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Abstract. Lower-cost air pollution sensors can fill critical air
quality data gaps in India, which experiences very high fine
particulate matter (PM2.5) air pollution but has sparse regu-
latory air monitoring. Challenges for low-cost PM2.5 sensors
in India include high-aerosol mass concentrations and pro-
nounced regional and seasonal gradients in aerosol compo-
sition. Here, we report on a detailed long-time performance
evaluation of a popular sensor, the Purple Air PA-II, at multi-
ple sites in India. We established three distinct sites in In-
dia across land use categories and population density ex-
tremes (in urban Delhi and rural Hamirpur in north India and
urban Bengaluru in south India), where we collocated the
PA-II model with reference beta attenuation monitors. We
evaluated the performance of uncalibrated sensor data, and
then developed, optimized, and evaluated calibration mod-
els using a comprehensive feature selection process with a
view to reproducibility in the Indian context. We assessed
the seasonal and spatial transferability of sensor calibration
schemes, which is especially important in India because of
the paucity of reference instrumentation. Without calibration,
the PA-II was moderately correlated with the reference sig-

nal (R2
= 0.55–0.74) but was inaccurate (NRMSE≥ 40 %).

Relative to uncalibrated data, parsimonious annual calibra-
tion models improved the PurpleAir (PA) model performance
at all sites (cross-validated NRMSE 20 %–30 %; R2

= 0.82–
0.95), and greatly reduced seasonal and diurnal biases. Be-
cause aerosol properties and meteorology vary regionally, the
form of these long-term models differed among our sites,
suggesting that local calibrations are desirable when possi-
ble. Using a moving-window calibration, we found that using
seasonally specific information improves performance rela-
tive to a static annual calibration model, while a short-term
calibration model generally does not transfer reliably to other
seasons. Overall, we find that the PA-II model can provide
reliable PM2.5 data with better than ±25 % precision and ac-
curacy when paired with a rigorous calibration scheme that
accounts for seasonality and local aerosol composition.
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1 Introduction

Exposure to fine particulate matter, or PM2.5 (particles with
aerodynamic diameter≤ 2.5 µm), is a leading cause of ad-
verse health outcomes, including premature death (Lepeule
et al., 2012; GBD 2019 Diseases and Injuries Collaborators,
2020). India experiences high mass concentrations in both
its population-dense megacities and its rural areas, resulting
in the largest number of deaths (about 0.98 million annual
deaths and about 1.5-year reduction in life expectancy) at-
tributable to ambient PM2.5 worldwide (Apte et al., 2018; In-
dia State-Level Disease Burden Initiative Air Pollution Col-
laborators, 2021). In particular, New Delhi, the surround-
ing Delhi National Capital Region, and the broader Indo-
Gangetic Plain of north India occasionally experience hourly
concentrations exceeding 1000 µg m−3 (Gani et al., 2019),
resulting in ill health effects even from short-term exposure
(Gupta et al., 2021; Krishna et al., 2021). South India gen-
erally experiences lower PM2.5 concentrations but still has
population-weighted annual mass concentrations that exceed
World Health Organization (WHO) recommendations by a
large margin (Apte and Pant, 2019). As relatively fewer pol-
luted megacities in south India continue to rapidly grow, the
challenge of ambient PM2.5 will also increase (Guttikunda
et al., 2019; Ramachandra et al., 2020).

Given the high exposure burden and complexity of PM2.5
throughout India, there is a need to increase understanding of
the spatiotemporal patterns of air pollution. Traditional regu-
latory monitors are expensive to install and maintain, as they
require specialized teams and consistent power to maintain
networks (Brauer et al., 2019). As a result, there is a dearth
of monitors in India (Brauer et al., 2019; Martin et al., 2019).
Although satellite remote sensing can fill in the spatial gap,
it lacks high-quality temporal coverage and relies on ground-
based monitoring for calibration algorithms (Hammer et al.,
2020), which can, as is the case in India, result in biased es-
timates of surface PM2.5 (Dey et al., 2020).

Starting in around 2010, advancements in miniaturized
electronics and laser technology have resulted in the growth
of low-cost (<USD 500) PM2.5 sensor technologies. These
light-scattering monitors are popular within the research
community and among citizen scientists. The company Pur-
pleAir (PA) has been especially successful in developing
(1) a USD 200–280 low-cost sensor that utilizes a commer-
cially available, light-scattering sensor developed by Plan-
tower (PMS5003); and (2) a platform for individuals and or-
ganizations to share data from indoor and outdoor PurpleAir
low-cost sensors.

Light-scattering low-cost sensors require extensive data
quality control and careful selection of calibration models
to offer measurements comparable to reference quality in-
struments (Hagan and Kroll, 2020; Hagler et al., 2018). Op-
tical sensors inaccurately estimate mass from aerosol scat-
tering properties, since PM2.5 is a mixture of particle sizes
and chemical compositions, thus resulting in spatiotempo-

ral variability in optical properties (Hagan and Kroll, 2020;
Levy Zamora et al., 2019; Zou et al., 2021). The roles of rel-
ative humidity, mass concentration range, sensor aging, and
diverse source profiles have been extensively studied in lab-
oratories and field conditions in the USA, Australia, and Eu-
rope. Lab studies report that the Plantower sensors do not
adequately characterize fine particles above 0.8 µm (Kuula
et al., 2020), deteriorate under extreme mass concentrations
(Mehadi et al., 2020; Tryner et al., 2020), and are vulnerable
to overestimation at RH greater than 60 % (Jayaratne et al.,
2018).

Field studies in low to moderate pollution environments
show that PA units can be calibrated to reference instruments
using simple empirical regression techniques with environ-
mental variables (Barkjohn et al., 2021; Malings et al., 2019;
Zheng et al., 2018). Models are often specific to a season and
location; however, Barkjohn et al. (2021) demonstrated that
a continental USA calibration equation could be effectively
deployed for daily data.

Recently there has been increased interest in understand-
ing low-cost sensor performance in the Global South to fill
major monitoring gaps (Bai et al., 2020; Jha et al., 2021;
Malyan et al., 2023; McFarlane et al., 2021; Puttaswamy
et al., 2022; Sreekanth et al., 2022; Zheng et al., 2018, 2019).
In north India, Zheng et al. (2018) deployed Plantower mod-
els in Kanpur, Uttar Pradesh, for 90 d and found that multilin-
ear regression improved Plantower performance, albeit with
significant error for hourly data. In south India, Puttaswamy
et al. (2022) calibrated Plantower units for 68 d in Chennai
and found a multilinear regression approach that reduced un-
certainty to within 15 % and 18 % for PM2.5 and PM10, re-
spectively. Low-cost sensor studies in India report the impor-
tance of climate and emissions variability on aerosol char-
acteristics and advise future deployments to test calibration
algorithms across longer timelines (Malyan et al., 2023; Put-
taswamy et al., 2022; Sreekanth et al., 2022; Zheng et al.,
2018, 2019).

In this study, we deployed and evaluated PurpleAir PA-
II sensors in Delhi, Hamirpur, and Bengaluru by collocating
with regulatory-grade instruments for 335, 154, and 312 d,
respectively. We built hourly local calibration models us-
ing multilinear regression. With proper data quality con-
straints, a relatively simple calibration model can produce
high-accuracy and low-bias data. Despite this success, model
performance degrades when attempting to transfer a model
trained in each environment to data collected in a dissimi-
lar environment. We found a more pronounced reduction in
performance when attempting to transfer a model trained in
one season to another season, as aerosol characteristics can
shift rapidly – even at the same site. Our work demonstrates
that low-cost sensors are a viable option for measuring spa-
tiotemporal trends throughout India, but calibration models
are vulnerable to the local and seasonal effects on aerosol
properties.
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2 Methods

2.1 Low-cost sensors

The sensor used in this study was the PurpleAir PA-II. The
PA-II is marketed as PurpleAir’s outdoor aerosol monitor and
is composed of a weatherproof plastic shell containing two
Plantower PMS5003 sensors (labeled as A and B channels),
an Adafruit model BME280 atmospheric sensor (tempera-
ture, RH, and pressure), and a wireless transmitter module
to upload data via Wi-Fi. The PMS5003 reports the particu-
late matter (PM) mass concentrations (µg m−3) of all parti-
cles with an aerodynamic diameter smaller than 1, 2.5, and
10 µm, as well as particle number concentrations (dL−1) of
all particles larger than 0.3, 0.5, 1.0, 2.5, 5, and 10 µm (Zhou
and Zheng, 2016).

PurpleAir reports mass concentrations from PA-II mod-
els in three forms, which are referred to as CF1, ATM, and
ALT. CF1 (correction factor 1) is the “uncorrected” data
from the Plantower. The CF1 data have been demonstrated to
strongly correlate with collocated integrating nephelometer
data (Ouimette et al., 2021). ATM or atmospheric-corrected
data use a piecewise function to attempt to account for over-
estimation. Figure S1 in the Supplement illustrates this func-
tion across the full dynamic range for the data collected in
Delhi. Between 0 and 20 µg m−3, the CF1 and ATM data are
1 : 1, between 20 and 100 µg m−3 the ATM to CF1 ratio tran-
sitions from 1 : 1 to approximately 0.66 : 1, and at greater
than 100 µg m−3 the ATM to CF1 ratio is stable at 0.66 : 1.
Although it is reasonable to hypothesize that the ATM data
may better represent exposure ambient PM2.5 than the CF1
data, there is no transparent reasoning in the user manual for
this design choice (Wallace et al., 2021; Zhou and Zheng,
2016). Finally, the ALT (alternative data reconstruction) data
represent a reconstruction of the PM2.5 data from the par-
ticle number data reported by the Plantower. Briefly, the
ALT method adds all the particle counts from bins smaller
than 2.5 µm and calculates the particle volume concentra-
tion, assuming spherical particles. The particle volume con-
centration is then multiplied by the unit density (1 g cm−3)
to estimate the PM2.5 mass concentration. Wallace et al.
(2021, 2020) used these data to develop calibration relation-
ships, reporting the ALT data as being more transparent than
using the CF1 or ATM data. However, the particle number
data are known not to reflect the actual ambient size distribu-
tion, since the Plantower PMS5003 is not a particle sizing in-
strument but rather reflects a modeled size distribution using
assumptions for relationships between size bins that are not
always accurate for the atmospheric conditions (Ouimette
et al., 2021; Hagan and Kroll, 2020; He et al., 2020; Kuula
et al., 2020). Figure S1 shows that the ALT to CF1 ratio is ap-
proximately 0.15 : 1. Although the CF1 and ATM data have
dominated most calibration efforts (Malyan et al., 2023; Put-
taswamy et al., 2022; Barkjohn et al., 2021; McFarlane et al.,
2021; Magi et al., 2020; Malings et al., 2019), the usage of

ALT data continues to propagate in peer-reviewed literature
(Wallace and Zhao, 2023; Wallace and Ott, 2023). Therefore
we use CF1, ATM, and ALT in our study to work towards
harmonizing a calibration approach for PA-II in India.

2.2 Regulatory-grade monitors

We compared our PurpleAir measurements against U.S. En-
vironmental Protection Agency (EPA) Federal Equivalent
Method (FEM)-certified continuous monitors. Our selected
FEMs are Met One Instruments, Inc., BAM (beta attenuation
mass monitor) models 1020 and 1022, which are widely used
devices (Hall and Gilliam, 2016) that use the beta wave atten-
uation technique to determine particle mass based on a sam-
ple deposited on a filter tape. The FEM certification applies
to 24 h averaged data, while the BAM models can provide
measurements at hourly or higher time resolution. We used
the 1 h block as our highest level of temporal resolution, sim-
ilar to other low-cost sensor calibration studies using beta at-
tenuation reference monitors in the USA and India (Johnson
et al., 2018; Magi et al., 2020; Sreekanth et al., 2022; Zheng
et al., 2018).

At the Delhi site, we used the BAM 1020 model; data from
this monitor are public and maintained by the U.S. Depart-
ment of State’s AirNow service (San Martini et al., 2015).
The Hamirpur and Bengaluru sites utilized the BAM 1022
model managed in collaboration with field teams from the
Indo-Gangetic Plains Centre for Air Research and Education
and the Center for Study of Science, Technology, and Pol-
icy, who manually retrieved data at regular intervals. Staff at
each site followed the manufacturer’s recommended opera-
tion and maintenance, which resulted in downtime for each
dataset.

2.3 Deployment sites

Three separate long-term measurement efforts were con-
ducted to evaluate the PA-II performance under different
meteorological and aerosol composition regimes. Each cam-
paign was scheduled to last approximately 1 year, enabling
a comparison of a range of mass loadings and the effect of
season. We use the definition of four seasons from the Indian
Meteorological Department (IMD), namely winter (January
and February), pre-monsoon (March, April, and May), mon-
soon (June, July, August, and September), and post-monsoon
(October, November, and December; Dubey et al., 2021). A
reference map of the collocation sites is presented in Fig. S2.

2.3.1 U.S. Embassy, New Delhi, National Capital
Territory of Delhi, India

The Indian National Capital Region, including the capital
city of New Delhi (elevation of about 230 m), is the second-
largest megacity in the world, with a metro-area population
of around 28.5 million people. It has also been called the
most polluted megacity in the world, experiencing annual av-
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erage PM2.5 concentrations exceeding 120 µg m−3 (Fig. S3;
Gani et al., 2019). The National Capital Region, along with
the rest of north India experiences dynamic meteorology,
with cold and wet winters, warmer and drier post-monsoons
and pre-monsoons, and hot and wet monsoons (Fig. S4).

Our measurement site was the U.S. Embassy (28.5975◦ N,
77.1878◦ E) in the Chanakyapuri neighborhood of central
New Delhi. The embassy is located within the city’s spa-
cious diplomatic enclave, which has abundant green space,
relatively low traffic flows, and minimal local industrial
emissions. We collocated 2 PA-II units with the embassy
BAM from July 2018–April 2020. During the course of our
campaign, Delhi experienced extreme PM2.5 concentrations
during the post-monsoon agricultural burning seasons and
characteristic winter inversion layers, with a relatively low-
pollution monsoon season, consistent with expected seasonal
trends (Guttikunda and Gurjar, 2012).

2.3.2 Indo-Gangetic Plains Centre for Atmospheric
Research and Education, Hamirpur, Uttar
Pradesh, India

We established a rural PM2.5 monitoring site in the Hamir-
pur district, located within north India, in India’s most popu-
lous state of Uttar Pradesh (UP). Our monitoring site was es-
tablished in partnership with the Indo-Gangetic Plains Cen-
tre for Atmospheric Research and Education. This remote,
solar-powered rural monitoring site is situated on a rooftop
(20 m above ground level) of a solitary building (25.9552◦ N,
80.1522◦ E) located about 800 m outside Ruri Para village in
Hamirpur district, Uttar Pradesh. The immediate surround-
ings within 500 m of the site are a mixture of agricultural
fields, ravines, and scrubland forests. The closest major town,
Hamirpur (population about 35 000) is approximately 30 km
away from the site, and the closest large city, Kanpur (pop-
ulation about 3 million) is 80 km away. Meteorological pat-
terns are similar to Delhi (Fig. S5). We collocated three PA-II
sensors with a BAM 1022 model on the Indo-Gangetic Plains
Centre for Atmospheric Research and Education rooftop be-
ginning in January 2020. Here, we report on data for the year
from January 2020 to January 2021.

Although campaign-median PM2.5 concentrations at the
site (Table 1) are high in the global context, this site’s re-
mote location outside of both cities and villages means that
the concentrations do not reach the same peaks as in Delhi.
However, there are still many local sources of aerosol air pol-
lution in rural north India, such as biomass burning for cook-
ing and heating (Rooney et al., 2019). The Hamirpur dataset
is additionally differentiated from the Delhi dataset in that
most of the data were collected during the first year of the
COVID-19 pandemic, which was observed to change pat-
terns of emissions throughout India (Patel et al., 2021; Singh
et al., 2020).

Table 1. Summary of campaign measurements (quality assured
according to methods outlined in Sect. 2.4 and summarized in
Sect. 3.1–3.3), including 10th percentile (p10), 25th percentile
(p25), 50th percentile (p50), 75th percentile (p75), and 90th per-
centile (p90) for the campaign periods (Delhi from July 2018–
April 2020; Hamirpur from January 2020–January 2021; Bengaluru
from June 2019–August 2020).

Delhi Hamirpur Bengaluru

BAM 1020/1022 PM2.5 (µg m−3)

p10 23.0 10.6 10.8
p25 39.0 17.9 15.3
p50 71.0 34.3 21.8
p75 142.0 67.4 30.8
p90 237.0 125.4 42.1

PA-II CF1 PM2.5 (µg m−3)

p10 31.0 18.1 12.7
p25 52.2 31.3 18.1
p50 117.0 63.4 31.0
p75 243.0 124.3 52.9
p90 375.0 218.0 74.5

PA-II ATM PM2.5 (µg m−3)

p10 30.4 18.1 12.7
p25 43.0 30.2 18.1
p50 83.8 47.0 30.0
p75 180.0 82.7 42.4
p90 285.0 146.7 51.3

PA-II RH (%)

p10 20.6 29.8 34.2
p25 29.6 44.1 48.0
p50 41.0 62.9 62.9
p75 48.5 77.4 73.8
p90 53.1 85.7 78.6

PA-II temperature (◦C)

p10 18.7 17.2 23.7
p25 22.8 24.5 25.0
p50 29.2 30.6 27.7
p75 35.1 35.3 32.3
p90 39.0 40.3 37.1

2.3.3 Center for Study of Science, Technology, and
Policy, Bengaluru, Karnataka, India

Bengaluru, in south India, is the third-largest city in India,
with a population of 8.4 million, and the capital of Karnataka.
South India experiences different meteorological conditions
and considerably lower air pollution burdens than north In-
dia (Apte and Pant, 2019; Dubey et al., 2021) (Figs. S6, S7).
Although continuous PM2.5 regulatory monitors are sparse
in Bengaluru, the current network estimates a citywide an-
nual average of 30 µg m−3. While the annual average is low
in comparison to Delhi and the Indian National Ambient Air
Quality Standard of 40 µg m−3, it exceeds the WHO annual
guideline value of 5 µg m−3, and hourly winter concentra-
tions often exceed 50 µg m−3. Consequently, Bengaluru has
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been designated for air quality improvement under the In-
dian National Clean Air Programme (Ganguly et al., 2020).
In Bengaluru, emissions are dominated by traffic and dust re-
suspension (Guttikunda et al., 2019). Compared to Delhi and
Hamirpur, winters are milder, and the climate is more con-
sistent year-round in Bengaluru (Fig. S6). The winter and
pre-monsoon seasons are distinguished from the monsoon
and post-monsoon seasons primarily by RH and precipita-
tion. Monsoon and post-monsoon are cloudy and rainy, with
RH typically exceeding 70 % all day and possibly remain-
ing above 90 % before sunrise. Winter and pre-monsoon RH
are more moderate, with hourly averages fluctuating between
40 % and 80 %.

Our collocation site was the Center for Study of Science,
Technology, and Policy office in northern Bengaluru. We
maintained a BAM 1022 model on the rooftop of a three-
story office building (13.0485◦ N, 77.5795◦ E). Although the
site is located near a highway (Outer Ring Road), the annual
diurnal patterns matched the regional signature from the av-
erage of the regulatory monitors. Furthermore, the area sur-
rounding the site is mostly office buildings, with some res-
idential housing. There are no large industrial sites or obvi-
ous large point sources in the neighborhood, other than occa-
sional small solid-waste fires. It is likely that the Bengaluru
BAM is thus mostly influenced by urban background and re-
gional aerosol conditions. We set up two PA-II sensors from
June 2019–July 2020, during which Bengaluru experienced
hourly spikes above 100 µg m−3 during the festival of Diwali
and dynamic changes in traffic patterns due to the COVID-19
pandemic and lockdowns.

2.4 Quality assurance

2.4.1 PurpleAir PA-II PM2.5

Many light-scattering PM2.5 sensors, including the PA-II, can
report unrealistic measurements, lack accuracy (especially at
high mass loadings), and are only recommended for opera-
tion within a specific range. To minimize these effects, we
removed unreasonably small and large points (outside the
range of 5–500 µg m−3), averaged each individual Plantower
unit by the hour, averaged across all units for a given site, re-
moved imprecise points, and calibrated the resulting clean
dataset. We conducted quality assurance (QA) procedures
separately for each sensor correction factor (CF1, ATM, and
ALT).

We removed all raw PM2.5 data points outside of the range
5–500 µg m−3 (Kelly et al., 2017; Magi et al., 2020; Zhou
and Zheng, 2016). Analyses of PurpleAir data typically re-
port the percent error between channels A and B for a given
unit to remove imprecise points, thus treating them as joint
measurements and all other nodes as independent (Barkjohn
et al., 2021). However, at our collocation sites, there was al-
ways more than one PA-II, so we treated all Plantower sen-
sors as replicate measurements and averaged them together

as a single data point. For instance, if we had three PA-IIs at
a site, then we averaged the six values together – two from
each unit – to estimate a single data point. We established
80 % completeness criteria (or 24 2 min data points) for each
hourly average and at least two valid Plantower hourly aver-
ages for the resulting site PA data point. Imprecise data points
were removed using the coefficient of variation (CV), the
quotient of the standard deviation, and the mean of the col-
located Plantower sensors for a given 2 min raw sample. CV
values greater than 0.2 were removed, which is broadly con-
sistent with approaches used by other studies (Badura et al.,
2018; Crilley et al., 2018).

2.4.2 PurpleAir PA-II temperature and relative
humidity

The Adafruit model BME280 is considered to be a reliable
and accurate low-cost environmental sensor (Araújo et al.,
2020). There are occasional incidents of sensor miscommu-
nication with the microprocessor, leading to unrealistic val-
ues, which we filtered out by restricting RH to 0 %–100 %
and temperature to−10 to 50 ◦C. We computed the dew point
temperature from the measured temperature and RH, follow-
ing Malings et al. (2019).

2.4.3 Met One BAM 1020 and BAM 1022

The BAM instrument flags low-quality data with a specific
code to (1) potentially remove them from analyses and (2) di-
agnose underlying issues, which can include power loss and
pump errors. The default concentration range of the BAM
1020 and BAM 1022 models is 3–1000 µg m−3. Unlike the
PA-II, the hourly limit of detection of the BAM 1022 and
BAM 1020 is well constrained to 2.4 µg m−3 (Magi et al.,
2020), which is considerably below the typical concentra-
tions in our dataset. Like other linear regression studies us-
ing Met One BAM models and Plantower nephelometers, we
utilized an ordinary least squares approach (Barkjohn et al.,
2021; Malings et al., 2019; McFarlane et al., 2021; Mehadi
et al., 2020; Wallace et al., 2021; Zheng et al., 2018).

2.5 Calibration regression

Since nephelometers and other optical-based sensors are
known to provide biased measurements of PM2.5 measure-
ments relative to reference-grade instruments, in large part
due to hygroscopic growth, calibration procedures attempt
to account for bias due to RH, index of refraction, and mis-
characterizing the particle size distribution. One approach is
to leverage the environmental data (RH, temperature, etc.)
from low-cost sensor nodes to develop the best-fitting model
without imposing any a priori assumptions about aerosol
growth or chemistry (Barkjohn et al., 2021; McFarlane et al.,
2021; Malings et al., 2019; Wallace et al., 2021; Zheng
et al., 2018). We label this approach as “data-driven”. From
decades of work with optical instruments, corrections have
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been developed by assigning non-linear growth terms as
a function of RH and known PM2.5 chemical characteris-
tics (Malings et al., 2019; Chakrabarti et al., 2004). In our
work, we label this approach as “theory-driven”, since it at-
tempts to fuse the best-fitting function form from theory with
the best-fitting regression coefficients. Although the theory-
driven model should produce the most transferable models,
since theory should apply in all environments, the underlying
data processing of the Plantower – a truncated nephelome-
ter (Ouimette et al., 2021) – may result in a bias structure
that is better explained by a linear RH correction than a non-
linear correction for the dynamic range of RH under real-
world conditions.

2.5.1 Data-driven model selection

To ensure that our work is easily reproducible within India,
we relied only upon variables reported or calculable by the
PA-II as independent variables, namely PM, RH, tempera-
ture, and dew point. For our PA-II PM2.5 variable, we evalu-
ated CF1, ATM, and ALT values. We evaluated all regression
models using ordinary least squares, with the BAM PM2.5 as
the dependent variable and our candidate parameters as inde-
pendent variables. To iterate across all possible arrangements
of predictors – including additive terms, interaction terms,
and polynomial terms up to the third order – we implemented
sequential feature selection (SFS), using the Python package
scikit-learn 0.24.2. SFS uses a “greedy” approach to con-
verge on the best-performing model for a user-defined num-
ber of parameters (Raschka and Mirjalili, 2019; James et al.,
2013; Ferri et al., 1994). For example, if a user wanted a two-
parameter model from a set of 10 features, then SFS would
iteratively compare 90 models (i.e., the set of all possible
two-parameter feature permutations), using a robust regres-
sion metric (such as the adjusted R2 or Bayesian information
criterion, BIC). In our approach, we first use SFS to define
the best-performing n-parameter model, starting with all pos-
sible parameters (n= 34). We then compare the adjusted R2

across best-performing n-parameter models to measure the
impact of the model complexity. If increasing the parameters
results in only marginal improvements (1R2

≈ 0.01), then it
is unnecessary to use those additional features. The overall
most robust model, therefore, reflects both the best possible
selection of features and the feature parsimony.

2.5.2 Theory-driven model selection

From the κ-Köhler theory, we expect wet PM2.5 scattering
to increase exponentially with increasing RH, resulting in
strongly non-linear dynamics. Therefore, we applied a cal-
ibration function relying on empirically fitted coefficients
from the training data, with a non-linear RH term to capture
the expected trends from the theory. Studies have attempted
to apply a non-linear RH term for light scattering low-cost
sensors, with results similar to or less accurate than an ad-

ditive term (Chakrabarti et al., 2004; Malings et al., 2019;
Tryner et al., 2020; Zheng et al., 2018). Given the difference
in emission sources, size distribution, mass loadings, and me-
teorology, we decided to include a non-linear RH term, using
the following form in Eq. (1).

C =
α×P

1+β RH2

1−RH

, (1)

where α and β represent the regression coefficients to be fit-
ted via non-linear least squares, P is the PurpleAir signal
(ATM, CF1, or ALT), RH is the unitless relative humidity
scaled from 0 to 1, and C represents the corrected PM2.5.

2.5.3 Cross-validation

To evaluate our calibration models, we sought to design an
appropriate cross-validation scheme that would permit a bal-
anced evaluation of model performance among all seasons.
A simple test–train split would likely over-represent seasons
with more measurements. We thus performed a stratified k-
fold cross-validation, in which each fold contains equal rep-
resentation from each of the four seasons; we evaluated each
model by leaving one fold out in subsequent iterations.

2.5.4 Temporal sensitivity

As a point of contrast with the seasonally balanced calibra-
tion described above, we performed a data experiment to
investigate the temporal stability of a hypothetical shorter-
term calibration. This exercise was motivated by the com-
mon practice in many low-cost sensor deployments that per-
form a short-term initial calibration before deploying sen-
sors in the field and then, if the low-cost sensors are avail-
able, perform another short post-study collocation. Previ-
ously, Levy Zamora et al. (2023) identified diminishing re-
turns in improvements to calibration regressions after about 4
weeks of collocation in Baltimore, USA, if that period encap-
sulated a representative range of PM2.5 and RH conditions.
Here we build on this work by seeking to identify which 4-
week period is ideal at our sites in India, since annual me-
dian PM2.5 concentrations at the Delhi and Hamirpur sites
are about 10× higher than Baltimore and reflect a different
mixture of chemical composition and aerosol properties. To
explore the potential bias from extrapolating a short-term cal-
ibration to a longer period, we fitted 4-week rolling ordinary
least squares models with the features selected via SFS and
compared the performance against all other 4-week periods
during our yearlong data collection to understand the impli-
cations of short-term calibration for other studies.

2.5.5 Performance metrics

As a guiding principle, we selected those models which bal-
anced parsimony with low error, low bias, and strong tempo-
ral consistency for presentation. We selected analytical meth-
ods and performance metrics to optimize these parameters
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and have designated these best-performing models as being
“robust”. Given the high concentrations and high variability
within and between sites, we report the normalized root mean
square error (NRMSE), allowing a comparison of model per-
formance across sites and time periods (Simon et al., 2012).
Additionally, we used the coefficient of determination (R2)
to evaluate model accuracy (Simon et al., 2012). For multi-
variate regression models, we used the adjusted R2 metric to
account for spurious correlations with increasing numbers of
independent variables. To penalize the overfit and minimize
the number of parameters, we used the Bayesian information
criterion, a metric for parsimonious feature selection (James
et al., 2013), when selecting between models during the SFS
process. Finally, we assessed the mean bias error (MBE) and
normalized mean bias error (NMBE) to characterize the av-
erage direction of error (Simon et al., 2012).

3 Results and discussion

3.1 Reference instrument data summary and quality
assurance

BAM and PA measurement summary statistics are summa-
rized in Table 1 for each site, with time series plots in
Figs. S8–S10. Overall, BAM monitors used at each site pro-
vided consistent performance, despite the challenging de-
ployment circumstances due to intermittent power loss; ex-
treme weather, including heavy rains; and a relatively broad
range of mass concentrations.

The U.S. State Department monitor in Delhi employs the
U.S. EPA’s data reduction process (San Martini et al., 2015;
Vaughn, 2023), resulting in a loss of about 3 % for the data
points, with a continuous gap from 10 February to 18 March
2019. For context, we compared this site’s time series with 39
other sites in Delhi’s regulatory network and found a R2 of
0.86 and a mean difference from the regulatory network aver-
age of−8.4 µg m−3, likely resulting from this monitor’s loca-
tion in one of the city’s cleanest neighborhoods. The diurnal
plot for the Delhi BAM in Fig. 1 reflects the roles of time-
varying emissions and boundary layer dynamics with peaks
during the morning traffic rush hour (07:00–10:00 LT) and
extremes in the winter exceeding an average of 200 µg m−3

during the night and early morning. During the monsoon,
we observed a relatively low daily dynamic range of 35–
50 µg m−3.

At both the site in Hamirpur and the site in Bengaluru,
we used the manufacturer’s specified data flags to perform
quality assurance, resulting in 6 % and 11 % data loss for the
Hamirpur site and Bengaluru site BAMs, respectively. Un-
like Delhi, the Bengaluru network is sparse (n= 40 in Delhi
versus n= 8 in Bengaluru), with relatively low data com-
pleteness from the official monitors. Diurnal plots in Fig. 1
show a morning peak, with maximum values typically at
08:00–09:00 LT for the collocation site BAM. The closest

regulatory monitor to the Hamirpur site is in Kanpur, more
than 50 km away, which is too far for meaningful compar-
isons of local conditions. Figure 1 shows similar trends to
the U.S. Embassy site in Delhi, with a morning peak between
07:00–09:00 LT in the morning, extreme mass concentrations
throughout the winter, and a low dynamic range during the
monsoon. There are no long continuous gaps from this moni-
tor; however, power outages were more frequent in Hamirpur
than the other two sites, since it is a rural site, leading to sig-
nificant data loss – about 14 % of the total campaign hours,
concentrated in the pre-monsoon period.

3.2 PA-II quality assurance

We evaluated the unit-to-unit precision of the PA-II sensors
by comparing the individual channels of all co-located Plan-
tower sensors at each site. Because each PA-II contains two
Plantower sensors, there were always a minimum of four
Plantower sensors operating at each monitoring site. The PA-
II PM2.5 channels were highly precise, with a strong correla-
tion (R2

≥ 0.9) both within nodes and between nodes across
the mass concentration distribution, which is consistent with
the existing literature (Kelly et al., 2017; Levy Zamora et al.,
2019; Sahu et al., 2020). Bland–Altman plots indicate high
precision across all sites and units, with mean differences
centered near 0 µg m−3 and most hourly points within≤ 20 %
(Figs. S11–S13). The between-Plantower R2 range for the
CF1 data across all collocated PA-II sensors was between
0.94–0.99 for the Delhi site, 0.92–0.99 for the Bengaluru
site, and 0.95–0.99 for the Hamirpur site (Fig. S14). Dis-
agreement was more pronounced at high concentrations (>
100 µg m−3) at which R2 ranges at each site dropped to
0.90–0.95, 0.83–0.88, and 0.92–0.94 for Delhi, Hamirpur,
and Bengaluru, respectively. Similar intra-sensor correlations
were found for the ATM and ALT data. Given the consis-
tent between-sensor hourly precision across sites (NRMSE
≤ 10 %), we can confidently state we expect a random error
of at most 10 %.

Applying the detection limit thresholds removed 1 % of
the total Delhi dataset and < 1 % from the Hamirpur and
Bengaluru datasets. The CV test removed about 15 % from
each site. RH and temperature microcontroller errors were
limited to about 4 % of the total data in Delhi and Hamirpur
and < 1 % in Bengaluru.

After removing the filtered data points, accounting for
power losses, and applying the completeness criteria for 1 h
hourly averages, the site-averaged PA data resulted in an
average coverage of 47 % (n= 9260 h), 63 % (n= 5958 h),
86 % (n= 8567 h) for Delhi, Hamirpur, and Bengaluru, re-
spectively, across CFs. Finally, the reference dataset was syn-
chronized with the PA dataset, and the combined dataset
coverage is 38 % (n= 7504), 39 % (n= 3744), and 75 %
(n= 7473) for Delhi, Hamirpur, and Bengaluru, respectively.
The smaller number of data points available for the Delhi and
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Figure 1. Diurnal profiles of mean hourly seasonal BAM (reference) and uncorrected PA PM2.5 signals for Delhi, Hamirpur, and Bengaluru,
using the CF1 channel. The number of valid hourly averages (quality assured according to methods outlined in Sect. 2.4 and summarized in
Sect. 3.1–3.3) in each dataset is presented at the bottom left of each subplot. Winter (January and February), pre-monsoon (March, April, and
May), monsoon (June, July, August, and September), and post-monsoon (October, November, and December) are shown. No single hour of
the day represents more than about 7 % of the total dataset shown in the bottom-left corner of each plot.

Hamirpur sites principally arose because of relatively more
downtime of the BAM instruments at these two locations.

3.3 PurpleAir data summary

Across sites, the PA-II captured diurnal and seasonal trends
with similar results to the collocated BAMs, as evident in
Figs. 1 and S15. However, inconsistent biases among the sea-
son and location were also observed for all three PM2.5 chan-
nels (CF1, ATM, and ALT), resulting in poor accuracy for
the uncalibrated dataset. Although the poor accuracy is un-
surprising, our findings highlight the importance of dynamic

emissions and meteorology across the Indian subcontinent
and field performance at extreme mass concentrations.

In Delhi, the PA data (CF1) correctly identified the win-
ter and post-monsoon periods as being the most polluted
seasons, with a strong diurnal range peaking at 08:00–
09:00 LT (Fig. 1). The PA also characterized the Delhi mon-
soon well, with a low diurnal range and a daily average less
than 60 µg m−3. The uncalibrated low-cost sensor overesti-
mates concentrations during the extremely polluted and hu-
mid post-monsoon and winter. There is notably more accu-
rate performance during the dry and hot pre-monsoon, albeit
with a tendency to underestimate mass concentrations rela-
tive to the reference at least half of the hours of the day. The
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PA units at Hamirpur follow a similar trend. Although both
the Delhi and Hamirpur sites feature relatively low bias in the
pre-monsoon period, they underestimate mass concentrations
in this season, perhaps due to the influence of wind-blown
mineral dust, as observed elsewhere in field and lab evalu-
ations (Jaffe et al., 2023; Kuula et al., 2020; Levy Zamora
et al., 2019; Sahu et al., 2020; Sayahi et al., 2019). While
crustal material does not generally dominate PM2.5 mass,
during dust storms the lower tail of the coarse-mode aerosol
can lead to substantially elevated PM2.5 concentrations in In-
dia.

Since Bengaluru’s meteorology exhibits comparatively
low seasonality, and emissions are more strongly influenced
by mobile sources rather than the more complex mixture in
Delhi, low-cost sensor performance is different than in Delhi
and Hamirpur. During the day (09:00–19:00 LT), accuracy is
biased by more than +25 % during the winter, pre-monsoon,
and post-monsoon periods, with systemically lower bias, in-
cluding underestimates in the less polluted monsoon season
(Fig. 1). Accuracy is lower during higher mass loadings at
night and during early morning hours, with strong overesti-
mates across seasons peaking during the most polluted hour
(07:00–08:00 LT).

3.4 Model selection

3.4.1 Data-driven model fitting

The SFS results are summarized in Table 2 (with extended
results in Tables S1–S3 in the Supplement), where the four
most relevant parameters are listed in order of decreasing im-
portance for each CF and site. Across sites, R2 stabilized at
two parameters (about 0.8 for Delhi and about 0.9 for Hamir-
pur and Bengaluru). For all sites, sensor-estimated PM2.5 was
generally selected as being the single most relevant param-
eter for predicting concentrations measured by BAM, fol-
lowed by a variation in the RH (i.e., RH2 and RH3). The
form of the most robust Bengaluru model is different from
the Delhi and Hamirpur sites, with an interaction term be-
tween temperature and ALT PM2.5 (rather than CF1 PM2.5)
being selected as the most predictive PM2.5 data stream. Fur-
thermore, the Bengaluru dataset ranked temperature and dew
point as being more relevant than the Delhi and Hamirpur
datasets. Constraining Bengaluru to the same top parameters
as the Delhi and Hamirpur sites (CF1 PM2.5 and RH) reveals
only marginal differences (1NRMSE≈ 2 %) in the perfor-
mance from the most robust model selected by SFS (ALT
PM2.5 and RH3). As such, we choose to standardize our cal-
ibration across all sites, with only CF1 PM2.5 and RH as rel-
evant parameters.

Regression coefficients of the CF1 PM2.5 data were pos-
itive values less than 1, indicating that the CF1 data gen-
erally overestimate but are positively correlated with refer-
ence monitors. RH term coefficients at the Delhi and Hamir-
pur sites are negative, indicating that increasing RH should

Table 2. Most relevant parameters selected through sequential fea-
ture selection for each PurpleAir PM2.5 channel by site CF1 (uncor-
rected PurpleAir PM2.5), ATM (atmospheric-corrected PurpleAir
PM2.5), and ALT (alternative PurpleAir PM2.5 – reconstructed from
the modeled size distribution data). Parameters include relative hu-
midity (RH), temperature (T ), and dew point (D).

CF1 ATM ALT

PM2.5 PM2.5 PM2.5
Delhi RH RH2 RH2

× T

PM2.5×RH PM2.5×RH2 PM2
2.5×D

PM2.5 PM2.5 PM2.5
Hamirpur RH RH PM2.5×RH× T

RH3 RH2 PM2
2.5×D

PM2.5× T PM2
2.5× T PM2.5

Bengaluru PM2.5× T ×D PM3
2.5 PM2.5×RH2

PM2
2.5× T PM2

2.5 PM2
2.5× T

negatively weigh the PA reading, consistent with the ex-
pected artifacts of hygroscopic growth in the atmosphere.
The Bengaluru dataset similarly assigns RH terms a nega-
tive weight. Temperature and dew point terms only imparted
marginal improvements to calibration models (1R2

≈ 0.01;
see Fig. S16), and it is not determinable if the models are de-
riving a spurious correlation or detecting underlying aerosol
or instrument properties.

3.4.2 Theory-driven model fitting

Table S4 summarizes the best-fitting model coefficients from
the training dataset for each site and each CF. Across sites,
the PM2.5 regression coefficient (α) does not vary substan-
tially; it is about 14 % for CF1. Hygroscopic growth regres-
sion coefficients (β) vary greatly from site to site for CF1,
even within the same region; βCF1 for Delhi is double that
for Hamirpur, which is perhaps due to a higher abundance of
hygroscopic species (Chen et al., 2022; Gani et al., 2019).

The lack of consistency in fit is reasonable, as the Plan-
tower proprietary algorithm and underlying physical–optical
design of nephelometers mean that the sensor does not ex-
plicitly account for the underlying aerosol size distribution
and composition. The resulting datasets are therefore some-
what divorced from the expected pattern, based on the κ-
Köhler theory. The ALT dataset removes the proprietary
ATM correction and assumptions of particle density present
in the CF1 data, resulting in more consistent β intra-regional
values, though with less consistent α values.

3.4.3 Model evaluation

For the Delhi and Hamirpur sites, both located in north In-
dia, two-parameter ATM and CF1 models yielded consistent
improvements compared to one-parameter models, as sum-
marized in Fig. 3 for Delhi and Hamirpur, respectively. The
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CF1 models were consistently more accurate than their ATM
counterparts in Hamirpur, albeit by about 1 % NRMSE and
less than 1 % R2. Conversely, in Delhi, the ATM models
systematically outperformed the CF1 models by about 1 %
NRMSE and R2. As evident in Fig. 1, Hamirpur experiences
overall lower mass loadings than Delhi. Consequently, the
absolute difference between the two signals due to the Plan-
tower piecewise function (Fig. S1) above about 20 µg m−3 is
likely less important in Hamirpur than in Delhi, where mass
loadings are consistently elevated.

The theory-driven hygroscopic growth correction consis-
tently improved the performance from the uncalibrated base-
line data across sites by 12 % for ATM and 60 % for CF1, on
average (Fig. 3). In Delhi and Hamirpur, the theory-driven
model performs within about 2 % of the one-parameter
models and outperforms the one-parameter ATM model in
Hamirpur by 4.3 %.

However, since the Plantower PMS5003 is a nephelome-
ter, the signal should not necessarily follow the expected
non-linear hygroscopic growth with increasing RH above
60 %, as expected from a size-resolved measurement tech-
nique (Crilley et al., 2020; Hagan and Kroll, 2020). As a
result, the two-parameter CF1 models in Delhi and Hamir-
pur, with their additive RH terms, outperformed the theory-
driven model by at least 3 %. In Bengaluru, the theory-driven
model performance was comparable to the data-driven mod-
els (about 1 % NRMSE; see Fig. 3). This contrast in perfor-
mance between the two methods in north India is likely a
result of the less seasonally variable meteorology and source
mixtures in Bengaluru, leading to less dynamic aerosol hy-
groscopicity.

Since CF1 data produce models as accurate as or more
accurate than ATM models, have been validated in studies
around the world, and do not feature the same non-linear be-
havior as the ATM channel, we recommend using CF1 for
calibration in Delhi and Hamirpur. In Bengaluru, the ALT
data may be useful and warrant further study in similar en-
vironments, including across south India. From our results,
the CF1 data are suitable for deployment in Bengaluru and
provide uniformity in calibration guidance. Additionally, the
two-parameter model (with RH as additive terms to PM2.5)
follows previous studies (Barkjohn et al., 2021; McFarlane
et al., 2021; Zheng et al., 2018) across continents and aerosol
regimes. In Barkjohn et al. (2021), the large sample size of
PA-II across the continental United States was used to derive
a similar calibration regression. In Tables S5–S6, we com-
pare the NRMSE and MBE for our best CF1 model forms
from the SFS procedure (up to three parameters), theory-
driven CF1 model, and Barkjohn et al. (2021) model output.
We have found from our seasonally balanced test dataset that
our models perform moderately better (1NRMSE of about
5 % across sites) than the EPA model, which is perhaps intu-
itive, given the differences in PM composition and concen-
trations in India relative to the USA. Furthermore, the MBEs
of our site-specific models are close to 0 µg m−3, while the

Barkjohn et al. (2021) model systemically suppresses mass
concentration estimates, with an MBE as high as 22 µg m−3

in Delhi, compared to an MBE of −0.7 µg m−3 when using
the Delhi site-specific model or 3.25 µg m−3 when using the
Hamirpur model on the Delhi test dataset. Overall, while the
site-specific models we develop here clearly outperform the
model of Barkjohn et al. (2021) for these three Indian sites,
it is nonetheless striking that this USA-developed calibration
still performs quite well at these three Indian sites. Given
these findings, we selected the following multi-season cor-
rection equations (Eqs. 2–4) for Delhi, Hamirpur, and Ben-
galuru, respectively. Although relatively simple, our calibra-
tion models greatly improve the reliability of low-cost sen-
sor data across aerosol regimes. Figure 2 summarizes each
model’s bias in at each collocation site, with seasonally and
diurnally segregated residuals. Across all sites, the monthly
bias of the calibrated data is within ±25 %, in contrast to
the uncalibrated data. Figure 3 summarizes model accuracy,
with NRMSE improvements from uncalibrated data rang-
ing between 5 %–20 %. Figure S17 additionally explores the
residual structure and demonstrates the value of the selected
model forms at reducing bias due to RH and mass load-
ing factors. The calibrated residual distributions demonstrate
marked improvements across the full range of mass con-
centrations (5–500 µg m−3), unlike the raw residuals, which
show increasing uncertainty at high mass concentrations. The
selected calibration equations reduce the median bias to near
0 % across sites from a median bias as high as 150 %, us-
ing the uncalibrated data at RH> 60 %. Figure 4 summarizes
the performance of Eqs. (2)–(4), highlighting that although
performance is robust in the aggregate, seasonal and diurnal
shifts in aerosol properties can shift performance and uncer-
tainty bounds, therefore motivating further investigation into
the role of calibration sensitivity to temporal factors.

C = 0.546×CF1− 0.936×RH+ 50.3 (Delhi) (2)
C = 0.496×CF1− 0.296×RH+ 22.0 (Hamirpur) (3)
C = 0.515×CF1− 0.139×RH+ 14.1 (Bengaluru) (4)

3.5 Model evaluation

3.5.1 Temporal sensitivity

To identify the stability of the model and its parameters, we
computed the 4-week rolling ordinary least squares (ROLSs)
for each of our selected models and compared performance
to all other 4-week moving ROLS models. Each model’s
NMBE across time is shown in Fig. 5, where the gray squares
in the top panel indicate less than 50 % data completeness.
Additionally, the bottom panel of Fig. 5 tracks the distribu-
tion of the diagonal of the matrices present in the top panel of
the figure. Across sites, the choice of the calibration period
greatly changes the performance of the regression throughout
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Figure 2. Normalized residual distributions for the uncalibrated PurpleAir data (CF1) and the calibration models for each site. Bold lines
represent the median (p50) of the distribution, while the shaded area represents the interquartile range (p75–p25). Panel (a) shows the
diurnal distribution, while panel (b) shows the normalized residual distribution binned by month. Compared to the residual distribution for
uncalibrated (raw) data, the calibration effectively eliminates most seasonal and diurnal biases.

the rest of the dataset and influences the selection of regres-
sion coefficients. Figure S18 additionally explores the abso-
lute bias, demonstrating that the biases in Eqs. (2)–(4) are
centered near zero. Figure S19 illustrates the same analysis
with NRMSE, showing that the monthly ROLS model per-
formance is generally stronger than the annual model within
the training month, but that it rapidly deteriorates.

In Delhi, model performance and coefficient selection
exhibit a seasonal pattern, with post-monsoon and win-
ter month models (January, February, March, September,
October, November, and December) performing well and
selecting similar regression coefficients even across years
(Fig. S20). When evaluating model performance on data
within the same season, NRMSE is typically below 30 %,
and R2 is above 0.7. However, the post-monsoon and winter
models perform poorly when evaluated on pre-monsoon data
(March and April), with NRMSE exceeding 100 % and R2

falling below 0.1. For even the best performing pre-monsoon
models, NRMSE rises above 50 % during the pre-monsoon
period data and above 70 % for other seasons. Monsoon mod-
els (May, June, July, and August) also lack transferability
to other seasons but perform well when evaluated on data

from the same season (NRMSE< 30 %). Monsoon meteoro-
logical conditions contrast with other seasons – it is humid,
windy, cloudy, hot, and frequently rains (Figs. S4–S6). These
conditions result in lower emissions (i.e., less biomass burn-
ing for heating relative to winter) and act to suppress emis-
sions (i.e., wet deposition), resulting in lower average sea-
sonal mass concentrations in the monsoon period (Figs. S3
and S7). Consequently, models trained in the monsoon pe-
riod translate poorly to other seasons.

The Hamirpur ROLS results are like those of Delhi but
over a shorter period and with a more robust summer per-
formance. The pre-monsoon models fit the largest magni-
tude PM2.5 regression coefficient and fail to perform well
(NRMSE> 50 %) both within the data for their own seasons
and across the data of other seasons. All other windows per-
form well (NRMSE≤ 25 %, R2

≥ 0.9) within their training
window and across all other non-pre-monsoon test windows.
The regression coefficients stabilize (βPM2.5 ≈ 0.5;βRH ≈

−25), resulting in less seasonally variable model perfor-
mance than in Delhi. Most likely, the less robust performance
of the Delhi model across seasons relative to the performance
of the Hamirpur model is due to the broader diversity of
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Figure 3. Regression metrics, R2 (left) and NRMSE (right), for the raw data, one-parameter model, two-parameter model, three-parameter
model, and theory-driven hygroscopic growth model for each PM2.5 channel (CF1, ATM, and ALT) for each site (Delhi in panel a; Hamir-
pur in panel b; Bengaluru in panel c). The largest improvements are from the raw data to the one-parameter model, with only marginal
improvements in the three-parameter and theory-driven models.

sources in Delhi, making it more difficult to constrain the
uncertainty due to factors including hygroscopic growth and
particle size distribution.

Bengaluru and Hamirpur results are similar in that both
models are relatively stable and transferable across sea-
sons. Bengaluru model performance degrades and features
less season-to-season transferability in the monsoon season
months (July and August) but features accurate performance
(NRMSE< 20 %) for the other seasons. Regression coeffi-
cients in Bengaluru are relatively consistent, despite having
more spread during the pre-monsoon period.

Although model results and calibration formulation dif-
fer across sites, the temporal sensitivity analysis reveals sev-
eral key lessons. First, there is no “free lunch” or univer-
sal model. Rather, aerosol and meteorological regimes vary
sharply by season, leading to underfit for annual models or

overfit for seasonal models. Since annual models use data
from across the distribution of aerosol compositions and size
distributions, they generally perform within 5 % of monthly
models (Fig. S21). Outliers can be especially concerning at
the physical limitations of nephelometers, such as during
pre-monsoon dust storms or the extremely humid monsoon.
Therefore, models trained within 1 single month-long pe-
riod do not necessarily transfer well to the next month, even
within the same season and model feature selection. Conse-
quently, we recommend calibration procedures in India and
other similar environments maintain a long-term collocation
with at least one low-cost and reference pair after the initial
collocation period in the region of interest.
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Figure 4. Scatterplots of the best-performing two-parameter annual models for each of the sites in panel (a), with the corresponding normal-
ized model residuals segregated by season in panel (b) and segregated by the time of day in panel (c). In panel (a), the solid line represents
unity. In panels (b) and (c), the dashed line represents the normalized residual value of zero. In comparison to Fig. 2a, the normalized diurnal
residuals in panel (c) are presented over a restricted y axis, accentuating the residual structure.

3.5.2 Spatial transferability

Due to proximity and similarities in climate and aerosol
characteristics, and since data-driven models from Delhi and
Hamirpur sites share the same parameters (CF1 and RH),
we hypothesized that Delhi and Hamirpur models may be
transferable. Figure 6 summarizes the relevant performance
metrics with respect to spatial calibration transferability. The
Hamirpur dataset performance weakened after applying the
Delhi model (R2 decreased to 0.82; NRMSE increased to
39 %) but still outperformed uncalibrated CF1 data. The
Delhi dataset performance also weakened after applying the
Hamirpur model (R2 decreased to 0.78; NRMSE increased
to 35 %), a relatively modest performance degradation. From

this exercise, we understand that although PM2.5 is highly
variable in Delhi and Hamirpur, there may be enough of a
“fingerprint” in aerosol characteristics from the background
site so that a single calibration equation could provide an ad-
equate performance improvement. However, a local calibra-
tion can provide performance improvements due to fine-scale
PM2.5 variability unique to urban environments, especially
for a megacity like Delhi.

Applying the Delhi and Hamirpur models to the Ben-
galuru test dataset resulted in contrasting performance, with
NRMSE values of 71 % and 24 % from the Delhi and Hamir-
pur models, respectively. It is likely the largely regional
aerosol from Hamirpur has enough overlap in the speciation
and mass concentration range with the Bengaluru aerosol that
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Figure 5. Assessment of inter-seasonal transferability of seasonal models. Panel (a) depicts box plots of the distribution of normalized mean
bias error (NMBE) for a given model starting month of a 4-week ROLS model on all other windows. The bottom, solid line, and tops of the
boxes represent the 25th, 50th, and 75th percentiles, respectively. Panel (b) presents the median NMBE of a 4-week ROLS model trained to
start in the month (colored by season) on the x axis and evaluated on all other windows, as binned by the starting month on the y axis. Gray
boxes represent months without sufficient data. Models trained in the pre-monsoon period underpredicted in other seasons, contrary to the
typical pattern of overprediction – this pattern is consistent at Delhi and Hamirpur. As a point of comparison, we present the performance
of our long-term calibration in individual months at each site in the column (b) labeled “All”, which is consistent with our observation that
4-week models trained in a single month generally do not perform as well in other months.

the models are somewhat interchangeable. This hypothesis
is additionally evidenced by the overlap in coefficients from
the theory-driven hygroscopic growth equations. Clearly, the
differences in the composition of the Delhi and Bengaluru
aerosols prevent an exchange between the models at these
two sites, but there is enough preserved from the regional
contribution to allow some support from the Hamirpur model
to the Delhi data.

Some calibration efforts have sought a unified continen-
tal model for low-cost sensors by combining multiple ref-
erence and low-cost sensor pairs into one regression model
(Barkjohn et al., 2021). Other studies have focused on inter-
polating between calibration sites to avoid washing out lo-
cal effects, typically in a dense sensor network (Zheng et al.,
2019). Our results show that although there are overarching
similarities in model parameter selection, urban and rural en-
vironments are heterogeneous to the point of potentially bar-
ring a unified model. Additionally, seasonal variability within

India necessitates at least monthly updates to the model co-
efficients.

4 Conclusions

We collocated low-cost sensors with reference grade PM2.5
monitors in three environments in India, two urban (Delhi
and Bengaluru) and one rural (Hamirpur), over the course of
multiple seasons to characterize low-cost sensor performance
across shifting emissions and meteorological regimes and
develop calibration models. Internally, PA-II units demon-
strated strong consistency, with low intra-sensor bias and
high correlation. Relative to reference instruments, uncali-
brated sensor performance varied diurnally and seasonally,
with shifts being strongly associated with extreme mass con-
centrations, RH, and coarse-mode particles. The low-cost
sensor signal generally overestimated mass concentrations
relative to the reference instruments, which is a trend ob-
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Figure 6. Assessment of the site-wise transferability of annual models. Performance evaluation metrics of Eqs. (2)–(4), with the training
site on the x axis and the test site on the y axis. Metrics are the coefficient of determination (R2) (a), normalized root mean square error
(NRMSE) (b), and mean bias error (MBE) (c). For each metric, the diagonal pattern of the best performance (from the upper left to the lower
right) illustrates how calibration models perform best in the locations where they are trained. At each site, we compute the performance
metrics by comparing the calibration model output to an independent test set that was held out from model training. This finding illustrates
how regional differences in meteorology and aerosol composition can limit the transferability of calibration relationships. It is noteworthy
that the calibration model trained in Delhi performed quite poorly in Bengaluru.

served in the literature to be associated with hygroscopic
growth (Jayaratne et al., 2018; Malings et al., 2019). We
identified periods of low-cost sensor signal underestimation
by a factor of 2–6× in the pre-monsoon period in Delhi and
Hamirpur, when supramicron wind-blown dust particles are
relatively abundant.

We demonstrated a relatively simple multilinear regres-
sion model, using only the low-cost sensor PM2.5 signal, and
a low-cost sensor RH could produce results that were well
correlated (R2

≥ 0.8) with the reference signal at each site.
These site-specific models provide the basis for a compu-
tationally efficient, well-constrained (NRMSE≤ 25 %), and
scalable calibration approach for low-cost sensing in In-
dia, despite the non-stationary and diverse aerosol dynam-
ics of the region. Furthermore, we showed that our models
can be transferred from site to site and still improve per-
formance above the uncalibrated baseline, although a site-
specific model generally has superior performance.

Our work also highlights a key caveat to low-cost sen-
sor deployments and calibration in India, especially regard-
ing long-term deployment. Models trained at a site with data
from only one season may perform more accurately within
that season than a seasonally balanced model but are unre-
liable at other times of the year. Based on our analysis, we
hypothesize that it is better to use a model developed at a
background site such as Hamirpur to correct data from an
urban environment such as Delhi, since the composition of
PM in Hamirpur represents a good subset of the variability
in Delhi. On the other hand, since there are PM species only
found in some urban environments in India, using models
from these industrial microenvironments will less likely to
produce accurate results outside of the training location. Our

results showed that seasonality is especially important, given
the contrast in meteorology and mass concentrations between
the pre-monsoon and monsoon seasons. Although a multi-
linear regression approach produces well-constrained results,
these models are not transferrable among seasons. Therefore,
we advise future deployments to continuously operate a col-
location site with at least one reference and low-cost sensor
pair to evaluate calibration drift. Accounting for the temporal
and spatial dynamics of aerosol characteristics will allow for
the rapid scaling of low-cost sensors for communities in In-
dia to communities in need of transparent and accurate data.

Data availability. Hourly concentrations for BAM 1020 and BAM
1022 PM2.5, all PurpleAir PM2.5 channels (CF1, ATM, and
ALT), and PurpleAir meteorological data (relative humidity, tem-
perature, and dew point) used in this study are available via
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