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Abstract. Vehicle chase measurements used for studying
real-world emissions apply various methods for calculating
emission factors. Currently available methods are typically
based on the dilution of emitted carbon dioxide (CO2) and
the assumption that other emitted pollutants dilute similarly.
A problem with the current methods arises when the studied
vehicle is not producing CO2, e.g. during engine-motoring
events, such as on downhill sections. This problem is also en-
countered when studying non-exhaust particulate emissions,
e.g. from electric vehicles. In this study, we compare mul-
tiple methods previously applied for determining the dilu-
tion ratios. Additionally, we present a method applying mul-
tivariate adaptive regression splines and a new method called
near-wake dilution. We show that emission factors for partic-
ulate emissions calculated with both methods are in line with
the current methods for vehicles producing CO2. In downhill
sections, the new methods were more robust to low CO2 con-
centrations than some of the current methods. The methods
introduced in this study can hence be applied in chase mea-
surements with changing driving conditions and be possibly
extended to estimate non-exhaust emissions in the future.

1 Introduction

Anthropogenically emitted gaseous compounds and particu-
late matter have effects on both climate and human health
(Forster et al., 2021; Lelieveld et al., 2015). Vehicle emis-
sions contribute to a significant proportion of those emis-
sions, especially in urban environments. Vehicle emissions

are regulated in legislation, but the regulation for new ve-
hicles is under constant development (type approval; peri-
odical technical inspection, PTI; and real driving emissions;
RDEs). The new and upcoming regulations are effective only
for the vehicles produced after the regulation has become ef-
fective. Fulfilling the regulation requirements is controlled in
the PTI of vehicles, but the inspection protocol is limited to a
few parameters, and, for example, the particle number (PN)
is only accounted for in some forerunner countries. Addi-
tionally, regarding particle emission regulations, only a frac-
tion of the total emissions is regulated. The regulation limits
for PN mostly considers non-volatile particles. The particle
mass (PM) formed from the precursor gases via nucleation
and condensation as the exhaust gas dilutes and cools upon
exiting the tailpipe is not fully considered to be PN mea-
surements; however the regulation for gaseous hydrocarbons
limits the amount of precursor gases produced by the vehicle.
The amount of secondary particle matter (both in terms of PN
and PM) formed from precursor gases can be considerable
(Karjalainen et al., 2014b; Keskinen and Rönkkö, 2010; Kit-
telson, 1998; Giechaskiel et al., 2007). However, the amount
of secondary PM has decreased in the 21st century as the fuel
does not contain as much sulfur as before.

A variety of measurement methodologies exist for study-
ing emissions: official type-approval tests (which depend on
the local legislation) are typically conducted by driving a
predetermined driving cycle on a chassis dynamometer. In
Europe, the portable emission measurement system (PEMS)
protocol has also been included for in-use compliance testing
since 2016 (European Commission, 2016) including NOx ,
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PN, and CO emissions in real driving scenarios. NOx emis-
sions must be measured on all Euro 6 vehicles – passenger
cars and light commercial vehicles. On-road PN emissions
are to be measured on all Euro 6 vehicles which have a PN
limit set (diesel and petrol direct injection, PDI). CO emis-
sions also must be measured and recorded on all Euro 6 vehi-
cles. RDE limits (Dieselnet, 2023) are defined by multiplying
the respective emission limit by a conformity factor (CF) for
a given emission.

Remote sensing methods, such as snapshot measurements
in fixed locations or chasing vehicles with a mobile measure-
ment unit sampling the diluted exhaust aerosol, are used for
academic purposes (Karjalainen et al., 2014a; Simonen et
al., 2019; Wang et al., 2010; Ježek et al., 2015b; Herndon
et al., 2005; Shorter et al., 2005; Wang et al., 2017; Park et
al., 2011; Pirjola et al., 2004). These methods have potential
for elaborate use of the vehicle and could also be applied in
monitoring vehicles fulfilling the regulation requirements.

The chase method has the considerable advantage of sub-
jecting the exhaust aerosol to real atmospheric dilution. The
advantage of the chase method is that the measured aerosol
corresponds to the actual emissions of the vehicle and not
only a fraction (e.g. primary emissions only); however, the
prevailing ambient conditions can strongly affect the particle
formation, which is simultaneously not only an asset but also
a drawback. On the one hand, this is the real particle pop-
ulation that is formed at a given time causing immediate air
quality effects, but on the other hand, the method is hence not
very repeatable between different testing conditions with re-
spect to semi-volatile particle number and size. Additionally,
the chase method is fast, and the individual measurement of
a vehicle’s emission factor could be carried out in a minute
timescales (Olin et al., 2023).

There exist several methods for calculating an emission
factor (EF) from chase measurements (Hansen and Rosen,
1990; Zavala et al., 2006; Wihersaari et al., 2020; Ježek et
al., 2015a). These methods are based on the CO2 produced
by the engine and on the assumption that all emitted compo-
nents dilute similarly to CO2. A downhill section is problem-
atic since engines do not generally inject fuel there because
there is no need to provide mechanical power (called engine
motoring) and hence no CO2 emissions. However, previous
studies (Rönkkö et al., 2014; Karjalainen et al., 2014a, 2016)
suggest that engine-motoring events can emit nanoparticles
originating from the lubricating oil. The chase vehicle ob-
serves these elevated concentrations in the plume, but it is
difficult to assess the EF of the vehicle under measurement
since the dilution ratio (DR) calculated with CO2 is not avail-
able. In addition, most of the current methods have been used
for a longer time interval, whereas EFs with a short time
interval of accelerating and braking might be more inter-
esting for studying. Also, there is a specific need to calcu-
late EFs without CO2 emissions when studying non-exhaust
emissions (e.g. particulate emissions from tires and brakes).
In the future, when the fraction of electric passenger vehi-

cles increases, the research interest might shift towards non-
exhaust emissions. The new methods introduced in this study
could be useful for estimating non-exhaust emission factors
as well.

In this study, we will compare different calculation meth-
ods for EFs of vehicles based on chase measurements: a
method based on the ratio of particle number concentration
(N ) to CO2 concentration (Hansen and Rosen, 1990; Zavala
et al., 2006; Olin et al., 2023), a method that calculates the
raw particle number concentration Nraw based on DR (Wi-
hersaari et al., 2020), and two new methods to be introduced
in this paper based on near-wake dilution (NWD) and mul-
tivariate adaptive regression splines (MARS) for DR in a
remote-sensing-type chase measurement setting. Most of the
methods used in this study can also be applied for snapshot-
type measurements where DR needs to be defined. Our aim
is to improve EF calculation, especially for short time in-
tervals with a variable DR, by achieving better understand-
ing the variables that affect DR. The new methods are both
based on the DR-modelling approach: using the DR calcu-
lation of the CO2-based methods for the time periods when
they work properly. We then extend the models to the whole
measurement period by either using physical method (near-
wake dilution) or statistical method (multivariate adaptive re-
gression splines) to estimate the DR for all measurement time
points. We then compare the results from the new methods
to the current methods for longer time intervals and sepa-
rately for downhill sections. We also calculate DR and EF
using only data from remote sensing measurements, without
additional information on the measured vehicle, such as on-
board diagnostics (OBD) data (i.e. from the chase measure-
ments). Development of this kind of method is crucial if re-
mote sensing measurements are applied for on-road monitor-
ing of vehicle emissions, as suggested by e.g. the European
H2020 project CARES (City Air Remote Emission Sensing;
https://cares-project.eu/, last access: 23 October 2023).

2 Methods

2.1 Experiments

Particle number concentrations and CO2 concentrations in
exhaust plumes of six passenger vehicles (three diesel and
three petrol) were measured with the chase method during
wintertime, in February in Siilinjärvi, Finland (Fig. 1). The
time and the location were selected because the main pur-
pose of the measurement campaign was to study wintertime
real-world vehicle emissions, which is in the scope of fu-
ture studies, applying methods introduced in this publication.
The measurement instruments were installed inside the mo-
bile laboratory of Tampere University (Aerosol and Trace
Gas Mobile Laboratory, ATMo-Lab; Simonen et al., 2019;
Rönkkö et al., 2017). Data from the OBD and GPS from the
test vehicles were saved at a 1 s time resolution (Fig. 2). The
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Figure 1. Driving route consisting of low-traffic small roads in Siilinjärvi, Finland. The coloured line indicates an example drive with the
speed profile (colour). Start and stop locations were the same position at a parking lot of a local fuel station. Two artificial short stops were
introduced along the test route to simulate traffic lights. Downhill sections that are used in “Results and discussion” are indicated by white
lines on the side of the route marking. Source: Earthstar Geographics.

chase route was 13.8 km long including uphill and downhill
driving, stops, accelerations, and steady driving, as well as
artificial short stops to simulate traffic lights. The route se-
lection was chosen bearing two major principles in mind. On
the one hand, the starting point was a fuel station with enough
space for parking the test vehicles overnight and a connection
to the electric grid to be used with electrical preheaters, and
spaces were regularly cleared of snow. On the other hand, the
station was located close to roads ideal for tests: they were in
a good condition and were maintained well during winter,
and the traffic rates were very low, implying that the back-
ground exhaust plumes are negligible. The route was also
well suited for this study because it included steep and long
downhill sections.

The test protocol included idling engine at the beginning
for a short period, driving the route, stopping at two predeter-
mined stops, and finishing the route at the start location. The
time stamps of passing vehicles and other possible external
emission sources were recorded during the drives.

Information about the vehicles, individual drives, and out-
side temperatures are shown in Table 1. During the test pe-
riod of 4 d, the outside temperature varied between −9 and
−28 ◦C. The fleet included three (Euro 5–6) diesel vehicles
(two passenger cars and one van) and three (Euro 6) petrol
vehicles (passenger cars). The number of measured drives
totalled 33; in addition, there was a drive for every mea-
surement day for measuring ambient background concentra-
tions along the route. Of these, 11 drives were dedicated to
subfreezing cold-start measurements (cold start in subfreez-

ing temperatures), 12 were dedicated to preheated cold-start
measurements (using electric preheaters or fuel-combusting
auxiliary heaters), and 10 were dedicated to hot-start mea-
surements (the engine had been heated to its normal operat-
ing temperature by driving).

2.2 Measurement setup

The measurement setup, including only the devices of which
data are involved in this study, is presented in Fig. 2. The
number concentration of particles larger than 23 nm in diam-
eter (N ) was measured with an Airmodus model A23 con-
densation particle counter (CPC), and the CO2 concentration
was measured with a LI-COR LI-840A analyser. The exhaust
sample was drawn to the instruments through a sampling in-
let installed on the front bumper of the vehicle. Before the
CPC, the sample was diluted with a set of bifurcated flow di-
luters (DR= 158±14). The drives were also recorded with a
video camera installed on the windshield, and the ATMo-Lab
location was recorded using GPS. OBD data from the chased
vehicle were collected using OBDLink LX Bluetooth device
(OBDLink® LX, 2023). All the devices were recording data
with a 1 s time resolution, which were averaged to a time res-
olution of 5 s. Averaging makes the data more robust to small
(1–2 s) time differences between measurements from the ve-
hicle (OBD) and variables measured with ATMo-Lab.
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Table 1. Information on the studied vehicles. DPF: diesel particulate filter, PPF: petrol particulate filter, MHEV: mild hybrid electric vehicle,
SCR: selective catalytic reduction.

Car Fuel Filter Registration Engine Emission Odometer Number
year displacement (l) class reading (km) of drives

Audi A6 Diesel DPF 2008 3.0 Euro 5 236 000 6
Seat Alhambra Diesel DPF + SCR 2012 2.0 Euro 5 169 000 6
VW Transporter Diesel DPF + SCR 2019 2.0 Euro 6 36 000 4
Ford Focus Petrol 2018 1.0 Euro 6 78 000 5
Škoda Octavia 1.0 Petrol (MHEV) PPF 2020 1.0 Euro 6 1000 6
Škoda Octavia 2.0 Petrol PPF 2019 2.0 Euro 6 21 000 6

Figure 2. Schematic view of the measurement setup used in this study and example photos from the chase route for illustration of the chase
measurements. In addition, other devices were installed, but their data were not used in this study.

2.3 Methods for calculating EF

The methods we use are mostly modelling DR and observed
differences between measured and background concentra-
tions and based on those calculating the EF of a vehicle. Used
methods (introduced more in detail in the following sections)
for calculating EF can be divided into four categories based
on whether the OBD data are used in the method and whether
the method needs some additional (hereafter learning) data
from other vehicles to evaluate the effect of some variables
(e.g. speed change) to the emissions. Table 2 shows all the
methods used in this study. All methods are introduced in
Sect. 2.3.1–2.3.7. Table 3 summarizes the main differences
of the methods described in Sect. 2.3.1–2.3.7 and shows the
formulas used to calculate the EF in each of the methods.

The dataset used in this study was limited to considering
only times when the chased vehicle was moving; i.e. its speed
was positive. Also, the effect of the chase distance, i.e. the
distance between the chased vehicle and ATMo-Lab, was as-
sumed to be constant, not affecting the dilution ratio of emis-
sions. Based on our estimation, the chase distance was be-
tween 5 and 10 m when the chased vehicle was moving. Un-
fortunately, the GPS data from the chased vehicle and ATMo-

Lab were not accurate enough, so the changes in the chase
distance could have been estimated from the GPS data.

Methods that require data to be fitted before application
into the DR estimation or EF calculation were fitted using DR
calculated from theNraw method as a response variable. Only
the data from the times with exhaust mass flow rates (Q)
exceeding 0.3 g s−1 and fuel flow rates exceeding 0.02 g s−1

were used in forming models, which were then used for all
data, also including the times with the flow rates below those
limits.

Other methods of modelling DR (the NWD and MARS
methods, described below) are based on the observed linear
or non-linear dependencies between DR and an explanatory
variable(s). These methods assume that the factors affecting
DR measured in the situations where the measured vehicle
is not in the engine-motoring mode can also be extrapolated
to situations with the motoring mode. Hence, for the down-
hill sections, the following methods do not calculate the DR
based on the measured CO2; instead, they use other parame-
ters not based on CO2 (some examples include vehicle speed
vt , exhaust flow rate Q, and the vehicle rear shape) to esti-
mate the DR.

For calculating EF and its uncertainty, bootstrap sampling
(Efron, 1979) has been used to estimate the uncertainty in EF
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Table 2. Division of the methods for calculating the EF of a vehicle. OBD data are the mean of the data collected from the chased vehicle
(see also Fig. 2), and learning data are the mean of the data collected from other drives of the same vehicle and from other vehicles (including
data from ATMo-Lab, as well as from OBD if its data are used). Methods are introduced in more detail in Sects. 2.3.1–2.3.7. RRPA: robust
regression plume analysis.

Uses learning data

Yes No

Uses OBD data
Yes MARS-OBD, NWD N / CO2 integral, N / CO2 linear, N / CO2 RRPA, Nraw

No MARS-chase N / CO2 Traficom

calculations. A bootstrap sample is a random sample of ob-
servations (an observation is a time point) with replacement;
i.e. one observation can occur multiple times in a bootstrap
sample. The analysis, e.g. fitting the model and calculating
the EF, is performed for this bootstrap sample. Multiple boot-
strap samples are usually taken; here 100 is the number of
samples.

Bootstrapping helps to estimate the whole uncertainty, in
this case the uncertainty related to e.g. differences in the
vehicle-driving profile, possible uncertainties in time alloca-
tion, and uncertainty in model fitting. Bootstrapping is use-
ful when estimating complex estimators or their uncertainty,
without (here) explicitly estimating uncertainties of single
sources of uncertainty and the covariance structure of uncer-
tainties.

2.3.1 N / CO2 integral

The simplest method to calculate EF is based on N / CO2
measured from the diluted exhaust. The method was intro-
duced by Hansen and Rosen (1990) and has been widely used
since. It is based on the relation of the excess CO2 (1CO2 =

COmeas
2,t −CO2

bg) and particle concentration (1N =Nmeas
t −

Nbg). Here the superscripts “meas” and “bg” denote mea-
sured and background concentrations, respectively. Here t
denotes that the measured concentrations have been mea-
sured specifically at time t , whereas the background concen-
trations have been defined as a median of the background
measurement measured at the same route on the same day.
However, the method by Hansen and Rosen (1990) uses the
following integral form (over a longer measurement period
than e.g. 1 s) to diminish possible uncertainties caused by im-
perfect time synchronization of the devices measuring CO2
and the studied pollutant:

EF1N/1CO2 =

∫
t
[Nmeas

t −Nbg
]dt∫

t
[COmeas

2,t −CO2
bg
]dt

×

a
ppm
g cm−3 × a

gCO2
gfuel ×mfuel

sdrive
, (1)

where CO2 concentrations are in parts per million (ppm) and
particle concentrations (N ) are 1 cm−3. appm

g cm−3 is the conver-

sion factor for CO2 from parts per million (ppm) to grams per
cubic centimetre (gcm−3; 106/0.0018= 5.55× 108, where
106 is a number of molecules and 0.0018 is the approxi-
mate density of CO2 in gcm−3 at 20 ◦C), a

gCO2
gfuel is the con-

version factor for gCO2 to gfuel (2392/750= 3.189 for petrol
and 2640/835= 3.162 for diesel, where 2392 and 2640 are
the approximate masses of CO2 produced in grams per litre
of fuel for petrol and diesel, respectively; Innovation Nor-
way, 2023), and 750 and 835 are the approximate densities in
grams of fuel (g l−1) for petrol and diesel, respectively. Those
densities are within the ranges of densities provided by one
major fuel supplier in Finland (Neste, 2023a, b). mfuel is the
mass of the used fuel (in g, from OBD data), and sdrive is the
length of the drive (in km). In this study, EF is calculated
over the whole measurement period, and EF is expressed
as 1 km−1. This method (and all other N / CO2 method ver-
sions) is based on the assumption that CO2 and the pollu-
tant dilute equally in an exhaust plume and that the amount
of emitted CO2 is directly related to the fuel consumption.
Whereas the N / CO2 integral method is robust to imperfect
time synchronization and to the engine-motoring events (be-
cause the integral in the denominator never becomes very
small, unlike in cases with e.g. 1 s resolution), the method,
however, assumes also that EF is constant during the integra-
tion time period in chase measurements (Olin et al., 2023).

2.3.2 N / CO2 Traficom

The N / CO2 Traficom method is calculated similarly to the
N / CO2 integral method, over the whole measurement pe-
riod, but the fuel consumption mfuel is estimated from the
national vehicle database (Traficom) instead of using actual
consumption from OBD. Traficom consumption values are
based on the values provided by the manufacturer of the ve-
hicles. The values in the database are the average consump-
tions (in units of per 100 km), and hence the actual consump-
tion at certain times might be over or under the consumption
value in the database. Using the fuel consumption estima-
tion from the register makes the method independent of OBD
data; i.e. the method can be calculated directly based on the
measurement data from ATMo-Lab. This kind of a method,
which does not OBD data, is suitable e.g. for real-world
emission-monitoring approaches for private vehicles driving
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on public roads. We have used constant fuel consumptions
reported for combined driving (combining urban and extra-
urban driving) that are between 4.6 (Ford) and 7.6 L (VW) of
fuel per 100 km.

2.3.3 N / CO2 linear

The N / CO2 linear method used e.g. by Zavala et al. (2006)
was also tested in this study. The method estimates N / CO2
by fitting a line for 1N and 1CO2. The slope of that line
is used to replace the first fraction term in Eq. (1) when cal-
culating EF. The used linear model has an assumption that
the line passes the origin; i.e. with no emitted CO2, no par-
ticles are emitted. Therefore, non-exhaust particles are not
counted. This method also assumes that EF is constant dur-
ing the time period used for fitting. However, as the drives
cannot be assumed to have a constant EF due to multiple dif-
ferent sections of driving, the linear model is fitted separately
to 1 min time periods, in which the vehicle can be assumed
to have a more constant EF throughout the period. For the
periods when the slope is estimated to be negative, the EF is
set to 0.

2.3.4 N / CO2 RRPA

The RRPA (robust regression plume analysis) method pre-
sented in Olin et al. (2023) is based on the N / CO2 linear
method but without a need to determine the background con-
centrations of N and CO2. Similarly to the N / CO2 linear
method, the slope is used to replace the first fraction term in
Eq. (1) when calculating EF.

Contrary to the N / CO2 linear method, this method uses a
robust linear model (in this study using the rlm function in
the R environment; R Core Team, 2022) for fitting the line.
We used robust linear regression instead of an ordinary least-
squares approach because the data contain a varying num-
ber of data points which can be considered outliers, from a
statistical point of view, and those could bias the fit for the
slope in an ordinary least-squares estimation (Mikkonen et
al., 2019). The robust regression automatically weighs down
the possible outliers by giving less weight to the data points
that are not close to the estimated line. Hence, momentary
disturbances (such as those from other pollutant sources near
the measurement location) should not disturb the estimation
of the slope. As for the N / CO2 linear method, the N / CO2
RRPA method assumes a constant EF for the fitted period
and is also fitted to 1 min time periods. For the periods when
the slope is estimated to be negative, the EF is set to 0.

2.3.5 Nraw

A bit more advanced method (based on the method by Wiher-
saari et al., 2020) to calculate DR and EF uses the measured
and raw concentrations of CO2 and the exhaust mass flow

rate (Q):

DRNraw,t =
COraw

2,t −CO2
bg

COmeas
2,t −CO2

bg , (2)

EFNraw =

∫
t

[(
Nmeas
t −Nbg)

×DRNraw,t ×Qt

]
dt

ρexh×
∫
t
vt dt

, (3)

where Nmeas
t is the measured particle number concentration,

Nbg is the estimated background particle number concentra-
tion, COraw

2,t is the concentration of CO2 in the raw exhaust
(calculated from the OBD data), CO2

bg is the estimated CO2
background concentration, ρexh is the exhaust density (air
density at the standard temperature of 20 ◦C used here), and
vt is the vehicle speed. We denote the method as the Nraw
method from here onwards. This method can be thought of as
the best-performing model in a real-world chasing situation
with a varying EF and DR. However, this method requires
well-synchronized data; 5 s time resolution was used, as it is
not so prone to errors caused e.g. by engine-motoring events.

2.3.6 Near-wake dilution (NWD)

In the NWD method, we build a robust linear model for DR
as a linear function of the ratio of the vehicle speed vt and
the mass exhaust flow rate Q, taking also into account the
shape of the vehicle’s rear and the fuel used. The method is
based on the assumption that the outdoor air passing by the
vehicle’s rear while driving dilutes the exhaust plume and
that the dilution is proportional to the ratio of the mass flows
passing the rear and exhausted from the tailpipe (Chang et
al., 2012). The method minimizes the weighted linear model
(iterated reweighted least-squares robust regression):

DRNWD,t = γ + κ
vt

Qt

, (4)

where the dilution ratio at time t (DRt ) used to fit the model
is calculated from the OBD chase measurement data as in the
Nraw method (Eq. 2). Parameters γ and κ are coefficients fit-
ted for every vehicle measured in this study. A more detailed
derivation of the formula and detailed discussion about the
possible variables that are related to parameters γ and κ are
presented in the Supplement. The NWD model is fitted sep-
arately for each vehicle, except when the data from the stud-
ied vehicle are not used to fit a model (Fig. 6). In that case,
the rear shape has been used as a categorical variable for the
five-vehicle data to fit the NWD model. Categorical variables
b1 and b2 estimate the effect of different rear types on DR:
DRNWD,t = γ + b1+ (κ + b2)

vt
Qt

.
As the model is only dependent on the speed and exhaust

flow, the model assumes that the distance from the vehicle
remains constant and is independent of the speed (the effect
of the distance is incorporated into the κ and γ parameters).
Constant driving distances were attempted to be maintained
during these chase measurements. DR is calculated for all
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Figure 3. Robust linear regression fits for DR for each vehicle used in the NWD method. The colour represents the weight of the observation
in the final robust linear fit. The equations of the linear fits are shown in the titles of each subplot. The volumetric exhaust flow rate of
Qvol =

Q
3.6·ρfuel

has been used in this figure instead of the mass flow rate used elsewhere because the NWD model is based on the volumetric
flows.

data points using the modelled dependency (presented later
in Fig. 3).

EFs with the NWD method were then calculated similarly
to the Nraw method in Eq. (1), with a different method to
calculate the dilution ratio being the only difference between
the methods. The NWD method is robust to engine-motoring
events because the CO2 concentration is not involved in the
equation used to calculate EF (after fitting the κ and γ pa-
rameters). In addition, the method can possibly be used to
determine non-exhaust emissions as well.

2.3.7 Multivariate adaptive regression splines (MARS)

We used multivariate adaptive regression splines (MARS;
Friedman, 1991; Hastie et al., 2009) to model the dependency
of DR on certain variables that could affect the dilution of ex-
haust, i.e. vehicle exhaust flow rate, speed, speed change (ac-
celeration), altitude change, and direction of wind. Besides
variables that are fitted with splines, two categorial variables
describing the rear shape and fuel type used in the vehicle
were used. Those categorical variables affect only the level,
not the shape, of the spline (see Fig. 4).

To avoid overfitting, i.e. that the model fits well to the
learning data but is not generalizable to any new dataset, we
used 5-fold cross-validation (Hastie et al., 2009). In 5-fold

cross-validation, the dataset is divided into five distinct sub-
sets of the same size. Then four of those subsets are used to
train the model (training dataset), and one is used to test the
fit of the model to new dataset (testing dataset). This is re-
peated five times so that each subset is used once as a testing
dataset.

We built two methods based on MARS: one is based on
all variables (OBD data and the data from chase measure-
ment; a method called MARS-OBD), and the other one is
based on the measured data consisting of only variables that
are available with remote sensing methods (a method called
MARS-chase).

EFs from the MARS methods were calculated similarly to
the Nraw method (Eq. 1), with the only difference to Nraw
in how the DR is calculated. As for NWD, DR is calculated
for all data points using the modelled dependency (presented
later in Fig. 4). MARS models are also robust for engine-
motoring events or even for non-exhaust emissions, like the
NWD model, because the CO2 concentration is not used (af-
ter the model construction). In addition, the MARS-chase
model can be used in real-world emission-monitoring ap-
proaches.
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Figure 4. Multiple adaptive regression spline fits for the logarithm (natural) of DR shown for each variable used in MARS-OBD (a, b) and in
MARS-chase (c, d, e). Different coloured lines show the regression splines for each vehicle (see also the categorical variables in the method
description in Sect. 2.3.7), with some splines (Ford and Škoda1, Škoda2 and Audi) overlapping with each other.

3 Results and discussion

3.1 Fitting the NWD model parameters

Our results indicate that DR can be approximated with a lin-
ear function of the ratio of vt and Q; hence, it was used as
one method to estimate DR. Figure 3 shows the robust linear
regression fits between DR and vt

Q
.

According to the results, in addition to vt
Q

, we suppose that
modelled DR is mostly affected by the rear shape of the vehi-
cle (included in the parameter κ). Generally, the values of vt

Q
are higher for the petrol vehicles compared to the diesel ve-
hicles, due to lean-burn combustion used in diesel engines.
This also results in higher values of DR (determined with
Eq. 2) for the petrol vehicles.

3.2 Constructing the MARS models

Figure 4 shows the behaviour of the splines in the mea-
sured data between DR and the predictor variables used in
the MARS models. The shape of the splines is the same for
all vehicles, as it is defined from the full dataset, but the level
varies due to different properties of the vehicles, such as fuel
and presumably the rear shapes.

The variables used in the models shown in Fig. 4 are orga-
nized so that the variables in the upper row are for the method
also using the OBD data from the chased vehicle (MARS-
OBD) and the variables in the lower row are for the method
using only variables from ATMo-Lab (MARS-chase). With
the MARS-OBD method, changes in Q explain most of the
changes observed in DR, and the dependency of Q on DR
is as expected from the concept behind the NWD model. In
addition to Q, the wind component calculated abeam of the
vehicle was seen to affect the DR, but the effect is very mi-
nor. Unlike in the MARS-chase method, variables such as
speed change and altitude change were not needed (based on
their effect on the model fit, measured with R2 values) in the
MARS-OBD method, which indicates that the changes in Q
(and slightly in the lateral wind speed) sufficiently explain
most of the changes in DR.

For the MARS-chase method, the effect ofQwas replaced
by using several variables that could explain the power gen-
erated by an engine – and thus Q. The result seems to be in
line with theory, with the most evident changes to DR be-
ing caused by changes in driving speed (e.g. when accelerat-
ing) and altitude (e.g. when driving uphill) and the absolute
speed of a vehicle (due to air drag). Observed dependencies
of those variables with DR were described with piecewise
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linear splines with one or two threshold values (knots). The
effect of changes in speed and altitude were close to linear.
The effect of vt was not linear, as the DR had its minimum
after a threshold speed slightly higher than 10 ms−1.

3.3 Comparison of the EF calculation methods for the
whole drive

When the calculated DR estimates were applied on the EF
calculation for the whole drive, it was seen that the results
are mostly similar with all methods. Figure 5 illustrates how
the calculated EF varies with different methods when applied
on two different vehicles, one with a petrol and one with a
diesel engine, on two different drives with varying outside
temperature.

The results in Fig. 5 give confidence to the EF cal-
culation with varying information in use, as the methods
with different background information end up mostly being
within an order of magnitude. This is specifically good news
for monitoring-type measurements being performed on road
with limited information on the monitored vehicle. However,
there can still be some notable differences between the meth-
ods, for example the difference of a factor of 2–3 between
theNraw and other methods for Škoda2 at−24 ◦C. The clear-
est anomalies from the consensus of EF are N / CO2 RRPA
for the drive of Škoda2 at −26 ◦C being 25 % to 45 % of
the EFs given by methods other than Nraw and N / CO2 lin-
ear, with the Nraw method for both Škoda2 drives showing
EFs 2 to 4.2 times higher than most of the methods (other
than N / CO2 linear and N / CO2 RRPA). For RRPA some of
the 1 min interval EFs were estimated to be 0, which prob-
ably explains the lower EFs calculated for that method. For
the Nraw method, the difference comes from the time points
where the dilution ratio is estimated to be larger, e.g. in the
NWD and MARS models, i.e. points clearly above modelled
lines in Figs. 3 and 4. If the measured concentration of parti-
cles above the background (Nmeas

t −Nbg) is high enough for
those points, it also results in a high EF for that point.

The methods that use learning data (the MARS methods
and the NWD method; see Table 2) were validated with
leave-one-out-type cross-validation by omitting one of the
vehicles from the model fitting and then by applying the fit-
ted coefficients to predict the EFs for the omitted vehicle. The
results in Fig. 6, confirming the findings in Fig. 5, show that
the constructed methods can also calculate the EFs for the
vehicle omitted from the model construction. For the meth-
ods that do not use learning data (all N / CO2 methods and
the Nraw method), i.e. data from the other drives to form a
model, the results are almost the same (bootstrap sampling
can change the calculated EFs slightly) as in Fig. 5. For
Škoda2, the MARS-chase method shows EF values higher
than the other methods in Fig. 6. This is probably because
the data measured with Audi (being the only vehicle hav-
ing a similar rear shape to Škoda2) were used in the MARS-
chase model to estimate the effect of the rear shape on the

DR (see Sect. 2.3.7 for categorical variables and Fig. 3 for
the fits). However, using the data from a diesel vehicle in
modelling DR for a petrol vehicle may not work properly
due to different dilution mechanics (as is also observed from
the different fitting parameters obtained with using the NWD
model), even though the fuel-type parameter for Škoda2 is
different than for Audi. In addition, Audi is the only vehi-
cle in this study with two exhaust pipes on both sides of the
vehicle rear; therefore, the dilution mechanics may differ no-
tably from the other vehicles. Thus, the rear shape parameter
(constant categorial variable used to estimate the effect of
the rear shape on DR) might have increased the estimated
DR for Škoda2 and hence also the estimated EF. One solu-
tion for this issue would be to increase the sample size of the
vehicles, probably leading to a better estimate for the rear
shape of Škoda2 in the MARS-chase method. For Seat, the
MARS-chase method gives similar results to the other meth-
ods; however, the NWD method gives slightly higher EFs
than the other methods. This is due to imperfect modelling
of the dilution ratio of Seat based on the model from five
other vehicles. This indicates that EFs could be calculated in
situ based on the measurements from ATMo-Lab and OBD
if the OBD data are required in the method. The increase in
the number of vehicles in the learning data would probably
increase the accuracy of the methods that require learning
data, including the MARS-chase method as well.

3.4 Comparison of the EF calculation methods for the
downhill section

When examining how the different methods perform in dif-
ferent driving conditions, such as the change in the altitude,
Fig. 7 shows that, overall, the methods agree quite well for
Seat, but there are a lot of discrepancies for Škoda2. It is ob-
vious why the N / CO2 Traficom method overestimates the
EFs during the downhill section: the used-fuel consumption
refers to the combined-driving fuel consumption data, i.e. to
a much higher consumption than really occurs in downhill
sections. In addition, the Nraw method gives relatively high
estimates for EFs, especially for Škoda2. This is due to rela-
tively low CO2 values observed at the times with high parti-
cle emissions, resulting in higher DRs with the Nraw method
compared to the other methods.N / CO2 linear clearly shows
lower EF values for Škoda2, which is similar but less pro-
nounced, in Figs. 5 and 6. For the RRPA method, many of
the EF estimates for the bootstrap samples (89 out of 100
for Škoda2 at −24 ◦C and 39 for Škoda2 at −26 ◦C) are 0;
i.e. for every minute interval (2 or 3 intervals in each boot-
strap sample), the estimated linear dependency between N
and CO2 concentrations is negative, and hence the EF is es-
timated to be 0. The assumption of a constant EF is not valid
in downhill sections, and the concentrations of N and CO2,
as well as exhaust flow rate, are mostly lower than the av-
erage of the whole round, whereas the DR, which is used
in many other methods, is mostly higher than the average of
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Figure 5. Emission factor examples of > 23 nm particles for Seat and Škoda2 with hot starts, except for Seat at −11 ◦C, which has a
subfreezing cold start, and Škoda2 at −26 ◦C, which has a preheated cold start. Results are calculated from 100 bootstrap samples (see
Sect. 2.3 for the description of bootstrap sampling). Whiskers represent the distribution of EFs in different bootstrap samples.

Figure 6. Emission factors for the drives of which data are omitted (details in Sect. 3.3) from the model construction (MARS-chase, NWD,
MARS-OBD) for Seat and Škoda2 with hot starts, except for Seat at −11 ◦C, which has a subfreezing cold start, and Škoda2 at −26 ◦C,
which has a preheated cold start. Results are calculated from 100 bootstrap samples (see Sect. 2.3 for the description of bootstrap sampling).
Whiskers represent the distribution of EFs in different bootstrap samples.

the whole round. We believe that those are the reasons why
RRPA is giving EFs that are so different compared to other
methods for downhill sections.

Other methods (MARS-chase, N / CO2 integral, NWD,
and MARS-OBD) give similar values for EF. This is kind
of expected as the methods are fitted using data from the full
drives (as in the case in Figs. 5 and 7). Therefore, N / CO2
is estimated mostly from the data with above-zero fuel con-
sumption; hence, the number of particles emitted per addi-

tional CO2 emitted should be estimated well. The other meth-
ods are also based on data with above-zero fuel consumption;
thus, the dilution ratio for the downhill sections can also be
estimated.

4 Conclusions

There are methods to define DRs and EFs that require OBD
data from the vehicle under tests and methods that do not
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Figure 7. Emission factors of > 23 nm particles for downhill sections and for Seat and Škoda2 with hot starts, except for Seat at −11 ◦C,
which has a subfreezing cold start, and Škoda at−26 ◦C, which has a preheated cold start. Results are calculated from 100 bootstrap samples
(see Sect. 2.3 for the description of bootstrap sampling). For Škoda2 N / CO2 RRPA, some EFs (89 for Škoda2 at −24 ◦C and 39 for Škoda2
at −26 ◦C) are 0. Only EFs above 0 are shown in this figure.

require these data. We conclude that most of the N / CO2
methods are not suitable for transient driving, where EF is
constantly changing during the drive, which is indicated by
results that differ from the ones obtained with the other meth-
ods.

For those time points where the measured CO2 is close
to its background value, the new methods (the NWD and
the MARS methods) work better than the old ones. Among
these, the NWD method is physically more realistic and
hence easier to interpret. We believe both the NWD and
the MARS method introduced are extendable also to non-
exhaust emissions. For NWD, the method is based on the
estimated slope κ of the vehicle. For example, for tire emis-
sions, if the emissions from the tires are Craw and the mass
exhaust flow rate of the emissions isQ, then EF= Craw×Q.
On the other hand, it was assumed that DR= κ × v/Q.
Then Craw = Cmeas×DR= Cmeas×κ×v/Q. For EF, we get
EF= Craw×Q= Cmeas× κ × v. Hence, an explicit value of
mass exhaust flow rateQ is not needed to calculate the EF of
non-exhaust emissions. The κ value can be estimated from
the other vehicle with a similarly estimated dilution of emis-
sions, or, in the case of a hybrid vehicle, κ can be determined
during the time when the combustion engine is running. For
MARS the basic idea is that from the test dataset of measure-
ments, the dilution ratio of emissions could be estimated in
different driving situations. Then in the new dataset, DR is
estimated based on splines estimated from the test dataset.

In both methods, the emission factor of the non-exhaust
emissions can be determined during the times when the ve-
hicle is running with an electric engine only. For the non-
exhaust emissions, some correcting coefficient for the di-
lution ratio might be needed. Both methods would require

some prescribed database to characterize the effect of the ve-
hicle’s shape on DR. The number of required vehicles for the
database can be from one (if the interest is only emissions of
a specific vehicle) to several hundred vehicles (monitoring of
emissions from random vehicles from the fleet).

The MARS methods are based on the dependencies of the
measured variables on DR from the Nraw method. It fixes the
problems of the Nraw method at the time points where DR is
estimated to be very high with theNraw method. On the other
hand, the MARS methods do not have as clear a physical
interpretation as the NWD method. The MARS methods are,
however, very adaptive methods, and DR could be modelled
using variables other than the ones used in this paper, which
might increase the physical interpretability of the methods.

If the MARS methods were used with other variables, for
their generalizability, it would be beneficial to use variables
that are generally measured in the chase measurements. Pos-
itive sides of the MARS methods also include that, in the
MARS-chase method, no variables measured directly from
the vehicle diagnostics are not needed. This enables the ob-
servation in the middle of traffic, as well as in driving situa-
tions where EF and DR cannot be assumed to be constant.

The weakness of these methods is that the time points with
a vehicle speed of 0 have been omitted in this study. This
limits the usability of the method in e.g. urban conditions
where the vehicle is stationary a significant part of the time.
In this study we wanted to focus especially on times when
the vehicle is moving, including downhill sections, and the
fuel flow rate is 0 or close to 0. The times when the vehicle is
stationary could be added to the methods (MARS and NWD)
by separately considering the speeds of 0. In the first place,
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it could be implemented by using e.g. the Nraw method for
those times.

Vehicle chase studies in the future will not only be limited
to the determination of the exhaust-originating species, since
the NWD method could be used to define the non-exhaust
particle emission originating e.g. from the brakes and tires of
the vehicle under the test. In addition to being an important
tool in emission research, especially in real-world emission
factor determination including for semi-volatile particles, the
chase method has potential to be a monitoring tool for vehicle
fleets for official purposes: high-emitting vehicles could be
identified while driving with simultaneous particle and CO2
sensor signals and processed for further detailed measure-
ments according to e.g. the new PTI protocol, where particle
number concentrations are measured on low idle.
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