function. The gra-
dient of the data fit component of the cost function is given
by

∂χ2

∂a
= 2(y−F (a))T S−1

ε K+
∂R(a)

∂a
, (3)

where K is the Jacobian matrix containing the partial deriva-
tives of the ith output of the forward model with respect to
the j th component of the state vector.

Kij =
∂Fi(a)

∂aj
(4)

We use the approximate Jacobian matrix calculation, de-
scribed in Part 1 (Loveridge et al., 2023a), to efficiently com-
pute the approximate gradients of the cost function using the

approximate Jacobian K̃:

∂χ2

∂a
≈ 2(y−F (a))T S−1

ε K̃. (5)

Our approximate Jacobian matrix is accurate in the single-
scattering limit. In this regime, it has a relative root mean
square error (RMSE) of 4 % with respect to finite differenc-
ing calculations (Loveridge et al., 2023a), which is similar
to the accuracy of derivatives calculated using a forward-
adjoint formulation (Doicu and Efremenko, 2019). The ac-
curacy of the approximate Jacobian degrades as the medium
becomes optically thicker, as the phase function becomes
more isotropic, and as the single-scattering albedo and sur-
face albedo increase (Loveridge et al., 2023a). This is due
to the larger relative contributions of higher-order scatter-
ing to the gradients, which are the contributions which are
least accurately modelled in our approximate Jacobian cal-
culation (Loveridge et al., 2023a). When the medium has
single-scattering properties representative of cloud droplets
at visible wavelengths and the surface is dark (e.g. oceanic),
then the relative RMSE in the approximate Jacobian reaches
only 12 % for finite clouds, with maximum optical depths of
100 (Loveridge et al., 2023a).

The accuracy of the approximate Jacobian also varies with
the angular resolution of the SHDOM solver when phase
functions have strong forward-scattering peaks (Loveridge et
al., 2023a). This occurs due to the interaction of the angu-
lar resolution and the delta-M scaling (Wiscombe, 1977) and
truncated multiple-scattering (TMS) approximations (Naka-
jima and Tanaka, 1988) used in SHDOM. Lower-angular res-
olution results in more scattering being treated as part of the
direct transmission. This results in a decrease in the effective
optical thickness of the medium and a corresponding increase
in the accuracy of the approximate Jacobian. If the angular
resolution is lowered from 16 zenith angle discrete ordinate
bins to just 2 zenith angle discrete ordinate bins, then the er-
ror in the approximate Jacobian decreases from 12 % to 8 %
for the cloud-like media described above.

Errors in the Jacobian calculation lead to errors in the gra-
dient, which limit the convergence of a local optimization
method such as the L-BFGS-B method. This is because, in
the presence of errors, only small step sizes will accurately
predict the change in the cost function to a precision that sat-
isfies the stability criteria in the line search of the optimiza-
tion procedure (Byrd et al., 1995; Zhu et al., 1997). If errors
in the gradient are large, then the optimization may termi-
nate far from an apparent minimum in the cost function, even
when the optimization problem is linear (Shi et al., 2021).

There are several factors that complicate this retrieval
methodology which uses local optimization. These factors
have been discussed in Part 1 and elsewhere in the litera-
ture. In the remainder of this section, we briefly summarize
these factors which motivate our study and its methodology.
In addition to the uncertainties due to our approximate Jaco-
bian calculation, the use of a local optimization method on
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Figure 1. A flowchart depicting the overall iterative retrieval methodology of AT3D reproduced from Part 1 (Loveridge et al., 2023a).
Section 3.2 and 3.2.1 describe some of the details of how the initial state vector and optimization hyper-parameters are chosen, along with a
procedure for synthetically generating some measurements using AT3D.

a non-linear inverse problem also introduces significant un-
certainty. As the forward model F (a) is non-linear, multiple
local minima in the cost function may exist. This means that
the best-fitting state vector estimated from local optimiza-
tion methods may be strongly sensitive to the choice of ini-
tialization and may be far from the globally optimal solution
(Rodgers, 2000). Linearized uncertainty estimates may also
be inaccurate (Rodgers, 2000; Gao et al., 2022). So far, only
local optimization methods have been employed for physics-
based cloud tomography (Martin and Hasekamp, 2018; Levis
et al., 2020; Doicu et al., 2022b). The proposed BFGS algo-
rithm performs well, compared to other local optimization
techniques (Doicu et al., 2022a). Global optimization meth-
ods such as ensemble-based particle filters (van Leeuwen et
al., 2019) have also been proposed for tomography in other
fields (Raveendran et al., 2011). Interestingly, it has been
shown that our approximate Jacobian can outperform an un-
approximated linearization using forward-adjoint methods,
which was suggested to be due to the ability of the approxi-
mate Jacobian to escape local minima (Doicu et al., 2022b).

The use of a local optimization method introduces the need
to choose a particular initialization for each retrieval. This
choice is non-trivial, especially as clouds become optically
thick. A poor choice for the spatial distribution of the extinc-
tion coefficient, even with a correct average mean free path
(or optical diameter), may degrade the retrieval performance.

This is because the distribution of an optically thick medium
in space is highly non-linear, while adjusting the extinction
coefficient within a known volume is weakly non-linear. It
has been shown that when the ground truth cloud envelope
is used to initialize the retrieval, then the performance of the
retrieval improves substantially (Tzabari et al., 2022).

In addition to the complexity of selecting an initial guess
appropriate for an optically thick cloud, local optimization
is expected to become much more difficult in the regions of
state space where clouds are optically thick. This is due to
the ill-conditioning of the forward model (Loveridge et al.,
2023a). The degree of ill-conditioning of an operator mea-
sures its instability to inversion. The condition number of the
Jacobian matrix, κ(K), is the upper bound for the relative
enhancement of an error in the measurement space when it
is propagated by the Jacobian matrix to the state space. We
measure the magnitude of errors in a vector using the com-
monly used Euclidean norm, so then the condition number of
a matrix is defined as the ratio of its largest (s1) and smallest
(sn) singular values:

κ (K)=
s1

sn
. (6)

In Part 1, we showed that the condition number increases
exponentially from well-conditioned κ(K)∼ 101 to very ill-
conditioned κ(K)� 105, as the optical depth of the medium
increases from 0.1 to 100.0 for finite clouds (Loveridge et
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al., 2023a). The largest condition numbers in clouds with
maximum optical depths of 100 were associated with max-
imum and minimum singular values of 0.06 and 2× 10−7.
The absolute magnitude of these singular values is associ-
ated with uncertainty propagation via the Fisher information
matrix but are also sensitive to the details of the discretiza-
tion, such as grid spacing. A condition number that is com-
parable to or larger than the inverse of the numerical preci-
sion of any floating-point numbers is effectively ill-posed,
as even rounding errors can propagate to large uncertain-
ties. The exponential behaviour of the condition number is
in agreement with theoretical estimates of the stability of
the continuous RT problem (Bal and Jollivet, 2008; Chen
et al., 2018; Zhao and Zhong, 2019), the perturbative nu-
merical studies of radiative transfer in cloudy atmospheres
(Martin and Hasekamp, 2018; Forster et al., 2021), and the
field of diffuse optical tomography (DOT; Tian et al., 2010;
Niu et al., 2010; Raveendran et al., 2011). This behaviour is
due to the smoothing effect of multiple scattering. A smooth-
ing operator is unstable under inversion. This effect of radia-
tive smoothing has been the subject of study in cloudy at-
mospheres (Marshak et al., 1995; Davis et al., 1997) in the
context of optical depth retrieval but is enhanced in a to-
mographic context due to the finer 3D discretization of the
medium (Bal, 2012).

The ill-conditioning in optically thick clouds results in
uncertainties that are not evenly distributed throughout the
cloud. It has been shown that measurements first lose sensi-
tivity to changes in the cloud in the regions that are optically
far from all sensors and also the Sun (Niu et al., 2010; Tian
et al., 2010; Forster et al., 2021; Loveridge et al., 2023a).
This will result in the largest uncertainties in those regions.
In Part 1, we also hypothesized that the large mismatch in
sensitivities between these regions and the outer edges and
illuminated sides of the optically thick clouds would cause
systematic errors in retrievals that use local optimization.
There is some indication that this effect occurs in practice,
as retrievals performed with an optically thin initialization
have underestimations of extinction in the centre of clouds,
especially when they are thicker (Levis et al., 2015; Martin
and Hasekamp, 2018). One focus of our work is to quantify
the extent to which such systematic errors emerge in our re-
trievals.

In Part 1, we also identified that the magnitude of the loss
of sensitivity and ill-conditioning of the forward model in the
optically thick limit can be dramatically reduced by lowering
the angular resolution of the SHDOM model (Loveridge et
al., 2023a). This is again due to the interaction of the delta-
M scaling with the angular resolution of the model due to the
lowering of the effective optical depth of the radiative trans-
fer. For the same finite clouds described above, the decrease
in the magnitude of the condition number of the Jacobian
matrix can reach a factor of ∼ 102 when lowering the angu-
lar resolution from 16 zenith angle discrete ordinate bins to
just 2 zenith angle discrete ordinate bins. This means that a

lower-accuracy SHDOM model is less ill-conditioned (due
to its lower condition number). The reduction in the condi-
tion number is due to more sensitivity to the interior of an
optically thick cloud and may be useful for improving re-
trieval accuracy, despite its larger forward-modelling error.
This property is independent of our approximation to the Ja-
cobian matrix (Loveridge et al., 2023a). The reduction in the
condition number of the forward model with decreasing an-
gular resolution and the increase in the accuracy of the ap-
proximate Jacobian with decreasing angular resolution stem
from the same cause but have different effects on a local op-
timization procedure. Ill-conditioning is the sensitivity of the
inversion to errors. The approximation to the Jacobian is a
source of error.

The objective of our study is to examine the effectiveness
of the local optimization method described in Part 1 to per-
form cloud tomography. As part of this, we also test the sen-
sitivity of the local optimization to the optical depth of the
cloud and to the angular accuracy used in the forward model,
SHDOM. Low-accuracy forward models are frequently used
to accelerate the iterative solution of optimization problems
(Tarvainen et al., 2009; Peherstorfer et al., 2018), and our
analysis below provides a first test of whether this approach
may also be beneficial in the context of cloud tomography to
reduce computational cost.

3 Methods

We perform retrievals on synthetic clouds with stochastically
generated 3D fields of volume extinction coefficient. These
synthetic clouds are designed to resemble cumuliform clouds
and have maximum optical depths that range from 4 to 88.
The technical details of the procedure for generating these
synthetic measurements for a range of clouds across a range
of optical depths are described in Sect. 3.1. We perform re-
trievals of the 3D volume extinction coefficient using per-
fect knowledge of the ground-truth atmosphere, surface, and
cloud microphysics. This idealized configuration is sufficient
to test the efficacy of the approximate Jacobian. We initial-
ize our local optimization by assuming that the cloud is ex-
tremely optically thin, which has been exclusively used so
far in cloud tomography (Levis et al., 2015, 2017; Martin
and Hasekamp, 2018; Levis et al., 2020; Doicu et al., 2022a,
b). The precise methodology we use is described in Sect. 3.2
and the associated Appendixes. This configuration acts as a
limiting case, as the local optimization will be tested by the
high degree of non-linearity of the forward model between
its optically thin initialization and the potentially optically
thick ground truth. As such, we must stress that our results
are likely particular to this choice.

To isolate the fundamental limitations in using the local
optimization method with the approximate Jacobian, we per-
form our analysis in an idealized numerical setting. We per-
form several inverse crimes in our retrievals by choosing the
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discretization of the retrieved medium to perfectly match
the ground truth and neglecting several important sources
of uncertainty, such as the forward model error and instru-
ment calibration uncertainties. The first of these approxima-
tions has been routine throughout the numerical studies of
cloud tomography (Levis et al., 2015, 2017, 2020; Martin and
Hasekamp, 2018; Doicu et al., 2022a, b; Tzabari et al., 2022).
Such approximations are also common in the assessment of
other algorithms for atmospheric remote sensing, where syn-
thetic measurement data are often generated using the same
1D radiative transfer model used to perform the retrievals
(Delanoë and Hogan, 2008; Xu et al., 2022). Such simplifica-
tions occur despite the fact that this approximation is known
to fundamentally simplify the nature of the inverse problem
and thereby cause underestimates of the true retrieval error
(Rodgers, 2000; Bal, 2012). Within radiative transfer, a fixed
discretization error also implies a homogeneity assumption
below a scale that is likely unrealistic for real clouds, which
can cause biases in the resulting modelling of the radiative
transfer (Marshak et al., 1998; Davis and Marshak, 2004; Bit-
terli et al., 2018).

Measurement noise tends to decrease from 1 % to just
0.1 % for cloudy signals as the measured radiance increases
(Bruegge et al., 2002). Measurement noise has typically been
included in cloud tomography studies so far (Levis et al.,
2015, 2020; Tzabari et al., 2022), although, in some cases,
this source of uncertainty has also been neglected (Doicu et
al., 2022a, b). The magnitude of this noise is much smaller
than forward-modelling errors that can range up to several
percent in a root mean square sense (Evans, 1998; Cahalan
et al., 2005; Pincus and Evans, 2009). These uncertainties
have been neglected so far, with the exception of the study
of Martin et al. (2018), which used an inflated measurement
error of 2 % as a proxy for the modelling error.

In our study, we perform sets of retrievals that use both
perfect, noise-free measurements and also those that include
idealized measurement noise to ensure that our conclusions
about the fidelity of the retrieval are robust with respect to the
noise-free assumption. Even with this analysis, we must em-
phasize that our retrievals are highly simplified, and so the
errors in our retrievals should only be interpreted as a ten-
tative lower bound for errors that might occur for retrievals
applied to real data.

We analyse seven types of retrieval. First, we have per-
fect model retrievals, in which we use exactly the same for-
ward model configuration and discretization of the medium
during the retrieval that was used to generate the synthetic
measurements. This type of retrieval uses noise-free mea-
surements and the naïve, optically thin initialization which
we describe in Sect. 3.2. These retrievals are referred to as
“Default” retrievals. Retrieval accuracy in this configuration
is limited only by the non-linearity of the inverse problem
and the errors in the approximate Jacobian, both of which
are deterministic.

Second, we perform retrievals that are the same as the
Default, except that they use a low angular accuracy for-
ward model. These are referred to as “Low” retrievals. This
retrieval acts as a test of how much the retrieval changes
when using an approximate forward model that is less ill-
conditioned (has a lower condition number) and has a more
accurate gradient calculation. The differences between the
Default and Low retrievals may occur as a result of changes
in the optimization trajectory either close to or far from the
local minimum in the cost function. To distinguish between
these two types of effects, we perform a third set of retrievals.
These retrievals use the same configuration as the Low re-
trieval, except that they are initialized at the ground truth
(GT) and are referred to as “Low-GT”. The drift in the state
vector away from the ground truth during the optimization
acts as a measure of the error induced by using a low angular
accuracy model in the retrieval in the vicinity of the global
minimum.

We also include two sets of “Restarted” retrievals. The
restarted retrievals make use of the results of the Low re-
trievals to initialize retrievals that use the perfect forward
model from the Default retrievals. These restarted retrievals
are referred to as the “20th Low iteration Restart” and “Fi-
nal Low iteration Restart”, based on the iteration of the Low
retrievals from which the state vector is taken to initialize
the new restarted retrieval. These retrievals test our ability to
mitigate any errors forming in the Low retrievals by using the
perfect forward model.

Additionally, we perform two sets of experiments to en-
sure the robustness of our conclusions to the presence of
noise or other small inconsistencies between the synthetic
measurements and the forward model. First, we perform re-
trievals initialized at the ground truth that make use of noisy
measurements and the perfect model from the Default re-
trievals. These are referred to as “Noisy-GroundTruth” re-
trievals. Second, we repeat the Default and Low experiments
using noisy observations and use the differences to assess the
robustness of our results. These retrievals are referred to as
“Default-Noisy” and “Low-Noisy”.

3.1 Synthetic measurement generation

We generate the synthetic measurements entirely using the
cloud fields, RT, and instrument modelling implemented in
AT3D. The only scattering particle species under considera-
tion in each retrieval is an isolated water cloud (i.e. no molec-
ular scattering or absorption). We assume that the cloud scat-
tering is conservative (ω = 1) and that the phase function is
from Mie calculations of a gamma distribution of spherical
water droplets with an effective radius of 10 µm and effective
variance of 0.1 at a wavelength of 0.86 µm. Vacuum horizon-
tal boundary conditions are used, and the bottom surface is
prescribed to be black. There is only a solar source and no
thermal emission.
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The clouds used in this study are stochastically generated
rather than generated by large-eddy simulations (LESs), as
is common in many retrieval validation studies (Marshak et
al., 2006; Kato and Marshak, 2009; Ewald et al., 2019). This
choice is made primarily for control over the media. Realistic
covariances between microphysical parameters, which is one
of the primary benefits of LESs (Miller et al., 2018), are not
required for these retrievals, as only a single spatially vari-
able parameter is being retrieved (i.e. volume extinction co-
efficient). With stochastic generation, we can control the spa-
tial variability at all scales and produce difficult, non-smooth
extinction fields at scales of tens of metres with great ease
that would otherwise require undue computational expense
with LESs.

The stochastic cloud generator used to generate the extinc-
tion fields is included with AT3D. It is based on similar sta-
tistical principles utilized elsewhere for synthetic cloud gen-
eration (Cahalan et al., 1994; Iwabuchi and Hayasaka, 2002;
Prigarin and Marshak, 2009). Such principles include the fact
that liquid water content tends to have a positively skewed
distribution (e.g. lognormal) and that the power spectrum of
its variability tends to follow a power law (Davis et al., 1999).
The unique aspect of this generator is that it is targeted at
generating isolated clouds rather than large fields with peri-
odic boundaries. The algorithm proceeds as follows:

1. Two fields of white Gaussian noise with zero mean
and unit variance are generated with skewness < 0.1
and kurtosis< 0.5. One will form the binary volumetric
cloud mask, and the other will form the 3D field (e.g. ex-
tinction or liquid water content). This separation is done
so that the smoothness of the cloud boundary can be
controlled independently. It also introduces additional
small-scale variability to the field by allowing large dis-
continuities between in-cloud and cloud-free field val-
ues.

2. The fast Fourier transform (FFT) of each field is ob-
tained and then scaled so that the power spectrum fol-
lows a power law with a specified exponent. We used
an exponent of −5/3, which is supported by various in
situ measurements of horizontal variability in the cloud
liquid water content (Davis et al., 1996, 1999) and nadir
radiance measurements (Lovejoy et al., 1993; Lewis et
al., 2004). The resulting fields are then inverse Fourier
transformed back into the physical space.

3. The two fields are exponentiated to obtain positively
skewed (e.g. lognormal) statistics typical of clouds.

4. The cloud mask field X is scaled by an anisotropic But-
terworth filter in physical space to enforce small values
near the boundaries of the domain. This counteracts the
periodic nature of the FFT process used to generate the
noise and allows the generation of isolated clouds that
have a blob-type shape that tends to maximize in the

centre of the domain. Note that there is no specific re-
quirement for a single contiguous cloud mass, though
this filter does encourage it. The filtered cloud mask
field X̃ is expressed as

X̃ =
X√

1+
(
R
α

)8√
1+

(
z′

β

)8
, (7)

where R is the horizontal distance from the centre of the
domain, and z′ is the vertical distance from the centre of
the domain. The two scale parameters are set to α = 0.2
and β = 0.2.

5. The cloud mask field is then thresholded to obtain a
user-specified volume cloud fraction of 10 %.

6. The points in the second field are set to zero, where the
cloud mask field is designated as clear.

7. The second field is scaled so that its mean and variance
have a user-specified vertical profile over the cloudy
points and so that it forms the 3D field of, for example,
the volume extinction coefficient.

We use 10 different random seeds and 4 different vertical
profiles of horizontally averaged extinction, thus generating
40 cloud models in 4 categories of maximum optical depth
(Loveridge, 2023). Each of the four profiles prescribes a lin-
ear increase in the mean extinction with height. Note that
this is a more rapid increase in the extinction with height
than predicted by the adiabatic theory, namely that the extinc-
tion increases as σ(h)∼ h2/3, with h being the height above
cloud base. At each level, the deviations from the mean are
scaled so that the standard deviation is chosen to be 40 %
of the mean at that level. Each cloud is generated on a grid
of (25× 25× 25) grid points with 40 m resolution, forming
a domain of (1 km)3. We name the four categories of cloud
models Thin, Medium, Thick, and Very Thick. They have
maximum vertical optical depths of 4, 17.5, 44, and 88, re-
spectively.

Figure 2a shows the optical depth distributions of each
of the four categories of clouds (left panel). For one exam-
ple cloud realization, we also show an image of the cloud
(Fig. 2b) and the optical path and maximum volume extinc-
tion coefficient along the same lines of sight. These figures
show the high degree of variability in the extinction fields
(Fig. 2d) and the decorrelation of the optical path from the
radiance field (Fig. 2b vs. Fig. 2c) due to the non-local trans-
port process. Note that the decoupling of the extinction and
cloud mask fields in the stochastic generator can produce true
voids within the cloud. The cross sections of the extinction
field (e.g. Fig. 4) of a cloud reveal that the extinction fields
can be much more variable than might be expected from an
LES-generated cloud at small scales (Eytan et al., 2022). This
is a carefully considered choice, as we want to test the limits
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Figure 2. (a) The probability density functions of cloud optical depth for stochastically generated clouds in the Thin, Medium, Thick and
Very Thick categories. Each category contains 10 clouds. (b) An image of cloud realization no. 4 in the Thick category calculated using
SHDOM. The set-up is identical to the other simulations (the solar zenith angle or SZA is 60◦), apart from the fact that the (1 km)3 domain
is surrounded by a Lambertian surface with an albedo of 0.4 to give a sense of perspective, which does affect the radiance calculation. The
image is captured using a synthetic sensor, following a perspective projection that has a 2.5◦ field of view with 200 by 200 pixels and is
viewing the centre of the domain from a position of x= y= z= 20 km (central viewing zenith angle of 55◦ and relative azimuthal angle of
45◦). (c) The optical path along each pixel’s line of sight is under the same projection as in panel (b). The maximum value of the volume
extinction coefficient along the line of sight under the same projection is as in panel (b). Two cross sections through this cloud are also shown
in Fig. 6.

of the retrieval on non-smooth media to detect, for example,
a smoothing bias.

The synthetic measurements used in this study are chosen
to mimic an airborne multi-angle imager such as AirMSPI
(Airborne Multiangle SpectroPolarimetric Imager) operating
in a step-and-stare mode (Diner et al., 2013), with the ex-
ception that all measurements are acquired simultaneously in
this synthetic scenario. This is a similar configuration to that
which can be achieved with the upcoming CloudCT mission
(Schilling et al., 2019), which will utilize a constellation of
small satellites to obtain simultaneous multi-angle imagery.
Here, we model the imaging geometry as orthographic pro-
jections of the domain with a fixed azimuthal orientation at
right angles with the principal plane of the Sun, i.e. rela-
tive azimuth of 90 and −90◦. The use of an orthographic
projection is a highly approximate camera model but is suit-
able for approximating a small domain near the centre of the
swath of a push broom sensor. In addition to a nadir view,
there are images with viewing zenith angles of [75.0, 60.0,
45.6, 26.1◦] on either side of the principal plane for a total

of nine views. This is the most used viewing angle configu-
ration that has been used to test a 3D tomographic retrieval
and has demonstrated success in several cases (Levis et al.,
2015, 2017, 2020; Doicu et al., 2022a, b), so it forms a use-
ful reference configuration on which to test the variation in
the retrieval accuracy with optical depth to help connect with
other published results.

The solar zenith angle is chosen as 60◦. This differs from
other studies which have typically used a smaller solar zenith
angle (Levis et al., 2015, 2017, 2020; Doicu et al., 2022a,
b). We chose the larger value so that we can more easily dis-
cern the effects of any error features that are oriented with re-
spect to the Sun in our results, as was hypothesized in Part 1.
This choice also puts the observations close to the scattering
angles of maximum error in the approximate Jacobian (see
Part 1, where we quantified the scattering angle dependence
of the error in the approximate Jacobian calculation); hence,
a worst-case scenario is found.

The measurement resolution is set to 35 m. The AT3D
models the pixel-level radiance measurements as a weighted
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sum of the idealized singular samplings of the radiance field
within a field of view. For simplicity, we choose a single
quadrature point at each pixel centre to model the pixel radi-
ance in the simulation of the synthetic measurements. Choos-
ing the measurement resolution (35 m) to be slightly smaller
than the grid resolution (40 m) ensures that all of the grid
points are evenly sampled by the measurements, even with
the single quadrature point per pixel. This ensures the basic
numerical stability of the retrieval, by ensuring that it is over-
constrained and that the use of regularization is not a strict
requirement. The SHDOM solver uses 16 zenith discrete or-
dinate bins, 32 azimuthal discrete ordinate bins, a splitting
accuracy of 0.03, and a solution accuracy of 10−4, with no
truncation of the spherical harmonics. The scalar approxima-
tion (no polarization) to the RTE is utilized.

In the Default-Noisy, Low-Noisy, and Noisy-GroundTruth
experiments, noise is included in the measurements. The
noise model used for this procedure is described in Ap-
pendix A. For each of the 40 sets of measurements, a fixed set
of noise perturbations is generated through the selection of a
random seed. These same noisy measurements are utilized
in all retrieval experiments that make use of noisy measure-
ments.

3.2 Inverse problem set-up

The same forward model described above is used in most
of the experiments, except our Low retrievals. In these re-
trievals, the angular accuracy in the SHDOM solver is re-
duced to just two zenith discrete ordinate bins and four az-
imuthal discrete ordinate bins. All other numerical parame-
ters are the same.

The state vector is chosen as a subset of the grid points that
are potentially cloud-containing points, according to a space-
carving procedure (Kutulakos and Seitz, 1999) that uses 2D
binary cloud masks from each of the multi-angle images (Lee
et al., 2018). This procedure follows Levis et al. (2020). The
space-carving procedure rules out clouds along the line of
sight of all pixels that are classified as clear. The details of the
space-carving algorithm and its performance are presented
in Appendix B. The cloud masking of the multi-angle im-
ages is trivial, due to the absence of a scattering surface or
atmosphere (Yang and Di Girolamo, 2008). For the retrievals
that use a naïve, optically thin initialization, the elements
of the state vector are set as 0.01 km−1. Additional descrip-
tions of the hyper-parameters of the optimization using the
L-BFGS-B algorithm including the stopping conditions are
in Appendix C.

4 Results

We now present the results of the retrievals and discuss the
accuracy of the retrieved extinction fields and their robust-
ness to noise (Sect. 4.1), the accuracy of inferred optical

depths (Sect. 4.2), and the computational expense (Sect. 4.3).
To quantify the performance of the extinction retrieval, we
use the relative bias and relative RMSE of the volume ex-
tinction field, which is expressed, respectively, as

Relative bias= 100%×
‖σretrieved‖1−‖σtruth‖1

‖σtruth‖1
; (8)

Relative RMSE= 100%×
‖σretrieved− σtruth‖2

‖σtruth‖2
, (9)

where ‖x‖1 =
∑
i

|xi | and ‖x‖2 =
(∑
i

x2
i

)1/2

.

In the above equations, σ is the volume extinction coef-
ficient. We also calculate the relative bias in the coefficient
of variation (standard deviation divided by mean) of the re-
trieved extinction field to quantify the heterogeneity of the
retrieved cloud. We also apply these three metrics to the as-
sessment of other variables such as optical depth. We refer to
the error metrics in units of percent (%) within the text for
clarity. Simple differences in the error metrics between two
retrievals are also reported in percent. Error metrics are de-
fined by comparison with respect to the ground truth, unless
otherwise specified.

The error metrics are evaluated over all grid points in the
(1 km)3 domain, and not the elements of the state vector,
which only includes the grid points specified as cloudy by
the space-carving algorithm. In general, the fidelity of a 3D
retrieval should be evaluated over the physical fields in the
domain rather than a metric on the state vector space. This fa-
cilitates comparison with other retrieval methods, which may
not use the same spatial basis. The relative bias and relative
RMSE of the extinction field are invariant to the inclusion of
points for which there are no errors. The space-carving ap-
proach employed here has no false negatives, and as such,
the values are the same as if the error metric were applied to
the state vector.

4.1 Extinction retrieval

Let us first consider the robustness of the results to noise
before interpreting them in detail. The accuracy of the De-
fault and Low retrievals using noise-free measurements is
shown in Table 1. The ensemble-averaged error metrics with
respect to the ground truth differ by less than 1 % between
the noise-free retrievals (Default and Low) and the noisy
retrievals (Default-Noisy and Low-Noisy). For this reason,
we do not report the retrieval accuracies for the Default-
Noisy and Low-Noisy retrievals. Instead, we report their dif-
ferences with respect to the noise-free retrievals (Table 2).
Additionally, we found that the retrieval errors in the Noisy-
GroundTruth retrievals were less than 0.01 % for all realiza-
tions in all cloud categories, so we do not report further de-
tails of the results of those retrievals. Immediately, we can
see that the ensemble-averaged results are robust to the in-
clusion or exclusion of noise.
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Table 1. Extinction errors for the different retrieved clouds in each category. The means of the error metrics are shown across the 10 clouds
in each category, with the standard deviation across the 10 clouds in parentheses. See the text for details of the error metrics.

Inversion method Default Low 20th low Final low
iteration restart iteration restart

Cloud category Thin Medium Thick Very Thin Medium Thick Very Thick Very Thick Very
Thick Thick Thick Thick

Relative RMSE (%) 14.6 19.3 45.8 73.0 24.6 37.3 53.3 63.2 42.4 62.7 49.0 62.7
(1.7) (2.9) (7.4) (2.7) (1.5) (3.1) (4.8) (4.3) (4.4) (3.6) (6.5) (4.5)

Relative bias (%) 0.2 0.1 −6.6 −35.6 3.2 5.0 8.4 −7.5 −0.5 −14.7 4.2 −8.3
(0.1) (0.1) (6.6) (9.5) (1.4) (2.5) (6.2) (13.7) (3.3) (12.1) (5.6) (13.7)

Relative bias in −2.2 −3.5 −9.5 −18.4 −7.6 −9.2 −7.2 −6.0 −8.4 −8.9 −6.5 −5.8
coefficient of (0.5) (0.8) (4.3) (8.1) (1.4) (2.8) (2.6) (7.1) (1.8) (4.8) (2.2) (7.3)
variation (%)

Table 2. Differences between the extinction fields from noisy and noise-free retrievals. The means of error metrics are shown across the 10
clouds in each category, with the minimum and maximum across the 10 clouds in parentheses. See the text for details of the error metrics.

Inversion method Default-Noisy Low-Noisy

Cloud category Thin Medium Thick Very Thick Thin Medium Thick Very Thick

Relative RMSE with respect 2.4 3.6 24.5 30.1 2.1 3.4 6.7 16.8
to noise-free retrieval (%) (1.9, 3.3) (1.5, 6.15) (5.4, 51.2) (6.3, 51.9) (1.5, 2.9) (0.8, 7.4) (1.7, 13.3) (4.2, 36.6)

Relative bias with respect 0.0 0.0 −3.1 2.8 0.0 −0.1 0.0 −1.0
to noise-free retrieval (%) (−0.05, 0.04) (−0.05, 0.04) (−17.5, 5.3) (−12.6, 16.5) (−0.04, 0.03) (−0.38, 0.1) (−1.7, 1.6) (−11.4, 8.5)

The differences between the noisy and noise-free retrievals
increase with optical depth (Table 2) and can include large
systematic differences between retrievals for particular real-
izations in the Thick and Very Thick cloud categories. This
latter feature can be seen in the large ranges of the error met-
rics in Table 2 for the Very Thick cloud category. The large
deviations between noise-free and noisy retrievals indicates
large uncertainties in these retrievals. The differences in be-
tween the Default or Low retrievals and their corresponding
noisy variants (Table 2) are much larger than the retrieval
errors in the Noisy-GroundTruth retrievals (which are neg-
ligible). This large discrepancy indicates that the issues of
non-linearity and errors in the local optimization will con-
found uncertainty quantification, as the ensemble-based un-
certainty estimates will differ, depending on the choice of ini-
tialization. We revisit the implications of this point in Sect. 5.
We focus the rest of our analysis on explaining the variability
in the retrieval accuracy for the noise-free retrievals.

The Default retrievals for the Thin and Medium cloud cat-
egories are uniformly accurate, with negligible bias and small
relative RMSEs (Table 1). The Low retrievals have lower ac-
curacies than the Default retrievals for these two categories,
due to their large forward-modelling error. The cost function
of the Low retrievals for the Thin and Medium cloud cate-
gories (Fig. 3) begins to decrease very slowly with the iter-
ation number after only around 20 iterations and asymptotes
to a larger value than for the Default retrievals. The local op-

timization can proceed for ∼ 100 iterations for the Default
retrievals in the Thin and Medium cloud categories. How-
ever, the results for the Low retrievals indicate that retrievals
may converge within far fewer iterations for these clouds in
the presence of modelling and instrumental errors. Given the
good performance of the Default retrievals, we do not con-
sider any Restarted retrievals for the Thin and Medium cloud
retrievals. The worse performance of the Low retrieval indi-
cates that there is no benefit from the better conditioning and
more accurate Jacobian approximation for these clouds.

The accuracy of the retrievals systematically degrades
with increasing optical depth. The rate of reduction in the
cost function with iteration number decreases as the optical
thickness of the clouds increases (Fig. 3), which can be seen
by comparing the behaviour of the Medium, Thick, and Very
Thick cloud categories. The relative RMSE systematically
increases with optical depth (Table 1) for both the Default
and Low retrievals, and a large bias of −36 % develops in
the Default retrievals in the Very Thick category. This bias is
dramatically reduced to just −7 % in the corresponding Low
retrievals. The convergence behaviour of the Low retrieval
for the Very Thick clouds (Fig. 3l) shows that the Low re-
trieval more rapidly increases the mean extinction with itera-
tions, particularly beyond 10 iterations, where the cloud has
become optically thick. The final cost functions obtained by
the Low retrievals are much lower than the Default retrieval.
This is associated with a lower relative RMSE in the final
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Figure 3. Retrieval performance for the Default (solid lines) and Low (dashed lines) retrievals as a function of iteration number for clouds in
the Thin (a–c), Medium (d–f), Thick (g–i), and Very Thick (j–l) categories. Each coloured curve corresponds to a different cloud realization.
The first column (a, d, g, j) shows the cost function normalized by its initial value. The second column (b, e, h, k) shows the relative
RMSE (Eq. 6) in the retrieved volume extinction coefficients. The third column (c, f, i, l) shows the relative bias (Eq. 7) in the retrieved
volume extinction coefficient. See the main text for details of the error metrics. Note the logarithmic scale of the iteration number, given that
computational expense is linear in iteration number.
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modelled radiance fields of just 9 % when compared to 16 %
for the Default retrieval. The differences between the Default
and Low retrievals for the Thick clouds are milder but are
still significant, with a lower relative RMSE and slight im-
provements in the bias.

The dramatic improvement in the reported accuracies of
the Low retrieval for the clouds in the Very Thick category
indicates that there is a substantial sensitivity of the retrieval
to the choice of angular resolution in the forward model. The
apparent benefit of using the Low-accuracy retrieval is car-
ried through into both types of Restarted retrievals. Using the
high-accuracy forward model in the Restarted retrieval does
little to improve the retrieval accuracy beyond that of the Low
retrieval used to initialize it (Table 1). This indicates that the
local optimization algorithm is unable to further reduce the
residuals, despite the use of a more accurate forward model.

The faster convergence of the mean of the Low retrieval,
when compared to the Default retrieval in the Very Thick cat-
egory (Fig. 3l), suggests that it is the better conditioning of
the forward model that drives the improvement in the conver-
gence. However, the improvement in the retrieval accuracy
may be due to compensating biases in the approximate for-
ward model. To help us distinguish between these effects, we
make use of the results of the Low-GT retrievals (Table 3).
These retrievals are initialized with the ground truth cloud
but use the Low-accuracy forward model. The resulting re-
trieval errors are therefore a local estimate of the error in the
retrieved state due to forward-modelling errors in the vicin-
ity of the ground truth. The retrieval errors for the Low-GT
Thin and Medium clouds are similar to those of the standard
Low retrieval. This further solidifies the good behaviour of
the retrievals in these cloud categories.

The relative bias of the Low-GT retrieval for the Thick
cloud category is 10.2 % in the ensemble average (Table 3).
This shows that much of the difference between the relative
bias in the Default and Low retrievals can be explained by the
forward model error. In particular, the Low-accuracy model
produces smaller radiances for a given optical thickness of
the cloud, so the cloud must be biased high in optical thick-
ness to minimize a misfit against the measured radiances.
The retrieval bias of the Low-GT retrieval in the Very Thick
clouds is only 6.2 %. This is much smaller than the difference
in relative bias between the Default retrieval and the Low re-
trieval. As such, the forward model error in the vicinity of the
solution cannot entirely explain the discrepancy between the
two techniques. Part of this discrepancy is caused by the fact
that the Default retrieval does not converge to the vicinity of
the truth in terms of average extinction, and so the forward
model error at the ground truth is not representative. How-
ever, the bias difference is still much larger than the 10.2 %
bias that occurs for the Thick category. The other component
of the difference between the Default and Low retrievals is
because the trajectory of the local optimization from the op-
tically thin initialization to the final retrieved state is very
different.

To better understand the differences in the optimization
trajectories between retrievals that use different forward
models, let us examine the spatial structure of the extinction
errors. Understanding the character of these errors is impor-
tant for us to understand how to mitigate these errors, par-
ticularly in the optically thick limit, and for us to understand
whether a low-accuracy, less ill-conditioned forward model
may be a part of a mitigation strategy. In doing so, we explain
how such a biased extinction field can be retrieved that still
provides a relatively small misfit against the radiance mea-
surements in the optically thick limit.

As a starting point in our analysis of the spatial structure of
the retrieval errors, let us note that all retrievals have under-
estimated the variability in the retrieved extinction field, es-
pecially at larger optical depths in the Default retrieval. This
is demonstrated through the errors in the coefficient of varia-
tion in the extinction field (Table 1). We further examine the
spatial dependence of this error by examining cross sections
of the retrieved extinction field. In Figs. 4 to 7, we show cross
sections of the volume extinction coefficient for cloud real-
ization no. 4 of the stochastic clouds, as it is representative
and provides all of the key points from the other realizations
when visualizing the spatial structure of the errors. We show
just the Default and Low retrievals, as the Restarted retrievals
are qualitatively similar to the Low retrievals. Cross sections
of the extinction field are shown for the slices through the
centre of the domain aligned along the azimuthal directions
of the sensors and the Sun. We refer to these slices as the
measurement plane and solar plane, respectively.

The high-frequency details of the extinction field are re-
trieved almost perfectly for the Thin (Fig. 4) and Medium
(Fig. 5) clouds, with only mild errors apparent in the mea-
surement plane of the Medium cloud. On the other hand, for
the Thick (Fig. 6) and Very Thick (Fig. 7) clouds, the ex-
tinction field is extremely smooth. There is a gradient of ex-
tinction in the solar plane from the illuminated side (left) to
the shaded side (right) of the retrievals of the Thick and Very
Thick clouds. Fine details of the extinction field are retrieved
on the illuminated side but not on the shadowed side. Ad-
ditionally, the largest values of the retrieved extinction tend
to be at the edge of the cloudy volume (as defined by space
carving) in the measurement plane, with the smallest values
in the centre. This feature is most apparent in the Default re-
trievals.

To examine the scale-by-scale apportionment of the er-
ror across the whole ensemble of retrievals, we use Fourier
analysis. Fourier analysis is a global analysis, so it cannot
identify, for example, a lower error in small-scale features on
the illuminated side of the cloud. To compress the informa-
tion, we show just the isotropic, ensemble-averaged power
spectral density of the retrieved extinction fields (Fig. 8) and
their errors (Fig. 9). The retrievals tend to be significantly
smoother than the ground truth at small scales. The scale be-
low which the retrieval has less variability when the truth in-
creases from 125 to 250 m, as the clouds become optically
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Table 3. Extinction errors for the Low-GT retrievals. The means of the error metrics are shown across the 10 clouds in each category, with
the standard deviation across the 10 clouds in parentheses. See the text for details of the error metrics.

Inversion method Low-GT

Cloud category Thin Medium Thick Very Thick

Relative RMSE (%) 15.6 (1.6) 27.7 (2.8) 38.1 (8.0) 18.6 (6.4)

Relative bias (%) 3.1 (1.4) 5.0 (2.5) 10.2 (5.2) 6.2 (4.4)

Relative RMSE with respect 17.8 (1.8) 22.2 (2.2) 34.8 (4.1) 68.6 (12.6)
to the low retrieval (%)

Relative bias with respect −0.1 (0.0) −0.1 (0.2) 1.8 (1.8) 16.9 (14.7)
to the low retrieval (%)

Figure 4. Vertical cross sections of the true extinction field (a, d), Default retrieved extinction field (b, e), and the Low retrieved extinction
field (c–f) for cloud no. 4 in the Thin category. Cross sections are in the y= 0.48 km plane (a–c) and the x= 0.48 km plane (d–f). The Sun
points in the positive y direction, while the viewing directions are aligned along the x axis.

thicker. Note that the default retrieval for the Very Thick
clouds tends to underestimate variability at all scales; this
is an error that is reduced in the Low and Restarted retrievals
and is consistent with the reduction in the underestimation of
variability (Table 1). Note that the reproduction of approxi-
mately correct power spectra at large scales does not neces-
sarily indicate that the retrievals are error-free at these scales,
since the phasing of the spatial modes can still disagree and
lead to errors proportional to the amplitude of the mode.

The errors in the Default retrievals of the extinction for
the Thin and Medium cloud categories are actually band-
limited to small scales (Fig. 9). Errors tend to occur primarily
at larger scales for the other retrievals, especially in the Thick
and Very Thick categories. This indicates that even large-
scale features are not accurately retrieved in the Thick and

Very Thick clouds, in general, which is in concurrence with
Figs. 6 and 7. The primary benefits of the Low and Restarted
retrievals in terms of overall reduction in the RMSE are felt
at the largest spatial scales (Fig. 9).

The spatial structure of the retrieval error for the Default
and Low retrievals of the clouds in the Thick and Very Thick
categories for the naïve, optically thin initialization give us
some important insight into some of the issues that arise in
retrievals of optically thick clouds. The details of the spa-
tial structure of the error in our retrievals are unique to our
choice of initialization. In the discussion below, we distin-
guish between the explanation of our retrieval errors and the
hypotheses that we make about the general behaviour of the
local optimization in the optically thick limit.
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Figure 5. As in Fig. 4 but for the Medium cloud category.

Figure 6. As in Fig. 4 but for the Thick cloud category.

For our particular retrievals, the optically thick cloud state
is approached from an optically thin cloud state. During the
early iterations, the residuals are highly smooth, as we ini-
tialize with an extremely optically thin cloud. As such, the
optimization updates the cloud by reducing the bias in the
radiances and fills the cloud with a relatively smooth extinc-
tion field. As the bias reduces, the cloud becomes optically
thick, and now the optimal strategy to reduce the cost func-

tion is to further increase the extinction on the illuminated
side of the cloud and at the cloud edge in the plane of the
measurements. This patterning is because the magnitudes of
the Jacobian elements are largest in these positions, as de-
scribed in detail in Part 1. With the bias in the cost func-
tion reduced, the radiance residuals can be multi-signed and
mapped more strongly to smaller-scale spatial features in the
extinction field. However, the cloud is now optically thick,
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Figure 7. As in Fig. 4 but for the Very Thick cloud category.

and this mapping is highly ill-conditioned. So, it is difficult,
from a linearized perspective, to redistribute extinction be-
tween the outer and inner portions of the cloud while avoid-
ing an increase in the cost function. Tiny step sizes must be
utilized to avoid instability, but even these are corrupted by
the increasing error in the approximate linearization. Even-
tually, the cost function reductions are so small that the stop-
ping condition of the optimization is achieved. This results
in the presence of gradients in cloud extinction from the illu-
minated to the shadowed side and from the cloud edge to the
cloud core in the retrieved state.

Based on the behaviour of the retrievals, we argue that the
improvement in the Low retrieval relative to the Default re-
trieval for these Very Thick clouds is driven by the better con-
ditioning of the forward model. The ratio of the magnitude
of the Jacobian elements tends to be more similar between
cloud edge and cloud centre and the illuminated and shaded
sides of the cloud for the less ill-conditioned, low-accuracy
forward model (Loveridge et al., 2023a). The result of this is
that the extinction is distributed more evenly throughout the
cloud during the increase in the extinction coefficient, even
at larger optical depths.

The smoothness of the extinction field in our retrievals
(e.g. the coefficient of variation in Table 1) arises because of
the smoothness of the initial residuals and the smoothing ef-
fect of the adjoint operator that is used to calculate the gradi-
ent. The solution operator of the radiative transfer is smooth-
ing and so is its adjoint. In the ill-conditioned limit, local op-
timization tends to converge slowly while remaining smooth.
This contrasts with direct inversion methods that can produce
wild irregularities in the solution when the problem is ill con-

ditioned. The greater smoothness of the Default retrieval for
the Very Thick clouds, compared to the Low retrieval, can be
seen as a symptom of the stronger ill-conditioning that oc-
curs in the Default retrieval before details in the extinction
field are retrieved.

The smooth extinction fields that we retrieved in the op-
tically thick limit that are biased low are only one of a set
of configurations of clouds that will produce similar con-
sistency in radiances against the measurements. Compensat-
ing errors in the radiance field occur between biases in the
mean and the variability in a retrieved extinction field. This
is because a low bias in the extinction increases the mean
free path, hence enhancing transmission, while decreasing
the spatial variability decreases the mean free path, hence
decreasing transmission (Cairns et al., 2000; Davis and Mar-
shak, 2004; Forster et al., 2021). These compensating er-
rors can be larger in optically thick clouds without substan-
tially affecting the outgoing radiance field due to the strong
smoothing process of scattering (Davis et al., 2021).

We must emphasize that our results are not evidence of
a radiative smoothing bias in tomographic retrievals, similar
to the one identified in the independent pixel approximation
(IPA). The resolving power of the measurements is affected
by not only the spatial resolution but also the angular spac-
ing of the measurements. In the optically thick limit, there
is an ambiguity in the state when using only radiance mea-
surements in the retrieval. The smoothness of our retrieved
extinction fields is an artefact of our choice of retrieval al-
gorithm (and particularly its initialization). Retrievals with
other initializations may encounter the opposite form of com-
pensating error. For example, a retrieval may be initialized to
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Figure 8. The ensemble-averaged and isotropically averaged power spectral density of the volume extinction coefficient for the Thin (a),
Medium (b), Thick (c), and Very Thick (d) cloud categories. Solid lines are the ensemble averages, and the shading indicates ± 1 standard
error in the mean. The spatial scales of the first departure from the ground truth spectrum by the best-performing retrievals for each cloud
category are marked in the top left corners of each figure. Note that, in panel (d), the Low and Restarted final curves are indistinguishable.

be optically thick and highly variable, which results in the
retrieved cloud being too optically thick and too variable. At
this point, this is a hypothesis about the general behaviour of
retrievals in the optically thick limit and remains to be tested.

4.2 Inferred optical depths

In addition to the analysis of the volume extinction coeffi-
cient field, it is also helpful to consider how the retrieval
performs for inferring optical and radiative properties such
as cloud optical depth. Cloud optical depth is a widely used
single variable for describing the optical properties of cloud,
and for this variable, we can make a direct comparison with
the performance of operational retrievals using 1D RT.

Table 4 shows the retrieval errors in optical depth distri-
butions from the different tomographic retrievals. Retrieval
errors in optical depth are substantially smaller than in the
extinction field, reflecting the relatively uncorrelated spatial

distribution of extinction errors. For comparison, Table 5 dis-
plays retrieval errors from an optical depth retrieval using
only nadir radiance and the assumptions of the IPA; that is,
it displays retrieval errors using homogeneous plane-parallel
cloud models and 1D RT to generate lookup tables (LUTs) of
optical depth as a function of measured radiance. Errors are
substantial for the IPA retrieval, even with radiances at the
same resolution as the optical depth, so that sub-pixel het-
erogeneity effects are absent. The IPA retrieval outperforms
the default tomographic retrieval of the Very Thick clouds,
but the margin is well within the ensemble standard devia-
tions of both techniques. Moreover, even accounting for the
ensemble variability, the IPA is significantly outperformed by
both Restarted retrievals, which have small radiance residu-
als. The tomographic retrieval also outperforms the IPA re-
trieval when inferring the coefficient of variation in the op-
tical depth distribution, as the IPA retrieval tends to have a
bias in the estimate of the distribution width that changes
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sign with increasing optical depth (Iwabuchi and Hayasaka,
2002). Clearly, the tomographic retrieval demonstrated here
is much more appropriate for inferring cloud optical depths
in cumuliform clouds than IPA-based retrievals, even with-
out considering the substantial benefits of retrieving the 3D
distributed extinction field.

4.3 Computational expense

As always, it is important to also consider the computa-
tional expense of a retrieval method alongside its perfor-
mance when evaluating its utility. Table 6 evaluates the com-
putational expense of the retrievals. It shows that the use of
the low-accuracy SHDOM solver in the Low retrieval almost
eliminates the contribution of the RTE solver to the retrieval
time, which is instead dominated by the approximate compu-
tation of the gradient and radiance calculation. This latter cal-
culation is still unoptimized, and its cost is further discussed
in Appendix F of Part 1 (Loveridge et al., 2023a). The gradi-
ent calculation is easily parallelized using multi-threading, as
each observable can be evaluated independently. In our case,
we parallelize using four threads. True CPU time is therefore
roughly 4 times larger than wall time for this portion of the
computational cost of each iteration. Computational expense
is, naturally, significantly larger for the tomographic retrieval
than for the IPA-based retrieval. For comparison, the tomo-
graphic retrieval is, very roughly, 2 orders of magnitude more
expensive than aerosol retrievals using multi-angle radiances
and the IPA assumptions with online RTE calculations, ne-
glecting the differences in hardware (Gao et al., 2021).

Several acceleration methods are possible. The computa-
tional scaling of the SHDOM solver to larger domains us-
ing a message-passing interface (MPI)-based parallelization
is documented in Pincus and Evans (2009). The solver CPU
time may be decreased by using the SHDOM solution from
the previous optimization iteration to initialize the next one.
We utilized this feature in Part 1 to accelerate finite differenc-
ing calculations, though this method may not be stable in the
presence of large changes in cloud between iterations, par-
ticularly when the adaptive grid is utilized. A more sophisti-
cated version of this principle is to utilize a partial differen-
tial equation (PDE)-constrained optimization, which jointly
refines both the inverse problem and the RTE solution at the
same time, leading to orders-of-magnitude decreases in com-
putational expense (Abdoulaev et al., 2005). The use of low-
accuracy RTE solutions far from the solution appears valu-
able, through their ability to reduce the computational ex-
pense of the solver and increasing the convergence rate of
the optimization.

The RTE solver cost may be mitigated in operational ap-
plications through the development of a statistical emulator
for the SHDOM RTE solution, similar to Gao et al. (2021),
though this work should likely proceed only once the re-
trieval algorithm is at a greater level of maturity. The con-
vergence rate of the retrieval, and hence total computational

expense, and final accuracy may also be improved through
the development of preconditioning strategies. The problem
of ill-conditioning in the transition to the diffuse regime
has been widely recognized in diffuse optical tomography,
and some mitigation strategies have been proposed (Tian et
al., 2010; Niu et al., 2010). Extension of this work for a
non-linear preconditioning transform (De Sterck and Howse,
2018) may be effective for our application. In our view, the
computational expense of the tomography retrieval is not an
oppressive limitation of the technique. Significant computa-
tional resources are routinely utilized simply to simulate ana-
logues of the atmospheric system. The technique only calls
for similar resources to be allocated to study the atmosphere
as it really is.

5 Discussion

The good performance of the retrievals of the clouds in
the Thin and Medium categories is highly encouraging, as
is their robustness to noise and their robustness to for-
ward model error in this idealized scenario. Clearly, in these
clouds, the approximate Jacobian is not a limiting factor in
the local optimization, and the local optimization itself is a
highly efficient method for performing the retrieval. While
we must be careful not to extrapolate a quantitative per-
formance from our idealized scenario to real-world condi-
tions, we can confidently conclude that the performance of
the tomography for isolated clouds within this scattering
regime will be limited by forward-modelling and instrumen-
tal errors, rather than the difficulty of the inverse problem.
Given that many trade cumulus clouds tend to be smaller than
800 m in geometric depth (Guillaume et al., 2018; Chazette
et al., 2020) and that the average adiabatic fractions for
these clouds can be significantly less than unity (Eytan et
al., 2022), many of these clouds, particularly in clean condi-
tions, will confidently have maximum optical depths of less
than 40.

A minimal amount of prior information will be required to
perform the retrievals of these optically thinner shallow cu-
mulus clouds. In fact, our results cement the conclusion that
small heterogeneous clouds are actually the clouds for which
remote sensing using passive imaging is easiest, counter to
the paradigm of 1D radiative transfer. This means that the ra-
diance measurements themselves will provide a large amount
of information that is independent of the models that might
be used to form any priors, such as LESs. This is hugely
encouraging, as the development of cloud tomography tech-
niques is motivated in part by the need to develop measure-
ments that provide independent constraints on the behaviour
of LES models (Morrison et al., 2020). This fact solidifies the
strengths of physics-based retrievals in comparison to statis-
tical methods. While statistical methods trained using LES
data are also attractive options to perform retrievals using 3D
radiative transfer (Nataraja et al., 2022; Ronen et al., 2022),

https://doi.org/10.5194/amt-16-3931-2023 Atmos. Meas. Tech., 16, 3931–3957, 2023



3948 J. Loveridge et al.: Retrieving 3D distributions of atmospheric particles using AT3D – Part 2

Figure 9. The ensemble-averaged and isotropically averaged power spectral density of the errors in the volume extinction coefficient for
different retrievals of the clouds in the Thin (a), Medium (b), Thick (c), and Very Thick (d) categories. Solid lines are the ensemble averages,
and the shading indicates ± 1 standard error in the mean. Note that, in panel (d), the Low and Restarted final curves are indistinguishable.

Table 4. Optical depth errors for different tomographic retrievals. Means of error metrics are shown across the 10 clouds in each category
with the standard deviation across the 10 clouds in parentheses. See the text for details of the error metrics.

Inversion method Default Low 20th low Final low
iteration restart iteration restart

Cloud category Thin Medium Thick Very Thin Medium Thick Very Thick Very Thick Very
Thick Thick Thick Thick

Relative RMSE (%) 2.8 7.2 24.1 55.6 8.1 17.7 28.5 36.5 19.9 38.8 24.5 36.4
(0.5) (1.6) (6.1) (4.1) (1.2) (3.2) (5.4) (5.0) (2.2) (4.7) (5.9) (5.4)

Relative bias (%) 0.2 0.0 −6.6 −35.6 3.2 5.0 8.3 −7.6 −0.5 −14.7 4.1 −8.3
(0.1) (0.1) (6.6) (9.5) (1.4) (2.5) (6.1) (13.7) (3.3) (12.1) (5.6) (13.7)

Relative bias in −0.1 −0.7 −4.8 −14.0 −2.6 −1.6 0.1 −3.2 −1.9 −5.0 −0.3 −3.3
coefficient of (0.1) (0.4) (1.3) (6.0) (0.9) (1.6) (2.8) (3.0) (1.2) (3.7) (2.3) (3.3)
variation (%)
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Table 5. Optical depth errors for a lookup table (LUT)-based retrieval of optical depth from the nadir radiance using 1D radiative transfer.
Means of error metrics are shown across the 10 clouds in each category, with the standard deviation across the 10 clouds in parentheses. See
the text for details of the error metrics. The LUT uses the ground truth microphysics and is made of 20 points with linear spacing between 0
and 5 optical depths and 40 points with logarithmic spacing between 5 and 100. A cubic interpolation is used. The best-fitting optical depth
is chosen using the L-BFGS-B routine. The angular accuracy used to form the LUT is the same as the ground truth 3D simulations, but a
stricter splitting accuracy of 10−3 is used.

Inversion method IPA/LUT

Cloud category Thin Medium Thick Very Thick

Relative RMSE (%) 29.4 (2.7) 38.9 (4.8) 45.7 (6.2) 78.7 (14.1)

Relative bias (%) −23.2 (2.7) −31.9 (4.5) −31.9 (10.3) −16.9 (25.0)

Relative bias in coefficient −7.4 (1.8) −7.0 (3.4) 1.7 (7.9) 31.2 (15.7)
of variation (%)

Table 6. Computational expense of the retrievals. Means across the 10 clouds are shown, with standard deviations across the 10 clouds in
parentheses. The average cumulative Total CPU time is essentially linear in the iteration number, so the computational expense vs. accuracy
trade-off of terminating the retrievals earlier can then be read from this table and Fig. 3. All computations were performed on a 2.3 GHz Intel
Core i5.

Inversion method Default Low

Cloud category Thin Medium Thick Very Thick Thin Medium Thick Very Thick

Total CPU time per iteration (s) 43.6 53.2 85.8 115.9 29.6 31.6 36.3 30.2
(7.3) (10.9) (8.5) (48.8) (6.1) (10.0) (13.1) (6.5)

Percentage of total CPU time 20.4 43.7 54.5 57.0 0.5 1.2 2.3 3.6
spent on SHDOM solution (%) (1.6) (5.2) (6.6) (7.1) (0.1) (0.2) (0.2) (0.6)

Average number of objective 1.60 1.17 1.30 1.50 1.58 1.82 1.83 1.47
function calls per iteration (0.27) (0.15) (0.27) (0.58) (0.39) (0.56) (0.69) (0.29)

they lack a ground truth training data set and are not inde-
pendent of the LESs that they may be used to evaluate.

One of the key issues that might complicate our extrap-
olation of the tomography performance to real clouds is the
potential for cloud organization to obscure oblique views and
thereby lower retrieval accuracy. Additionally, there is the is-
sue of how the retrieval accuracy depends on the treatment of
the horizontal boundary conditions and domain size. These
issues have yet to be investigated systematically, requiring
much larger domains, and hence computational expense, and
therefore MPI-based parallelization, which is not yet imple-
mented in AT3D. Observed statistics of cloud-to-cloud sep-
aration suggest that trade cumulus clouds are tightly spaced
relative to their horizontal size and therefore thickness (Zhao
and Di Girolamo, 2007). Early numerical results of radiative
transfer with idealized cloud geometries show that the radia-
tive effects of cloud–cloud interactions are significant in this
regime (Weinman and Harshvardhan, 1982; Schmetz, 1984;
Kobayashi, 1988). As such, investigating the sensitivity of
the retrieval accuracy to cloud–cloud interactions, particu-
larly the horizontal boundary conditions, is a high priority
for establishing the efficacy of cloud tomography in more re-
alistic conditions.

Given the success of the local optimization and approx-
imate Jacobian in the optically thin limit, the proposed re-
trieval is also applicable to other optically thin scattering
media such as cirrus or aerosol. For cirrus clouds, the pri-
mary barrier will likely be whether the clouds have suffi-
cient horizontal variability for the multi-angle measurements
to constrain their vertical structure. Horizontal homogene-
ity increases ill-conditioning, introducing ambiguity in the
retrieved extinction fields (Martin and Hasekamp, 2018),
though this effect is relatively minor in the optically thin
limit (Loveridge et al., 2023a). Additionally, the more com-
plex microphysical characteristics of ice and aerosols, where
the shape and composition are not well known a priori, raises
the question of how effective microphysical retrievals for
these scatterers will be. In contrast, tomographic retrievals of
liquid cloud microphysics have already been demonstrated
(Levis et al., 2020) and promise to be effective in the opti-
cally thinner cumuliform clouds discussed above.

In the optically thick limit, many issues have been iden-
tified. We have provided further quantification of the degra-
dation of retrieval accuracy and convergence in the optically
thick limit due to ill-conditioning that had been previously
identified (Levis et al., 2015; Martin and Hasekamp, 2018).
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Retrieval uncertainties are clearly large in the optically thick
limit, as indicated by the significant divergences of the re-
trieved extinction field due to small perturbations to the mea-
surements. However, even these perturbative estimates are
tied to our choice of initialization and are not globally rep-
resentative (Rodgers, 2000; Gao et al., 2022). We showed
that while we can easily diagnose retrieval accuracy using
the ground truth, we currently have no effective means to
predict retrieval uncertainties. Developing a computationally
efficient uncertainty model is a critical step in the devel-
opment of the tomographic retrieval. Particle filter methods
have the potential to address this need (Hu and van Leeuwen,
2021), though work is needed to verify their applicability to
the tomography problem and optimize them for this applica-
tion.

While global optimization methods are comprehensive,
they are also much more computationally expensive than
the local optimization method employed here with AT3D.
Minimizing the amount of time spent in global optimiza-
tion through the improvement of the local optimization is al-
ways beneficial. Correspondingly, developing more effective
initialization strategies and other acceleration methods will
improve the retrieval problem. Methods to estimate the or-
der of magnitude of the optical properties within the cloud
have been proposed based on either a grid search of a low-
dimensional cloud model (Tzabari et al., 2022) or analytic ra-
diative transfer results for idealized cloud geometries (Davis
et al., 2021). Both of these methods require cloud enve-
lope information as input and stereo methods have shown
promise at providing the required information (Dandini et
al., 2022). Other methods to retrieve the internal extinc-
tion field are also possible such as using 1D radiative trans-
fer or heuristics based on 1D radiative transfer and linear
tomography (Alexandrov et al., 2021). Both such methods
neglect the asymmetry in the radiance field between forward-
and backward-scattering geometries, which will lead to over-
estimation of the extinction field on the illuminated side of
the cloud. An initialization with such an artefact would likely
encourage the formation of the local minimum observed here
in optically thick clouds with a gradient in extinction from
the illuminated to shadowed side. Further study is needed
to identify the most effective initialization methods and their
range of applicability in terms of solar zenith angle and cloud
optical depth.

We showed that the use of a low-accuracy forward model
has been demonstrated to provide potential in accelerating
retrievals. However, when angular accuracy is reduced, the
retrieval problem is sufficiently non-linear that the retrievals
may diverge much further than expected due to forward
model error alone. This means that a low-accuracy forward
model is not simply a tool to get to the same vicinity of
state space quicker, at least when radiance measurements are
the only constraint. While its use is beneficial for the naïve
initialization used here, the benefit of using a low-accuracy
forward model must be tested in combination with other

initialization methods to determine whether it has general
utility. Our results show that the choice of angular resolu-
tion of the forward model and phase function is an impor-
tant potential source of diversity in retrieval accuracy. This
parameter should be considered carefully in future studies
of tomography, especially when comparing performance be-
tween studies which have used a wide variety of model con-
figurations (Levis et al., 2015; Martin and Hasekamp, 2018;
Levis et al., 2020; Doicu et al., 2022a, b).

In general, the ill-conditioning of the forward model in
the optically thick limit indicates that radiance measurements
alone are not sufficient to constrain the retrieval problem.
There are many potential sources of prior information that
could be incorporated into the tomographic retrieval, partic-
ularly in the optically thick limit. These may be from LES,
simpler models or statistics from other measurements such
as in situ cloud probes. The important consideration when
incorporating prior data is to make sure that the resulting
retrieval is used to test a hypothesis for which the prior is
not relevant. For this reason, input from the wider cloud and
aerosol physics communities will be invaluable in guiding
the development of prior constraints for physics-based in-
versions or training data for statistical methods in the opti-
cally thick limit. The inclusion of other measurements such
as cloud radar may also be instrumental in overcoming the
limitations of the technique in optically thick clouds.

One of the main motivations for developing retrievals that
use 3D radiative transfer is the need to reduce the systematic
biases in the retrievals that vary with the solar and viewing
geometry (Marshak et al., 2006; Kato and Marshak, 2009;
Di Girolamo et al., 2010; Liang and Girolamo, 2013) and
the instrument resolution (Marshak et al., 2006; Zhang et al.,
2012). However, our analysis identified that systematic bi-
ases can exist in the optically thick limit that are aligned with
the solar direction, despite the use of 3D radiative transfer.
We hypothesize that no such biases will exist for scattering
regimes that are similar to the Thin and Medium cloud cat-
egories examined here. Testing this hypothesis and quanti-
fying the systematic variation in the biases with solar and
viewing geometry and instrument resolution is an important
future step in the development and validation of the retrieval.

6 Summary

In this study, we have evaluated an algorithm for retriev-
ing the 3D volumetric properties of clouds using multi-
angle/multi-pixel radiances and 3D RT. The retrieval utilizes
an iterative, optimization-based solution to the generalized
least squares problem to find a best-fitting state vector for pa-
rameterizing the cloud’s structure. The retrieval, which was
described in detail in Part 1, is publicly available in the soft-
ware AT3D.

We evaluated the tomographic retrieval by applying it to
synthetic measurements with a known ground truth. The syn-
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thetic measurements were generated from 10 stochastically
generated, cumuliform clouds in (1 km)3 domains. The ex-
tinction fields of each cloud were scaled to have maximum
optical depths of 4, 17.5, 44, and 88. The 3D fields of vol-
ume extinction coefficient are retrieved at 40 m resolution,
which is a similar resolution to the radiance measurements
(35 m).

When the target clouds have maximum optical depths less
than 17, the relative RMSEs and relative biases of our ide-
alized retrievals are less than 20 % and 1 %, respectively.
Remaining errors in these clouds are limited to the small-
scale (< 250 m) spatial structure of the extinction field. The
relative RMSEs in the retrieved extinction field grow with
the optical depth of the cloud to reach an ensemble average
of ∼ 70 %, as the maximum optical thickness of the clouds
reaches 88 (the value of our Very Thick cloud category).
Errors become present at larger and larger spatial scales as
the optical size of the cloud increases, including a notable
decrease in the retrieved extinction from the illuminated to
the shadowed side of the cloud and with increasing optical
distance from the sensors in the optically thick clouds. This
particular error pattern is attributed to the ill-posedness of
the retrieval in the optically thick limit and our choice of an
optically thin initialization and use of a local optimization
method to solve the inverse problem.

The retrievals of clouds in the optically thick limit are
highly uncertain. The addition of radiometric noise can cause
large deviations in the mean extinction of individual re-
trievals that reach 18 % for these thick clouds, although
ensemble-averaged retrieval behaviour remains unchanged.
The choice of angular resolution in the forward model sys-
tematically modifies the behaviour of the retrieval result for
the optically thickest clouds. Using a forward model with
low angular accuracy that is less ill-conditioned results in
the reduction of ensemble-averaged relative bias in the re-
trievals from −36 % to just −8 %, which exceeds the bias
improvement from forward-modelling error alone (∼ 10 %).
This highlights the importance of the angular accuracy in
SHDOM for setting the numerical stability of the inverse
problem. We suggest that using forward models with low an-
gular accuracy is an avenue for improving the fidelity and
computational efficiency of retrievals.

The tomographic retrieval’s inference of optical depth out-
performs an IPA-based retrieval of optical depth. The IPA re-
trieval, which uses nadir radiance here, has biases worse than
−23 %. The tomographic retrieval’s biases are much smaller
for the clouds with optical depths less than 44 but are compa-
rable for the thicker clouds, unless the low angular accuracy
forward model is used. Relative RMSEs for the optical depth
are at worst half of those of the IPA.

Overall, the proposed tomographic retrieval algorithm
equipped with the approximate Jacobian calculation is the
most promising for shallow cumulus cloud fields over near-
black surfaces (e.g. ocean). These clouds have the richest
available information content within their multi-angle re-

flectances, due to their highly heterogeneous nature. There-
fore, from a fundamental perspective, these clouds are ac-
tually the easiest for passive tomographic remote sensing
(Loveridge et al., 2022). Other optically thin clouds and
aerosols are also likely to be effectively retrieved by this al-
gorithm, which is an area for future work.

Deployment of the tomographic retrieval on the upcoming
CloudCT mission (Schilling et al., 2019) has the potential to
provide robust statistics of small-scale cloud properties that
are unobtainable when using in situ measurements and are
highly suitable for constraining model behaviour in climati-
cally important shallow cumulus cloud fields. Further devel-
opment of the retrieval is required to fully realize its potential
of jointly retrieving aerosol and cloud properties and to im-
prove its performance in more difficult, optically thicker, or
stratiform cloud regimes. Future work will improve the re-
alism of the retrieval to develop a full uncertainty model for
the retrieval for evaluation against real observations.

Appendix A

The noise model used for the measurements uses the spec-
ifications from NASA’s Request for Information (RFI) for
a Tandem Stereographic Cameras instrument related to the
upcoming Atmospheric Observing System (AOS) mission
(NASA, 2021). The Tandem Stereographic instrument would
use narrowband cameras viewing in the visible range at
high spatial resolutions, with around 50 m ground instanta-
neous field of view (FOV) per pixel. The signal-to-noise ra-
tio (SNR) requirement for this camera provides a reasonable
proxy for the SNR that is achievable by an instrument that
might be utilized for tomographic retrievals in practice. The
SNR is defined as the ratio of the radiance, L, to the standard
deviation of the radiance due to noise, σL. The SNR require-
ment for the Tandem Stereographic camera is tabulated (Ta-
ble A1) as a function of the equivalent reflectance, R, which
is defined in terms of the band-averaged solar irradiance, F0,
and the cosine of the solar zenith angle, µ0.

R =
πL

µ0F0
(A1)

The SNR model for these measurements utilizes a cubic
spline to interpolate between the values. No extrapolation at
the upper end of the signal range is required. To extrapolate
to reflectance values below the minimum, we make the con-
servative assumption that the standard deviation of the radi-
ance noise remains fixed below this reflectance level, which
results in a linear decrease in the SNR until it reaches zero for
no signal. This assumption is equivalent to assuming that the
noise becomes dominated by dark noise below the minimum
tabulated reflectance level.

The information provided is sufficient for an idealized
modelling of the radiometric noise without modelling the
details of the camera. We use a Poisson model to generate
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Table A1. The signal-to-noise ratio (SNR) values tabulated as a
function of equivalent reflectance used to generate noise for the
measurements for the tomographic retrievals. See the text for de-
tails.

Equivalent 0.01 0.05 0.1 0.5 1.0 1.3
reflectance

SNR 87 201 285 639 904 1031

noise according to the SNR curve, as both the photon and
dark noise are well-modelled by this stochastic process, and
noise is typically limited by photon shot noise for most of
the signal range. We neglect detailed models of other pro-
cesses such as quantization, which are implicitly included in
the required noise level.

The single parameter of the Poisson model, namely its
rate, is uniquely defined as the square of the SNR. The num-
ber of counts produced in each realization of the Poisson pro-
cess, NL, is scaled back to a radiance by

Lnoisy =

√
NLσ

2
L.

Appendix B

The space-carving algorithm implemented in AT3D per-
forms a volume masking on a 3D property grid, using the 2D
cloud masks and the geometric information associated with
each pixel. Note that the geometric information requires not
only the pixel information but also how each pixel’s FOV
is modelled, i.e. the geometry and weights of any sub-pixel
rays. See Part 1 for how this is modelled in AT3D. The algo-
rithm then proceeds simply by tracing each ray along its line
of sight and counting the intersections of the ray with each
grid point in the volume of the domain. An intersection with
a grid point occurs whenever a ray intersects a grid cell for
which the grid point is one of the bounding points. The in-
tersections of clear and cloudy rays with each grid points are
counted separately. A grid point is designated as cloudy by
a given image if the proportion of cloudy rays intersecting
it for each mono-angle image is above a specified fraction
(we use 0.0 for a clearly conservative mask; Yang and Di
Girolamo, 2008). If the proportion of grid point designations
by each image is greater than or equal to another specified
fraction (typically 1.0), then the grid point is classified as
cloudy. The threshold of 1.0 ensures that all grid points are
designated as cloudy, unless one view indicates that the grid
point is clear. As such, the volume masking is clearly conser-
vative.

The accuracy of a space-carving algorithm of this sort is
limited in multi-angle systems by angular resolution and spa-
tial resolution (Lee et al., 2018). It is also limited by only us-
ing binary features (i.e. the cloud masks) to retrieve structural

information and therefore can only retrieve detailed informa-
tion on the cloud volume when the binary cloud masks are
highly structured. Other stereoscopic approaches utilizing ra-
diance feature matching (Seiz and Davies, 2006; Veikherman
et al., 2015; Bal et al., 2018) might perform better, especially
in the case of stratiform clouds. However, in the case of cu-
muliform clouds, the performance of space carving is quite
good, especially at a high spatial resolution, where the clearly
conservative nature of the masking does not vastly overesti-
mate cloud volumes.

When applied to the synthetic measurements used in the
inversions, the true positive rate for grid point classification
across all clouds is 10 %, the true negative rate is 65 %, the
false positive rate is 25 %, and the false negative rate is 0 %.
So the true clouds take up only ∼ 10 % of the domain vol-
ume, while the space-carving algorithm estimates that they
take up ∼ 35 %.

Appendix C

In addition to the general set-up of the inversion, we must
make some specific choices about the optimization algo-
rithm. The L-BFGS-B method is sensitive to the scaling of
the problem in the initial iterations, as the initial Hessian ap-
proximation in the SciPy (Virtanen et al., 2020) implemen-
tation is simply the identity matrix. The first update to the
state vector is therefore simply the gradient and is therefore
sensitive to the size of the initial residuals. We choose the
error covariance matrix to be a diagonal matrix, with entries
of 10−8/m to compensate this effect, where m is the number
of measurements. With the solar flux chosen as unity (which
sets the sizes of the radiances and residuals), this ensures that

an initial step with a length of
∥∥∥∥ ∂χ2

∂a

∣∣∣
a0

∥∥∥∥ is not too small or

too large in the sense that the Wolfe–Armijo conditions re-
quire. The Wolfe–Armijo conditions on the line search use
the widely used default parameter values of c1 = 0.9 and
c2 = 10−4 (Byrd et al., 1995; Zhu et al., 1997).

The L-BFGS-B method has two key hyper-parameters.
The first is the number of past iterations of state and gra-
dient changes used to approximate the Hessian value of the
cost function. This is chosen to be 10 iterations. The sec-
ond is the maximum number of points to search in the line
search during each iteration, which is also set to 10. Three
stopping conditions are also specified, the maximum number
of iterations is 100, the minimum allowable relative change
in the cost function before termination is set to 10−8, and the
smallest maximum absolute value of the gradient before ter-
mination is also 10−8. The maximum number of iterations
for the Restarted retrievals is still 100, in addition to the 20
to 100 iterations at low angular accuracy used to form the
initialization.
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