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Abstract. Knowledge of the spatial and temporal character-
istics of solar surface irradiance (SSI) is critical in many do-
mains. While meteorological ground stations can provide ac-
curate measurements of SSI locally, they are sparsely dis-
tributed worldwide. SSI estimations derived from satellite
imagery are thus crucial to gain a finer understanding of
the solar resource. Inferring SSI from satellite images is,
however, not straightforward, and it has been the focus of
many researchers in the past 30 to 40 years. For long, the
emphasis has been on models grounded in physical laws
with, in some cases, simple statistical parametrizations. Re-
cently, new satellite SSI retrieval methods have been emerg-
ing, which directly infer the SSI from the satellite images us-
ing machine learning. Although only a few such works have
been published, their practical efficiency has already been
questioned.

The objective of this paper is to better understand the
potential and the pitfalls of this new family of methods.
To do so, simple multi-layer-perceptron (MLP) models are
constructed with different training datasets of satellite-based
radiance measurements from Meteosat Second Generation
(MSG) with collocated SSI ground measurements from
Météo-France. The performance of the models is evaluated
on a test dataset independent from the training set in both
space and time and compared to that of a state-of-the-art
physical retrieval model from the Copernicus Atmosphere
Monitoring Service (CAMS).

We found that the data-driven model’s performance is very
dependent on the training set. Provided the training set is
sufficiently large and similar enough to the test set, even a
simple MLP has a root mean square error (RMSE) that is
19 % lower than CAMS and outperforms the physical re-
trieval model at 96 % of the test stations. On the other hand,

in certain configurations, the data-driven model can dramati-
cally underperform even in stations located close to the train-
ing set: when geographical separation was enforced between
the training and test set, the MLP-based model exhibited an
RMSE that was 50 % to 100 % higher than that of CAMS in
several locations.

1 Introduction

Spatial and temporal variabilities in solar surface irradiance
(SSI) are of great interest across a range of fields, including
climatology, solar energy, health, architecture, agriculture,
and forestry. SSI estimations can be made using solar radi-
ation measurements from existing networks of meteorologi-
cal ground stations. However, these are sparsely distributed
worldwide. Spaceborne imaging systems of meteorological
geostationary satellites represent complementary upwelling
radiance sources for SSI retrieval, as they enable better spa-
tial and temporal coverage (Blanc et al., 2017; Müller and
Pfeifroth, 2022; Tournadre, 2020). Since the 1980s, multiple
SSI retrieval approaches have been proposed using satellite
images, from the earlier cloud index methods (Cano et al.,
1986; Rigollier and Wald, 1998) to more recent approaches
relying on advanced radiative transfer models (Xie et al.,
2016; Qu et al., 2017). Some of these retrieval algorithms are
operational and provide SSI estimations worldwide. For ex-
ample, HelioClim3 (Blanc et al., 2011a) offers real-time esti-
mations of the global horizontal irradiance (GHI) over Africa
and Europe. CAMS, the Copernicus Atmosphere Monitor-
ing Service, is another near-real-time service that derives SSI
estimations from data collected by both Meteosat and Hi-
mawari satellites; it covers areas including Africa, Europe,
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and a significant portion of Asia (Schroedter-Homscheidt
et al., 2016). In the United States, the National Solar Ra-
diation Database (NSRDB; Sengupta et al., 2018) serves as
a valuable resource, providing SSI estimates primarily from
the GOES satellites. The performances of these solar radi-
ation databases vary with the location and sky conditions;
they are discussed in detail in Forstinger et al. (2023). Statis-
tical methods have also been developed to post-process these
retrieval models and correct their errors based on historical
ground measurements (Polo et al., 2016, 2020; Huang et al.,
2019). These correction algorithms, however, are mostly
based on simple statistical methods and do not aim to replace
the physical retrieval models upstream. In addition, most of
the correction models proposed in the literature are local and
therefore cannot generalize to locations they have not seen
during training (Verbois et al., 2022).

In the past decade, Earth science has been revolutionized
by the advent of machine and deep learning (Reichstein et al.,
2019; Boukabara et al., 2019), with important developments
in remote sensing (Ball et al., 2017), severe weather predic-
tions (McGovern et al., 2017; Racah et al., 2017), and nu-
merical weather modeling (Brenowitz and Bretherton, 2018;
Rasp et al., 2018). In the field of SSI retrieval, new data-
driven approaches are emerging based on automatic statis-
tical learning, which attempt to infer a direct relationship
between satellite images and SSI ground measurements. Pa-
pers presenting such retrieval methods report promising per-
formance (Jiang et al., 2019; Hao et al., 2019, 2020). How-
ever, a more thorough analysis is needed. In particular, the
ability of machine-learning-based models to generalize to
new locations and specific meteorological and atmospheric
events must be rigorously evaluated. Indeed, when Yang et al.
(2022) evaluated the method proposed by Hao et al. (2019)
outside the algorithm’s training locations, they found that the
method was performing significantly worse than expected.

In this work, we propose to further explore the potential
of machine-learning-based satellite-retrieval methods and to
identify some of the main pitfalls that come with this type
of approach. Our objective is not to introduce a new re-
trieval method; hence, we have deliberately opted for a sim-
ple, fully connected architecture. This choice allows our
conclusions regarding generalization to extend more effec-
tively to the realm of complex networks (convolutional, re-
current, attention-based, generative, etc.), which are gener-
ally prone to encountering greater generalization challenges
(Wang et al., 2017; Ranalli and Zech, 2023). We conduct a
thorough and critical analysis of its performance and com-
pare it with a state-of-the-art retrieval model, Heliosat-4 (Qu
et al., 2017), operational as part of the Copernicus Atmo-
sphere Monitoring Service (CAMS) radiation service.

The paper is organized as follows. In Sect. 2, we present
the data used in this study. In Sect. 3, we describe our pro-
posed machine-learning-based model. In Sect. 4, we set the
stage for our analysis and present the experimental setups.

The results are discussed in Sect. 5. Discussion and conclu-
sions are given in Sect. 6.

2 Data

In this section, we briefly describe the data used in this study.
Table 1 gives an overview.

2.1 Satellite observation

We have been using readings of upwelling radiances Lλ from
the multispectral optical imaging system aboard the Me-
teosat Second Generation (MSG) meteorological geostation-
ary satellite. MSG has 12 different channels, but we only use
3 of them here: 2 visible bands (centered on 0.6 and 0.8 µm)
and 1 infrared band (centered on 10.8 µm). MSG channels
have a temporal resolution of 15 min and a spatial resolution
of 3 km at nadir (0, 0)1, which above France corresponds to
pixels of ca. 4 by 6 km (in the E–W and N–S directions, re-
spectively) (EUMETSAT, 2017).

2.2 Ground measurements

2.2.1 Météo-France stations

This study relies for training, validating, and testing on
ground SSI measurements from 231 meteorological stations
operated by Météo-France and spread over metropolitan
France, as shown in Fig. 2. The stations are equipped with
Kipp & Zonen thermopile pyranometers2 that measure 1 min
solar surface irradiance (SSI); here, however, we only have
access to hourly averages. The data span 9 years, between
2010 and 2019, but not all stations were operational during
the whole period.

Strict quality checks (QCs) are applied to the broadband
data, as described extensively in Verbois et al. (2023) and
summarized in Appendix A. The idea is to select among
all the ground measurements of SSI the ones that are the
least questionable with both commonly used automatic qual-
ity check procedures and expert visually based scrupulous
inspection, station by station, day by day.

2.2.2 Carpentras station

The Météo-France station of Carpentras, included in the
dataset described in Sect. 2.2.1, is also part of the Baseline
Surface Radiation Network (BSRN; Ohmura et al., 1998)
and the Aerosol Robotic Network (AERONET; Holben et al.,
1998). As a BSRN station, it provides measurements of 1 min

1Except for the high-resolution visible (HRV) channel, which
provides measurements with a resolution of 1 km, but on a reduced
portion of the disk. This channel is not used in this study.

2The details of the instrument at each station can be
found at https://donneespubliques.meteofrance.fr/?fond=contenu&
id_contenu=37 (last access: 5 September 2023).
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Table 1. Overview of data used in this study.

Data Time Spatial Time extent Spatial extent Source
sampling resolution

MSG channels 1, 2 and 9 15 min ca. 4× 6 km 2010–2019 France Meteosat
SSI measurements 1 h Punctual 2010–2019 231 locations in France Courtesy of Météo-France
SSI measurements 1 min Punctual 2018–2019 Carpentras (FR) BSRN
SSI estimations 1 h ca. 4× 6 km 2018–2019 France CAMS radiation services
CSI estimations 1 min ca. 4× 6 km 2018–2019 France CAMS radiation services
Climatic albedo 1 min ca. 4× 6 km 2010–2019 France CAMS radiation services
AOD measurements 1 min Punctual 2018–2019 Carpentras (FR) AERONET

SSI. As an AERONET station, it provides measurements of
spectral aerosol optical depth (AOD). The AODs at different
wavelengths are measured with a sun photometer but are only
valid under clear-sky conditions. Cloud screening is thus ap-
plied to the raw data, and measurements are therefore only
available intermittently (Giles et al., 2019). In this work, we
use the AOD at 500 nm.

2.3 Copernicus Atmosphere Monitoring Services

The Copernicus Atmosphere Monitoring Service (CAMS)
provides time series for various atmospheric and meteoro-
logical variables.

CAMS radiation service provides time series of global, di-
rect, and diffuse ground irradiances. It relies on Heliosat-4, a
state-of-the-art physical retrieval method (Qu et al., 2017), to
infer ground irradiance from MSG satellites and CAMS at-
mospheric composition. CAMS estimations of SSI are used
as a benchmark in this study. CAMS SSI natively comes with
a resolution of 15 min, as it is derived from MSG. Here, how-
ever, we use hourly averages of SSI to match the resolution
of the ground data we use as a reference (Sect. 2.2).

It should be noted that other physical retrieval methods
might outperform CAMS (Forstinger et al., 2023). It remains,
nonetheless, a state-of-the-art retrieval model.

CAMS also implements the McClear clear-sky model,
which provides estimations of global, diffuse, and direct
clear-sky irradiances. It is based on look-up tables from the
radiative transfer model libRadtran and fed by partial aerosol
optical depth, ozone, and water vapor data from CAMS at-
mosphere services (Lefèvre et al., 2013; Gschwind et al.,
2019). In this work, we use its global component, abbrevi-
ated CSI for clear-sky irradiance. As it will be used to detect
clear-sky instances at the Carpentras station, we use 1 min
values.

We also use the CSI hourly mean to compute clear-sky
index kc from the SSI: kc = SSI/CSI.

2.4 Ground albedo

The ground albedo is the fraction of the total irradiance
reaching the surface of the Earth that is reflected by the

ground. In this work, we use the ground albedo to analyze
the performance of the retrieval models. We rely on values
derived from MODIS datasets (Blanc et al., 2014).

3 Machine-learning-based retrieval model

In this section, we present our proposed machine-learning-
based SSI satellite retrieval model – ML model in short. We
describe the target and predictors in Sect. 3.1 and 3.2, respec-
tively; the neural network architecture is detailed in Sect. 3.3.
Finally, we shortly discuss running time in Sect. 3.4. A code
snippet showing the exact implementation of the network in
TensorFlow is provided in the Supplement.

3.1 Target

The target of the model is the hourly solar surface irradi-
ance (SSI) and more precisely the global horizontal irradi-
ance (GHI) component, which is the downwelling shortwave
surface flux. The ground truth, used for training the model
and evaluating its performance, is provided by the Météo-
France measurement stations described in Sect. 2.2. To ac-
celerate the training, the values are normalized by the cor-
responding average irradiance over the training period. The
inverse transformation (also with the average irradiance over
the training period) is applied to the network predictions be-
fore starting to analyze its performance.

3.2 Predictors

The choice of predictors is critical in statistical learning. Be-
cause we use a simple fully connected network (Sect. 3.3),
we want to keep the dimensions of the predictor set relatively
low while giving as much context as possible to the algo-
rithm. We are also restricted by the fact that the ML model
must be fully real-time and can therefore only utilize past and
present data. To estimate the SSI in each location (with lati-
tude x and latitude y) at a given time t , predictors from four
sources are used.

The main inputs to the ML model come from satellite mea-
surements. We use the upwelling radiances L0.6 µm, L0.8 µm,
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and L10.8 µm, described in Sect. 2.13. To give the model as
much spatial and temporal context as possible, 9 neighboring
pixels and 13 preceding 15 min time steps are used as input.
This corresponds to a zone with an area of ca. 12 by 18 km
and a period of 3 h. In summary, for a point with latitude and
longitude (x,y) at time t0, such that the closest satellite pixel
has coordinates (i0,j0), the following predictors are taken
from MSG data:

Lλ(i,j, t) for i,j ∈ [i0− 1, i0+ 1]× [j0− 1,j0+ 1]

t ∈ [t0− 12dt, t0], where dt = 15min
λ ∈ {0.6,0.8,10.8µm}.

The solar azimuth angle ψs and the solar elevation γs,
computed using the sg2 python library (Blanc and Wald,
2012), are also provided as predictors. They define the
topocentric angular position of the sun. The day of the year
and the hour of the day are given as predictors too. Finally,
the latitude and longitude, as well as the corresponding alti-
tude, are used as predictors.

In total, the model has 358 predictors, summarized in Ta-
ble 2. Each predictor is normalized and centered. These 358
predictors are concatenated in a single 1D vector, which is
used as input to the neural network.

3.3 The machine learning model: a fully connected
network

As discussed in the Introduction, the aim of this work is
not to propose a new optimized retrieval model but to in-
vestigate the advantage and drawbacks of purely ML-based
models. We therefore implement a classic algorithm: a fully
connected neural network (FCN), or multi-layer perceptron
(MLP). This model has been around for many years and has
proven very powerful in many fields and industries. It is not,
however, the state of the art in machine learning: deep ar-
chitectures optimized for images or time series, for example,
have since been developed and outperform FCN for complex
spatio-temporal problems. As we see in this paper, a simple
FCN is nonetheless sufficient to at least partially solve the
satellite retrieval challenge.

Our FCN has the following configuration:

– There is one hidden layer of 64 neurons, for a total of
23 041 parameters.

– The hidden layer uses a rectified linear unit (ReLU) ac-
tivation function, and the last neuron uses a linear acti-
vation function.

– The weights are initialized randomly using a normal dis-
tribution.

3These are the channels mainly used by Heliosat-2 and Heliosat-
4. Other wavelengths may nonetheless be useful to a machine-
learning-based model, and their impact on model performance
should be explored in future works.

– The loss function is the mean squared error (MSE).

The same configuration, but with two and three hidden lay-
ers, was also tested. As they had similar (validation) perfor-
mance, we preferred the simpler configuration.

The network is trained using the RMSprop algorithm
with learning rate= 0.001, ρ= 0.9, momentum= 0.0, and
ε= 1× 10−7 (Tieleman and Hinton, 2012). Regularization
is implemented through an early-stopping procedure, which
stops training if the validation error does not decrease for
more than 20 epochs.

Because the last layer uses a linear activation function,
there is no guarantee that the predicted value is positive. To
ensure we do not get any negative SSI estimation, any nega-
tive prediction is set to 0.

The random initialization of the network weights slightly
impacts the network performance. The impact on the model
performance is, however, limited, as discussed in Ap-
pendix B. In this study, each model was trained 20 times,
with different (randomly assigned) initial weights, and the re-
sults for the worst-performing model (in terms of test MSE)
are presented in the rest of the paper. Choosing the best-
performing one – or any of the 20 runs – would lead to very
similar results and the same conclusions.

3.4 Running time

An important aspect of real-time satellite retrieval methods is
their running time. At minimum, the model should not take
longer to run on a full image than the satellite update time; for
MSG it is 15 min, but for third-generation satellites such as
Meteosat Third Generation, it goes as low as 5 min. For some
applications, such as nowcasting and short-term forecasting,
estimations are needed as soon as possible, and a processing
time way below the satellite update time is beneficial.

Machine learning algorithms, including neural networks,
may take a long time to train but usually have short running
times. Using a single core and an NVIDIA Tesla A100 80GB,
training the ML models presented in this work takes a few
minutes (depending on the size of the training set). Applying
the models to the full MSG disk (3712×3712 pixels) requires
less than 2 s on the same machine4. As a comparison, CAMS,
whose running time varies with the time of day, takes up to
6 min and 30 s on a single core to treat the same inputs.

It should also be noted that while adding extra predictors
– for example, more channels or a larger pixel neighborhood
– could significantly increase the training time of the ML
model, it is likely to only marginally increase its running
time.

4This does not include data pre-processing.
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Table 2. Predictors used to estimate SSI at a given time and place.

Name Dimension Source

Satellite L0.6 µm 3× 3× 13= 117 MSG
Satellite L0.8 µm 3× 3× 13= 117 MSG
Satellite L10.8 µm 3× 3× 13= 117 MSG
Solar position: elevation and azimuth angles 2 sg2 (Blanc and Wald, 2012)
Hour of the day and day of the year 2 Calendar
Location and altitude 3 BSRN

4 Experiments’ setup

In this section, we describe the setup of the experiments con-
ducted in this study. In Sect. 4.1, we introduce the metrics
used to assess the performances of the SSI estimations; in
Sect. 4.2, we discuss the splitting of the data into training
and test sets; finally, in Sect. 4.3, we describe the clear-sky
detection method used in Sect. 5.2.

4.1 Performance metrics

The SSI estimations produced by the ML model, x̂ML, as well
as the SSI estimation from CAMS, x̂CAMS, are compared
with the ground measurements x of SSI from Météo-France
stations. Both datasets have a resolution of 1 h.

Three different error metrics are used, namely the root
mean square error (RMSE), the mean bias error (MBE), and
the standard deviation of the error (SDE):

RMSE=

√√√√1
n

n∑
k=1

(
x̂k − xk

)2 (1)

MBE=
1
n

n∑
k=1

(
x̂k − xk

)
(2)

SDE=

√√√√1
n

n∑
k=1

(
x̂k − xk −MBE

)2
, (3)

where n is the number of points, and x̂k ∈ {x̂ML
k , x̂CAMS

k }.
MBE measures the accuracy – or bias – of the estimations,
SDE measures their precision, and RMSE is a combination
of both. The three metrics are related as follows: RMSE2

=

MBE2
+SDE2.

The correlation between x̂ and x is also a popular metric.
To compare estimations to measurements and quantify the
performance of a model, we use Pearson’s correlation co-
efficient ρpearson. Because it measures linear correlation, the
Pearson correlation is not appropriate to unveil non-linear re-
lationships between two time series. To quantify the strength
and direction of association between two time series, we thus
prefer Spearman’s rank-order correlation, ρspearman (Spear-
man, 1987).

To compare the performance of the ML model and CAMS,
we sometimes use the RMSE skill score, taking CAMS as a

reference:

Skill= 1−
RMSEML

RMSECAMS
. (4)

A positive skill means that RMSEML < RMSECAMS, i.e.,
that the ML model outperforms CAMS in terms of RMSE.

4.2 Training, validation, and test set

Splitting the data into a test and training set is a crucial step in
machine learning studies. Machine learning models, such as
neural networks, can achieve exceptional performance with
data that are similar to the data used for their training. How-
ever, their performance may deteriorate drastically when they
operate outside their training space (Hastie et al., 2009). The
model’s ability to generalize to new, unseen data is a crucial
metric of its performance. The definition of what constitutes
data outside the training space depends on the specific prob-
lem at hand, as it varies based on how the model will be used
in practice. The training and test set must therefore be se-
lected carefully to ensure the model’s suitability for deploy-
ment in practical applications.

In this study, we evaluate a satellite retrieval model which
is meant to provide accurate SSI estimations in any location –
at least within a certain region – and at any (future) time. We
must thus ensure that the ML model generalizes in time and
space. To that end, we use different locations for training and
testing and reserve the period 1 July 2018 to 30 June 2019
for testing, while only data from 1 January 2010 to 30 June
2018 are used for training. The setup, adapted from Verbois
et al. (2022), is illustrated in Fig. 1.

How we assign measurement stations to one set or the
other is also important and will test the ability of the model
to generalize in space differently. In this study, we test four
training setups, with different objectives in mind:

– Training setup 1, described in Sect. 4.2.1, allows us to
evaluate the ability of the model to generalize in space
when training and test stations are geographically inter-
twined.

– Training setup 2, described in Sect. 4.2.2, allows us to
understand the sensitivity of the model performance to
the number of training years.
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Figure 1. Training, validation, and test sets, after Verbois et al.
(2023).

– Training setup 3, described in Sect. 4.2.3, allows us to
understand the sensitivity of the model performance to
the density of training stations when they are still inter-
twined with the test stations.

– Training setup 4, described in Sect. 4.2.4, enforces a ge-
ographical separation between training and test stations
and thus allows us to test the ability of the model to
generalize to locations geographically outside its train-
ing space.

For each training setup, a validation set is needed for early
stopping (Sect. 3.3). In all four setups, 20 % of the training
stations (or 10 stations if that percentage is lower) are ran-
domly chosen in the training set to constitute the validation
set.

4.2.1 Training setup 1

In the first setup, 100 test stations are chosen randomly from
those passing QC for more than 30 % of the hours over the
test period (1 July 2018 to 30 June 2019). In other words,
QC must be passed for at least 8 h per day on average. As
nighttime is always flagged as failing QC, this is a stringent
requirement.

All the remaining stations that pass QC for more than
30 % of the hours over the training period (1 January 2010
to 30 June 2018) are used as training stations – there are 129
of them. Three techniques are further applied:

– The 100 test stations are chosen as a priority among the
stations that do not pass QC for the training period. That
is to maximize the number of stations used.

– The Carpentras station is manually added to the test set;
that is because it is part of AERONET and BSRN (see
Sect. 2.2) and can thus be used for a more thorough
analysis of the models’ performance.

– The three meteorological stations located in Corsica, an
island 160 km from the shores of metropolitan France,
are not considered in this use case.

Figure 2. Distribution of train and test stations for training setups 1,
2, and 3 (a) and training setup 4 (b).

The resulting training and test stations are shown in Fig. 2a.

4.2.2 Training setup 2

The second setup is identical to setup 1, except that only Y
years out of the 5 available are used for training, with Y equal
to 1, 2, 3, 4, or 5. The Y years closest to the testing period
are used.

The same number of training stations as in training setup 1
is used for all Y . However, for low values of Y , because some
stations do not have data for the whole training period, they
may only add a few points to the training set.

4.2.3 Training setup 3

The third setup is also very similar to setup 1. The same 100
stations make up the test set, but only N stations are picked
for training. N varies from 20 to 100. There are

(
129
N

)
ways

to choose N training stations among 129 candidates, and the
performance of the model is likely impacted by this choice,
especially with lowN . However, training with every possible
combination is not computationally tractable5; instead, we
randomly pick 20 combinations for each N .

4.2.4 Training setup 4

In the fourth setup, we enforce geographical separation be-
tween the training and test set. All the stations within a circle
centered at 46◦ N, 4◦ E, and with a radius of radius 215 km
passing QC for more than 30 % of the hours over the train-
ing period (1 January 2010 to 30 June 2018) are taken as
training stations, and all stations outside of a circle centered
at 46◦ N, 4◦ E, and with a radius of 255 km passing QC for
more than 30 % of the hours over the test period (1 July 2018
to 30 June 2019) are used as test stations. This separation is
somewhat arbitrary; the objective is to keep enough stations
in the training set while concentrating them in a region as

5max
((

129
N

))
≈ 4.8× 1037 (N = 65).
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small as possible. This results in 66 training stations and 105
test stations, as illustrated in Fig. 2b.

4.3 Clear-sky detection

In Sect. 5.2, we focus our analysis on days with a major-
ity of clear-sky instances. It is difficult to accurately detect
clear-sky instances with mean hourly SSI; we, therefore, re-
strict the analysis to the station of Carpentras, for which we
have minute data (Sect. 2.2). We first detect clear-sky min-
utes with a 1 min resolution, using the Reno and Hansen al-
gorithm (with a window length of 10 min) (Reno and Hansen,
2016) implemented in the pvlib Python library (Holmgren
et al., 2018). We then select days for which 75 % of the day-
time is detected as clear sky.

5 Results

This section is divided into three parts. In Sect. 5.1, we ana-
lyze the general performance of the ML model with training
setup 1 for the whole test period. In Sect. 5.2, we still work
with training setup 1 but focus on the specific case of clear-
sky days for the station of Carpentras. Finally, in Sect. 5.3,
we discuss the impact of the number and location of train-
ing stations on the performance of the ML model (training
setups 2, 3, and 4).

5.1 Model performance with a dense training set

In this section, we analyze the performance of the ML model
with training setup 1, i.e., using the maximum number of ran-
domly chosen training stations (129). Although training and
test stations are different, they are largely interlaced (Fig. 2a).

5.1.1 Overall performances

We first evaluate the ML model and CAMS performance
metrics for all 100 test stations and the whole test period.
The overall metrics are shown in Table 3. The ML model has
a significantly lower RMSE and SDE than CAMS: 19 % and
18 %, respectively. The correlation between the ML model
and the ground measurements is higher than that between
CAMS and the ground measurements. In terms of bias, on
the other hand, the difference between the two retrieval mod-
els is negligible: both MBEs are relatively low.

To better understand the characteristics of the ML model
and CAMS estimations, we look at the joint distribution
between estimations and ground measurements, shown in
Fig. 3a and b. As suggested by the ML model’s lower SDE,
the joint distribution of this model is more tightly wrapped
around the axis x = y than that of CAMS. In addition, the
joint distribution does not show any artifact or unphysical
features – as is sometimes the case for overly smooth estima-
tions or forecasts, for example (Verbois et al., 2020).

Table 3. Overall test metrics for CAMS and the ML model with
training setup 1 (computed over 391 481 samples).

ML model CAMS
(training setup 1)

RMSE (W m−2) 52.92 64.99
SDE (W m−2) 52.28 64.02
MBE (W m−2) −8.21 −11.22
ρpearson 0.977 0.966

The distribution of SSI – estimated or measured – is highly
dominated by the diurnal and annual pattern of the sun. To
focus on the ability of the retrieval models to resolve clouds,
we compare the clear-sky indices from the estimations and
from the ground measurements in Fig. 3c (ML model) and
Fig. 3d (CAMS) by analyzing their joint distribution. Over-
all, ML model estimations of the clear-sky index are more
likely to be close to the ground measurements. In addition,
CAMS estimations of the clear-sky index are constrained to
the interval [0.1,1] by design, whereas the ML model better
matches the distribution of the ground measurements, with
the clear-sky index values ranging from 0 to 1.8. Admittedly,
this only concerns a small portion of all instances, and, in ad-
dition, the ML model tends to produce too many estimations
with a high clear-sky index.

5.1.2 Station-wise performances

Beyond the overall performance, a retrieval model needs to
be consistent. We, therefore, analyze the performance of the
ML model and CAMS for each test station independently.
Figure 4 compares the RMSE, SDE, and MBE of the two
models for each station: one point on the graph corresponds
to one station, and the green band identifies stations for
which the ML model is better than CAMS. We see that in
terms of RMSE, the ML model outperforms CAMS for all
but four stations. Furthermore, the difference between the
two models for these four stations is small. In terms of SDE,
the ML model does even better, as it outperforms CAMS at
98 % of the test stations. In terms of bias, interestingly, the
ML model has a higher MBE than CAMS for 58 % of the
stations, even though its overall MBE was lower than that of
CAMS. In addition, although CAMS and the ML model have
a low MBE overall, it reaches 50 W m−2 in some locations,
which is not negligible.

5.1.3 Performance analysis with respect to different
conditions

To complete our analysis of the two models’ overall perfor-
mances, we look at the metrics’ dependence on the sky condi-
tions. We use the clear-sky index as a proxy: a low clear-sky
index corresponds to overcast skies, a high clear-sky index
to mostly clear skies, and an intermediate clear-sky index
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Figure 3. Joint distributions of satellite-derived estimations and ground measurements for the CAMS model (a, c) and for ML (b, d).

to partly cloudy skies. This is certainly an oversimplifica-
tion, and a more sophisticated analysis would be required for
an accurate classification of the sky conditions; having ac-
cess to the hourly average of SSI, however, the value of the
clear-sky index is a good first approximation. The station-
wise RMSE, SDE, and MBE of the ML model and CAMS
are broken down per class of clear-sky index in Fig. 5; box-
plots are used to represent the metric’s spread across stations
(each boxplot is built with 100 points: 1 for each test station).
We show in Sect. 5.1.1 that the ML model has a lower RMSE
and SDE than CAMS; we see here that it is mostly for low
clear-sky indices that the ML model outperforms CAMS. For
clear-sky indices larger than 0.9, both retrieval models have

similar RMSE, and CAMS even has a slightly lower SDE in
that clear-sky index interval. In terms of bias, although both
models have similar MBE overall (Table 3), their dependence
on kc is different. CAMS overestimates the SSI for low clear-
sky indices and underestimates it at high clear-sky indices;
the ML model, in contrast, systematically overestimates the
SSI, but to a lesser extent.

5.2 Specific case of clear-sky days

The previous section should convince us that with training
setup 1, the ML model significantly and systematically out-
performs CAMS in mainland France and under all-sky con-
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Figure 4. Comparison of RMSE (a), MBE (b), and SDE (b) of the
ML model and CAMS for each station. The green band indicates
the stations for which the ML model outperforms CAMS; the cor-
responding percentage is indicated in bold green.

ditions. Figures 3 and 5, however, suggest that things may
be different under clear-sky conditions. Furthermore, SSI re-
trieval from satellite observations notably involves specific
considerations when there are no clouds: aerosol concentra-
tions and ground albedo, for example, have a stronger im-
pact on physical estimations in cloudless skies (Scheck et al.,
2016).

Figure 5. Distribution of station RMSE (a), MBE (b), and SDE (c)
of the ML model and CAMS as a function of the clear-sky index kc.
Each boxplot is built with 100 points: 1 for each test station.

In this section, we focus on the performance of the two
retrieval models under clear-sky conditions. To accurately
identify such conditions, however, the analysis done in Fig. 5
is not sufficient: all clear-sky situations should be contained
in the right-most kc bin ((0.9− [), but other situations (typ-
ically a mix of overshooting, clear-sky conditions, and par-
tially cloudy conditions) are likely also contained in this bin.
To rigorously select clear-sky conditions, we need 1 min ir-
radiance data (Sect. 4.3); we thus focus on the Carpentras
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Table 4. Performance of the ML model and CAMS for Carpentras
stations under all skies (4012 samples) and under clear skies only
(938 samples).

ML model CAMS
(training setup 1)

All skies RMSE (W m−2) 42.31 55.09
MBE (W m−2) −3.31 7.40
SDE (W m−2) 42.18 54.59
ρpearson 0.987 0.978

Clear-sky RMSE (W m−2) 21.82 15.95
days MBE (W m−2) −4.92 −2.07

SDE (W m−2) 21.27 15.81
ρpearson 0.996 0.999

station (Sect. 2.2). Note that the ML model is the same as the
one discussed in Sect. 5.1; only the analysis is restricted to
one location.

5.2.1 Clear-sky performances

The performance metrics of the ML model and CAMS for
all skies and clear-sky days are shown in Table 4. As ex-
pected, the ML model has a lower RMSE and SDE than
CAM for all skies; it even has a slightly lower MBE. For
clear-sky days, both models have a significantly lower RMSE
and SDE. But, contrary to the general case, CAMS signifi-
cantly outperforms the ML model in all metrics, with RMSE,
SDE, and MBE 27 %, 26 %, and 57 % lower, respectively.

Several factors could explain the deficiency of the ML
model under clear skies. In cloudless conditions, the albedo
of the ground plays a more important role than under cloudy
skies; since the ML model has no information about this
quantity, it could be one source of uncertainty. Aerosols and
in particular aerosol optical depth (AOD) are also important
under clear skies; CAMS, through the clear-sky model Mc-
Clear, accounts for AOD in its estimations, but the ML model
has no direct access to this information.

5.2.2 Impact of aerosols

Albedo variations are most often more significant in space,
while AOD varies in both space and time. Because we per-
form the clear-sky specific analysis in a single location, it
is difficult to investigate the impact of albedo on the clear-
sky performance. We, therefore, focus in this section on the
impact of aerosol on CAMS and the ML model clear-sky es-
timations.

Figure 6a shows the AOD at 500 nm measured at the Car-
pentras station for 2 consecutive clear-sky days. We chose
these dates as illustration because a significant drop in AOD
can be observed from one day to the next. The correspond-
ing measurements of hourly SSI are shown by black crosses
in Fig. 6b. Even though both days have a clear-sky profile, the

Figure 6. Example of 2 consecutive clear-sky days (with aerosols)
Carpentras.

SSI values are significantly higher for the second day, partic-
ularly in the middle of the day. CAMS estimations of SSI for
that day, shown in the same figure in red, match the obser-
vations very well: the model rightfully integrates the effect
of aerosols. The ML model, in blue in the figure, correctly
estimates 2 clear-sky days, but the values of SSI for the 2 d
are nearly identical: as suspected, the ML model is not able
to account for the effect of aerosol as well as CAMS.

To further investigate the role of information about AOD
at 500 nm in the ML model underperforming for clear-sky
days, we analyze the relationship between the hourly estima-
tion error and the corresponding hourly AOD average under
clear-sky conditions. This relationship is illustrated in Fig. 7,
which shows the distribution of the error in each retrieval
model as a function of AOD 500; the corresponding Spear-
man correlation is also displayed. Although there is no ob-
vious pattern, the error in the ML model appears to have a
relationship with AOD 500, as confirmed by the relatively
high Spearman correlation. CAMS error, on the other hand,
is weakly correlated with AOD 500. The remaining correla-
tion may come from the fact that CAMS uses modeled AOD,
which can deviate from the ground truth. Even though cor-
relation is not causation, this result further supports the hy-
pothesis that not accounting for AOD 500 in the ML model
causes some of the estimation error under clear skies.

This result is somewhat expected, as the CAMS model
integrates some information about the AOD (through Mc-
Clear), whereas the ML model does not. Adding AOD-
related predictors to the neural network may help decrease
the performance gap between the two methods for clear
skies.
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Figure 7. Joint distribution (2D histogram) of hourly average AOD
and hourly estimation error for CAMS (a) and the ML model (b).
Spearman’s rank-order correlation between AOD and error is also
given.

5.3 Sensitivity to the training set

To this point, we have analyzed the performance of the ML
model with training setup 1, i.e., when the neural network
is trained with 129 stations, interlaced with the test stations
(Fig. 2a). Such a density of measurement stations is rare, and
many of the regions covered by MSG – and thus by CAMS
– are not as well equipped. In this section, we therefore eval-
uate the impact of the size and location of the training set on
the performance of the ML model. We first reduce the num-
ber of training years (training setup 2; Sect. 4.2.2) and train-
ing stations while keeping the random split (training setup 3;
Sect. 4.2.3) and then enforce geographical separation be-
tween training and test stations (training setup 4; Sect. 4.2.4).
In this section, we focus on RMSE for conciseness.

5.3.1 Impact of the number of training years

We first evaluate the impact of the number of training years
on the ML model’s performance using training setup 2
(Sect. 4.2.2). Figure 8 shows the RMSE of the ML model
for the 100 test stations when the model is trained with all
129 training stations but with a different number Y of train-

Figure 8. Test RMSE as a function of the number Y of years used
for the training (training setup 2); 20 models were trained for each
Y to account for the variations due to random initialization. Each
red point represents the RMSE for 1 of the 20 models; the median
performance for each Y is shown by a black line.

ing years. To account for the variations due to the model’s
random initialization (further discussed in Appendix B), 20
models were trained for each Y . The median RMSE is shown
by a black line for each Y . Interestingly, the variations due to
random initialization of the network are more important than
the variations due to the number of training years, making
the interpretation a bit uncertain. The performance of the ML
model nonetheless appears slightly impacted by the number
of training years: the median RMSE of the ML model de-
creases monotonously with the increasing number of train-
ing years, with a maximum of 55 W m−2 for Y = 1 and a
minimum of 52 W m−2 for Y = 5. For Y ≥ 3, however, the
improvement is negligible.

Importantly, the ML model performs significantly better
than CAMS, even with a single training year. One year of
data for 129 stations is a relatively large dataset; it is, there-
fore, not surprising that it suffices for the small neural net-
work used here (a MLP) to converge. However, it is notewor-
thy that the diversity of situations encountered with 1 year
and 129 stations is sufficient for the ML model to largely
outperform CAMS.

5.3.2 Impact of the number of training stations

We then consider the influence of the number of training sta-
tions on the ML model performance using training setup 3
(Sect. 4.2.3). Figure 9 shows the RMSE of the ML model for
the 100 test stations as a function of the number of training
stations N . As discussed in Sect. 4.2.3, we repeat the experi-
ment 20 times for each choice of N , with different randomly
chosen training stations at each iteration. For N = 129, as
there are only 129 candidates, the 20 iterations are done with
the same training stations. The variations in the RMSE for
N = 129 are thus only caused by the variations in the ran-
dom initialization of the weights between runs, discussed in
Appendix B.
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Figure 9. Test RMSE as a function of the numberN of stations used
for the training with 20 random picks of N among 129 (training
setup 3).

For N ≥ 40, the RMSE of the ML model remains signif-
icantly lower than that of CAMS, even though it increases
a bit on average for N ≤ 100. For N = 20, however, the
ML model performances deteriorate markedly: the RMSE of
the best-performing run is higher than for N ≥ 40, and the
RMSE of the worst-performing run largely exceeds that of
CAMS. We also notice that the RMSE variations between
runs are more important for N = 20. Put in perspective with
the results of Sect. 5.3.1, this suggests that the issue is not
the size of the training set, but the location of the training
stations.

5.3.3 Impact of the location of the training stations

To further investigate the impact of the relative location of
the training and test stations on the ML model’s performance,
we enforce a geographical separation between them (training
setup 4; Sect. 4.2.4)6. Table 5 shows the overall metrics for
the ML model and CAMS. The performance of the latter is
similar to the one described in Sect. 5.1, even though we use
different test stations. Contrastingly, the RMSE and SDE of
the ML model are much higher with this training setup than
they were with training setup 1 or 2 (with N ≥ 40). Whereas
the ML model outperformed CAMS with training setup 1, the
average performances of the two retrieval models are almost
equivalent here.

As in Sect. 5.1.3, it is interesting to analyze the perfor-
mances per station. Figure 10 compares the RMSE of the
ML model and CAMS for each station. We see that while
the two retrieval models have similar RMSE on average, the
distributions of the station-wise RMSE are very different.
The ML model’s RMSE is slightly lower for 82 of the 105
test stations, while CAMS performs somewhat better for 18
other stations. For three to five locations, however, the ML

6It should be noted that the test stations are not the same as
in training setup 1 and 2; the values of RMSE, MBE, SDE, and
ρpearson should thus not be compared with previous sections.

Table 5. Overall test metrics for CAMS and the ML model with
training setup 4 (computed over 411 733 samples).

ML model CAMS
(training setup 4)

RMSE (W m−2) 61.04 63.49
MBE (W m−2) −6.69 10.25
SDE (W m−2) 60.68 62.66
ρpearson 0.969 0.967

Figure 10. Comparison of RMSE of the ML model (training
setup 4) and CAMS for each station. The green band indicates the
stations for which the ML model outperforms CAMS; the percent-
age of such stations is indicated in bold green.

model’s RMSE is dramatically higher than that of CAMS: in
the worst case, RMSEML model is more than 2 times higher
than RMSECAMS.

5.3.4 Impact of albedo

We have shown that, with geographical separation between
training and testing sets (training setup 4), the ML model
performs reasonably well on average but is susceptible to
providing highly inaccurate estimations in some locations.
To try and understand what causes highly inaccurate estima-
tions, the geographical distribution of test RMSE skill is rep-
resented in Fig. 11. Interestingly, the distance to the train-
ing set does not have a clear impact on the performance of
the ML model. Rather, most of the stations for which the
ML model is largely outperformed by CAMS (i.e., with high
negative skill scores) are located on the Mediterranean or At-
lantic coasts. Ocean and continental tiles have different albe-
dos, which significantly impacts the radiance observed by the
satellite (Blanc et al., 2014). Physical retrieval models ac-
count for that difference, but the ML model does not have
direct access to that information; this could explain its poor
performance in seaside stations.
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Figure 11. Geographical distribution of the RMSE skill score of
the ML model in training setup 4. Positive values show the stations
where the ML model outperforms CAMS.

To test that hypothesis, Fig. 12b shows the RMSE skill
score of each test station as a function of its mean albedo.
We observe that while a negative skill score does not neces-
sarily imply a low albedo, a low albedo (lower than 0.1) sys-
tematically comes with a negative skill score. The existence
of a positive relationship between albedo and RMSE skill
score is further supported by a statistically significant Spear-
man correlation coefficient of 0.348 between the two values.
Figure 12a shows the same plot but for training setup 1. We
see that in this case, low albedo does not come with negative
RMSE skill scores. This absence of a relationship – or at least
its lower strength compared to training setup 4 – is confirmed
by a statistically non-significant (p = 0.07) Spearman corre-
lation coefficient of 0.184 between the RMSE skill score and
the albedo.

To understand the difference in behavior between the two
training setups, it is useful to look at the distribution of the
albedo for training stations in either case; the mean albe-
dos of training stations are hence shown on the y = 0 axis
in Fig. 12. In training setup 1, several training stations have
a mean albedo between 0.025 and 0.1, while in training
setup 4, all training stations’ albedos are greater than 0.1.
This suggests that the RMSE skill score is not directly influ-
enced by the test station albedo, but rather by the distance be-
tween the test station albedo and the training station albedo.
In other words, the ML model is not able to generalize to
stations with an albedo it has not seen during training.

Figure 12. RMSE skill score as a function of station mean albedo
for training setup 1 (a) and training setup 4 (b). The distribution of
the training stations’ albedo is also shown on the y = 0 axis.

6 Discussions and conclusions

6.1 Great potential with a dense training set despite
some caveats

Machine learning for satellite retrieval has great potential.
Provided we have the right data, performance improvement
over traditional approaches can be important. We indeed
showed that when trained with a network of measurement
stations spread evenly across France, a simple neural network
has significantly lower error metrics and better overall repre-
sentativity than CAMS, a state-of-the-art physical retrieval
model. Because we ensured that we tested the ability of the
model to extrapolate in space and time, that means that such
a model could be used operationally and, on average, provide
better estimations than CAMS.

We found, however, that the neural network is not able to
properly account for the role of aerosols in clear-sky esti-
mations, whereas the underlying CAMS model – as well as
other physical models – can. This only slightly impacts the
performance of the ML model in France, where the effect of
AOD on SSI is relatively small, but in other regions – for ex-
ample desertic zones (Eissa et al., 2015) – the ML model may
underperform. Perhaps more critically, this lack of represen-
tativity of physical phenomena undermines the confidence in
the model.
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6.2 Strong dependence on the training set

Our results show that the model’s performance is very de-
pendent on the training set. First, we found that even a sim-
ple network – with only one hidden layer – requires a rela-
tively large number of training stations to outperform CAMS.
In many regions, good-quality ground measurements are too
scarce for this model to be useful. Therefore, while the ML
model tested in this work could easily be adapted to be used
operationally in France, it is unlikely that it can be extended
to most other regions of the globe.

We further demonstrated that rather than the number of
training stations, their location relative to the test sites is cru-
cial. Our analysis showed that, in certain configurations, the
neural network can underperform even at stations located
close to the training set. We know that neural networks of-
ten have difficulty making predictions out of the training do-
main; the challenge here is that determining which location
is out of the training domain is not straightforward. Whether
two locations are similar in the eye of the network does not
depend directly on the geographical distance between these
locations. Our analysis suggests that its albedo may play a
role in the ability of the neural network to generalize to a
location, but it is likely not the only cause. Understanding
the factors that describe the similarity between two locations
should be an important aspect of future research.

6.3 Perspectives

Third-generation geostationary satellites are already op-
erational above the United States (GOES-R) and Japan
(Himawari-8), while Meteosat Third Generation will soon
cover Europe and Africa. These new meteorological satel-
lites have better temporal, spatial, and spectral resolutions
than their second-generation counterparts. They thus produce
a significantly larger amount of data. To treat these data op-
erationally and fully benefit from the additional information,
deep learning certainly has a critical role to play.

However, the solar research community needs to address
the limitations of purely statistical models, as revealed in
this paper. We believe that the answer resides at least partly
in hybrid models, mixing physical modeling and statistical
learning. Variations in hybrid models include the use of ma-
chine learning models trained on datasets derived from phys-
ical simulations. These models can serve as proxies for parts
of existing physical models and can be further fine-tuned on
real datasets via transfer learning. This approach balances
the incorporation of underlying physical principles with con-
siderations of real-world complexities and uncertainties. An-
other approach is to design machine learning models with
physical constraints incorporated as regularization, such as
conservation laws and material properties. This can ensure
that the model stays within the realm of physical possibility
while also incorporating data-driven components. A third op-
tion could be the direct incorporation of physical equations

into the loss function of the machine learning model. This
approach optimizes the model’s predictions to be both data-
driven and physically consistent. During the training process,
the model is guided by both observed data and underlying
physical laws.

A better understanding of the generalization capabilities
of the models is also critical. We see in this paper that the
albedo may play a role, but more research is needed to un-
derstand the extent to which and the conditions under which
we can expect the model to generalize well. Data segmenta-
tion algorithms could be useful to optimize the construction
of training datasets and to identify locations where the re-
trieval model may not be trusted.

The investigation of more sophisticated neural network ar-
chitectures is also of interest and would become particularly
relevant when dealing with larger input datasets. Architec-
tures such as convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), or spatio-temporal transform-
ers hold promise, especially when a broader context in both
time and space is required. However, it is important to recog-
nize that such complexity may raise the risk of generalization
issues, as more complex models are generally more likely to
overfit.

Finally, we must remember that machine learning models
are often opaque, making it difficult to understand how they
make their predictions. This means that it is unlikely, at least
in the short term, that we will be able to derive new physics
from these models. If we focus only on machine learning,
we may limit our understanding of the world around us. We,
therefore, believe that the research community should con-
tinue to invest in the development and improvement of phys-
ical retrieval models.

Appendix A: Quality check

The quality check procedure applied to Météo-France ground
measurements is described in detail in Verbois et al. (2023).
In summary, it consists of the following checks.

1. Each value is tested for extremely rare limits (ERLs)
as recommended by Long and Dutton (2010): −2<
GHI< 1.2Isccos1.2(θz)+50 W m−2, where Isc is the so-
lar constant adjusted for Earth–sun distance, and θz is
the solar zenith angle.

2. A digital model of the horizon (Blanc et al., 2011b) is
used to exclude every instance for which the sun is un-
der the horizon.

3. A visual check for the spatial coherence of kc is per-
formed.

4. A visual check for shadows is performed in the solar
azimuth–solar elevation plane.

Out of the original 286 stations available, 46 are fully ex-
cluded by QC.
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Appendix B: Performance variations due to random
initialization

Figure B1 shows the RMSE, MBE, and SDE of 20 models
run with exactly the same setup, described in Sect. 3.3, but
a different randomly chosen weight initialization. SDE and
RMSE vary between 50–52 and 50–53 W m−2, respectively;
this is relatively small compared to CAMS, which has an
RMSE of 64.9 W m−2 and an SDE of 64 W m−2. The MBE,
on the other hand, varies between 0 and 9 W m−2. That is
more important compared to CAMS MBE (ca. 12 W m−2),
but still relatively small compared to the average SSI in
France.

Figure B1. Target diagram showing the RMSE, MBE, and SDE of
20 models run with exactly the same setup, but a different weight
initialization.

Data availability. The following data sources are accessible online
for free.

– CAMS estimates of solar surface irradiances and clear-sky
irradiances can be downloaded from the SoDa web-
site (http://www.soda-pro.com/web-services/radiation/
cams-radiation-service, login required, last access:
12 September 2023; Copernicus Atmospheric Monitor-
ing Service, 2020) or with the following pvlib function:
https://pvlib-python.readthedocs.io/en/stable/reference/
generated/pvlib.iotools.get_cams.html (Holmgren et al.,
2018).

– MSG data are available on the EUMETSAT website:
https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:
HRSEVIRI (EUMETSAT, 2009).

– Ground irradiance data for the Carpentras sta-
tion can be downloaded from the BSRN website:
https://bsrn.awi.de (last access: 5 September 2023;
https://doi.org/10.1594/PANGAEA.896713, Brunier, 2018).

Météo-France data were generously provided by Météo-France for
research purposes. More information can be found on the Météo-

France public data website: https://donneespubliques.meteofrance.
fr (last access: 5 September 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-16-4165-2023-supplement.
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