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Abstract. This paper explores the possibility of using multi-
source precipitation estimates for climatological applica-
tions. A data-processing algorithm (RainGRS Clim) has
been developed to work on precipitation accumulations such
as daily or monthly totals, which are significantly longer
than operational accumulations (generally between 5 min
and 1 h). The algorithm makes the most of additional oppor-
tunities, such as the possibility of complementing data with
delayed data, access to high-quality data that are not opera-
tionally available, and the greater efficiency of the algorithms
for data quality control and merging with longer accumula-
tions. Verification of the developed algorithms was carried
out using monthly accumulations through comparison with
precipitation from manual rain gauges. As a result, monthly
accumulations estimated by RainGRS Clim were found to be
significantly more reliable than accumulations generated op-
erationally. This improvement is particularly noticeable for
the winter months, when precipitation estimation is much
more difficult due to less reliable radar estimates.

1 Introduction

The estimation of precipitation on the ground surface with
high spatial resolution is one of the most important issues
in meteorology but, at the same time, one of the most com-
plex because of the very high spatial and temporal variability
in precipitation, especially in the case of intense events as-
sociated with convective phenomena. This makes its precise
quantitative estimation very difficult and subject to many er-
rors. None of the available techniques, i.e. rain gauge mea-
surements, meteorological radar measurements or satellite

estimates based on measurements in different electromag-
netic radiation bands, provide satisfactory precision. Conse-
quently, different methods are being developed to combine
precipitation data obtained by these techniques, with the aim
of exploiting the advantages of each technique while min-
imising its weaknesses (Ochoa-Rodriguez et al., 2019; Jur-
czyk et al., 2020b; Wetchayont et al., 2023).

The generation of such multi-source precipitation esti-
mates is currently the standard procedure used for quantita-
tive precipitation estimation (QPE). In operational (i.e. real-
time) applications, the most common time step for estimating
the precipitation field is the 1 h step, as it often follows the
demand from hydrological rainfall–runoff models (Sokol et
al., 2021). However, sub-hourly resolutions, such as 10 min
resolution, are also increasingly used. Such data are becom-
ing essential, in particular as input for nowcasting precipita-
tion forecast models; for rainfall–runoff models that forecast
flash floods, which are triggered by intense but short-lived
and rapidly fluctuating precipitation (e.g. Chan et al., 2016;
Neuper and Ehret, 2019); or for performing analyses of the
occurrence of precipitation extremes (e.g. Bonaccorso et al.,
2020; Lengfeld et al., 2020; Marra et al., 2022).

However, there is also growing demand among climatolo-
gists and agrometeorologists, for example, for longer precip-
itation totals – of the order of days, months or years or even
entire multi-year periods – that still maintain high spatial res-
olution. This demand can in fact already be met, as radar
observations of precipitation, providing the highest spatial
resolution of all measurement techniques, have been per-
formed routinely for several decades. So, long series of radar
as well as multi-source precipitation estimates are already
available. Weather radar networks cover a large part of the
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more densely populated areas of the globe, so increasingly
radar data, when supplemented with other observations, are
also applied in climatological studies to provide extensive in-
formation on the multi-year variability in the precipitation
field with very high spatial resolution not available with other
measurement techniques (Fabry et al., 2017; Saltikoff et al.,
2019a). They are also used to study the climatology of in-
tense convective phenomena, as the high spatial resolution
is particularly important in such cases (Hamidi et al., 2017;
Burcea et al., 2019; Voormansik et al., 2021; Hänsler and
Weiler, 2022; Piscitelli et al., 2022).

Consequently, there is a need to produce reliable estimates
of precipitation accumulation over longer time periods (daily,
monthly, yearly or even longer) with data from databases
containing operationally generated multi-source precipita-
tion at higher temporal resolutions, e.g. as 10 min precipita-
tion accumulations. It turns out that simply adding up, for ex-
ample, 10 min estimates does not give satisfactory results be-
cause any quality control algorithm for precipitation observa-
tions becomes much more effective for longer accumulations
of at least 1 h (Morbidelli et al., 2018; Villalobos-Herrera
et al., 2022). In particular, any algorithm for the adjustment
of radar to rain gauge data often works too randomly when
shorter accumulations are used, and the cross-checking of
different types of precipitation data is then also subject to
much higher uncertainty.

Generating accumulations for longer time intervals there-
fore provides the possibility of carrying out so-called re-
analyses, i.e. re-generating the corresponding precipitation
accumulation. This brings the following potential benefits:
(i) datasets can be supplemented with data that were miss-
ing from the operational estimation, e.g. due to delays in
their arrival at the system; (ii) in addition, data from such
measurement techniques that are available too late for op-
erational applications or measured with a longer calculation
step (e.g. daily, such as from manual rain gauges) can be
used (Imhoff et al., 2021); and (iii) algorithms for performing
quality control on radar precipitation data and then combin-
ing these data with data from other sources generally work
much more effectively for longer accumulations (Wagner et
al., 2012; Park et al., 2019).

Various initiatives are being undertaken to estimate pre-
cipitation data for climatological purposes with the high spa-
tial resolution obtained from radar observations, including
on a trans-national scale. One of the major initiatives in this
area is the EURADCLIM (EUropean RADar CLIMatology)
dataset, which is based on radar data obtained from the Op-
erational Programme for the Exchange of Weather Radar In-
formation (OPERA) – a EUMETNET (European Meteoro-
logical Network) initiative (Saltikoff et al., 2019b) – and rain
gauge data obtained from the European Climate Assessment
& Dataset (ECA&D) project. Both of these networks are pan-
European and cover most of Europe. In the EURADCLIM
programme, radar quality control adapted to longer precipita-
tion accumulation intervals, such as 1 h and daily intervals, is

performed (Overeem et al., 2023). Quality control is also per-
formed on longer rain gauge accumulations within ECA&D
(Klok and Klein Tank, 2009).

The concept of generating long-term precipitation estima-
tion presented in this paper is based on using algorithms for
quality control of the input data and combining them into
multi-source estimates, which are applied operationally to
10 min data. However, new quality control methods and new
data sources have also been included – something that was
not possible during the operational generation of precipita-
tion estimates.

Section 2 describes all input data, those available oper-
ationally as well as those used for reanalyses. Section 3
presents the algorithm for combining precipitation data into a
multi-source precipitation field, used both operationally and
for reanalyses, and Sect. 4 proposes a scheme for generat-
ing long-term estimates. Section 5 shows and discusses the
results of the verification of the reanalyses of monthly to-
tals in different seasons compared to operationally generated
estimates, while Sect. 6 shows an example of the system per-
formance. Finally, Sect. 7 provides conclusions.

2 Precipitation data

2.1 Precipitation measurement data available for the
area of Poland

Table 1 summarises the general characteristics of the precip-
itation data available for the area of Poland: from in situ and
remote sensing measurements, available both in real time and
after a shorter or longer processing time, which can take up
to 2 months (this is the case for quality control of the data
from manual rain gauges).

This study uses precipitation data generated by the Insti-
tute of Meteorology and Water Management – National Re-
search Institute (IMGW), which performs the function of the
national meteorological and hydrological service in Poland
(Szturc et al., 2018). All these data are quality-controlled by
dedicated applications or systems.

2.2 Rain gauge data

The 10 min precipitation accumulations are provided oper-
ationally at IMGW by a network of telemetric rain gauges,
most of which are tipping-bucket gauges – considered one of
the less accurate of the various types of rain gauges (Hoff-
mann et al., 2016; Segovia-Cardozo et al., 2021) in addition
to being subject to significant failure rates. For quality con-
trol of telemetric rain gauge data, the RainGaugeQC system
is used at IMGW to perform error detection and corrections
on 10 min data in real time (Ośródka et al., 2022).

One of the most important additional benefits of carrying
out reanalyses, relative to the generation of a real-time pre-
cipitation field, is the possibility of exploiting the much more
accurate measurements performed by manual rain gauges
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Table 1. In situ precipitation measurement networks available for Poland.

Observation technique Temporal resolu-
tion

Network density or spa-
tial resolution

Delay

Telemetric rain gauge network 10 min 1 gauge per 625 km2

(about 500 gauges)
6 min (then data from more than 90 % of
the gauges are usually available)

Manual rain gauge network 24 h 1 gauge per 434 km2

(about 720 gauges)
About 2 months (due to the transfer of
the data and manual quality control)

Ground weather radar network 10 min About 1 km 6 min (because the lowest scan is gener-
ated at the beginning)

Geostationary meteorologi-
cal satellites (Meteosat and
NWC SAF software)

5 min (in rapid-
scan system)

About 5–6 km 1–5 min (due to scan strategy)

Figure 1. Rain gauge networks of IMGW. From left: telemetric and manual rain gauge networks.

mostly once a day. The network of such rain gauges (Hell-
mann type) installed at IMGW is relatively dense and even
denser than the network of telemetric rain gauges (Fig. 1 and
Table 1). These are the most accurate of the in situ point
measurements, but they are available with a very long de-
lay of almost 2 months, mainly due to the human-made data
quality control. In addition, measurements from manual rain
gauges are subjected to quality control in the IMGW his-
torical database, using standard algorithms based on proce-
dures recommended by the World Meteorological Organiza-
tion (WMO-No. 305, 1993, Chap. 6).

2.3 Weather radar data

The radar data used to generate the precipitation field esti-
mates come from the Polish POLRAD weather radar net-
work, operated by IMGW. It consists of eight Doppler radars
manufactured by LEONARDO Germany (Fig. 2). They are

currently being replaced by new models with dual-polarised
radar beams, and two new radars are being installed. Three-
dimensional raw data, so-called volumes (raw data), and two-
dimensional products are generated by the Rainbow 5 system
every 10 min (a shift to 5 min measurement frequency is cur-
rently underway), with 0.5 km spatial resolution and a range
of 250 km. For further details on the POLRAD network, see
Ośródka and Szturc (2022).

The RADVOL-QC system (Ośródka et al., 2014; Ośródka
and Szturc, 2022) is used to quality-control radar data of the
POLRAD network, which corrects the source 3D radar data
and generates dynamic maps of the data quality index. Merg-
ing data from individual radars into radar composite maps is
done by applying algorithms that take account of the spatial
distribution of the quality index in the radar data, which is as-
sessed dynamically for each time step (Jurczyk et al., 2020a).
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Figure 2. Computational domain of Poland (900 km× 800 km)
with 250 km radar coverage of the weather radar network in Poland
in 2022 (when the work presented here was carried out).

2.4 Precipitation from meteorological satellites

Satellite precipitation is generated by an algorithm developed
at IMGW based on products provided by the EUMETSAT
NWC SAF programme (Tapiador et al., 2019). The algo-
rithm working within the RainGRS system is based on sev-
eral NWC SAF products that depict the spatial distribution
of clouds and the intensity of precipitation, including con-
vective precipitation. A detailed description of the algorithm
was presented by Jurczyk et al. (2020b).

Quality control of satellite precipitation is also carried out
by the RainGRS system, taking into account primarily which
NWC SAF products are available at a given time. The qual-
ity of satellite precipitation, which is quantified by the quality
index, is significantly lower at nighttime, when visible range-
based products analysing the physical properties of hydrom-
eteors are not available.

3 RainGRS system

3.1 Merging of precipitation data into a multi-source
precipitation field

At IMGW, multi-source estimation of the precipitation field
is carried out operationally by the RainGRS system. A de-
tailed description of this system, which combines rain gauge,
radar and satellite precipitation data summarised in Table 1,
was presented by Jurczyk et al. (2020b). This combination al-
gorithm takes into account the quality information of the in-
dividual input data, attributed to them when performing their
quality control.

In operational work, the 10 min computational step of gen-
erating estimates of the precipitation field is enforced by the
resolution of the radar data, which is the source of the most
important high-resolution information on the spatial distribu-
tion of the precipitation field. When the radars of the POL-
RAD network are replaced (process is ongoing from 2022
to 2023), all included radars will operate with a 5 min time
step. This will enable the temporal resolution of the multi-
source precipitation estimates generated by RainGRS to be
increased as well.

The algorithm for combining rainfall data from different
sources is based on a conditional merging that attempts to
enhance the strengths of the individual inputs and reduce
the impact of their weaknesses. It is commonly assumed that
radar data comprise the best representation of the spatial dis-
tribution of the precipitation field, while a network of rain
gauges effectively reduces the bias of this estimation. Satel-
lite rainfall, in contrast, plays a mainly complementary role
in the absence of other data.

First, the rain gauge values are interpolated at radar pixel
resolution, employing the ordinary kriging method to obtain
an unbiased estimate of precipitation. The radar values at
rain gauge locations and the same method of interpolation
are used to get the interpolated radar field. Subsequently, the
deviation between the measured and interpolated radar value
(R−Rint) is computed and added to the rain gauge inter-
polated value at each pixel of the domain, according to the
following formula:

RG =Gint+ (R−Rint) , (1)

where Rint is the radar precipitation interpolated from data at
rain gauge locations. A satellite field SG is obtained from an
analogical formula.

It can be noted that the accuracy of the computed estimate
depends on the distance to the nearest available rain gauge,
and the radar precipitation field is preferable in the case of a
long distance. Therefore, the resulting precipitation field RG
is recombined with the radar precipitation field, applying the
weighted scheme, which includes the quality of individual
precipitation fields, to obtain a combined GR field:

GR=
RG ·QIG+R ·QIR · (1−QIG)

QIG+QIR · (1−QIG)
, (2)

where QIG and QIR are the quality indices for gauge and
radar, respectively. The quality index, QI, is the dimension-
less quantity ranging from 0 (for the poorest quality) to 1 (for
the best data).

A combined gauge–satellite field GS is obtained analogi-
cally to the above procedure, where the satellite data S and
relevant quality field QIS are taken.

The final quantitative precipitation estimate (GRS) is a
combination of gauge–radar and gauge–satellite fields com-
puted by means of the following weighted formula:

GRS=
GR ·QId+GS · (1−QId) ·QIS

QId +QIS · (1−QId)
, (3)
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Figure 3. The algorithm for determining quality-controlled daily, monthly and other precipitation accumulations.

where QId is a field of radar data quality as a function of the
distance d to the nearest radar site.

3.2 Generation of daily accumulations

The basic 10 min precipitation accumulations are aggregated
into different time intervals (e.g. 1 h, several hours, daily,
or longer accumulations) depending on current needs. Due
to gaps in data that occur in operational work, sometimes
these accumulations may not be complete. In order to ensure
the completeness of the accumulations, the gaps are comple-
mented by temporal interpolation of the data from time steps
directly before and after the gap. Such averaging from neigh-
bouring measurements is carried out if this interval is not too
long, and in the opposite case, data are set to have no data
value. For example, when generating hourly accumulation,
at most two consecutive 10 min measurements are allowed
to be missing, but no more than three terms may be missing
in 1 h.

4 Generation of daily and monthly precipitation
reanalyses (RainGRS Clim)

4.1 Climatological reanalyses versus operational
estimates

Reanalysis of the precipitation fields is carried out using
daily accumulations. This provides the following benefits in
terms of the reliability of the generated estimates:

1. Complementation with data that were missing opera-
tionally due to their late arrival in the system. For re-
analyses, a time regime is not as strict as in an oper-
ational work, so data that arrived too late can be in-
cluded. In the operational RainGRS, more than 90 % of
the rain gauge data generally arrive within 6 min, so the
remaining data can be involved in reanalyses. When it
comes to radar data, delays mainly affect data from for-
eign radars.

2. The use of measurement techniques that are available
too late to be used operationally or that take measure-
ments with a time step longer than 10 min as standard.
In the proposed algorithm for performing reanalyses,
in addition to using daily precipitation accumulations
provided by those measurement techniques from which
data are operationally available, data from manual rain
gauges can also be used. These measurements are taken
only once a day and are available after about 2 months –
for this reason they are not used in the operational ver-
sion of RainGRS, but due to their high reliability, these
data are very important, even crucial.

3. Greater effectiveness of quality control and data merg-
ing algorithms when applied to accumulations longer
than 10 min, e.g. daily. Longer precipitation accumula-
tions are more consistent, as they are much less affected
by temporal inconsistencies between different measure-
ment techniques (this is especially the case with radar
measurements, which in practice are instantaneous) and
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Figure 4. Fields of daily precipitation accumulations, before and after reanalysis: (a) GRSreal-time and (b) GRSreanalysis. Fragment of
Poland’s computational domain (325 km× 425 km), 11 December 2022.

are moreover less sensitive to errors of a random nature,
which become more averaged over a longer time inter-
val. Thus, the algorithms for both quality control and
multi-source combination perform more effectively.

At IMGW, combined daily accumulations have been gen-
erated since 2021 by the algorithm described in this paper.
The resulting daily precipitation estimates can already be di-
rectly used to generate longer precipitation accumulations,
e.g. monthly, seasonal, annual or even multi-year. In view of
the above possibilities, which create new areas of application
for multi-source precipitation fields, e.g. in climatology, the
version of RainGRS that generates reanalyses of daily pre-
cipitation accumulation is referred to as RainGRS Clim.

4.2 Algorithm for the estimation of climatological
multi-source precipitation fields

The algorithm presented in this section for calculating
quality-controlled daily and monthly rainfall totals follows
the following scheme (Fig. 3):

1. Daily totals are calculated from 10 min rain gauge data.
In order to ensure the completeness of the 10 min data,
missing rain gauge data are completed with spatially in-
terpolated values from the data that are available. The
ordinary kriging method is used to interpolate the data.

2. The daily point accumulations from the rain gauges are
spatially interpolated to obtain precipitation fields.

3. A human expert check of the daily rain gauge fields
is carried out, during which erroneous values from in-
dividual rain gauges are removed. This check on the
daily values enables the detection of errors that were

not detected in the 10 min accumulations with automatic
quality control (QC) algorithms. The daily accumula-
tions from the rain gauges are then spatially interpolated
again (as in point 2).

4. Daily accumulations of radar and satellite precipitation
fields are calculated, also supplemented with late data.

5. The daily radar precipitation fields are corrected by re-
moving disturbances occurring at the locations of some
radars, as this correction only works effectively on
longer accumulations.

6. Estimates of daily accumulations GRSreanalysis are cal-
culated by the RainGRS system using the algorithm
described in Sect. 3.1, which uses daily accumula-
tions of individual precipitation fields as input data.
This approach minimises errors associated with tem-
poral inconsistencies in the data (Villalobos-Herrera et
al., 2022).

7. An adjustment of daily accumulations calculated by
the RainGRS to observations from manual rain gauges,
which are considered to give the most reliable point esti-
mates of rainfall, is performed. The adjustment factor is
determined separately for each manual rain gauge loca-
tion and then spatially interpolated using the inverse dis-
tance weighting method to distribute it spatially (Wang
et al., 2020). This adjustment results in daily accumula-
tions GRSreanal.+adj. of multi-source rainfall fields after
reanalysis and adjustment.

8. The long-term accumulations of the combined precipi-
tation fields (e.g. monthly) can be calculated from the
daily accumulations prepared in the above manner.
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Figure 5. Values of monthly characteristics: (a) bias, (b) RRSE, (c) RMSE and (d) CC, for precipitation estimates GRSreal−time,
GRSreanalysis, and GRSreanal.+adj. for consecutive months, using point data from manual rain gauges as reference. Data for 2021 and 2022.

Figure 4 shows an example of daily rainfall accumulations
obtained operationally and after reanalysis. The differences
between the two fields are generally not large, but locally
they can be quite significant – a fragment from the compu-
tational domain is selected to highlight them. Larger differ-
ences between them are apparent in cases where some rain
gauge data have been removed as a result of manual QC (dur-
ing which they were found to be clearly erroneous) and this
was not recognised by operational control. It is likely that
in the 10 min accumulations, the measurement errors were
not noticeable enough to consider these values completely
erroneous. The removal of each such value also affects the
values in a certain vicinity of the rain gauge’s location due to
changes in the field of interpolated gauges, relevant QI field
and consequently RainGRS field. In addition, some of the
differences between the two fields are due to the varying per-
formance of the data combination algorithm (Sect. 3.1) ap-
plied to daily accumulations when compared to 10 min ones.

5 Verification

5.1 Methodology of the verification

In order to verify any precipitation field estimate, a precipi-
tation field reference that can be considered “ground truth” is

needed. Lysimeters are regarded as one of the most accurate
point precipitation measurement techniques, but Hellmann-
type manual rain gauges have similar reliability (Hoffmann
et al., 2016). IMGW does not have at its disposal a network of
lysimeters; however, it does have a relatively dense network
of manual Hellmann-type rain gauges. Therefore these were
considered to provide the most accurate technique of point
measurement of precipitation available in IMGW. Thus, the
results obtained in the present study were verified on them.

However, it should be borne in mind that the data from the
manual rain gauges are not independent, as they have previ-
ously been used for adjustment of the RainGRS Clim data.
Thus, the basic quantity verified in this section is not the fi-
nal precipitation estimates produced after adjustment to the
manual rain gauge data but the estimates after quality control
and reanalysis, i.e. GRSreanalysis. However, the verification of
the final reanalyses GRSreanal.+adj. also provides interesting
information, though one should be careful especially with
criteria directly related to the estimated values, such as bias
or RMSE, rather than, for example, their correlation with the
reference field.

The period from January 2021 to December 2022 was
analysed. For each of these 24 months, the statistics of the
monthly precipitation estimates – bias, RRSE, RMSE and
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Table 2. Values of quality metrics for merged daily precipitation fields: before reanalysis
(
GRSreal−time

)
, after reanalysis

(
GRSreanalysis

)
,

and after reanalysis and adjustment
(
GRSreanal.+adj.

)
, using point data from manual rain gauges as reference. Months: (a) January 2022 and

(b) August 2022.

(a) January 2022

Metric Bias (mm) RMSE (mm) RRSE (–) CC (–)

GRSreal−time −23.72 29.04 1.32 0.66
GRSreanalysis −19.83 24.63 1.12 0.76
GRSreanal.+adj. −7.06 11.06 0.50 0.92

(b) August 2022

Metric Bias (mm) RMSE (mm) RRSE (–) CC (–)

GRSreal−time −8.04 19.18 0.40 0.93
GRSreanalysis −9.35 18.60 0.38 0.95
GRSreanal.+adj. −0.03 7.77 0.16 0.99

CC – were calculated, taking the accumulations from the
manual rain gauges as reference:

– statistical bias,

bias=
1
n

∑n

i=1
(Fi −Oi) ; (4)

– root mean square error,

RMSE=

√
1
n

∑n

i=1
(Fi −Oi)

2
; (5)

– root relative square error,

RRSE=

√∑n
i=1(Fi −Oi)

2√∑n
i=1
(
Oi −O

)2 ; (6)

– Pearson correlation coefficient,

CC=

∑n
i=1

(
Fi −F

)(
Oi −O

)√∑n
i=1
(
Oi −O

)2∑n
i=1
(
Fi −F

)2 . (7)

In the above, Fi is the assessed value, Oi is the reference
value (from manual rain gauges), i is the pixel number, n is
the number of pixels, and F and O are the mean values of Fi

and Oi .

5.2 Monthly statistics

Figure 5 shows how the values of the four statistics, bias,
RRSE, RMSE and CC, change in the following months,
i.e. depending on the seasonal precipitation characteristics.

The most evident phenomenon visible in the bias graph
is large underestimation of monthly precipitation accumu-
lations, especially in winter months (December–February),

that can reach up to 20 mm (Fig. 5a), which in Poland means
several dozen percent of monthly accumulations. This is a re-
sult of the fact that the precipitation measurements from both
rain gauges and radars are underestimated in IMGW due to
the use of specific types of measuring devices, as mentioned
in Sect. 2.2 and 2.3. Additionally, in winter the reason for
these errors is the difficulty in radar measurements that oc-
curs during snowfall from lower clouds compared to in other
seasons and causes most of this precipitation to become in-
visible to radar as a result of overshooting the precipitation
by the radar beam.

Reanalysis and quality control applied to daily accumu-
lations lead to a reduction in bias by a few millimetres per
month, mainly in the winter months. This is mostly due to
the clearly better performance of the algorithm for the com-
bination of rain gauge and radar data, which copes better with
low precipitation for longer accumulations. After adjustment
to observations from manual rain gauges, it is possible to deal
with the problem of underestimation of the precipitation field
– the bias is then practically eliminated and is visible only to
a small extent, mainly in winter. But even then, it is reduced
several times, to approximately −7 mm per month (Fig. 5a).
In warmer seasons the observed bias values are relatively
small, though August 2021 is a clear outlier. Such large er-
rors in this month, visible not only in the bias but also in the
RMSE, are due to the fact that this month was characterised
by extremely high precipitation: the monthly total for a large
part of southern Poland was over 300 mm, while in this re-
gion the multi-year average precipitation in August is about
100 mm. High precipitation accumulations are automatically
associated with an increase in the values of statistics of an ab-
solute nature, so they are not visible in the values of relative
statistics such as RRSE and CC.

The RRSE annual cycle (Fig. 5b) also shows the largest es-
timation errors in winter. The error is rather high in winter, at
about 1.3–1.4 for GRSreal−time, and the reanalysis improved
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Figure 6. Plots of the dependence of monthly precipitation estimate values (from left: GRSreal−time, GRSreanalysis and GRSreanal.+adj.) on
values measured with manual rain gauges, along with trend lines. Months: (a) January 2022 and (b) August 2022. The abbreviation “accums”
denotes accumulations.

Figure 7. Fields of monthly precipitation accumulations: (a) GRSreal−time, (b) GRSreanalysis and (c) GRSreanal.+adj.. Domain of Poland,
April 2021.

the reliability of the precipitation estimate, resulting in a de-
crease in the RRSE to a value of about 1.1–1.2. For the other
months, the error is lower, at about 0.5 for GRSreal−time, and
the reanalysis improved the reliability of the estimate to a
lesser extent, as the RRSE decreased by about 0.1.

High values of RMSE (Fig. 5c) are observed in win-
ter, when they reach 27–29 mm for GRSreal−time, but unlike
RRSE, they also occur in the summer months, which is re-
lated to the frequent occurrence of intense convective precip-

itation during this season. They do not induce a similar in-
crease in RRSE values because this statistic is relative as the
result of dividing the RMSE by the standard deviation from
the reference value (Eq. 6). Reanalysis reduces RMSE values
in winter by about 5 mm per month, slightly less in the other
seasons, and adjustment to manual rain gauges reduces them
to about 5–10 mm per month independently of the season.

The correlation coefficient CC (Fig. 5d) is more sensitive
to the existence of relationship between evaluated and ref-
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erence data than the other statistics, which are based on the
comparison of estimated and reference values. The CC val-
ues also indicate the lowest reliability of the precipitation es-
timates in winter, when the coefficient equals about 0.65 and
improves to about 0.75 after reanalysis. The reason for these
low values can also be explained by the low variability in the
precipitation accumulations over this period, which results in
a low correlation with the manual rain gauge measurements.
In other seasons, especially in the summer months, the CC
values are much higher, as they reach approximately 0.8–0.9
for both operational and reanalysed estimates. The adjust-
ment to the manual rain gauges increases the correlations to
approximately 0.9–0.95.

In March 2022, there was a noticeable deviation from the
typical annual pattern described above for the CC coefficient.
This was due to the exceptionally dry period that occurred
at that time in the whole country, particularly in northern
Poland. Typically, monthly precipitation accumulation for
March is around 30–40 mm in Poland, but in 2022 it was
significantly lower, and in the northern part of the country it
was often even zero. In this case, the correlation coefficient
usually increases, so in this particular month, the correlation
value for vGRSreal−time was as high as 0.90, rising to 0.93
after reanalysis. Another unexpected value of the CC coeffi-
cient was observed in May 2022, when the correlation was
around 0.7, which was improved by reanalysis and adjust-
ment, after which the CC increased to around 0.95. The rea-
son for this effect was probably a Legionowo radar replace-
ment at that time because this radar covers a large part of the
domain where other radars do not reach.

In general, the reliability of monthly estimates of precip-
itation field accumulation is clearly dependent on the sea-
son. Two evident phenomena can be observed here: in win-
ter (November–February), high values of bias, RRSE and
RMSE are noticeable at the same time as low values of CC,
as indicated in the above analysis. In summer (July–August),
the situation is different, as convective thunderstorm precip-
itation is often observed during this time, so the intensity of
precipitation is higher, and monthly accumulations are much
higher, which is also reflected in the RMSE values, while the
correlation with the reference data (CC) is then significantly
higher.

Table 2 summarises statistics for two selected months
from 2022: January for winter and August for sum-
mer. The table shows the values of quality metrics for
the three multi-source precipitation fields: operationally
generated (GRSreal−time), after reanalysis

(
GRSreanalysis

)
and after adjustment of this reanalysed precipitation field(
GRSreanal.+adj.

)
, with manual rain gauge observations as a

reference. All statistics are worse for winter than for sum-
mer; however, reanalysis as well as adjustment worked much
more effectively in winter. Precipitation reanalysis, involving
merging individual rainfall fields for daily (instead of 10 min)
accumulations along with the associated more effective data
quality control, results in a clear improvement in all qual-

ity statistics in winter (January 2022), e.g. RMSE by almost
4.5 mm and CC by 0.1. In summer (August 2022), however,
this impact is much smaller and amounts to less than 0.6 mm
and 0.02, respectively, but bias slightly increased. The further
improvement, which results from adjustment to data from
manual rain gauges, is much more evident – in winter it is
more than 13.5 mm in RMSE and 0.16 in CC, and in summer
it is more than 11.8 mm and 0.04, respectively.

To conclude, for all the statistics used here, the im-
provement in the quality of monthly accumulation of es-
timated precipitation fields GRSreanalysis and GRSreanal.+adj.
relative to operational fields GRSreal−time is clearly visible.
The differences between the statistics of GRSreanal.+adj. and
GRSreal−time are much larger. This is mainly due to the fact
that, in the absence of any other possibility, the verification
was carried out using data from manual rain gauges as a ref-
erence, and here they are dependent data, as they are used
during the generation of the final GRSreanal.+adj. (see point 7
in the data-processing scheme in Sect. 4.2).

Figure 6 shows graphs of the relationship between the es-
timated fields of monthly accumulated RainGRS precipita-
tion calculated operationally (generated in real time), after
reanalysis and after adjustment of this reanalysed precipita-
tion field, and monthly accumulations observed by manual
rain gauges, for the same two months for which the values of
statistics are summarised in Table 2. The graphs show precip-
itation values at locations of manual rain gauges. The correla-
tion for the GRSreanalysis estimate compared to GRSreal−time
improved, although only slightly. This conformity, measured
by the distance between the trend line (red) and the 1 : 1 line
(dashed), clearly improved in winter but declined slightly in
summer. The conformity with manual rain gauges for the
GRSreanal.+adj. estimate is clearly greater than that for the
GRSreanalysis, but it should be borne in mind that the data
from manual rain gauges are not fully independent. Never-
theless, this comparison gives some information about the
effectiveness of the final step in generating precipitation field
estimates with the RainGRS Clim system.

6 Example of a climatological estimate of monthly
precipitation accumulation

In Fig. 7 we can see an example of estimates of monthly
precipitation accumulations for the domain of Poland,
900 km× 800 km (see Fig. 2). From the left there are esti-
mates: operational, after the reanalysis, and after reanalysis
and adjustment to manual rain gauge data. In general, values
of the estimated precipitation increased after the reanalysis
as a result of the more effective performance of the merg-
ing algorithm for longer accumulations. After the adjustment
to manual rain gauges, the further, much higher increase in
the precipitation values is because radar-based precipitation
estimates are underestimated in the case of Polish weather
radars. Moreover, it should be taken into account that rain
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gauges also underestimate rainfall because they are mostly
tipping-bucket devices (Segovia-Cardozo et al., 2021).

The area of underestimated precipitation in the centre of
Poland marked with “1” in Fig. 7 is the place where the dis-
tance to the closest radar site is longest – more than 200 km,
where the radar beam passes over part of the precipitation
(overshoots). Moreover, the telemetric rain gauge network
is rather sparse here. Adjustment to manual rain gauges has
made it possible to correct this underestimation.

The area denoted “2” in Fig. 7 indicates the region where
there are no radars, even from neighbouring countries. Re-
analysis partially improves it by complementing the lack of
data with satellite-based precipitation but not wholly effec-
tively due to the higher uncertainty in the satellite estimates.

7 Conclusions

The following general conclusions can be drawn about the
proposed methodology for the generation of long-term pre-
cipitation estimates by the RainGRS Clim system:

1. Based on an analysis of available precipitation data, it
was assumed that the most reliable precipitation mea-
surement technique is a network of manual rain gauges.
In particular, it was assumed that these measurements
are unbiased. Since their daily accumulations are avail-
able with a long delay due to their transfer and manual
quality control, they cannot be used in real time, but they
can be used effectively to perform adjustment of reanal-
yses (see Sect. 5.2 and 5.3).

2. The second major limitation of manual rain gauges is
that they only provide point observations. However, the
relatively high density of this measurement network in
Poland (Fig. 1) makes them very useful in the adjust-
ment of other precipitation field estimates.

3. With daily accumulations, which, due to the time step
of manual rain gauge measurements, are the basic ac-
cumulations in the algorithm for generating climatolog-
ical precipitation estimates described in Sect. 4.2, it be-
comes possible to perform much more effective quality
control, particularly in terms of removing various types
of artefacts in weather radar data.

4. Algorithms for merging rain gauge, weather radar and
satellite data perform much more effectively for daily
totals than for 10 min totals. This is mainly due to the
fact that longer accumulations of precipitation are more
consistent, as in these cases time inconsistencies be-
tween different measurement techniques play a much
smaller role. In addition, with longer accumulations,
errors of a random nature are more averaged out (see
Sect. 4.1).

5. The results presented in the paper show that after reanal-
ysis, estimates of the precipitation field are of higher re-
liability than operationally generated estimates. Adjust-
ment of the data after reanalysis to data from manual
rain gauges resulted in a further, much higher quality
improvement (Sect. 5.2 and 5.3). However, it should be
kept in mind that the final estimates are obtained using
data from manual rain gauges, so the results of the veri-
fication performed on these data, which in this case are
partially dependent, should be treated with caution.

6. Having estimates of precipitation accumulated over
longer time intervals in RainGRS Clim, such as monthly
intervals, creates the possibility of applying them to cli-
matological analyses. They provide valuable informa-
tion, especially when high spatial resolution of precipi-
tation data is important.
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