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Abstract. We evaluate the potential of using a previously
developed remote calibration framework we name MOMA
(MOment MAtching) to improve the data quality in particu-
late matter (PM) sensors deployed in hierarchical networks.
MOMA assumes that a network of reference instruments can
be used as “proxies” to calibrate the sensors given that the
probability distribution over time of the data at the proxy
site is similar to that at a sensor site. We use the reference
network to test the suitability of proxies selected based on
distance versus proxies selected based on land use similarity.
The performance of MOMA for PM sensors is tested with
sensors co-located with reference instruments across three
Southern Californian regions, representing a range of land
uses, topography and meteorology, and calibrated against
a distant proxy reference. We compare two calibration ap-
proaches: one where calibration parameters get calculated
and applied at monthly intervals and one which uses a drift
detection framework for calibration. We demonstrate that
MOMA improves the accuracy of the data when compared
against the co-located reference data. The improvement was
more visible for PM10 and when using the drift detection
approach. We also highlight that sensor drift was associ-
ated with variations in particle composition rather than in-
strumental factors, explaining the better performance of the
drift detection approach if wind conditions and associated
PM sources varied within a month.

1 Introduction

Particulate matter (PM) is a major air pollutant with negative
impacts on both the environment and human health (Kim et
al., 2015; Anderson et al., 2012; Pope III, 2002; Rai, 2016).
Smaller particles, known as PM2.5 (particles with an aerody-
namic diameter < 2.5 µm), have the ability to penetrate deep
into the lung and to cross into the blood stream and trigger
inflammatory and mutagenic responses linked amongst other
effects to cardiopulmonary disorders, diabetes and adverse
birth outcomes (Feng et al., 2016). Coarse PM (PM10−2.5)

tends to impact the upper respiratory tract and induce respi-
ratory symptoms such as cough (Pope and Dockery, 1992).
Short-term exposures to PM10 have been associated primar-
ily with worsening of respiratory diseases, including asthma
and chronic obstructive pulmonary disease (COPD) (Cali-
fornia Air Resources Board, 2023). The spatial and tempo-
ral variability in PM is driven by multiple factors including
anthropogenic PM emissions from traffic, construction and
residential heating, which are main contributors to PM2.5,
as well as natural sources such as mineral dust consisting
mainly of particles in the coarse fraction (PM10−2.5) (An-
derson et al., 2012; Atkinson et al., 2010). PM2.5 and PM10
are routinely measured by government and research orga-
nizations using reference-grade equipment that is either the
filter-based Federal Reference Method (FRM) or continuous
Federal Equivalent Method (FEM). However, reference mon-
itoring networks are designed to measure regional air pollu-
tion to determine attainment of national ambient air quality
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standards and are often sparsely sited across a region due
to high instrument and operational costs (Morawska et al.,
2018; Snyder et al., 2013). The last decade has seen a rapid
increase in the availability of PM sensors offering opportu-
nities to measure PM with much denser networks and mak-
ing them popular choices for citizen projects and community
monitoring (Giordano et al., 2021; Liang, 2021; Snyder et
al., 2013; Zimmerman, 2022).

Most PM sensors are optical sensors that utilize the light
scattered by particles to determine the particle size and count
which are then converted to particle mass based on assump-
tions about particle density, shape and refractive index. This
poses a major challenge for calibrating PM sensors, as cali-
bration factors may change with particulate type and compo-
sition, as well as meteorological conditions such as temper-
ature or relative humidity (RH) which cause the particles to
swell or shrink and change their light scattering (Badura et
al., 2018; Morawska et al., 2018; Ouimette et al., 2022).

Thus, frequent field calibrations may be required if aerosol
properties vary significantly over time (Liang, 2021; Johnson
et al., 2018; Badura et al., 2018). While calibrations by co-
location using regression analysis remain a popular choice,
the costs and feasibility related to individual site visits and
calibrations make them not a viable option for large and/or
long-term sensor networks (Liang, 2021). Another approach
is to apply a RH correction factor to account for the bias in-
troduced due to high RH (Crilley et al., 2020; Liang, 2021).
While this method has the advantage of being independent
from the availability of reference data, it is not suitable for lo-
cations with consistently high RH and does not improve the
accuracy as much as other calibration methods (Liang, 2021).
Similarly, Barkjohn et al. (2021) developed a US nation-wide
correction for PurpleAir sensors which is implemented in
the AirNow Fire and Smoke Map (https://fire.airnow.gov/,
last access: 5 October 2023). While the approach has inten-
sively been tested for PurpleAir sensors, further research is
required to evaluate its transferability to other sensor mod-
els (Barkjohn et al., 2021). Other studies have used machine
learning (ML) approaches to train calibration models with
enough co-location data to cover various meteorological and
environmental conditions and make them more robust for
long-term sensor deployments (Liang, 2021; De Vito et al.,
2020; Loh and Choi, 2019). However, if conditions (e.g., dif-
ferent traffic conditions, different PM sources) at the co-
location site are different from the conditions at the site of the
final deployment, the model may no longer be suitable (De
Vito et al., 2020; Liang, 2021). In addition, while being more
robust and effective, ML may still suffer from challenges re-
lated to sensor degradation when sensors are deployed in a
long-term fashion (Liang, 2021).

In previous publications, we demonstrated that a hier-
archical network, consisting of well-maintained reference-
grade instruments (referred to as “proxies”) and gas-phase
(O3, NO2) sensors, can be used to correct sensors remotely
(Miskell et al., 2018, 2019; Weissert et al., 2020). The cor-

rection framework, which we named MOMA for MOment
MAtching, is based on the assumption that the probability
distribution over time of measurements at a proxy site is sim-
ilar to that of the sensor site (Miskell et al., 2018, 2019; Weis-
sert et al., 2020). We have demonstrated that this approach is
able to successfully correct for sensor drift without the need
of co-location.

In this paper, we examine how this remote calibration
methodology performs for PM sensors deployed in Southern
California. The network was established between 2020 and
2022 to supplement the reference network and supports Cal-
ifornia Assembly Bill 617 community monitoring. The net-
work is maintained by South Coast Air Quality Management
District (AQMD) and covers three main regions, including
the city of Los Angeles (LA), the Inland Empire (IE) and a
desert region of Riverside County (RC Desert). These three
regions differ in terms of land use, terrain and meteorology,
offering an opportunity to test MOMA under different sea-
sonal conditions and PM sources.

The network consists of over 60 sensors, for which the
overhead for manual calibration would be prohibitive. Thus,
using the MOMA approach, the sensors are calibrated at
monthly intervals, and new calibration gains and offsets are
uploaded to a cloud to provide real-time calibrated data
which are displayed on the South Coast AQMD AQ Portal
(https://aqportal.aqmd.gov/, last access: 5 October 2023). In
order to validate the MOMA procedure applied across the
network, the focus of this paper is on six sensors that are
co-located with a reference instrument at air monitoring sites
(AMSs). Here, we compare the monthly calibration approach
to an automated drift detection approach to apply the calibra-
tion when drift between a sensor and the proxy site was de-
tected using data from January to December 2021 (Miskell
et al., 2018, 2019; Weissert et al., 2020).

A key part of MOMA is the identification of a suitable
proxy site for each sensor in the sensor network. Previous
work has shown that the nearest reference site is a suitable
proxy to calibrate O3 concentrations, which are regionally
well correlated (Miskell et al., 2018, 2019). For NO2, which
is spatially and temporally more variable, land use similar-
ity proved to be a good criterion to select appropriate proxy
sites (Weissert et al., 2020). PM2.5 levels tend to be rela-
tively homogeneous across an urban region, suggesting that
the closest reference site could be a suitable proxy. However,
PM10 can be spatially more variable due to the shorter life-
time and more variable sources, and a proxy selected based
on distance may not be suitable (Pinto et al., 2004; Sardar,
2005). Thus, we also determine suitable proxies for calibrat-
ing PM2.5 and PM10.
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2 Materials and methods

2.1 Data

This study uses data from a network of Aeroqual AQY v1.0
(AQY) sensor systems from Aeroqual Ltd, Auckland, New
Zealand. The AQY measures O3, NO2, PM2.5, PM10, tem-
perature and relative humidity. A detailed description of the
AQY sensor system is available in Weissert et al. (2020) and
Miskell et al. (2019). The focus of this paper is the PM sen-
sor (model SDS011, Nova Fitness Co., Ltd, Jinan, China)
inside the AQY sensor system. The SDS011 is an optical
light-scattering device which outputs PM2.5 and PM10 mass
concentration (µg m−3) measurements. Previous studies of
this sensor have shown a high PM2.5 correlation with ref-
erence instruments (Badura et al., 2018; Liu et al., 2019),
but PM10 values may be underestimated (Budde et al., 2018;
Kuula et al., 2020). Nevertheless, we use both PM2.5 and
PM10 measurements to evaluate the performance of our net-
work calibration technique applied to PM data. The SDS011
sensor was factory calibrated against a Met One 9722 eight-
channel optical particle counter (Met One Instruments, Inc.,
Grants Pass, Oregon, USA) using 1 µm latex microspheres.
The AQY performs a humidity correction using an algo-
rithm based on the Köhler theory with an empirically de-
rived scalar (Crilley et al., 2018). The AQY PM measure-
ments were field and laboratory evaluated by South Coast
AQMD’s Air Quality Sensor Performance Evaluation Cen-
tre (AQ-SPEC) (http://www.aqmd.gov/aq-spec/sensordetail/
aeroqual-aqy-v1.0, last access: 5 October 2023), showing
strong correlations with the co-located FEM GRIMM data
(0.77 < R2 < 0.85) and low to moderate intra-model vari-
ability.

We used data from six AQY sensors co-located at AMSs,
referred to as “co-location sites” in this paper, equipped with
a reference-grade instrument, which allowed us to test the
performance of the remote calibration framework (Table 1).
Reference data from the co-location AMSs were obtained ei-
ther from AirNow (https://www.airnow.gov/, last access: 5
October 2023) or directly from South Coast AQMD. Refer
to Table S1 in the Supplement for instrumentation at each
site. The six AQY sensors were deployed between April 2020
and January 2021 (Table 1). While PM2.5 data were available
since the start of the deployment, PM10 sensors were only
activated at the start of January; thus we focus on data from
January to December 2021 for the following analysis. Fog
can frequently be present between October and February in
the study area, driven by lower inversion levels (Qin et al.,
2012; Witiw and LaDochy, 2008), and lead to overestimates
of PM2.5 and PM10 (Budde et al., 2018) (Fig. S1 in the Sup-
plement). We developed a fog alert, and data impacted by fog
were removed from this analysis. This affected around 1 % of
the data at each site and was mostly observed in November,
December and February.

To get a better understanding about the composition of
measured particles and how this impacts the performance of
MOMA, we used speciation data collected at the Riverside–
Rubidoux (RIVR) AMS. All speciation data were obtained
using the RAQSAPI package (Mccrowey et al., 2021), which
enables downloading monitoring data from the US Environ-
mental Protection Agency’s Air Quality System service. We
focused on parameters representing crustal material, trace
ions, secondary ions, elemental carbon (EC) and organic car-
bon (OC) and followed the classification described in Daher
et al. (2013) (Table S2).

Surface meteorological data from Riverside Municipal
Airport, situated ∼ 6 km south of the Riverside–Rubidoux
AMS, were downloaded from the NOAA Integrated Sur-
face Database (ISD) via the worldmet package in R
(Carslaw, 2023).

The statistical analysis was performed in R (v.4.1.3) us-
ing tidyverse (Wickham et al., 2019), lubridate (Grolemund
and Wickham, 2011), zoo (Zeileis and Grothendieck, 2005),
ggrepel (Slowikowski et al., 2023), openair (Carslaw and
Ropkins, 2012), RAQSAPI (Mccrowey et al., 2021), gg-
plot2 (Wickham, 2016), dplyr (Wickham et al., 2022), ggmap
(Kahle and Wickham, 2013) and ggpmisc (Aphalo, 2023).

2.2 Study area

This study was performed in Southern California in a region
that is under the jurisdiction of the South Coast Air Quality
Management District (SCAQMD). AQY sensors measuring
PM were co-located at two AMSs in the city of LA (CELA,
CMPT), two AMSs in the IE (RIVR, MLVB), and two AMSs
in the RC Desert (INDIO, PALM) (Table 1). The LA region
is representative of downtown LA, and PM levels are likely
dominated by emissions from transport and other combus-
tion processes (Oroumiyeh et al., 2022). The IE is situated in
a predominantly rural and agricultural area about 80 km in-
land from downtown LA. It is situated downwind from LA
for the majority of the year, which means that PM levels in
the area will be influenced by the particulate matter com-
ing from LA (Daher et al., 2013). Northeasterly Santa Ana
Winds (SAWs) become more frequent during the autumn and
winter months impacting PM levels in the IE. SAWs are asso-
ciated with very dry air and good visibility in the absence of
wildfires, as urban pollutants are blown offshore. However,
they are also key drivers of large wildfires enabling them to
spread faster and transporting smoke PM from inland areas
to the more populated regions (Aguilera et al., 2020). The RC
Desert region is located north of Salton Sea and surrounded
by mountains. The region is drier and hotter compared to LA
and the IE. The RC Desert experiences high levels of PM10,
dominated by the coarse fraction, driven by erosion and in-
creasing emissions from the drying Salton Sea (Ostro et al.,
2000; Miao et al., 2022).
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Table 1. Information about AQY sensors and their co-location sites, as well as deployment dates and data completeness (excluding fog data).

Deployment Data completeness
AQY ID AQY label Co-located AMSs Region date (Jan–Dec 2021)

AQY BD-1146 RIVR coloc Riverside–Rubidoux (RIVR) IE 3 Apr 2020 85 %
AQY BD-1129 MLVB coloc Mira Loma–Van Buren (MLVB) IE 3 Apr 2020 86 %
AQY BD-1110 CMPT coloc Compton (CMPT) LA 8 Jan 2021 71 %
AQY BD-1069 CELA coloc Los Angeles–N. Main Street (CELA) LA 19 Jun 2020 98 %
AQY BD-1071 INDIO coloc Indio–29 Palms (INDIO) RC Desert 3 Nov 2020 82 %
AQY BD-1081 PALM coloc Palm Springs (PALM) RC Desert 8 Jan 2021 91 %

2.3 Remote network calibration

MOMA was developed for hierarchical air monitoring net-
works that consist of well-calibrated reference grade instru-
ments acting as “proxies” which are used to calibrate the sen-
sors deployed in the field. The technique is described in de-
tail in Miskell et al. (2016, 2018, 2019). Here, we calibrated
sensors co-located at the AMSs against a remote reference
proxy. The performance of the calibration against the proxy
was then evaluated by comparing the calibrated data against
the co-located reference data using the metrics mean abso-
lute error (MAE), root mean squared error (RMSE) and co-
efficient of determination (R2). We tested two approaches to
calibrate the PM2.5 and PM10 sensors in this study.

The first approach was a monthly MOMA calibration us-
ing the last 2 weeks of each month to select a calibration
window of 7 consecutive days to calculate the calibration pa-
rameters which were then applied from the first to the last
calendar day of the subsequent month. The last 2 weeks of
the month were selected to ensure the most recent data were
used to determine calibration gains and offsets. The calibra-
tion gains, â1, and offsets, â0, were calculated by matching
the mean, E, and variance, var, of the sensor data, Y , at loca-
tion i and proxy data, Z, at location k over the time interval
t− td : t as described in Miskell et al. (2018, 2019) and sum-
marized in Eqs. (1) and (2).

â1 =

√
var
{
Zk, t−td:t

}
/var

{
Yi, t−td:t

}
(1)

â0 = E
{
Zk, t−td:t

}
− â1E

{
Yi, t−td:t

}
(2)

A calibration window was considered suitable if the data
completeness for both proxy and sensor was greater than
85 % and the temporal variation in the sensor and proxy ref-
erence data was similar (i.e., there was no evidence of local
effects that were only present at the sensor site or proxy site).
We also avoided periods when we detected fog using Aero-
qual’s fog detection algorithm.

The second approach used a previously described drift de-
tection framework (Miskell et al., 2016) to trigger a MOMA
calibration. The drift detection framework uses three statis-
tical tests to detect sensor drift: a two-sample Kolmogorov–
Smirnov (K-S) test (K-S test p value) and a mean-variance
(MV) moment-matching test for the slope, â1, and the in-

tercept, â0. The statistical tests were calculated over a 3 d
running averaging window, td, and an alarm was triggered
when any of the tests exceeded the predetermined thresh-
old, tf, for a period of 5 consecutive days. These periods
were selected to limit short-term fluctuations due to local ef-
fects but to capture the regional effects, which is ensuring
that diurnal and regional variations dominate (Miskell et al.,
2018, 2019). The following thresholds were used to deter-
mine if a sensor drifted: K-S test p value < 0.05 (the two
distributions are significantly different); 0.75 < â1 > 1.25;
−5 µg m−3 > â0 > 5 µg m−3. These thresholds may be ad-
justed to be more or less sensitive to differences between the
sensor and the proxy data. While adjusting all parameters and
alarm triggers exceeded the scope of this study, preliminary
analysis using data from “RIVR coloc”, “MLVB coloc” and
“CELA coloc” showed that a shorter 4 d window, tf, may be
more suitable for the AQY sensors located in the IE but not
the city of LA. This framework was applied to the six AQY
sensors co-located at the AMSs (Table 1) using data from
January to December 2021.

2.4 Proxy selection

We compare proxies selected based on distance to proxies
with similar land use. Land use variables used for the anal-
ysis were (a) road length (motorway, primary roads) within
a 1 km buffer around the site, (b) distance of the site from
a motorway and (c) elevation. These are simple and widely
available and have also been identified as good predictors for
PM in land use regression studies in the USA (Kloog et al.,
2012; Lee et al., 2016) and Europe (Eeftens et al., 2012).
To select proxy sites with the most similar land use we used
a supervised classification technique, the k-nearest neighbor
classification (kNN), as described in more detail in Weissert
et al. (2020).

Data from the reference network were used to identify
suitable proxies, which had two main advantages over using
sensor data. First, the availability of long-term reference data
allowed testing and developing suitable criteria for proxy se-
lection without relying on sensor data, which are often not
available until deployed in the field. Second, we eliminated
any uncertainties associated with sensor performance, such
as sensor drift.
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Figure 1. (a) PM2.5 and (b) PM10 South Coast AQMD reference air monitoring networks colored by different regions. The map was created
using ggmap (Kahle and Wickham, 2013). Co-location sites are highlighted by black squares.

Figure 2. PM2.5 and PM10 reference time series for a 7 d period
grouped by regions (i.e., IE, LA, RC Desert). Co-location test sites
are the solid lines. Sites with dashed lines are proxy sites only.

Figure 1 shows the network of reference PM2.5 and PM10
monitors managed by SCAQMD. Sites with co-located AQY
sensors, including Los Angeles, N. Main Street (CELA),
Compton (CMPT), Mira Loma–Van Buren (MLVB) and Ru-
bidoux (RIVR), were used as test locations for which a suit-
able PM2.5 proxy is found. As SLMZ was the only avail-
able PM2.5 proxy site for Indio–29 Palms (INDIO), this site
was not included in the proxy selection analysis for PM2.5.
CELA, MLVB, RIVR, Palm Springs (PALM) and INDIO
were used as test locations to identify suitable for PM10 prox-
ies (Fig. 1).

To evaluate the similarity between data at a proxy site and
data at a test location we calculated the MAE, R2 and the
two-sample K-S test statistic for each possible proxy and co-
located test location based on daily averaged reference data.
The K-S test statistic is a measure of the maximum distance
between two cumulative distributions and was used to com-
pare the cumulative distribution of the proxy reference data
to that of the reference at the co-located test location. An
ideal proxy should exhibit a low MAE and K-S test statistic,
as well as a high R2 value.

3 Results and discussion

3.1 General characteristics of the data

PM2.5 levels seem to be comparable across the sites and
regions in LA and the IE, but lower levels were observed
in the RC Desert (Fig. S2). There are also distinct differ-
ences in the PM10 concentrations with higher levels observed
in the IE (RIVR, MLVB). PM2.5 concentrations were high-
est in autumn and generally more variable over the autumn
and/or winter period. The time series shown in Fig. 2 show
that while short-term local effects are visible (particularly
for PM10 in the IE and RC Desert), overall diurnal PM2.5
and PM10 variations across sites within the same region were
similar. This suggests that MOMA could be an effective cali-
bration framework for PM, since the underlying requirement,
that the diurnal patterns of pollutants at the proxy site and at
the site to be calibrated are similar, seems to be met, par-
ticularly for PM2.5. For PM10, a more careful selection of a
suitable calibration window may be required, given the short-
term local differences.

3.2 Proxy selection criteria

Figure 3 shows the MAE, R2 and K-S test statistic for prox-
ies located at various distances away from the four (PM2.5)

and five (PM10) co-located AMS test locations. The figure
demonstrates whether data obtained from the nearest site or
the site with the most similar land use closely resemble the
data at the respective test location. The figure illustrates that
in most cases the nearest proxy site rather than the site with
the most similar land proves to be the most appropriate proxy,
resulting in the lowest MAE and the highest R2 throughout
the entire year. Using the K-S test statistic as a measure of
similarity across probability distributions reveals a slightly
different pattern, suggesting that PM2.5 CMPT or SLB may
be more suitable proxies for CELA and that PM2.5 CELA
could be a suitable proxy for MLVB or RIVR when upwind
from MLVB or RIVR.

https://doi.org/10.5194/amt-16-4709-2023 Atmos. Meas. Tech., 16, 4709–4722, 2023
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Table 2. Table of the site names associated with the AMS IDs used
in Fig. 1.

AMS ID Name Region

MLVB Mira Loma–Van Buren IE
RIVR Riverside–Rubidoux IE
SNBO San Bernardino IE
CRES Crestline–Lake Gregory IE
UPL Upland IE
CELA Los Angeles–N. Main Street LA
CMPT Compton LA
NHOL North Hollywood LA
ANA Anaheim LA
SLB South Long Beach LA
GLEN Glendora–Laurel LA
PALM Palm Springs RC Desert
INDIO Indio–29 Palms RC Desert
SLMZ Saul Martinez RC Desert

However, there are exceptions to this observation, suggest-
ing that other factors, such as PM sources associated with
the surrounding land use, terrain or prevailing wind direc-
tion, likely also contribute to the suitability of a proxy. For
example, a proxy further away (CELA) seems to perform
similarly to a nearby proxy (UPL) for PM2.5 at Mira Loma
(MLVB). Mira Loma is downwind from CELA for most of
the year, possibly explaining the low MAE against MLVB.
The CRES site also seems to be a poorer PM2.5 proxy for
MLVB and RIVR, which may be due to its location at higher
altitudes, as well as being separated from MLVB and RIVR
by the San Bernardino mountains (> 1200 m high). Never-
theless, the nearest proxy generally resulted in the most sim-
ilar distribution with the lowest K-S test statistic, as well the
lowest MAE and highest R2. Thus, we suggest selecting PM
proxies based on distance for the following analysis, as well
as future deployments, as long as the nearest proxy is within
the same airshed (e.g., not separated by mountains).

3.3 MOMA calibration performance

The performance of MOMA was evaluated using sensors that
were co-located at an AMS. Each sensor was mapped to its
nearest proxy (Table 3), calibrated using the MOMA tech-
nique and compared to its co-located South Coast AQMD
AMS using the metrics MAE, RMSE and R2.

3.3.1 PM2.5

Table 4 shows the 24 h averaged PM2.5 and PM10 summary
statistics for the AQY sensors against the co-located refer-
ence before the calibration (gain= 1, offset= 0+RH cor-
rection) (U), after the monthly calibration (M) and the drift
calibration (D) over the 12-month period from January 2021
to December 2021. The monthly MAEs are shown in Fig. 4.

Figure 3. (a) MAE, (b) R2 and (c) K-S test statistic colored by
region (LA: orange; IE: blue; RC Desert: red) for different proxies
against distance to the co-located test location for PM2.5 (CELA,
CMPT, MLVB, RIVR) and PM10 (CELA, MLVB, RIVR, INDIO,
PALM). The site with the most similar land use to the test site is
labeled with a “*”. The proxy site is labeled in each panel. The full
site names are shown in Table 2. An ideal proxy would have a low
MAE and K-S test statistic, as well as a high R2 value. Proxies
on the left hand side are closest to the co-located test location and
therefore representative of the nearest proxies.

The sensors in the LA and the RC Desert regions were
under-reading PM2.5 concentrations prior to calibration; this
was particularly evident for the AQY co-located at the IN-
DIO AMS (slope: 0.4). These sensors show a clear improve-
ment with both the monthly and drift calibration applied as
indicated by a slope closer to 1 and an up to 60 % reduction
in the MAE and RMSE, although the improvement varies
across the sensors (Table 4). The monthly and drift cali-
brations did not improve the R2 or slope for the sensors in
the IE at MLVB and RIVR. Unlike the AQY sensors in the
LA region or the RC Desert the uncalibrated data showed a
strong correlation with the co-located reference, R2 (0.7/0.9),
and the slope (1.0/1.2) and MAE (4–6 µg m−3) were already
within the range of calibrated slopes and MAE. This sug-
gests that the standard factory sensor calibration transferred
well to the field at MLVB and RIVR. Calibrating the sen-
sor data against the proxy, however, seems to have intro-
duced errors. There are several reasons for this. Firstly, Fig. 4
shows that the MAE between the co-located reference data
and the proxy data is larger at RIVR then the MAE for the
uncalibrated data against the co-located reference data, in-
dicating that the MLVB proxy was not always suitable for
MOMA calibration of the RIVR sensor. This is also sup-
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Table 3. List of AQY sensors co-located at South Coast AQMD AMS sites with their proxy reference sites.

Distance Distance
PM2.5 PM10 to PM2.5 to PM10

AMS ID AQY label Region proxy proxy proxy (km) proxy (km)

RIVR RIVR coloc IE MLVB MLVB 7 7
MLVB MLVB coloc IE RIVR RIVR 7 7
CELA CELA coloc LA NHOL GLEN 12 36
CMPT CMPT coloc LA SLB ∗ 18
PALM PALM coloc RC Desert ∗ INDIO 36
INDIO INDIO coloc RC Desert SLMZ SLMZ 21 21

∗ There are no PM10 data available from CMPT and no PM2.5 measurements available from PALM.

Table 4. The 24 h averaged PM2.5 and PM10 summary statistics for the AQY sensors against the co-located reference before the calibration
(U), after the monthly calibration (M) and the drift calibration (D) over the 12-month period from January 2021 to December 2021.

Mean
ref (SD)

AMS Region (µg m−3) Regression slope Regression offset R2 MAE (µg m−3) RMSE (µg m−3)

U M D U M D U M D U M D U M D

MLVB IE 17 (8) 1.0 1.1 0.8 −4 −4 −1 0.7 0.5 0.7 6 7 6 7 9 6
RIVR IE 12 (8) 1.2 1.3 1.2 −4 2 2 0.9 0.6 0.8 4 5 6 5 10 8

PM2.5 CELA LA 15 (7) 0.3 0.8 0.8 0 4 3 0.4 0.4 0.7 9 11 4 11 6 4
CMPT LA 14 (7) 0.9 1.8 1.1 −4 −8 −1 0.7 0.6 0.8 6 7 6 7 11 4
INDIO RC Desert 9 (4) 0.4 0.9 1.2 0 3 0 0.6 0.5 0.5 6 6 3 6 4 5

U M D U M D U M D U M D U M D

MLVB IE 51 (25) 0.3 0.4 0.5 7 23 17 0.2 0.2 0.4 28 20 14 34 30 22
RIVR IE 40 (18) 0.6 1.4 1.1 −4 2 7 0.4 0.3 0.6 21 22 12 25 44 18

PM10 CELA LA 31 (12) 0.4 0.7 0.7 1 6 6 0.4 0.4 0.4 19 9 8 21 12 12
INDIO RC Desert 48 (38) 0.1 0.5 0.6 7 28 23 0.5 0.4 0.4 36 18 18 49 31 31
PALM RC Desert 23 (11) 0.3 1.4 1.3 1 7 5 0.6 0.2 0.4 16 21 14 18 39 21

ported by the differing probability distributions from the two
sites (Fig. S3), which suggests the sites were exposed to dif-
ferent PM levels. On the other hand, the probability distribu-
tions for CELA and NHOL PM2.5 data and those for CMPT
and SLB were very similar (Fig. S3), and hence the MOMA
calibration process produced improved accuracy.

Secondly, monthly variability in particle source and com-
position will impact the reliability of the MOMA calibrations
particularly for those performed at monthly intervals. For ex-
ample, the very high monthly MOMA MAE for February at
CELA, MLVB and RIVR suggests the January particle com-
position was not representative of that observed in February
at these sites. Particle composition is known to vary with dif-
ferent wind directions (desert versus marine and urban parti-
cles) and impact the sensor reading as observed in previous
studies (Castell et al., 2017; Gao et al., 2015; Giordano et al.,
2021; Kelly et al., 2017). The effect of this phenomenon is
particularly visible between November and February when
wind was more variable. This is supported by Fig. 4, which
shows that for both the LA and IE regions the MAE tended
to be higher in November–December and January for both

uncalibrated and calibrated data. The difference between the
proxy and the co-located reference data also tended to be
larger during these months.

A similar month-to-month variability in the MAE can
be observed when comparing the reference monitor (BAM-
1020, Met One Instruments, Inc., Grants Pass, Oregon, USA)
at RIVR against the reference grade optical instruments –
T640 (Teledyne API, San Diego, USA) and the GRIMM op-
tical particle counter (EDM 180, GRIMM Aerosol Technik
GmbH and Co., Airing, Germany) – also located at the RIVR
site. The T640 and GRIMM are both optical particle counter
instruments that determine the aerosol particle size distribu-
tion from which they estimate the PM concentration. The
BAM-1020 samples aerosols through a PM10 inlet and uses
a very sharp cut cyclone (VSCC) to classify it into PM2.5 be-
fore collecting it on a filter tape and determining the PM2.5
concentration by the aerosol’s attenuation of a C14 beta ra-
diation source (Hagler et al., 2022). Due to the differences
in the measurement principles, the instruments can give dif-
ferent results depending on the properties of the measured
particles.
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Figure 4. Bar charts showing the uncalibrated (gain = 1, offset =
0 + RH correction), monthly-calibrated and drift-calibrated MAE
between the AQY 24 h averaged PM2.5 (a) and PM10 (b), and the
co-located reference. For comparison it also shows the MAE be-
tween the proxy reference and the co-located reference in black.
Panels (c) and (d) show the MAE between the 24 h averaged BAM
and co-located T640, the GRIMM and the co-located T640, and the
BAM and the co-located GRIMM.

The T640 and GRIMM match each other consistently
across the year (similar technologies), but the BAM and T640
MAE and the BAM and GRIMM MAE were higher in gen-
eral and highest during the November and December months.
This further shows how differences between measurement
technologies will be exacerbated when particle composition
is variable. This is discussed in more detail in Sect. 3.5.

Thirdly, measurement noise in the hourly reference data
from the beta attenuation monitors deployed at the sites may
be too high to reliably calibrate low-cost sensors when con-
centrations are low (< 40 µ g m−3) as often was the case in
the RC Desert (Hagler et al., 2022; Johnson et al., 2018;
Zheng et al., 2018). The calibration improved the data most
during the summer months with the MAE equal or be-
low 5 µg m−3.

3.3.2 PM10

As expected, the PM10 data from the sensors generally
showed a poorer agreement with the co-located refer-
ence with a high MAE (16–36 µg m−3) and RMSE (18–
49 µg m−3) and low R2 (0.2–0.6) (Table 4) for uncali-
brated data. The uncalibrated data were also underestimating
PM10 concentrations, particularly in the RC Desert (INDIO,

PALM) as shown by the low slope (0.1–0.3). This is in agree-
ment with previous work which showed that the SDS011
underestimates PM10, particularly for particles greater than
5 µm which dominate in the RC Desert (Budde et al., 2018;
Kuula et al., 2020; Ostro et al., 2000).

The monthly and drift-triggered MOMA calibrations had
a clear positive impact on PM10 and improved the accuracy,
as indicated by a nearly 60 % decrease in the MAE and a
40 % decrease in the RMSE in the LA region (CELA) (Ta-
ble 4). However, the scatter remained and resulted in no im-
provement in the R2. The drift detection framework also im-
proved the accuracy of the data at the two AQY sensors lo-
cated in the IE. The monthly calibrations, on the other hand,
decreased the accuracy at RIVR where the MAE and RMSE
were higher after the calibration compared to uncalibrated
data (Table 4).

The proxy and REF MAE (Fig. 4) was highest in the RC
Desert suggesting that SLMZ is not a suitable proxy for
PM10 at INDIO. To some extent this is expected since the
PM coarse fraction (PM10–PM2.5) is more dominated by lo-
cal sources than PM2.5 (Pinto et al., 2004).

However, similar to PM2.5, there was month-to-month
variability in the calibration performance, with better im-
provements during summer and poor performance in Novem-
ber, particularly in the IE and RC Desert (Fig. 4). Potential
factors that contribute to the high MAE in November are fur-
ther discussed in Sect. 3.5.

A comparison of the PM10 data from the reference in-
struments at RIVR (BAM, GRIMM, T640) shows that the
MAE across different instrument types can be as high as
∼ 15 µg m−3, and the GRIMM and T640 PM10 MAE is the
highest – the opposite of the PM2.5 result. This observation
illustrates the importance of the assumptions used to relate
signal to aerodynamic radius and mass, which are different
for different instrument types.

3.4 Drift detection triggers

The results from the drift detection framework tests are
shown in Fig. 5 (K-S test p value; MV slope test, â1; and
the MV intercept test, â0) for PM2.5, and PM10 measured
by a PM sensor deployed in the LA region and one in the
IE region. The black points indicate when the framework
triggered a drift alarm and calibration. It is evident that
most alarms were raised due to significant differences in
the probability distributions (K-S test p value < 0.05), fol-
lowed by a change in the slope between the proxy and sen-
sor (MV slope test). Alarms triggered by the K-S test are
spread across the whole year but are generally more com-
mon during the summer months; concentrations are possi-
bly lower then, so instrument noise becomes important and
is determining the signal distribution across the observed
range. In the IE (RIVR) alarms related to changes in the MV
slope were clustered around February, May and September–
October suggesting more frequent changes in environmental
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Figure 5. Test statistics from drift detection framework for a site
in the IE region (a, c) and one in the city of LA region (b, d) for
PM2.5 (a, b) and PM10 (c, d). The black points show when the
drift detection framework resulted in an alarm and triggered a cal-
ibration. The dotted lines represent the thresholds used to trigger a
drift alarm: K-S test p value < 0.05; −5 µg m−3 > â0 > 5 µg m−3;
0.75 > â1 > 1.25. A drift alarm (black dot) was triggered when
thresholds were exceeded for 5 consecutive days.

conditions (e.g., RH) or particle composition and size dur-
ing these months (discussed in Sect. 3.5). The AQY sensor
installed at the CELA AMS sent off alarms that were more
spread across the whole year, suggesting that sensor drift at
this site was not related to seasons. The figure also shows
that there are frequent calibrations within a month at both
sites likely due to within-month changes in meteorological
and environmental conditions (discussed in Sect. 3.5). This
partly explains the better performance of the drift-calibrated
data compared to the monthly calibrated data.

Figure 6 shows the temporal variability in monthly and
drift-calculated gains for sensors in the IE, LA and RC Desert
regions. The temporal variation in the PM2.5 and PM10 gains
calculated by the monthly calibrations (Fig. 6b and d) show
a distinct seasonal pattern with higher gains (∼ 2–3) during

Figure 6. Temporal variation in the gains as calculated from the
drift detection framework (a, c) and the monthly calibrations (b,
d) for PM2.5 (a, b) and PM10 (c, d). Step changes refer to a change
in the calibration gain, and a smooth curve was fitted through the
data points to visualize the overall temporal trend of the gains.

autumn and winter and lower gains (∼ 1) during the summer
months, particularly in the IE region. An opposite pattern is
visible in the RC Desert where gains were not only reaching
a maximum over the summer months but were also around
6 times higher than those in the IE or LA regions. The gains
from the drift detection framework were more variable, as
visible from the more frequent step changes, but also showed
some seasonal dependence. These results suggest that unlike
calibrating for sensor drift (which would be shown as a con-
tinuous increase in the slope over time as observed when cal-
ibrating O3 sensors; Miskell et al., 2019) PM sensors are cal-
ibrated for different conditions, which can vary frequently as
shown by the step changes in the drift gains.

3.5 Particle composition variability

As observed in the previous sections, calibrating PM sensors
can be challenging in complex areas where particle compo-
sition, size and physical properties (i.e., shape and refractive
index) vary spatially and temporally (Kuula et al., 2020). In
this section, we discuss some of the origins for the variations
in particle composition with a specific focus on the Riverside
area (RIVR AMS).

The wind data from Riverside Municipal Airport, shown
in Fig. 7, clearly indicate the seasonal variation in the wind
direction with north and northeast winds dominating during
the late autumn–winter months and west winds dominating
during the rest of the year. It is also visible that wind is more
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Figure 7. Number of hours dominated by different wind direction
measured at Riverside Municipal Airport during each month.

variable in late autumn and winter, possibly explaining the
more frequent alarms observed for these months at River-
side (Fig. 5). The north and northeast winds correspond to
the SAWs which are associated with very dry downslope air-
flow from the northeast and common between October and
April, with a peak in December and January (Aguilera et
al., 2020). Typically, PM concentrations during SAW condi-
tions are dominated by coarse particles of crustal components
(Guazzotti et al., 2001; Qin et al., 2012).

This is in agreement with observations from Fig. 8 which
shows higher concentrations of crustal material and ele-
mental carbon during north, northeast and northwest winds,
reaching a maximum in November. Organic carbon concen-
trations, likely driven by traffic emissions, are similar across
the dominant wind directions with maximum concentrations
observed in November. Higher autumn and winter OC con-
centrations have previously also been observed by Daher et
al. (2013) and were explained by stronger atmospheric stabil-
ity which restricted atmospheric mixing. Higher concentra-
tions of OC observed over the summer months when EC con-
centrations were low are likely due to increased PM advec-
tion and secondary organic aerosol formation as commonly
observed for the inland locations downwind from urban sites
(Daher et al., 2013). Trace ions (chloride, sodium and potas-
sium) and secondary ions (nitrate, sulfate and ammonium),
on the other hand, are highest downwind from the city of
LA, reaching a maximum in spring–summer due to increased
photochemical activity and a larger contribution of sulfate
sources and its precursor (fuel and ship emissions) upwind
of the city of LA (Daher et al., 2013).

Figure 9 illustrates the relationship between the BAM and
co-located sensor data colored by wind direction and course
fraction (1 – PM2.5/PM10). The figure reveals a clear slope
dependence on the wind direction (< 1 when wind was from
a northeast origin and ≥ 1 when wind from a western ori-
gin dominated), suggesting that it underestimates PM2.5 lev-
els during northeastern wind (SAW conditions). These con-
ditions correspond to a higher proportion of coarse fraction,
likely associated with crustal material, further highlighting
that the AQY is underestimating larger particles (Fig. 9b). In
fact, Budde et al. (2018) found that the SDS011 used in this

Figure 8. Boxplots showing speciation concentrations collected at
the Rubidoux (RIVR) AMS grouped into five categories (panels)
plotted against wind direction (wd) (a) and for each month of the
year colored by different seasons (b). Note that there were no data
for southeast winds which were not common during the study pe-
riod. The lower and upper hinges represent the 25th and 75th per-
centiles with the median marked inside the box. The lower and up-
per whiskers extend 1.5 × the inter-quartile range from the hinge.

Figure 9. Hourly uncalibrated low-cost sensor data against hourly
co-located reference data at the Rubidoux (RIVR) AMS during
2021, (a) colored by wind direction and (b) colored by the AQY
PM coarse fraction: 1 – PM2.5/PM10.

study strongly underestimates particles > 2 µm in the PM2.5
measurement.

4 Conclusions and future work

This work is part of a large study that set out to determine
if a remote calibration framework (MOMA), previously de-
veloped for the correction of drift in O3 and NO2 sensors
(Miskell et al., 2018, 2019; Weissert et al., 2020), can be ap-
plied for PM2.5 and PM10 data from PM sensors. We iden-
tified suitable reference proxies based on distance and pre-
sented two approaches to remotely calibrate data from sen-
sor networks: (1) at monthly intervals and (2) using a drift
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detection framework that triggers a calibration when drift
is detected. Our results show that averaged across all sea-
sons and sites MOMA reduces the PM2.5 RMSE from 8 to
5 µg m−3 with average PM2.5 concentrations of 13 µg m−3.
This is comparable to the improvement achieved from a
global correction applied to PurpleAir sensors where the 24 h
averaged PM2.5 RMSE was reduced from 8 to 3 µg m−3 (av-
erage PM2.5 reference concentration: 9 µg m−3) (Barkjohn et
al., 2021). While both the monthly and drift calibration im-
proved the accuracy of the data on average, the drift correc-
tion framework performed better. Overall, the improvement
due to the MOMA calibration was more obvious for PM10
with an overall reduction in the RMSE from 30 to 21 µg m−3

at average PM10 reference concentrations of 39 µg m−3.
We note that calibrating PM sensors is more challenging

than calibrating gas sensors (e.g., O3 in Miskell et al., 2019,
and NO2 in Weissert et al., 2020) due to the spatial and tem-
poral variations in particle composition and the resulting dif-
ferences in response between the reference BAM instruments
and the PM sensors. This was visible in the IE where parti-
cle composition varied between desert dust (north and north-
east) and marine and urban aerosol (west) during the winter
months, meaning that the monthly calibration applied may
not be correct and data should be interpreted with caution.
This also highlights that a more flexible proxy selection ap-
proach depending on dominant wind direction and particle
source may be more suitable than using the same proxy site
across all seasons.

Since the optical PM sensor accuracy depends on the at-
mospheric aerosol composition, it is expected that MOMA
with the drift detection framework has an advantage over
other methods such as calibration by co-location or using a
mobile reference in that it is continuous, whereas the other
methods are performed at discrete time periods and do not ac-
count for aerosol composition changes between calibrations.
Future work will focus on optimizing MOMA and apply it to
other PM sensors (e.g., PurpleAir sensors) (Collier-Oxandale
et al., 2023).
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