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Abstract. Weather radars are increasingly being used to
study the interaction between wildfires and the atmosphere,
owing to the enhanced spatio-temporal resolution of radar
data compared to conventional measurements, such as satel-
lite imagery and in situ sensing. An important requirement
for the continued proliferation of radar data for this appli-
cation is the automatic identification of fire-generated parti-
cle returns (pyrometeors) from a scene containing a diverse
range of echo sources, including clear air, ground and sea
clutter, and precipitation. The classification of such parti-
cles is a challenging problem for common image segmen-
tation approaches (e.g. fuzzy logic or unsupervised machine
learning) due to the strong overlap in radar variable distri-
butions between each echo type. Here, we propose the fol-
lowing two-step method to address these challenges: (1) the
introduction of secondary, texture-based fields, calculated us-
ing statistical properties of gray-level co-occurrence matri-
ces (GLCMs), and (2) a Gaussian mixture model (GMM),
used to classify echo sources by combining radar variables
with texture-based fields from (1). Importantly, we retain all
information from the original measurements by performing
calculations in the radar’s native spherical coordinate sys-
tem and introduce a range-varying-window methodology for
our GLCM calculations to avoid range-dependent biases. We
show that our method can accurately classify pyrometeors’
plumes, clear air, sea clutter, and precipitation using radar
data from recent wildfire events in Australia and find that the
contrast of the radar correlation coefficient is the most skilful
variable for the classification. The technique we propose en-
ables the automated detection of pyrometeors’ plumes from
operational weather radar networks, which may be used by
fire agencies for emergency management purposes or by sci-

entists for case study analyses or historical-event identifica-
tion.

1 Introduction

The ability to analyse large wildfire (referred to as “bush-
fire” in Australia) behaviour in real time remains one of
the biggest challenges in wildfire incident and risk manage-
ment. Physical processes happen at various spatio-temporal
scales, from the smaller scale of fuel consumption, heat,
moisture, and pyrogenic emissions to larger-scale vortices,
downdrafts developing in the smoke plume column, and as-
sociated clouds. Large wildfires are often topped by pyrocu-
mulus or pyrocumulonimbus (pyroCb) clouds. The dynam-
ics and microphysics of these clouds usually evolve very
rapidly, including the formation of strong updrafts and down-
drafts and their associated hazards. Pyrogenic smoke plumes
and clouds facilitate the transport of embers that could light
new fires when landing and generate lightning that could ig-
nite new fires in the case of pyroCb. Yet, our ability to ob-
serve wildfire behaviour with the high temporal resolution
provided by satellite-based passive sensing technologies re-
mains limited because pyrogenic particles often obscure the
fire ground and lower levels.

To address the spatial intelligence gap, following an ear-
lier work of Duff et al. (2018), Lareau et al. (2022) pro-
posed using weather radar when available to indirectly track
fire progression via radar reflectivity. Weather radars can ob-
serve ash and large debris emitted by wildfires and trans-
ported aloft; this range of wildfire-borne scatterers producing
weather radar echoes has been collectively denoted as “py-
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Figure 1. Polarimetric weather radar fields for the second tilt at 0.9◦ elevation from the S-band radar of Terrey Hills, Sydney, for 29 November
2019 at 05:07 UTC: spatial and frequency distributions of the horizontal reflectivity (a, d), correlation coefficient (b, e), and differential
reflectivity (c, f). Red, black, and blue contoured boxes (a–c) correspond to pyrometeors, clear air (possibly including remaining ground
clutter), and sea clutter echoes, respectively. The same colour coding is used in the histograms in subplots (d–f). Hotspots (for fire radiative
power > 100 MW; acquisition time 04:29 UTC) derived from MODIS (sourced from Fire Information for Resource Management System –
FIRMS; Giglio et al., 2016) are plotted as red squares in panel (a).

rometeors” (McCarthy et al., 2018; Kingsmill et al., 2023).
Conversely, “wildfire smoke” encompasses all wildfire-borne
particles, including both pyrometeors and aerosols of smaller
sizes. Lareau et al. (2022) developed an algorithm to derive
fire perimeters based on real-time radar reflectivity maxima.
This method was tested with US Next Generation Weather
Radar data for two large wildfires that occurred in north-
ern California. The authors showed this method would ben-
efit from being tested and applied to several large wild-
fires within operational weather radar coverage. More gen-
erally, weather radar remains an under-utilised observational
tool despite meeting the required criteria for wildfire track-
ing at a high temporal resolution (typically 5 min for oper-
ational weather radars) and high spatial resolution (from 50
to 1000 m depending on the radar distance to the fire ground
and radar characteristics).

The first step before applying an algorithm, such as the
one proposed by Lareau et al. (2022), is to identify and seg-
ment pyrometeors’ plumes and associated clouds within a
weather radar volume. Often, during a wildfire event, a range
of weather radar signal returns is present within a plan po-
sition indicator (PPI) scan, in addition to the pyrometeors’
plume, such as ground, clear-air, and sea clutter, precipita-
tion, insects, or biological returns. Figure 1 shows an ex-

ample of such a complex scene for wildfire pyrometeors’
plumes near Sydney during the 2019/20 Black Summer wild-
fires. Several pyrometeors’ plumes can be seen extending
from the fire area in the west towards the east and stretching
over more than 100 km. In that imagery, clear-air returns are
clearly visible within a 50 km radius of the weather radar lo-
cation. While a clutter removal algorithm has been applied
to the data (Gabella and Notarpietro, 2002), some ground
clutter likely remains due to anomalous propagation condi-
tions occurring on that day, similarly to what was observed
in Melbourne under similar conditions (Guyot et al., 2021).
Sea clutter is also present to the south and the east of the radar
(blue coloured box in Fig. 1). One can also distinguish a few
showers in the southwest. Extracting the weather radar re-
turns from pyrometeors only is particularly difficult when the
pyrometeors’ plume is within the 50 km radius of the radar,
as clear-air and pyrometeors’ echoes are intertwined. Con-
versely, classification of precipitation is more straightforward
since its polarimetric signatures have unique characteristics.

Fuzzy-logic or unsupervised clustering-based approaches
based on polarimetric radar variables are commonly used
for weather radar echo classification (Berenguer et al., 2006;
Marzano et al., 2007; Zrnic et al., 2020). For these meth-
ods to be effective, each radar echo class needs to occupy
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a distinct area in the multi-dimensional space defined by
all the input parameters with as little overlap as possible so
that robust membership functions can be established (in the
case of fuzzy-logic approaches) or synthetic models can be
developed (in the case of unsupervised learning such as a
Gaussian mixture model). In the example shown in Fig. 1,
a classification based on the reflectivity (ZH, dBZ), correla-
tion coefficient, and differential reflectivity seems very dif-
ficult due to the largely overlapping distributions of these
variables for clear air, pyrometeors, and sea clutter. For in-
stance, the pyrometeors–clear-air boundary is difficult to de-
fine (Fig. 1a and d). Another example of an overlapping dis-
tribution is the co-polar correlation coefficient (ρHV, unitless)
values, which tend to produce very similar distributions for
pyrometeors and sea clutter, whereby the values of ρHV show
higher frequencies of values in the upper range (above 0.6),
with a strong overlap with pyrometeors and sea clutter. Dif-
ferential reflectivity (ZDR, dB) values are more likely neg-
ative for sea clutter but with positive values as well, while
the clear-air distribution is centred around 0 dB and pyrome-
teors show more frequency in the higher range, up to 13 dB
(the maximum value in the Australian operational network).
The presence of sea clutter is produced by anomalous prop-
agation conditions due to temperature inversion, conditions
often present over large waterbodies, further enhanced here
by the presence of smoke (Guyot et al., 2021). Despite these
difficulties, a trained radar scientist could easily differenti-
ate the different echoes from that complex scene. The main
challenge here is to automatically discriminate these differ-
ent echoes and objectively separate clear air from pyromete-
ors when these are intertwined.

While widely used and providing very good results for the
segmentation of precipitation and clear air, fuzzy-logic and
clustering approaches do not make use of the spatial rela-
tionship between nearby radar bins (or pixels in the images).
In this paper, we propose a new method for the segmenta-
tion of pyrometeors’ plumes based on the combination of a
textural approach (gray-level co-occurrence matrices) and an
unsupervised machine learning approach (Gaussian mixture
model). The paper is organised as follows: we first describe
the methods and then evaluate the effectiveness of our new
technique using operational weather radar data from several
wildfires that occurred in Australia during the 2019/20 Black
Summer.

2 Methods

2.1 Texture fields based on gray-level co-occurrence
matrices

Various methods have been proposed to quantify the texture,
i.e. the spatial arrangement of intensities, of an image (Li
et al., 2014). First-order statistics consist of simply deriving
the mean or variance of distributions of values within an im-

age. These features can be computed globally, i.e. deriving
single values for the whole image, or locally, i.e. deriving
values for each pixel by applying a moving window and al-
locating feature values to the centre pixel. These first-order
statistics only reflect the distribution of intensity levels in an
image (Haralick et al., 1973) and do not preserve the direc-
tionality of the intensity distribution.

A widely used method in texture analysis proposed by
Haralick et al. (1973) relies on the computation of gray-level
co-occurrence matrices (GLCMs) from which Haralick fea-
tures can be calculated. Recent applications include medi-
cal image analysis, in particular magnetic resonance imag-
ing (MRI) or ultrasound for the detection of cancers (Chi-
talia and Kontos, 2019; Yang et al., 2012). However, GLCMs
have also been used extensively in the analysis of satellite im-
agery since it was first proposed by Haralick in 1973 (Hall-
Beyer, 2017). The first step in the GLCM approach is to re-
scale the original image (with values ranging from k to l) to
a new quantised image (with integer values ranging from 0
to N ). This important step can be optimised to reduce the
GLCM computational time, as the smaller the range [0, N ],
the faster the computation. However, care must be taken if
reducing the range past a certain value of N as information
contained in the original image will be lost. It must also be
noted that different values of N will lead to different values
of GLCMs and their Haralick features, so the reproducibility
of the results strongly depends on that chosenN value. Löfst-
edt et al. (2019) discussed this issue in detail and proposed a
gray-level-invariant approach to retrieve texture feature val-
ues independently of the image quantisation. To optimise the
computational efficiency of our application, we decided not
to implement this approach.

In a second step, the GLCMs are computed by counting
how many times each pair of pixels of the same value (for a
given gray level) occurs within a given window surrounding
the central pixel. The neighbour of a pixel is defined by a
vector of angle θ and distance d . The GLCM can be defined
as in Eq. (1):

X(i,j)=

M∑
m=0

N∑
n=0
(1 if pixel identical,0 otherwise), (1)

whereX is the GLCM of elements (i,j ) andm,n is the quan-
tised given window. For each displacement vector (combina-
tion of (d,θ)) a GLCM can be calculated. To cover all direc-
tions surrounding a central pixel, eight angles should be used,
but displacement vectors of opposite angles will lead to sym-
metric GLCMs; therefore only four angles are necessary to
cover all the possible variations (θ = 0, π/4, π/2, 3π/4). We
also consider two distances (d = 1, d = 2), resulting in eight
displacement vectors in our study. We discuss the sensitivity
of the results to these choices in Sect. 3.2.

In the third step, the original GLCM is normalised so that
all elements of the matrix represent the probability of each
combination of pairs of neighbouring pixels occurring for the
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Table 1. Selected texture Haralick features utilised in this study to-
gether with their mathematical expressions. All six features are unit-
less.

Haralick feature Expression

Contrast
N−1∑
i,j=0

Pi,j (i− j)
2

Correlation
N−1∑
i,j=0

Pi,j

[
(i−µi )(j−µi )√

(σ 2
i )(σ

2
j )

]

Homogeneity
N−1∑
i,j=0

Pi,j

1+(i−j)2

Dissimilarity
N−1∑
i,j=0

Pi,j |i− j |

Angular second moment (ASM)
N−1∑
i,j=0

P 2
i,j

Energy
√

ASM

given window over which the GLCM was calculated. This
normalised GLCM is calculated as in Eq. (2):

Pi =
Xi

K−1∑
i=0

Xi

, (2)

where i is the pixel number, Pi is the probability recorded for
the cell i, and K is the total number of pixels.

Finally, in the last step, we computed the Haralick fea-
tures from the normalised GLCMs. Originally, Haralick et al.
(1973) proposed 14 different features to be calculated from
the GLCMs. Here, we chose to restrict ourselves to the six
most used features (and conduct a comparison of these for
synthetic and real data to see if these could be reduced fur-
ther. The six chosen features together with their mathemat-
ical expressions are shown in Table 1. Each feature can be
calculated for each combination of (angle, distance), lead-
ing to eight values for a single feature. A common approach
used widely is to take the mean (from eight values) of each
of the features (Löfstedt et al., 2019), this being referred to
as a spatially invariant measure (given this is the average of
the four possible directions). We decided to explore the effect
of directionality on the retrieved features by comparing these
eight different retrievals, and we also computed the mean and
the standard deviation of the eight values.

2.2 The spherical representation of weather radar data

The mode of acquisition of weather radar data, scanning and
receiving from the same antenna, and the scanning strat-
egy dictate that the resulting data are distributed in the
three-dimensional space where each grid point can be de-
scribed in polar coordinates (elevation, azimuth, range). In

this article, we perform our calculations on two-dimensional,
plan position indicator (PPI) scans in their native spheri-
cal coordinates. We consider position plan indicators plane
(two-dimensional) surfaces that correspond to a given ele-
vation and its full range of azimuthal and range values. For
each of the radar variables, a PPI can be considered a two-
dimensional “image” with the x axis as the range and the
y axis as the azimuth. However, the spatial resolution of
these images varies considerably along the y axis because
of beam broadening with range. Typically, for a radar with a
beam width of 1◦ and a range gate size of 250 m, the approx-
imate area covered by a pixel at 1 km range is 4909 m2, while
the area covered by a pixel at 100 km range is 10 000 times
larger (the area is proportional to the square of the distance).
Weather radar data can be gridded using various methods
(e.g. Brook et al., 2022; Trapp and Doswell, 2000); how-
ever, these methods necessarily smooth the underlying radar
fields and may strongly influence the resulting texture cal-
culations. For this reason, we restrict our texture analysis
to data collected in the radar’s native spherical coordinates.
Typically, the correlation coefficient or differential reflectiv-
ity fields can show boundaries in space when the observed
medium includes rain or hail. Clear air, sea clutter, and py-
rometeors all exhibit very spatially variable signatures (ap-
pearing as “noisy”) in two-dimensional space. Interpolating
native weather radar polarimetric variables on a regular grid
and necessarily smoothing these fields would impact the re-
trieved texture, likely reducing its absolute local values and
modifying its spatial pattern.

Several authors have employed texture analysis for im-
age classification on weather radar fields. Chandrasekar et al.
(2013) reviewed the methods used in classification, includ-
ing early work on texture. Giuli et al. (1991) and Schuur
et al. (2003) applied first-order statistics such as the mean
and standard deviation over a 3× 3 window (three azimuths,
three ranges) for ZDR, ZH, and the differential phase. Gour-
ley et al. (2007) proposed to use the root-mean-square dif-
ference between pixels within a 3× 3 window, effectively a
first-order statistic, as it does not consider pixel interdepen-
dency, i.e. relations in space between pixels of the same val-
ues. More recently, Stepanian et al. (2016) and Jatau et al.
(2021) utilised variance over a 5× 5 pixel neighbourhood
for ZDR, and the root-mean-square deviation of the differ-
ential phase over 9 pixels in the range. All these authors used
radar data in polar coordinates; Gourley et al. (2007) noticed
the range dependency of texture fields. Their ZDR texture
field decreased with range close to the radar, where noisy
values of ZDR are more common due to clutter. Conversely,
the ZDR texture field increased in value at long range due
to the natural variability in ZDR. This is contradictory to the
description of Stepanian et al. (2016), who stated that as the
beam width of sampling volumes increases with range, more
scatterers contribute to the volume, thereby increasing the
intra-volume variability. Increasing the sample size leads to
a more accurate representation of mean values for volume
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Figure 2. (a) Synthetic field; (b) GLCM mean texture of the synthetic field as shown in (a) with a fixed window size of 20; (c) GLCM mean
correlation of the synthetic field with a fixed window size of 20; (d) GLCM mean contrast of the synthetic field with a varying window size;
(e) GLCM mean correlation of the synthetic field with a varying window size.

at longer range, less pixel-to-pixel variability, and therefore
smaller values of the texture at longer range. Lakshmanan
et al. (2003) used the homogeneity of ZH, where homogene-
ity is calculated from the co-occurrence of the pixel of the
same value within a given window (similarly to GLCMs).
The authors did not discuss range effects in polar coordinates
and present only succinct results where such an effect can-
not be observed. Finally, Oliveira and Filho (2022) explored
the application of a gray-level difference vector (GLDV) to
gridded rainfall data derived from weather radar. The advan-
tage of GLDVs over GLCMs is significant improvements in
computational time. This is because the two dimensions of
the GLCMs are reduced to a single vector of the size of the
quantisation. However, their results and interpretations based
on gridded data are not directly transferable to polar coordi-
nates.

Here, we propose an adaptation of the GLCM to polar co-
ordinates by varying the window size along the axis tangen-
tial to the range axis. Indeed, if we consider a given PPI de-
fined by its range and azimuth in polar coordinates, we can
also see the PPI as an image with identical pixel sizes to the
range as the x axis and the azimuth as the y axis. As shown
previously, the radar volumes and their projected surface ar-
eas vary along the range axis as a function of the square of
the range. We attempt to normalise the neighbourhood area
for each GLCM calculation by including more pixels in the

azimuthal direction at close range and fewer at long range.
The slope of the window size variation shall be like that of
the variation in the pixel surface area. We arbitrarily set a
minimum window azimuthal width of 5 at long range, since
a smaller window would lead to too few pixels to calculate a
GLCM. We also set a fixed window range depth of 5; there-
fore the window at long range has a square shape (in image
space). Based on these constraints, we derived a function pro-
viding the window width as a function of range. It should be
noted that this approach does not fully account for object-
scale effects that are inherent to changes in resolution with
range. Typically, the radar can resolve objects (such as vor-
tices) at closer range but suffers from spatial aliasing (used
here in its general form, not to be confused with Doppler
folding) due to non-uniform beam filling at longer range.
Both the fixed-window and varying-window approaches are
implemented on random noise data fields in order to eval-
uate the benefits of implementing a varying window. The
synthetic field in polar coordinates was made of a repetitive
pattern of circular shapes of randomly distributed Gaussian
noise (Fig. 2a), with a radius of approx. 80 km each, so at
least three discs will occur within the 200 km radius of the
radar image. The implementation of the above algorithm was
done in the Python language (Rossum, 1995) and run using
multiprocessing and eight CPUs. Alternatively, GPU-based
computing has been shown to be extremely efficient for spe-
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cific tasks where parallel computing is possible. Typically, a
single GPU can replace dozens to hundreds of CPU cores, as
demonstrated by Häfner et al. (2021) for global ocean mod-
elling applications, enabling faster and more energy efficient
computations. The limitation of using GPUs is the possibility
of the tasks being parallelised and the need to write the pro-
cessing code specifically for GPUs. A future implementation
of our approach using GPUs to improve computational time
is discussed in the “Discussion and conclusions” section.

2.3 Segmentation of data with a Gaussian mixture
model

Gaussian mixture models (GMMs) have demonstrated their
efficiency for image segmentation, especially where no pre-
conception about the probability distribution of the input fea-
tures (or variables) is available. This method has also been
used to classify hydrometeor types based on weather radar
variables (Wen et al., 2015). Here, we employed the same
approach as in McCarthy et al. (2020) to classify pyrom-
eteors, i.e. the scatterers typically present in pyrometeors’
plumes, using portable X-band weather radar data. As Wen
et al. (2015) demonstrated, the probabilistic nature of the
GMMs can account for any specificity of any given weather
radar. It is a more objective approach than fuzzy-logic or de-
cision tree approaches, which are based on preconceptions
of the data structures. GMMs are a modified version of the
k-means clustering method and, similarly to k-means clus-
tering, require the number of clusters to be chosen by the
user (the hyperparameter k). The k-means algorithm is im-
proved by using the expectation maximisation (EM) method,
which was introduced by Dempster et al. (1977). In this al-
gorithm, the first step (the expectation step) estimates the
probability of each data point belonging to one of the k dis-
tributions. These distributions are described by their mean
and covariance across the input features (in this case, radar
variables). In the second step (the maximisation step), the
mean and covariance of the k distributions are recalculated
based on the probabilities found in the first step. This results
in models that can effectively capture multivariate datasets
represented by ellipsoidal confidence functions, which can
be used to probabilistically classify new data. The Gaussian
distributions also form a generative model, allowing for the
generation of random output samples based on the mean and
covariance of the final maximisation step.

Here, GMMs are used as our second step for the segmen-
tation of the 2D PPI field. Based on a sensitivity analysis,
where all combinations of variables as inputs were tested (not
shown), we retained the following variables as inputs to the
GMM: the Haralick local feature “contrast” (Table 1) of the
correlation coefficient variable (unitless), the Haralick local
feature contrast for ZDR, the range of the given radar bin (in
metres), reflectivity, the correlation coefficient, and differen-
tial reflectivity. The GMM is used as an unsupervised classi-
fier, so the model is trained and fitted to a dataset of interest,

combining all successive PPIs into a single dataset. Two days
have been selected to train the model: 29 November 2019, as
this day included several occurrences of intertwined clear-air,
sea clutter, and pyrometeors’ returns, and 2 December 2019,
as this day also included scattered showers moving eastwards
over the pyrometeors and clear-air regions. These data from
two dates allowed us to include all types of potential scatter-
ers that could be present in the vicinity of the region, apart
from hail, which was infrequent in the Sydney region over
the 2019/20 Black Summer. The model is then applied to data
that were not used as part of the training but that were known
to contain pyrometeors: 11 November 2019 was chosen as
that day also included the formation of a pyrocumulonimbus
cloud, enabling us to evaluate if our method could distinguish
the formation of rain droplets within the pyrometeors’ plume.

Selecting the number of clusters for the GMM, i.e. an in-
teger value for the hyperparameter k, can be done arbitrar-
ily or chosen based on optimisation techniques. The tradi-
tional methods to assess the optimal value for k are based
on minimising the values of the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC) (Vrieze,
2012). In practice, the model is trained and tested on the same
dataset for a range of k values: in our case, we varied k from 1
to 10. The values of the AIC and the BIC should plateau for
a threshold value of k, making that value the optimum num-
ber of clusters (past that number, some clusters will share
very similar properties). However, Wen et al. (2015) and Mc-
Carthy et al. (2019) both showed that for GMMs applied to
dual-polarised radar data, no plateauing was observed, possi-
bly due to the very large size of the dataset (McCarthy et al.,
2019) or the assumption of a mixture of Gaussian distribu-
tions for the data. In our study, we know that the minimum
number of clusters (value of k) should correspond to differ-
ent types of scatterers that we want to discriminate, namely
clear air, ground clutter (if some is left after the clutter re-
moval), sea clutter, pyrometeors, and hydrometeors. Using
values of k above 4 could also be acceptable, as the same
echoes could present different characteristics; for example
pyrometeors could present various microphysical properties
as in McCarthy et al. (2019), and hydrometeor classification
schemes typically include several hydrometeor types to dis-
criminate between rainfall, ice particles (pristine or aggre-
gates or hail), and melting hydrometeors. In our case, if the
BIC and AIC present strong declining gradients past k = 4, a
larger value for k will be retained. The Python-based scikit-
learn package (Pedregosa et al., 2011) implementation of
GMMs was applied.
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Figure 3. (a–f) Scatterplots of GLCM contrast values for different combination of distances (d) and angles (θ ) for data from the Terrey Hills
radar from 29 November 2019 at 05:07 UTC for ρHV at the second tilt (0.9◦ elevation).

3 Results

3.1 Adaptability of GLCM to the spherical
representation of weather radar data

To evaluate the effect of the weather radar range bin size on
the retrieved GLCM features, synthetic data were utilised as
an input to our GLCM algorithm. This is depicted in Fig. 2a,
where the input data consist of evenly spaced clusters of ran-
dom noise across the radar grid (polar coordinates), spanning
a range of −200 to 200 km on both the x and the y axes. The
values are distributed across the gray scale (0–255). The syn-
thetic data assume a beam width of 1◦ and a range gate size
of 250 m, similar to the actual data from the Sydney (Terrey
Hills) radar later used in the paper. In Fig. 2b, a fixed window
size of 20 pixels was used to retrieve the contrast. The expec-
tation is that the contrast of all pixels of the same size will be
similar to the circle centred at coordinates x = 0, y = 0, since
the pixels at very close range for polar coordinates are indeed
very similar to one another. As the range increases, pixels be-
come wider (their length stays the same along the azimuthal
axis), and the effect of this can be clearly seen in the shape
of the nine circles surrounding the central one. The circles
at perpendicular azimuths (0, 90, 180, 270) are less distorted
than the ones at azimuths (45, 75, 225, 315) because the dis-
tances to the origin are smaller, and the rate of increase along
the perpendicular axis to the azimuth is larger. This effect is a
clear issue as the retrievals will be range-dependent in terms
of both the magnitude of the contrast and its spatial distri-
bution. In Fig. 2d, the GLCM contrast was retrieved using a

varying window size with range as previously described. The
central circle is similar to the fixed window size, as the initial
size of the window (win) is the same (win= 20 pixels). The
nine circles surrounding the centre have different shapes and
magnitudes than the ones shown in Fig. 2b. They all exhibit
similar contrast values to the central circle, indicating that re-
ducing the window size along the tangential axis to the range
has enabled preservation of the shape of the retrievals.

In Fig. 2c and e, results for the GLCM correlation and its
standard deviation are similar to those for the contrast, as
indicated by the preservation of the spatial structure of the
synthetic field and the consistent magnitude of peaks across
the grid. These results support the moving-window approach
as a robust approximation to apply GLCMs to data in polar
coordinates, where the bin (pixel) size increases with range.

3.2 Directionality and Haralick features of the GLCMs

A common practice in GLCM calculations is to take the
mean of the four main directions (θ = 0, π/4, π/2, 3π/4) to
retrieve a single mean Haralick feature, then described as di-
rectionally “invariant”. Here, we decided to quantify the vari-
ability across each feature computed out of the GLCMs from
the eight combinations of angles (four) and distances (two).
The combination of (d = 1, θ = 0) is used as the reference
(x axis), and every other combination (expect one) is eval-
uated against that reference, plotted as scatter together with
their orthogonal linear regressions. We used orthogonal lin-
ear regressions since both variables include errors (Kane and
Mroch, 2020). In Fig. 3 (contrast), actual data collected by
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Figure 4. (a–f) Scatterplots of GLCM correlation values for different combinations of distances (d) and angles (θ ) for data from the Terrey
Hills radar from 29 November 2019 at 05:07 UTC for ρHV at the second tilt (0.9◦ elevation).

an S-band radar are used as the underlying dataset. As ex-
pected, (θ = π/4) and (θ = 3π/4) show similar results, and
a larger value of the distance (d = 2) leads to higher absolute
values of the coefficients of the slope of the linear regression
than for d = 1. The most pronounced difference occurs for
θ = π/2. Overall, the spread of the values is very small and
coefficients of the slope of the linear regression vary by less
than 8 %, supporting the strategy of using the mean of the
eight combinations. In Fig. 4 (correlation), the same under-
lying actual data as for Fig. 3 were used. The spread of the
data is much larger than for the contrast, indicating that the
correlation is more sensitive to directionality than the con-
trast. Nevertheless, coefficients of the slope of the linear re-
gression vary by less than 12 %, supporting here again the
use of the mean of the eight combinations. Based on these
results, we decided to also compute the standard deviation
of the Haralick features systematically to explore the spatial
variability in this directional effect, although the value of the
standard deviation strongly depends on the number of data
points within a given window.

In Fig. 5, we explored the relationships between the six
chosen Haralick features by showing density scatterplots
across each Haralick feature for the synthetic data. Strong
exponential or squared relations exist between contrast, ho-
mogeneity, energy, dissimilarity, and angular second moment
(ASM), while the correlation feature does not show any con-
sistent pattern with any of the other features. This led us to
retain only contrast and correlation as other features will be
redundant with the contrast feature.

To explore the spatial distribution of contrast and corre-
lation for various radar moments (ρHV, ZDR, and ZH), we

selected the same event from the 2019/20 Australian Black
Summer bushfires as shown in Fig. 1, where pyrometeors,
clear air, and sea clutter can be observed within the same
PPI. Notably, in Fig. 6a, the ρHV contrast is highest for the
sea clutter and the pyrometeors, showing a strong potential to
discriminate these two echoes from clear air using this fea-
ture. The standard deviation of the ρHV contrast (Fig. 6b) is
highest at the edges of pyrometeors’ plumes and sea clutter:
this can be explained by the edge effects, where a smaller
number of pixels are used to derive the GLCM, therefore
providing larger directional variations from one (d,θ ) com-
bination to the next. The ρHV mean correlation (Fig. 6c) is
higher for clear air than for the pyrometeors and sea clutter,
providing here again another means of discriminating the two
echoes from clear air. Local maxima of ρHV SD correlation
can also be observed on the edges of the pyrometeors and
sea clutter (Fig. 6d). Conversely, the values of mean contrast
of ZDR are not as high as ρHV contrast for pyrometeors, and
some variability within the pyrometeors’ plume can be ob-
served with lower values of theZDR contrast closer to the fire
area (Fig. 6e). On the other hand, the contrast of ZDR for sea
clutter shows consistently high values apart from the region
located the furthest to the north. Both ZDR and ρHV present
high values of the mean correlation (Fig. 6g). Here again,
standard deviations of contrast and correlation of ZDR show
local maxima (Fig. 6f and h), illustrating edges of objects and
therefore less reliability regarding the mean features as com-
pared to areas further away from the edges. The retrievals of
ZH contrast and correlation are shown in Fig. 6i and j, but no
feature of particular interest was identified in these that could
help segment the different echoes.
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Figure 5. Density scatterplots across the six selected mean Haralick features for the structured-noise synthetic dataset.

3.3 GMM training and labelling

Two days of S-band weather radar data from Sydney (Terrey
Hills) were selected from the 2019/20 Black Summer season
to build a dataset to train the GMM. The Sydney radar has a
beam width of 1◦ and a gate resolution of 250 m. All weather
data used in this study are from the second tilt at 0.9◦ el-
evation to minimise the introduction of ground clutter into
the observations, despite its careful removal in the process-
ing chain. These events were chosen so that the data contain a
wide variety of clear-air, pyrometeor, sea clutter, and precip-
itation echoes, as discussed previously. For the selected pe-
riod, this dataset contains over 4 500 000 data points. Based
on the two criteria (AIC and BIC), an optimum value of k = 5
was found, and while AIC and BIC continued to decrease
for higher values of k, the magnitude of the drop was much
lower, and their values plateaued beyond k = 5 (not shown).
Once trained, the model was applied to these data from two
dates to qualitatively assess the classification and attribute

to each cluster their respective object attribute (pyrometeors,
clear air, sea clutter, or precipitation).

In Fig. 7a–p, each panel shows a timestamp of radar PPIs
with the GMM-classified fields at 30 min intervals to assess
the temporal continuity of the classification and discuss the
interesting temporal evolution of the case. Clear air is distin-
guishable around the radar location and within a large radius
(purple and gold colours), while three pyrometeors’ plumes
(in red) are visible to the west of the radar, progressively
increasing in area as time progresses. The radar bins corre-
sponding to pyrometeors’ plumes are labelled as such in the
very first frame, showing that only a dozen pixels are suffi-
cient for the clustering algorithm to assign the label. Increas-
ing areas of sea clutter (in blue) due to increasing anomalous
propagation are visible to the east of the radar over the ocean
starting in Fig. 7j and covering a half of the ocean within the
frame in Fig. 7p. The labelling here performs well, with only
a few points mislabelled as pyrometeors over the ocean for
the large sea clutter object, except in Fig. 7l, m, and p, where
the elongated southern pyrometeors’ plume is mislabelled as
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Figure 6. Mean and standard deviation of GLCM contrast and correlation calculated from the eight combinations of angles (θ = 0, π/4, π/2,
3π/4) and distances (d = 1, 2). Data are from the S-band radar of Terrey Hills (Sydney) for 29 November 2019 at 05:07 UTC.

sea clutter in some parts over the ocean. This concerns only a
fraction of the total pyrometeors’ plume areas, and in Fig. 7p,
it is directly adjacent to the sea clutter, and therefore it is a
complex scenario for the clustering algorithm to distinguish
the two. Figure 8 provides some insight into each cluster’s
characteristics, by showing the mean across each variable
of the GMM. Clear-air (purple and gold) means correspond
to the lowest reflectivity values, lower values of the range,
slightly positive values of ZDR (around 2 dB), high values
of ρHV (0.85), and low values of ρHV contrast. The distinc-
tion between the two clusters is for ZDR contrast, with higher
values of ZDR contrast for the purple cluster. Without addi-
tional observations, we cannot evaluate whether this is due
to a range bias or due to physical properties of the echoes.

The pyrometeors’ plume cluster presents on average higher
values of ZH than clear air, usually present at longer range
(although as we can see in Fig. 5, this is not necessarily the
case); the largest values of ZDR (with a mean at 2.8 dB); rela-
tively low ρHV (0.83); and relatively low ZDR contrast (sim-
ilar to clear air) but higher ρHV contrast (mean around 20).
Finally, sea clutter shows a strong signature in both ρHV con-
trast and ZDR contrast, with higher mean values of ZH and
range, relatively low values of ρHV, and relatively high val-
ues of ZDR (2.4 dB).

To explore the capability of the algorithm to distinguish
precipitation echoes, we applied the GMM retrieval to the
training day with isolated showers (Fig. 9a–i). On that day,
a very thin and elongated pyrometeors’ plume is present to
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Figure 7. (a–p) Time series of segmented PPIs (second tilt at 0.9◦ elevation) from the S-band Terrey Hills radar for 29 November 2019;
Hotspots (for fire radiative power > 100 MW) derived from MODIS (sourced from FIRMS; Giglio et al. 2016; acquisition time 04:29 UTC)
are plotted in dark turquoise. The time zone is UTC.

Figure 8. Spider plot showing the means across each feature of the Gaussian mixture model.
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Figure 9. Time series of segmented PPIs (second tilt at 0.9◦ elevation) from the S-band Terrey Hills radar for 2 December 2019, including
the passage of showers over fire grounds and pyrometeors’ plumes. 7. The MODIS overpass prior or concomitant to the radar observations
did not detect hotspots because of total cloud cover over that period. The time zone is UTC.

the northwest of the radar location, with another smaller
plume to the southwest and a smaller pyrometeors’ plume
to the north of the radar. Scattered precipitation can be ob-
served as a system moves eastwards. Overall, the precipi-
tation object appears to be correctly labelled by the GMM,
except for isolated pyrometeors’ bins within some precipi-
tation cells, as seen in Fig. 9d or e. Some complex interac-
tions between clear air, pyrometeors’ plumes, and precipita-
tion can be observed in Fig. 9g and h, and therefore it is diffi-
cult here to quantify the performance of the classification. It
is likely that some pyrometeors are entrained within the east-
erly flow, providing cloud condensation nuclei for droplets
to form, while the clear air is also disturbed with the showers
moving through. Overall, the classification effectively dis-
criminates the major objects that are the main pyrometeors’
plumes from precipitation showers and clear air. Based on
the literature (McCarthy et al., 2018) and the location of the
fire source, we can visually discriminate the echoes from
the scene to support that validation. The precipitation clus-
ter (Fig. 9) is characterised by very high ρHV, low ZDR (just

above 1), very low ρHV contrast (as expected since ρHV is
close to unity for precipitation), and low ZDR contrast.

In Fig. 10, the cluster features are presented as joint
distributions using kernel density estimation plots with the
ρHV contrast as the x axis for Fig. 10b–d because this is one
of the most discriminant characteristics as we have seen pre-
viously from Fig. 9. As described in the Introduction, ZDR
and ρHV clearly overlap for clear air, pyrometeors, and sea
clutter, and these variables cannot solely be used to classify
the different echoes. Only the precipitation cluster is well
separated from the other clusters with high values of ρHV
and ZDR values just above zero. In Fig. 10b, the ρHV contrast
clearly discriminates clear air from sea clutter and pyrome-
teors. The probability density estimates show distinct distri-
butions for clear air and sea clutter, while the pyrometeors’
distribution spans over a wider range of values.ZH (Fig. 10b)
and range (Fig. 10c) present similar discrimination potential,
where clear air at shorter range from the radar is often asso-
ciated with lower values of reflectivity (also an effect of the
radar sensitivity, which is a function of range, so that clear
air cannot be observed at long range), while sea clutter is of-
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Figure 10. Joint distributions using kernel density estimation showing the distribution of values for each member of the GMM clusters for
the training dataset. A randomly sampled subset (20 %) of the training dataset was used for plotting.

ten further away from the radar and essentially shows higher
values of ZH. However, this discrimination is not systematic
as a strong overlap can be seen across all clusters for both
range and ZH, showing that while these features complement
the texture fields, they certainly will not be sufficient to pro-
vide an effective classification. Finally, the contrast of ZDR
shows some distinction between clear air, pyrometeors, and
sea clutter but with some overlap. The contrast of ZDR only
is not enough to provide a good discriminant but can be used
to complement the ρHV contrast. Overall, the ρHV contrast
appears to be the most effective feature to classify the vari-
ous echo types, with support from the other complementary
fields.

3.4 Evaluation using an independent radar dataset

While the satisfactory performance of the classifier was
demonstrated for cases that were used to train the model,
it is necessary to also evaluate the model on data that have
not been used for training. The date of 11 November 2019
was selected since this day featured a pyrometeors’ plume
moving in the direction of the radar, with consistent clear-
air echoes through the observation period, and the initiation

of a pyroCb cloud later in the day. In Fig. 11a–h, two main
pyrometeors’ plumes are clearly identified, with the largest
being in contact with the clear air. While the exact boundary
between clear air and pyrometeors cannot be verified with
auxiliary data, it is reasonable to assume that the boundary
of the two objects is well defined (clear air and pyromete-
ors’ plume). At 03:12 UTC (Fig. 11i), precipitation can be
seen within the pyrometeors’ plume, and this area increases
in size in the next four frames. This corresponds to the for-
mation of the pyroCb (as seen in the brightness temperature
on Himawari-8, not shown) and precipitation in the lower
levels: the PPI shown in Fig. 11 corresponds to the tilt at
0.9◦ elevation; therefore the northernmost precipitation clus-
ter in Fig. 11i–l is observed at 110 km from the radar location,
i.e. a corresponding altitude above ground level of 2.2 km.
This validation demonstrates the robustness of the method
when trained for days that include a variety of echoes. The
possibility of transferring that trained model to radars with
other characteristics (beam width, sensitivity, resolution, cal-
ibration) will require a dedicated study.
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Figure 11. Time series of segmented PPIs (second tilt at 0.9◦ elevation) from the S-band Terrey Hills radar for 22 November 2019. A
pyroCb cloud was formed around 03:12 UTC as confirmed by satellite imagery (Himawari-8) of cloud top height. Hotspots (for fire radiative
power> 100 MW) derived from MODIS (sourced from FIRMS; Giglio et al. 2016; acquisition time 00:06 UTC) are plotted in dark turquoise.
The time zone is UTC.

4 Discussion and conclusions

In this study, we have demonstrated that statistical texture
can be retrieved directly from weather radar data in spherical
coordinates using an adapted approach based on gray-level
co-occurrence matrices. The use of a varying window width
(along the axis perpendicular to the range axis) enabled us to
mitigate a range-dependent bias in calculated texture fields,
an issue documented by other authors (Gourley et al., 2007;
Stepanian et al., 2016). We believe that this bias has limited
the wider use of spatial texture applied to weather radar data
to date. For weather radar variables with local spatial vari-
ability fields such as ρHV and ZDR, the use of GLCMs on
interpolated gridded data is not suitable as interpolation will
smooth the fields and strongly affect the retrieved texture.
Therefore, it is essential to retain information in polar coor-
dinates, further motivating the need for the varying-window-
width approach. However, our approach only indirectly ac-
counts for relations between resolution of observations and
the scale of the observed object, a well-known effect in re-
mote sensing application originally described by Woodcock
and Strahler in 1987. For example, vortices that have a typi-
cal scale of a few hundred metres can be partially resolved at
close distance to the radar but will be lumped at long range
along the perpendicular axis to the range axis. Calculating the
texture along a much wider window at close range enables

us to increase the number of data points used to calculate
the GLCM, effectively reducing the effect of local extrema
and smoothing the retrieved texture field. The results ob-
tained for synthetic spatially structured random noise show
that the varying-window approach enables the retention of
both the spatial organisation of the fields and their absolute
values. Texture features such as contrast for synthetic data
show the same minima and maxima at both close and long
range, which is not the case when a fixed window is used.
Finally, since neither spectrum width nor radial velocity has
been used in the classification, these two radar variables can
be interpreted independently to provide insights into the tur-
bulent features of pyrometeors’ plumes.

A limitation in validating our echo classification is the lack
of a reference classification. We can only qualitatively assess
the accuracy of the results based on extra knowledge such as
the areas of actively spreading fire, consistency in the time
series, climatological presence, location of sea clutter for
the specific radar, and diurnal evolution of clear-air returns.
Based on this additional information and the dual-polarised
moments, a trained radar expert would be able to manually
classify echoes in the complex scene shown in Fig. 2 and
likely achieve a similar result to our texture and GMM ap-
proach. However, a human manual classification would fail
to define interfaces between clear air and pyrometeors where

Atmos. Meas. Tech., 16, 4571–4588, 2023 https://doi.org/10.5194/amt-16-4571-2023



A. Guyot et al.: Segmentation of polarimetric radar imagery using statistical texture 4585

the boundaries are blurred. From this perspective, we believe
that our results are at least as skilful as those of an expert
and, in some cases, likely less biased because of their ob-
jectivity. There are instances when pyrometeors and biologi-
cal echoes will mix, and for a given bin, radar echoes would
thus be a mixture of both. Because we only used the sec-
ond (0.9◦) tilts in this paper, we minimised the potential oc-
currences of shallow diluted pyrometeors’ plumes where bi-
ological echoes could dominate over pyrometeors. We did
not evaluate our approach against other proposed approaches
such as that of Zrnic et al. (2020) as it is well known that a
fuzzy-logic-based approach would need a priori information
on the distribution of the polarimetric variables; therefore it
would provide a biased result and no reference result with
which to compare. Zrnic et al. (2020) indeed showed that bio-
logical echoes (insects/birds) and pyrometeors’ echoes over-
lap and that they observe misclassification with their fuzzy-
logic algorithm. The main advantage of this newly automated
classification is that it provides identification of pyromete-
ors, providing the foundations to further apply other algo-
rithms. There remain some issues that could see improve-
ments or at least can be flagged with a degree of uncertainty
in the retrievals. However, in cases where only a few data
points are available to calculate texture, such as for isolated
pixel groups or the extremities of pyrometeors’ plumes, the
retrieved texture fields will show large standard deviations
across the distance–angle combinations. This variability is
present due to the small sample size and can result in poten-
tially unrealistic values of the mean texture retrievals. An-
other ongoing issue is the mislabelling of data points located
over land as sea clutter. These data points are primarily lo-
cated within pyrometeors’ plumes, and this mislabelling oc-
curs due to the somewhat similar textural properties of py-
rometeors and sea clutter. Our correction using a land–sea
mask enabled us to address this issue in a straightforward
manner. Notably, only a very small number of data points
are mislabelled as pyrometeors over the sea (in areas where
we know these are sea clutter echoes and not pyrometeors’
echoes). Finally, a greater diversity of echoes in the training
dataset could be considered, and the inclusion of frozen pre-
cipitation such as hail and snow echoes would allow for the
capture of the full diversity of echoes that can be encountered
in the vicinity of the Terrey Hills radar. This would necessi-
tate increasing and optimising the k value in the GMM.

We currently see two main limitations to a generalisation
and a wider use of our approach. Firstly, texture fields are
dependent on several factors such as radar characteristics, in-
cluding frequency, resolution, sensitivity, calibration, and ac-
curacy. Typically, absolute values of radar moments will be
affected by the sensitivity, calibration, and accuracy of the
radar and, in turn, the spatial field of these moments, and
its distributions could be seeing extreme values or outliers,
skewed distributions of values, or wider or narrower widths
of their distributions. Since the GLCMs are affected by spa-
tial differences between values, an increase or decrease in

these differences would affect the texture fields. The number
of samples collected on each ray will also affect the texture
due to sampling variability. The radar resolution will also be
an important factor affecting the texture because of the aver-
aging of inter-bin variations in radar variables for coarse res-
olutions, as opposed to a higher bin-to-bin contrast for higher
resolutions. Typically, for various resolutions of the obser-
vations and a given size of the observed object (typically
vortices of hundreds of metres), the resulting variable fields
would see lumped values at coarse resolution, where higher
resolution would resolve the object, and see strong bin-to-
bin variations. Finally, the radar frequency would also affect
the texture field, as for the same scene observed by X- or S-
band radars, one would see more attenuation at the X-band
and different thresholds of detection for ash-sized particles
for example, resulting in different radar variable fields. This
frequency effect is, however, expected to be minimal com-
pared to the ones described above. Typically, the systematic
error in ZDR for pyrometeors is expected to be larger than
that for rain or other echoes. The effect of scale as discussed
previously and the relation between the observed object and
the resolution of the observation will greatly influence textu-
ral retrievals. Of particular interest are texture retrievals from
portable weather radar observations (McCarthy et al., 2018,
2017) at X- or Ka-bands that are deployed around wild-
fires and provide unique insights into wildfire plume dynam-
ics and composition. Systematic retrievals of texture fields,
in particular the contrast of the correlation coefficient for
such observations, could help interpret these high-resolution
datasets by identifying areas or volumes with predominantly
similar echoes or a large diversity of echoes. The absolute
values of texture fields are also dependent on the chosen
quantisation (rescaling from a variable range to a chosen
range of gray scale levels). Addressing this issue should be
straightforward following the approach proposed by Löfstedt
et al. (2019). Secondly, the computational efficiency of tex-
ture calculations is a significant issue for operational use. The
current implementation requires 3 min of CPU time (on an
ARM-based Apple M1 CPU) to retrieve texture fields from
three radar moments for two Haralick features and for eight
combinations of distances–angles. This is a well-known lim-
itation of GLCMs (Clausi and Jernigan, 1998), but there are
multiple avenues to reduce this computational cost. Initial
work exploring the vectorisation of the GLCM implemen-
tation, as opposed to nested loops, could reduce computa-
tional cost by a factor of 5, and masking regions with no data
could also drastically reduce the cost by a factor of 10. Fi-
nally, parallelisation of the GLCM using GPUs can reduce
the computational cost by several orders of magnitude, with
early testing indicating that the processing time is reduced
from 3 min to approximately 10 ms.

The method presented here represents a significant step to-
wards temporal and spatial insights into fire–atmosphere in-
teractions where previously pyrometeor returns have largely
been grouped with a broader “non-meteorological” class of
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returns. While there have been a number of studies that lever-
age the highly detailed information available from radar to
develop insights into plume development above wildfires,
and even into wildfire behaviour, they have been restricted
to case-study-level analyses (McCarthy et al., 2019). This
has principally been due to lack of automated assessment
of pyrometeor returns, necessitating manual interpretation
and classification, whereas automated hydrometeor classi-
fication is well advanced due to a significant body of re-
search. The possibility of automatically assessing physical
processes, from a statistical point of view, over multi-day
and multi-week fire campaigns, as well as between differ-
ent fires, will be significant for the fire science discipline.
The discussed method will allow temporal examination of
fire escalation, area growth, and fuel consumption rates as
suggested by Duff et al. (2018) while being able to be spe-
cific about the type (shape, size, permittivity, concentration)
of pyrometeors and the presence of deep and moist convec-
tion coupled to fires based on the radar data alone.
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