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Abstract. Various retrieval algorithms have been developed
for retrieving temperature and water vapor profiles from At-
mospheric Emitted Radiance Interferometer (AERI) obser-
vations. The physical retrieval algorithm, named AERI Op-
timal Estimation (AERIoe), outperforms other retrieval al-
gorithms in many aspects except the retrieval time, which is
significantly increased due to the complex radiative transfer
process. The calculation of the Jacobian matrix is the most
computationally intensive step of the physical retrieval al-
gorithm. Interestingly, an analysis of the change in AERI
observations’ information content with respect to Jacobians
revealed that the AERIoe algorithm’s performance presents
negligible dependence on these metrics. Thus, the Jacobian
matrix could remain unchanged when the variation in the at-
mospheric state is small in the retrieval process to reduce the
most time-consuming computation. On the basis of the above
findings, a fast physical—iterative retrieval algorithm was pro-
posed by adaptively recalculating Jacobians in keeping with
the changes in the atmospheric state. Experiments with syn-
thetic observations demonstrate that the proposed method ex-
periences an average reduction in retrieval time by an im-
pressive 59 % compared to the original AERIoe algorithm
while achieving maximum root-mean-square errors of less
than 0.95 K and 0.22 log(ppmv) for heights below 3 km for
the temperature and water vapor profile, respectively. Further
analyses revealed that the fast-retrieval algorithm reached an
acceptable convergence rate of 98.7 %, marginally lower than

AERIoe’s 99.9 % convergence rate for the 826 cases used in
this study.

1 Introduction

High-quality atmospheric profiles are required for many en-
deavors, including radiative transfer, cloud process research,
and assimilation into mesoscale models to improve forecasts
(Turner et al., 2000). The accuracy of the initial field pro-
vided by observation networks is becoming a key factor re-
stricting the skill of numerical weather prediction (NWP)
models (Romine et al., 2013; Li et al., 2016). The existing
observation networks are insufficient to meet the needs of
convective-scale numerical weather prediction systems, es-
pecially in the prediction of convection initiation convective
processes (Kain et al., 2013; Wagner et al., 2019; Geerts et
al., 2018). As the spatiotemporal resolution is too coarse, ra-
diosonde profiles cannot capture the atmospheric phenom-
ena in detail. Satellite-borne instruments are able to pro-
vide wider geographical coverage and higher horizontal res-
olution than ground-based balloon radiosonde observations.
However, satellite retrievals remain insufficient to resolve
the structure within the planetary boundary layer (PBL), as
the weighting functions of satellite-borne observations peak
above the PBL. A promising solution is ground-based ther-
mal infrared spectrometers that measure downwelling spec-
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tral infrared radiance, which show good skill at retrieving the
temperature and humidity profiles of the PBL.

The commonly used ground-based infrared hyperspec-
tral equipment mainly includes Fourier transform infrared
(FTIR) instruments of the Karlsruhe Institute of Technol-
ogy deployed in the Detection of Atmospheric Composition
Change (NDACC) (De Maziere et al., 2018) and the At-
mospheric Emitted Radiance Interferometer (AERI) devel-
oped by the University of Wisconsin Space Science and En-
gineering Center (UW-SSEC) deployed in the Atmospheric
Radiation Measurement (ARM) program (Knuteson et al.,
2004). The FTIR instrument observes near-infrared and mid-
infrared high-resolution solar spectra, which are mainly used
to retrieve water vapor (Schneider et al., 2006b, a; Schnei-
der and Hase, 2009), water isotopologs (Schneider et al.,
2006b; Barthlott et al., 2017), and various trace gas (Gar-
diner et al., 2008; Kiel et al., 2016; Zhou et al., 2018; Yin
et al., 2020, 2021a, b; Viatte et al., 2014) profiles or to-
tal columns. The spectral region of AERI covers the range
of 520-3000cm™~! containing a 15 um absorption band of
CO; commonly used for the retrieval of temperature pro-
files, which makes it more advantageous in detecting ther-
modynamic profiles (Rowe et al., 2006). Specific retrieval
algorithms, capable of being divided into statistical retrieval
algorithms and physical retrieval algorithms as per different
principles, are required to extract large amounts of informa-
tion on the retrieved atmospheric profiles from infrared hy-
perspectral radiance data. Physical retrieval algorithms uti-
lize the radiative transfer simulation and the iterative op-
timization strategy, which exhibit higher retrieval accuracy
compared to the statistical retrieval algorithms (Yang and
Min, 2018; Cimini et al., 2010). Two physical retrieval al-
gorithms, named AERI Profiles of Water Vapor and Tem-
pearture (AERIprof) (Smith et al., 1999; Feltz et al., 1998)
and AERI Optimal Estimation (AERIoe) (Turner and Léhn-
ert, 2014; Turner and Blumberg, 2019; Turner and Lohnert,
2021), have been successively adopted in AERI equipment
to derive thermodynamic profiles. Based on the “onion peel-
ing” technique, AERIprof adjusts the first-guess profile from
bottom to top with the iterative algorithm to minimize the dif-
ference between the calculated and observed radiation. Given
that AERIprof only needs to calculate the diagonal elements
in the Jacobian matrix, its retrieval speed is faster than that
of the optimal-estimation method (Rodgers, 2000).

However, the AERIprof algorithm has several significant
drawbacks, such as its high dependence on the first-guess
profile and an inability to provide uncertainty estimates for
retrieval results (Turner and Lohnert, 2014; Blumberg et al.,
2017,2015). The limitations of AERIprof could be overcome
by the AERIoe optimal-estimation retrieval algorithm, which
was designed as an alternative to the previous physical algo-
rithm. One of the important improvements remains to reduce
the dependence on the first-guess profile by introducing reg-
ularization parameters into the AERIoe algorithm to balance
the observation and the prior information. To achieve good
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stability and accuracy, the regularization parameters in the
AERIoe algorithm are defined as a monotonic sequence that
contains at least seven values, leading to a minimum of seven
iterations for convergence because the regularization param-
eters are iteration-dependent (Bakushinskii, 1992; Xu et al.,
2016). Additionally, the Jacobian matrix is recalculated for
each iteration due to the dependence on the current state vec-
tor, which significantly increases the amount of calculation
and results in a high retrieval time.

The aim of this study is to accelerate the retrieval speed
of AERIoe. In Sect. 3, an investigation into the informa-
tion content of AERI observations concerning Jacobians re-
vealed that the performance of the AERIoe algorithm ex-
hibits marginal dependence on these matrices. Motivated by
this finding, a fast physical—iterative retrieval method, hence-
forth called Fast AERIoe, is proposed to address the limita-
tion of the long retrieval time of AERIoe by adaptively re-
calculating Jacobians without manual intervention. By this
means, the retrieval speed of AERIoe can be improved due to
the reduction in the computation amount. In this study, only
temperature and water vapor profiles are retrieved from Fast
AERIoe, and cases of cloudy situations will be addressed in
future work. Finally, the retrieval time, convergence charac-
teristics, and accuracy of the new algorithm are presented in
Sect. 4.

2 Data

The data used in the study are from the ARM program sup-
ported by the U.S. Department of Energy, which aims to
quantitatively study the atmospheric radiation budget and de-
velop and verify the parameterization scheme of the numer-
ical model (Revercomb et al., 2003; Ellingson et al., 2016).
This program mainly focuses on the long-term observation
of atmospheric states and radiative fluxes, providing infor-
mation to researchers around the world to inform and vali-
date predictive models of climate and weather. We use data
collected at the Southern Great Plains (SGP) site, which
is located at 36.61° N and 149.88° W near Lamont, Okla-
homa, USA (Sisterson et al., 2016). These data mainly in-
clude ground-based infrared spectra obtained by AERI and
radiosonde profiles, with the former used to retrieve the tem-
perature and water vapor profiles and the latter mainly used
to evaluate the accuracy of the retrieval results.

2.1 AERI

AERI can continuously receive downwelling atmospheric in-
frared radiance from 3.3 to 19.2 um (520-3000 cm™ 1) with a
spectral resolution better than 1 cm™!, among which the in-
frared radiation of the 520-1800cm™! band is obtained by
the mercury cadmium telluride (HgCdTe) detector, and the
1800-3020 cm™! band is obtained by the indium antimonide
(InSb) detector. The AERI front-end optics include a scene
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Table 1. Spectral regions used for retrieving temperature and water
vapor profiles in the AERIoe algorithm.

Temperature Water vapor
612-618cm~!  538-588cm™!
624-660 cm ™!

674-713 cm™!

mirror and two calibrated blackbodies, one of which changes
with the temperature of the surrounding environment, while
the other is maintained at a fixed temperature (60 °C). AERI
achieved a calibration accuracy of better than 1 % by viewing
two high-precision blackbodies and a nonlinearity correction
for the detectors (Knuteson et al., 2004). The temporal res-
olution of the AERI standard remains approximately 8 min,
including a 3 min sky-dwell period and the subsequent ob-
servation of the two blackbodies.

AERI has many observation channels, including not only
temperature and humidity profile information, but also trace
gas information such as ozone, methane, and random error.
To avoid contributions to the downwelling radiance by other
gases, appropriate channels that are primarily sensitive to the
retrieved profiles must be selected. The spectral regions used
in the study are consistent with AERIoe v1.2, which used
only the 538—588 cm™! band for water vapor profiling to ex-
clude scattering effects from clouds (Turner and Blumberg,
2019). The specific wavenumbers used to perform the re-
trieval are shown in Table 1, among which the spectral region
used for temperature retrieval includes 167 channels and the
water vapor includes 104 channels.

2.2 Radiosonde data

Radiosondes have been used for decades to provide humidity,
temperature, and wind profiles throughout the troposphere
and are considered to be the most accurate means of detect-
ing the vertical structure of the atmosphere. They are often
used to evaluate the accuracy of other ground-based profil-
ers. Located 150 m to the north of the AERI equipment, the
closer radiosonde release point can ensure the comparability
of radiosonde profiles and AERI retrieval results (Wakefield
et al., 2021). The radiosonde data at the SGP site have been
obtained by Vaisala RS92 since 2002 (Turner et al., 2016), in-
cluding temperature, humidity, pressure, wind direction, and
wind speed. It is regularly launched four times a day at 05:30,
11:30, 17:30, and 23:30 UTC.

We collected radiosonde profiles and AERI radiation
data from 2012, screening 826 groups of qualified data
samples through quality control, spatiotemporal matching,
and clear-sky recognition. A synthetic dataset of simulated
AERI spectra corresponding to 826 sets of radiosonde pro-
files was produced using the line-by-line radiative transfer
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model (LBLRTM), with parameter settings consistent with
Sect. 3.1.

3 Methodology
3.1 Retrieval configuration

The AERIoe algorithm, based upon the optimal-estimation
method, iteratively searches for the atmospheric state that
most conforms to the observation and prior constraints.

—1
Xy =Xo+ (KIS;'K, +87") KIS]!
x (Y" = F (Xp) + K, (X, — Xy)) (1)

Here, X is the profile of the atmospheric state to be retrieved,
X, is the prior profile of the atmosphere, S, is the a priori co-
variance matrix, Y is the observed radiance vector, F(X)
is the computed radiance for X, S; is the observation error
covariance matrix, and n denotes the iteration number. The
superscripts T and —1 indicate the matrix transpose and in-
verse, respectively.

To improve the stability of the retrieval algorithm, the reg-
ularization parameter y was introduced in Eq. (1), which is
set as fixed values from large to small ([1000, 300, 100, 30,
10, 3, 10, 1]). As y decreases with iterations, more observa-
tion information is introduced to improve the retrieval accu-
racy. Iterations are continued until y decreases to 1 and the
following convergence criterion is satisfied.

(Xn _X11+1)S_1 (Xn - Xn-H) <

convergence_index = N <1 (2

N represents the dimension of the retrieved atmospheric state
vector.

Note that K depends on X used for estimating the Jaco-
bian, which means that K must be recomputed for every it-
eration step. The updating of the Jacobians in the above re-
trieval process requires the calculation of the optical thick-
ness or radiance (intensity) with respect to the elements of
X at each height, which might be computationally expen-
sive depending on the lengths of X and Y (Maahn et al.,
2020). Owing to the constraints of y, the decrease in the
difference between the simulated and observed radiation is
not very much in the adjustment of individual iterations to
the retrieval profile. At this time, the change in the Jacobian
calculated as per the iteration profile is negligible. Backed
by the above analysis, a fast iterative algorithm called Fast
AERIoe is proposed on the basis of the AERIoe algorithm.
The flowchart of Fast AERIoe is shown in Fig. 1. Most of
the configurations are consistent with AERIoe described by
Turner and Lohnert (2014), except for some modifications
highlighted as follows.

a. Atmospheric configurations. The height grid of X is
consistent with AERIoe, but the maximum retrieval

Atmos. Meas. Tech., 16, 4101-4114, 2023



4104

W. Huang et al.: Fast retrieval for AERI

dataset

v
AERI observations;

[ prior profile ] [apriori covariance matrix]

iterative
observations

Forward Model

Jacobians

’ N

retrieved profiles

surface meteorological data

regularization parameters
1000,300,100,30.......

OEM

Figure 1. Flowchart of the Fast AERIoe retrieval process. Note that the red line indicates the Jacobian updating process. The iterative
profiles and observations are defined as temperature and water vapor profiles at iteration n and computed radiance for X, respectively. The

monitoring index is used to derive the variations in X,.

height is limited to 3 km. This is done because the vari-
ations in K above 3 km are negligible because most of
the information in the AERI spectrum lies in the lowest
2 km of the atmosphere for temperature and water vapor
profiles (Turner and Lohnert, 2014). The cloud proper-
ties were excluded from the state vector X, which is
beyond the scope of this study. The corresponding prior
profile X, and the prior covariance matrices represented
by S, are modified to be consistent with X.

b. Observational vector Y. Spectral regions that are sensi-
tive to cloud properties were removed from the observa-
tional vector Y to be consistent with the state vector X.
Furthermore, additional observations, including surface
temperature and water vapor, were incorporated into the
observation vector; details are described by Turner and
Blumberg (2019).

c. Jacobian matrix K. K is derived from LBLRTM, which
is the same as AERIoe except for the version (12.8 in-
stead of 12.1). Another modification is that K is not
recomputed to improve the retrieval speed of the algo-
rithm when the variations in the iterative profile X, are
small.

3.2 Adaptive recalculation of the Jacobian

The method to reduce the calculation of K is the key to
speeding up the AERIoe algorithm. The Jacobians are de-
pendent on the atmospheric state, which means that K must
be recalculated for every iteration step. The question arises
as to under what circumstances K does not need to be recal-
culated. Therefore, the dependence of the retrieval capabil-
ity on Jacobians must be analyzed, and indicators that reflect
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the changes in Jacobians should be determined to determine
whether K is recalculated or not.

3.2.1 Quantification of algorithm retrieval capability

The retrieval accuracy of the atmospheric profile depends
on the amount of atmospheric information in the hyperspec-
tral data. Shannon information content (SIC) and degrees
of freedom for signal (DFS), as important indicators to de-
scribe the effective information contained in hyperspectral
data (Rodgers, 1998), can quantitatively describe the detec-
tor’s retrieval ability for a specific atmospheric profile. SIC
represents the reduction in uncertainty in the retrieved pro-
files contributed by the observation, with the calculation for-
mula shown in Eq. (3). DFS provides the number of indepen-
dent pieces of information contained in the measured radia-
tion, with the calculation formula shown in Eq. (4).

SIC = %m det (S—lsa) 3)

DFS = Trace (B—lKIs;lK,,> &)

Here, S is the posterior error covariance matrix, also known
as the analysis error covariance matrix. Its diagonal element
is the standard deviation of the retrieval error, with the calcu-
lation formula S as follows:

S:B—l(KTs;1K+y2s;‘)B—l, (5)
of which
B=(yS;' +KIS;'K,). ©6)
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3.2.2 Analysis of the dependence of AERIoe on
Jacobians

It can be seen from Egs. (3) and (4) that SIC and DFS are de-
termined by Se, S,, K, and y. However, S, and S, remain un-
changed during retrieval, which makes SIC and DFS change
with iteration due to variations in y and K. As y drops to
1 at the final iteration, the values of SIC and DFS are only
dependent on K. Owing to the difficulty in quantifying the
change in the two-dimensional Jacobian caused by the itera-
tion profiles, a monitoring index, henceforth called K_Index,
is designed and used to characterize the change in the pro-
files at various iterations. The calculation of K_Index comes
from the convergence criterion convergence_index, which
contains not only the difference between the iteration pro-
files, but also the posterior dominated by the Jacobian. The
introduced K_Index should reflect the changes in the tem-
perature and humidity profiles, which means that the influ-
ence of the Jacobian should be excluded. Then, the conver-
gence_index was degenerated into the K_Index as follows.

X — XnsDT (X0 — Xnt1)
N

K_Index = @)
The values of K_Index in Fig. 2, which cover most of the
K_Index during the AERIoe retrieval process (ranging from
0 to 260; see Fig. 3), were obtained by multiplying the prior
profile by different scale factors. The atmosphere-dependent
K values were computed by the LBLRTM with the prior pro-
files above, and SIC and DFS were calculated using Eqs. (3)
and (4), respectively, with different Jacobians. Both SIC and
DFS change slowly with K_Index as shown in Fig. 2, with
the variation of SIC within 13 % (from 13.9 to 16.1) and
that of DFS within 4 % (from 3.7 to 3.9) for temperature and
13 % (from 1.4 to 1.7) for water vapor, which demonstrates
that SIC and DFS remain almost unchanged on the condition
that the value of K_Index is small. This provides an effec-
tive means of improving the retrieval speed of AERIoe by
recalculating K selectively when X is not changing much or
K_Index is small. This could be achieved by comparing the
value of K_Index with its threshold at each iteration to deter-
mine whether K is recalculated or not.

3.2.3 Determination of the K_Index threshold

The selection of the threshold for K_Index is very impor-
tant for the Fast AERIoe algorithm. If the threshold remains
too large, too many Jacobians will stop updating, resulting
in a decline in retrieval accuracy or even nonconvergence of
the retrieval process; when the threshold value remains too
small, most Jacobians need to be recalculated, which cannot
effectively shorten the retrieval time.

Figure 3 shows the histogram of the K_Index distribution
for each iteration in the retrieval process, with the K_Index
values at each iteration calculated using the clear-sky data for
2012. Since the climatological mean profile was used as the
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Figure 2. (a) The change in SIC as a function of K_Index. (b) The
change in DFS as a function of K_Index for temperature (unfilled
circles) and water vapor (open squares).
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Figure 3. Box-and-whisker plots for K_Index values at different
iterations in the retrieval process of AERIoe. (a) K_Index values
calculated using 826 samples at iterations 1-7. Panels (b) and (c)
are the same as panel (a) but for iterations 2—7 and iterations 3—
7, respectively. The boxes show upper-quartile, median (the red
line through the middle of the box), and lower-quartile values for
K_Index. The whiskers extend to 1.5 times the interquartile range
(IQR). Any outliers above or below the whiskers are plotted as red
symbols “+”.

first guess, which has a large deviation from the real atmo-
spheric state, a larger value of K_Index was demonstrated in
the first step of the retrieval. The K_Index value decreases
significantly from the second iteration (see Fig. 3a), indicat-
ing that the adjustment of the iterative profile remains very
small and that the retrieval process tends to be stable rela-
tive to the first iteration. As the retrieval proceeds, the itera-
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tion profile gradually approaches the truth, and the K_Index
box gradually shortens to below 0.5 (see Fig. 3b). Using this
value as the threshold for K_Index, most of the Jacobian af-
ter the second iteration does not need to be recalculated, and
the retrieval time could be effectively reduced. However, the
K_Index in iteration 7 shows larger outliers, indicating that
the instability of the retrieval algorithm increases when the
y factor decreases to 1. To reduce the impact of the Jacobian
on the convergence of the algorithm, the threshold for the
K_Index after iteration 6 is set to 0.1 according to Fig. 3c,
of which the K_Index box at iteration 7 is within 0.1. It
should be noted that the threshold of K_Index used in the
Fast AERIoe algorithm is dependent on the datasets used in
the retrieval. They are presented “as is” and are not intended
to be directly applied by the reader. We encourage readers
to develop their own indicator to reduce the recalculation of
Jacobians based on the atmospheric profiles they intend to
retrieve.

4 Results and discussions

The simulated AERI radiation is used for retrieval to bet-
ter analyze the performance of Fast AERIoe and to elimi-
nate the interference of other factors. An advantage of us-
ing synthetic observations is that the true atmospheric state
is known, which can be used to evaluate the retrieval accu-
racy. Second, the errors caused by parameters in the forward
model, such as the deviation of trace gas content, the strength
and temperature dependence of the water vapor continuum
absorption, and the half-widths of absorption lines, could be
eliminated (Maahn et al., 2020). Third, we can control the
noise level in the synthetic measurement.

4.1 Retrieval process

Examples of the Fast AERIoe retrieval using the simulated
spectra at various iterations are shown in Fig. 4. These pro-
files represent the typical performance of each retrieval con-
figuration at the SGP site. The entire retrieval process took
3.59 min with seven iterations, in which only Jacobians of the
first and second iterations were updated. The retrieved pro-
files converged quickly below 1 km, with little adjustment of
the temperature and humidity profiles following the first iter-
ation. For the upper atmosphere above 1.5 km, the tempera-
ture and humidity profiles have a relatively large adjustment
and gradually approach the radiosonde profile with the iter-
ations. This feature of the Fast AERIoe retrieval process is
very similar to AERIoe, which is determined by the informa-
tion content of the AERI spectra. The information content is
concentrated near the surface, which leads to a more rapid
convergence in the lowest portions of the profile. The infor-
mation content of the upper layer is lower, and as such it is
necessary to reduce the value of y to introduce more obser-
vation information so that the retrieved profiles are refined to
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approach the radiosonde profile as the iterations are contin-
ued.

One advantage of the optimal-estimation method remains
that the posterior error covariance matrix of the solution S
can be obtained to estimate the uncertainty of the retrieval
results of each sample. The temperature and water vapor pro-
files show a strong correlation for the correlation coefficient
matrix of S, (see Fig. 5a and c), especially the tempera-
ture profile, which has a high correlation coefficient above
0.6 between any two layers because of the relatively sta-
ble vertical gradient of the temperature profile. The nondi-
agonal elements below 1km in the correlation coefficient
matrix of the S results from Fast AERIoe show a much
lower correlation than those of S, (see Fig. 5b and d), which
means that the retrieved profiles in the lower atmosphere are
dominated by AERI observations. However, with increas-
ing height, the correlation of the area near the diagonal in-
creases significantly. Therefore, the retrieval algorithm will
rely more on the constraint of prior information at the up-
per layer of the PBL. The 1o uncertainty lines, which are
the square root of the diagonal of the covariance matrices
for the prior (blue-shaded area) and the posterior (black hor-
izontal line) in Fig. 4, demonstrate that the retrieved profile
has a much smaller uncertainty than the prior. Therefore, the
Fast AERIoe algorithm can effectively reduce the impact of
uncertainties in the first-guess profile on the retrieval results.
As the height increases, the black horizontal line segment be-
comes longer for either the temperature profile or the water
vapor profile, indicating that the uncertainty in the retrieved
profiles increases in the upper PBL.

4.2 Performance
4.2.1 Retrieval time

Both the AERIoe and Fast AERIoe algorithms were used to
retrieve 826 groups of simulated AERI radiation data at SGP
stations in 2012 to evaluate the retrieval performance of Fast
AERIoe. The codes for both of the retrieval algorithms are
written in the MATLAB language and run on a Lenovo Air-
cross 510P computer, of which the CPU is Intel Core 17-7700
and the operating system is Ubuntu 14.04. To analyze the
code timing of the retrieval algorithm, the code was divided
into the following sections: preparation, iteration 1, iteration
2, and iteration 3, etc., until the final iteration. The prepa-
ration section mainly consists of atmosphere construction,
observation vector construction, and precalculated variable
importation. The iteration sections include the recalculation
of K and F(X) and the inversion using Eq. (1). Note that
iteration 1 does not need to calculate K and F(X) because
the prior profile X is fixed (mean value of the atmosphere),
and the K and F(X) associated with it are precalculated.
The time consumed by each section was analyzed for both
AERIoe and Fast AERIoe, and the results for an arbitrarily
selected case are provided in Table 2. The recalculation of
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Figure 4. Retrieved (a) temperature and (b) water vapor profiles at various iterations from the simulated AERI observations, where the
simulated observations were computed from a radiosonde (shown in red curves) launched at the SGP site at 11:30 UTC on 20 April 2012.
The prior mean profile (blue) was used as the first guess, and the blue-shaded area illustrates the 1o uncertainties in the prior. The profiles at
iterations 1, 2, and 7 are shown in solid blue, yellow, purple, and black (with 1o error bars derived from S) lines, and the y values were set

to 1000, 300, 30, and 1, respectively, for the above iterations.
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Figure 5. The level-to-level correlation of the prior (a, ¢) and poste-
rior (b, d) for temperature (a, b) and water vapor (¢, d) at 11:30 UTC
on 20 April 2012.

F(X) and K consumed an immense amount of time in the
retrieval process of AERIoe, and the latter is the most time-
consuming section. Therefore, by reducing the recalculation
of K, the retrieval time of Fast AERIoe is greatly reduced
compared to AERIoe.

The average retrieval time of Fast AERIoe for the 826
cases used in the study is 3.7 min, which is more than 50 %
shorter than that of AERIoe, with an average retrieval time
of 9.0 min, which is beyond the temporal resolution (approx-
imately 8 min) of AERI observations. All of the AERIoe

https://doi.org/10.5194/amt-16-4101-2023

Table 2. List of time consumption (unit: s) by the AERIoe and Fast
AERIoe sections. The sections denoted with superscript “*” indi-
cate that K is not recalculated during the Fast AERIoe retrieval pro-
cess.

Sections AERIoe Fast
AERIoe

Preparation 0.3 0.2
Iteration 1 Inversion 0.3 0.2
Iteration 2 Recalculation of F(X) 17.1 16.7
Recalculation of K 68.8 70.3

Inversion 0.3 0.3

Iteration 3 Recalculation of F(X) 17.2 17.0
Recalculation of K 70.6 0.0

Inversion 0.2 0.2

Iteration 4 Recalculation of F(X) 17.7 16.4
Recalculation of K* 70.1 0.0

Inversion 0.3 0.2

Iteration 5 Recalculation of F(X) 17.0 17.4
Recalculation of K* 68.9 0.0

Inversion 0.2 0.3

Iteration 6 Recalculation of F(X) 16.1 15.1
Recalculation of K* 68.2 0.0

Inversion 0.2 0.2

Final iteration  Recalculation of F(X) 159 18.5
Recalculation of K* 68.1 0.0

Inversion 0.3 0.2

Atmos. Meas. Tech., 16, 4101-4114, 2023
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Table 3. The number of samples of different classes, which are clas-
sified according to K_diff.

Classification K_diff  Sample

numbers
Classl 1 8
Class2 2 15
Class3 3 60
Class4 4 193
Class5 5 471
Class6 6 73
Class7 7 1

gl -‘Totalidiffy ‘ ‘ ‘ ‘ ‘ 18

K diff

—e— Time_diff

6r 16

Iteration Steps

L

. . . . .
Classl Class2 Class3 Class4 Class5 Class6 Class7

Figure 6. The distribution of K_diff, Total_diff, and Time_diff with
different classes.

samples consumed more than 8 min, while only 10 cases ex-
ceeded the temporal resolution of AERI for the Fast AERIoe
algorithm. Note that the retrieval time is dependent on the
computing platform and the method used to compute Jaco-
bians and is not intended to be directly applied by the reader.

In addition to the recalculation of K, the retrieval time is
also affected by the total iteration steps. Therefore, statis-
tics of the average retrieval time difference (Time_diff for
short) caused by the K recalculation step difference (K_diff
for short) and the average total iteration step difference (To-
tal_diff for short) are provided in this study. The retrieval
samples are divided into seven categories (shown in Table 3),
in keeping with K_diff between AERIoe and Fast AERIoe.
On this basis, Time_diff and Total_diff between the two
retrieval algorithms for various samples are calculated. As
shown in Fig. 6, with an increase in K_diff, Time_diff also
increased gradually, showing a strong positive correlation.
Compared with K_diff, the value of Total_diff is very small,
and its impact on the retrieval time is also minimal, only hav-
ing slight negative and positive effects on the Time_diff of
Class3 and Class6. Therefore, the improvement in the re-
trieval speed of Fast AERIoe is mainly due to the recalcu-
lation of Jacobians.

Atmos. Meas. Tech., 16, 4101-4114, 2023
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Figure 7. Scatter plots between the retrieval results of the noncon-
verged samples with AERIoe and Fast AERIoe. (a) Temperature
profiles. (b) WVMR profiles.

4.2.2 Convergence characteristics

A total of 825 samples of the 826 datasets using the AERIoe
algorithm achieved convergence, with the convergence rate
reaching 99.9 %. The Fast AERIoe algorithm has 815 groups
of samples to achieve convergence, with the convergence rate
reaching 98.7 %, which is lower than that of AERIoe. Among
the 11 sets of retrieval samples that did not achieve conver-
gence, the K_Index of most of them did not change much
after the y was dropped to 1, indicating that the subsequent
iterations had little effect on the adjustment of the profiles,
so the iterative profile corresponding to the minimum con-
vergence_index could be taken as the retrieval results instead
of criterion (2). Figure 7a shows the comparison between the
retrieved profiles from AERIoe using criterion (2) and Fast
AERIoe using the new convergence criteria with 11 sets of
nonconverged samples. The temperature profiles obtained by
the two algorithms are virtually identical, with an RZ 0f 0.99.
For the water vapor mixing ratio (WVMR), the introduction
of the new convergence criteria reduces the value of RZ, but
this still reaches 0.84, indicating that the two datasets still
have a strong correlation. The above results indicate that the
method of using the minimum convergence_index to obtain
the retrieval profiles is a reasonable and feasible method, as
the Fast AERIoe algorithm cannot achieve convergence.

4.2.3 Accuracy

Traditional methods used to evaluate the accuracy of re-
trieved profiles against radiosondes compute the BIAS and
root-mean-square error (RMSE), with the calculation for-
mula as follows:

M
Z (ngnn(:ioeth (i’ ]) - Xretrieval(i» ]))
BIAS (/) = 2=

i ; ®)

S .. N
(X:$1(110eth(ls J) — Xretrieval (7, ]))

M=

RMSE() = | .=!

7 )

where i and j represent the serial numbers of vertical stratifi-
cation and samples, respectively, with M being the number of
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samples. X retrieval 1S defined as retrieved profiles, and X :&%"eth

is radiosonde observations that are smoothed with the aver-
aging kernel A by the following multiplication to reduce the
vertical representativeness errors:

Xsmoothed =A (Xsonde — Xa) + Xa. (10)

sonde

The BIAS and RMSE of AERIoe and Fast AERIoe are
calculated for 826 sets of samples using the above equa-
tions within the altitude range of 0-3 km, and the results are
shown in Fig. 8. The temperature profile below 1.0 km and
the water vapor profile below 1.5km have obvious positive
deviations, with the maximum deviations reaching 1.0 K and
0.2 log(ppmv), respectively. However, the BIAS and RMSE
at the bottom are significantly reduced due to the constraint
of the surface observations, indicating that the introduction
of surface meteorological observation data into the obser-
vation vector has an obvious positive effect. The tempera-
ture profiles retrieved by Fast AERIoe show a negative de-
viation of 0.05K between 1.0 and 1.5km and a maximum
increase in RMSE within 0.08 K above 1.0km when com-
pared with AERIoe. For the water vapor profile, the BIAS
and RMSE profiles of Fast AERIoe are in good agreement
with AERIoe, except for a maximum increase in BIAS within
0.03 log(ppmv) below 1.0 km. When considering the magni-
tude of the temperature (roughly on the order of 300 K) and
water vapor (roughly on the order of 5-10 log(ppmv)) pro-
files, the differences between the retrieved profiles are negli-
gible, indicating that the retrieval results of Fast AERIoe are
comparable to those of AERIoe.

The comparison of the profiles retrieved by the two al-
gorithms can be demonstrated more clearly by the modified
Taylor plots (Turner and Lohnert, 2014), which are used to
evaluate how well each retrieved profile can capture the ver-
tical shapes of its true profile, as BIAS and RMSE can only
describe the average accuracy of the whole dataset at each
height. These Taylor diagrams show Pearson’s correlation
coefficient between two datasets on the y axis and the ra-
tio of the standard deviation on the x axis. Each retrieval—
sonde pair is used to derive the correlation coefficient (r)
from Eq. (11) and the ratio of the standard deviations from
Eq. (12); both are used by Turner and Lohnert (2014).

z=h
L3 [s(x) —5la(z) —a)
r=_==9 , (11

050,

SDR = 0, /0. (12)

Within the equations, s(z) and a(z) are defined as the ra-
diosonde observations and retrieved profiles between 0 and
3km, and (5, at) and (og, 0,) are the mean values and stan-
dard deviations in the same height range.

Retrievals that have a correlation coefficient of 1 and
a standard deviation ratio (SDR) of 1 mean that the two
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datasets match perfectly. Figure 9a and b show these plots
for the clear-sky AERIoe and Fast AERIoe retrievals. For the
temperature retrievals, both Fast AERIoe and AERIoe per-
form well, with 90 % of the correlation coefficients above 0.9
and the intersection of the arms close to 1. Figure 9b shows
that retrieving the water vapor structure is much more diffi-
cult with both algorithms; the spreads in the correlation co-
efficient and SDR are much larger for water vapor than for
temperature. Most of the blue and red symbols “x” in Fig. 9,
which indicate the scores for the individual profiles of the
two algorithms, are close to each other for both the tempera-
ture and water vapor profiles. Therefore, the modified Taylor
plots also confirm the conclusion that the retrieval results of
the AERIoe and Fast AERIoe algorithms are comparable.

4.3 Real observations

Since the clouds overhead have a significant influence on
the infrared spectra, the primary problem is how to screen
clear-sky samples when using the measured AERI data to
retrieve the temperature and humidity profiles. The contribu-
tion of clouds to infrared radiation not only interferes with
the inversion of temperature and humidity profiles, but also
provides technical means for obtaining cloud macrophysi-
cal properties (Liu et al., 2022). Figure 10 shows the AERI-
observed spectrum under cloudy- and clear-sky conditions.
The AERI observations under the two conditions remain
highly different, indicating that the AERI-observed spectrum
can be adopted directly to determine whether clouds or clear
skies are present. To establish an accurate cloud recognition
model, we adopted the cloud fraction data obtained from
the all-sky image at the same site as the label for training,
where the sample with a cloud fraction of less than 30 %
is marked as 0, indicating clear sky, while the sample with
a cloud fraction greater than 30 % is marked as 1, indicat-
ing that there is cloud overhead. Using the abovementioned
method, the cloud fraction of the all-sky image from March
to May 2010 was labeled and temporally matched with the
AERI-observed radiance to form a training dataset, based on
which a cloud recognition model was established by train-
ing the back-propagation (BP) neural network, with the final
cross-validation accuracy reaching 94.3 %. Compared with
the recognition method by radiosonde, the BP cloud recog-
nition model greatly improves the discrimination accuracy
without requiring additional detection equipment. The BP
cloud recognition model was applied to the 178 groups of
AERI observations collected on 21 October 2012, with 168
groups of clear-sky samples screened in total.

Benefitting from good retrieval accuracy and high tempo-
ral resolution, AERI instruments can be used to monitor ther-
modynamic temporal structures that may not be resolved by
infrequent radiosonde launches. Figure 11 shows the time—
height cross sections of the temperature and WVMR profiles
derived from the Fast AERIoe retrievals. Figure 11 shows
that AERI resolved the temperature inversion prior to ap-
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Figure 8. Bias (solid curves) and RMSE (dashed curves) profiles for clear-sky comparisons of the AERIoe (red curves) and Fast AERIoe
(blue curves) retrievals with radiosondes. (a) Temperature profiles. (b) Water vapor profiles.
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Figure 9. Modified Taylor plots showing the correlation coefficient and standard deviation ratio between the smoothed radiosondes and the
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from the SGP site within 2012. Each symbol indicates the score for an individual profile. The arms of the plotted crosses span the 10th-90th
percentiles for the correlation coefficient (vertical arms) and the standard deviation ratio (horizontal arms).

proximately 15:00 UTC, and the height of the inversion layer
gradually increased over time. After 15:00 UTC, the tem-
perature near the surface increases significantly, accompa-
nied by the disappearance of the inversion layer. From the
comparisons with radiosonde profiles shown in Fig. 12, the
retrieval results of Fast AERIoe are well matched with ra-
diosonde profiles, especially the temperature profiles, which
demonstrates the ability of the algorithm to resolve the inver-
sion layer.

5 Conclusions
The AERIoe algorithm retrieves atmospheric temperature

and humidity profiles using the optimal-estimation frame-
work, which can make full use of information in the in-
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frared spectrum and give the uncertainty of each retrieval re-
sult. AERIoe reduces the dependence on the first-guess pro-
file by introducing regularization parameters, but it also re-
quires more iterative steps, which increases the calculation
amount and retrieval time of the algorithm. In this paper, a
fast-retrieval method called Fast AERIoe was established by
adaptively recalculating the Jacobians in the retrieval process
of AERIoe. Based on the statistical comparison of the two
methods (AERIoe and Fast AERIoe) with radiosonde obser-
vations, the retrieval performance of Fast AERIoe is summa-
rized as follows.

1. The retrieval speed of Fast AERIoe is significantly im-
proved compared with AERIoe while keeping the pa-
rameters of the computing platform unchanged, with the
average retrieval time reduced by more than 50 %. The
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W. Huang et al.: Fast retrieval for AERI

4111

D
(=}

Radiance [mW/(m2 str cm'l)]
S
(=4

5]
(=}

0 |
500 600 1000

1
1200

1
1400 1600 1800

Wavenumber [cm'l]

Figure 10. AERI observations in clear- and cloudy-sky conditions.

E
c
E 1
0.5
0 -
2 4 6 8 10 12
Hour [UTC]
3
2.5
2

=)
(S}
N
N
0

10 12
Hour [UTC]

)
=3
>y

5}
©
S

Temperature

[}
0
[

S

14 16 18 20 22

gkg

Helght km]

-
-:-
(=2} =] —_—

=
Water Vapor

14 16 18 20

Figure 11. Time-height cross sections of temperature (a) and water vapor (b) on 21 October 2012.

temperature and water vapor profiles derived from Fast
AERIoe are almost unchanged compared with AERIoe,
illustrating that the retrieval results of Fast AERIoe are
comparable to those of AERIoe. The deep retrieval ar-
chitecture is able to extract highly nonlinear features
from the AERI observations and shows a better in-
version capability than the existing statistical methods
(Yang et al., 2023), albeit with the lack of the radiative
transfer process. Therefore, the combination of AERIoe
and deep learning can improve the accuracy of AERI
for retrieving temperature and humidity profiles.

2. For the convergence characteristics, 825 out of 826 sam-
ples adopting AERIoe meet the convergence criterion,
while the sample adopting Fast AERIoe converges over
98 % of the time. The method of recalculating Jaco-
bians in Fast AERIoe slightly reduces the convergence

https://doi.org/10.5194/amt-16-4101-2023

of the retrieval algorithm. Despite this, the Fast AERIoe
algorithm has demonstrated the ability to retrieve reli-
able temperature and water vapor profiles more quickly,
which is fast enough for real-time processing.

3. When Fast AERIoe is adopted to measure the AERI
spectrum, a cloud recognition model without additional
detection equipment is established based on the BP
neural network algorithm to remove cloudy-sky cases.
Compared with the commonly used cloud recogni-
tion method by radiosonde observations, the BP cloud
recognition model has greatly improved the discrimi-
nation accuracy. It should be noted that the hyperspec-
tra under the two weather conditions of clear sky with
high humidity and few clouds are relatively close, while
the above two weather conditions are far from further
distinguished when building the BP cloud recognition

Atmos. Meas. Tech., 16, 4101-4114, 2023
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Figure 12. Comparisons between retrieved thermodynamic profiles and the coincident radiosonde profiles at 05:30, 11:30, 17:30, and
23:30 UTC on 21 October 2012. (a) Temperature profiles. (b) WVMR profiles.

model, which may reduce the discriminative accuracy
of the model. Furthermore, the cloud base height (CBH)
also contributes to AERI radiation (Ye et al., 2022), and
adding CBH to the recognition model helps to improve
the accuracy of the model.

A single instrument always has some defects in vertical
coverage, vertical resolution, temporal resolution, and accu-
racy in obtaining the vertical distribution of atmospheric con-
tinents (Barrera-Verdejo et al., 2016). The combination of
multiple remote-sensing devices in an optimal retrieval al-
gorithm can overcome the shortcomings of a single device,
making full use of each measurement to achieve the purpose
of enhancing their benefits. However, the increase in obser-
vation equipment will inevitably lead to more complex cal-
culations of the forward model and Jacobian, which will lead
to a significant increase in the amount of calculation and re-
trieval time. Therefore, it is particularly necessary to carry
out research on fast retrieval in the case of joint retrieval.
Apart from the influence of the Jacobian on the retrieval time,
so is the number of iterations required by the retrieval algo-
rithm, which is dominated by the regularization parameter.
Future work will focus on the application of Fast AERIoe in
the combination of different observations and the selection
of regularization parameters to permit the retrieval algorithm
to converge more efficiently.

Code and data availability. The data used in the paper (including
AERI and radiosonde) are available from the ARM Data Archive
(https://adc.arm.gov/discovery/#/, last access: 19 January 2022).
The code for recalculating Jacobians is not publicly available at this
time but may be obtained from the authors upon reasonable request.
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