

Supplement of

Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods

Daan Swart et al.

Correspondence to: Susanna Rutledge-Jonker (susanna.jonker@rivm.nl)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. The location of Cabauw in the Netherlands. Maps from www.pdok.nl/ (downloaded 07-02-2021).

5

Figure S2. Unsupervised land cover classification based on Google Map (RGB) images, derived using Flux Footprint Predictions (https://geography.swansea.ac.uk/nkljun/ffp/www/). Five land cover classes and their individual distribution ratios under the EC footprint area are shown. The following land covers were defined (in order of increasing percentage of the footprint area): Land class 5: wet grassland, in light blue (count 42.3%);

- 10 Land class 2: less wet grassland, in orange (count 38.2%); Land class 4: hay land (harvested grassland), in bright blue (count 9.9%); Land class 1: ditches and drainage lines, in light yellow (count 8.2%); Land class 3: concrete road surface, in dark blue (count 1.4%). Land classes 5 and 2 have a similar roughness height, while land class 4 has lower roughness. Background map data: Microsoft,
 15 CHER D: 4 it discusses 5 and 2 have a similar roughness height, while land class 4 has lower roughness. Background map data: Microsoft,
- 15 CNES Distribution Airbus DS.

Figure S3. ©Google Earth image of the land cover within a 300-meter radius in June 2021 (a); idem in March 2022 (b).

Figure S4. The weather conditions during the measurement campaign (blue lines) as observed by the KNMI automated weather station (hourly averages). The grey lines represent the average weather conditions of the past 30 years (1991-2020), and the grey area the corresponding standard deviation. For the wind direction, the mode (most frequently occurring wind direction) of the past 30 years is plotted.

1.1 ICO method quality control

To ensure the quality of the half-hourly damping correction factors of the ICO method, values were filtered according to the 25 following criteria: QC flag 0 in Eddy Pro (Mauder and Foken, 2006); $u_* > 0.1$ m s⁻¹; the variances in the NH₃ concentration are below 2 times the standard deviation plus the mean of the overall campaign period; EddyPro found a maximum in the covariance within the prescribed time lag window. In total, 661 half-hour NH₃ correction factors were left for correcting their respective fluxes. If half-hourly corrections factors were not available due to quality criteria, we used daily medians to correct corresponding fluxes.

Figure S5. Optical signal strength (OSS) of the HT instrument during the measurement campaign.

35 1.2 Uncertainty analysis

a relative error of 10%.

The random error of the half-hourly AGM NH₃ fluxes ($\sigma_{F_{AGM}}$) has three error components and was estimated as follows:

$$\sigma_{\text{F}_{\text{AGM}}} = |F_{NH_3}| \sqrt{\left(\frac{\sigma_{u_*}}{u_*}\right)^2 + \left(\frac{\sigma_{c_{\text{NH}_3}(z_2) - c_{\text{NH}_3}(z_1)}}{c_{\text{NH}_3}(z_2) - c_{\text{NH}_3}(z_1)}\right)^2 + \left(\frac{\sigma_{\text{f}(z,\Psi)}}{f(z,\Psi)}\right)^2} \qquad \text{Eq. S1}$$

Here, the three error components are:

1. the relative error of the u_* values, $\frac{\sigma_{u_*}}{u_*}$,

40

- 2. the relative error of the difference in the miniDOAS NH₃ concentration at height z_1 and z_2 , $\frac{\sigma_{c_{NH_3}(z_2) c_{NH_3}(z_1)}}{c_{NH_3}(z_2) c_{NH_3}(z_1)}$,
 - 3. and an error term related to the stability correction at each measurement height, $\frac{\sigma_{f(z,\Psi)}}{f(z,\Psi)}$, with $f(z,\Psi) = \ln\left(\frac{z_2}{z_1}\right) \Psi_H\left(\frac{z_2}{L}\right) + \Psi_H\left(\frac{z_1}{L}\right)$.

The relative errors of the
$$u_*$$
 are estimated in EddyPro following Finkelstein and Sims (2001). The relative error of the miniDOAS NH₃ concentration differences is determined to be 0.088 µg m⁻³ during the cross periods (see Sect. 4.1.1). Finally, we assumed that the errors in the height of the measurements (z_1 and z_2) were negligible and that the error in $f(z, \Psi)$ solely depends on the errors in the stability corrections. Following Wolff et al. (2010), we assumed that the stability corrections have

45

The random error of the half-hourly uncorrected EC NH₃ fluxes is estimated in EddyPro following Finkelstein and Sims (2001). The random error of the WPL corrected NH₃ fluxes, is computed as follows whereby Eq. 2 is rewritten as a sum of four terms F_1 , F_2 , F_3 and F_4 :

$$F_{EC} = A\overline{w'\rho'_A} + AB\mu \frac{\overline{\rho_A}}{\overline{\rho_a}} \overline{w'\rho'_v} + AC \frac{\overline{\rho_A}}{\overline{T_a}} \overline{w'T'_a} + AC\mu \frac{\overline{\rho_v}}{\overline{\rho_a}} \overline{\overline{T_a}} \overline{w'T'_a} = F_1 + F_2 + F_3 + F_4$$
Eq. S2

The random error of the WPL method corrected NH₃ fluxes ($\sigma_{F_{NH_3,HT}}$) is computed as follows:

$$\sigma_{F_{EC}} = \sqrt{\sigma_{F_1}^2 + \sigma_{F_2}^2 + \sigma_{F_3}^2 + \sigma_{F_4}^2}$$
 Eq. S3

- 55 Here, the term F_1 represents the NH₃ flux term in the WPL correction, whose random error (σ_{F_1}) largely follows the random error of the HT NH₃ fluxes ($\overline{w'\rho'_A}$) from EddyPro. The term F_2 represents the water vapour term, and F_3 and F_4 together are the heat terms in the WPL correction. To determine the random error of each term, the relative errors of the included variables are propagated. The relative error of the NH₃ density (ρ_A) from the HT reported by the manufacturer is 15% (Wang et al., 2021). The relative errors of the dry air density $\overline{\rho_a}$, water vapor density $\overline{\rho_v}$ and air temperature $\overline{T_a}$ from sonic #1 are estimated
- to be 5%, 5%, and 1%, respectively (Li-Cor Inc, 2022). Finally, the relative random errors of the water vapour flux $(\overline{w'\rho'_{\nu}})$ and the sensible heat flux $(\overline{w'T'_{a}})$ were taken from EddyPro.

1.3 **MiniDOAS** intercalibration

The concentration differences between the miniDOAS paths during the three cross periods are shown in Figure S6. The blue elements of the time series meet the selection criteria mentioned above. For these blue data points, statistics are given separately for the three periods.

Figure S6. Top trace: Time series of de observed NH₃ concentration difference between the two miniDOAS instruments during the three cross periods, after correction of the top miniDOAS values based on the intercalibration as described in the text. Only data during well-mixed conditions ($u_* > 0.1 \text{ m s}^{-1}$) are shown. Measurements from obstacle-free wind directions are blue, other 70 directions are grey. The sets of statistics given in the plots apply to the blue measurements only. Bottom trace: 30-minute wind vectors colour-coded with the wind sectors described earlier. Wind speed is indicated as barbs, as used on meteorological maps. To reduce clutter, only 1 in 4 wind vectors are shown.

In the first cross-period, the average half-hourly difference was $0.005 \pm 0.007 \ \mu g \ m^{-3}$ and the standard deviation was $0.05 \ \mu g$ 75 m^{-3} (n = 64). For the last cross-period, these values were $0.003 \pm 0.008 \ \mu g \ m^{-3}$ and $0.10 \ \mu g \ m^{-3}$ (n = 136), respectively. The average only shifted by $0.002 \ \mu g \ m^{-3}$ between cross-periods 1 and 3. This is well within the combined uncertainty range. The spread of the half-hourly values has increased from 0.05 in cross-period 1 to 0.10 µg m⁻³ in cross-period 3. This increase was likely at least partially caused by the gradual decay of the lamp intensity, causing a larger measurement error. The 'ageing' of the field reference spectrum may also have played a role here, but this was not studied further. The conclusion is that, over the 80 full campaign period, the zero-level of the difference measurement has been stable, and the individual difference measurements showed a typical spread of 0.1 μ g m⁻³ or less.

The second cross-period contained almost no valid data points, as the wind during this cross-period was coming from the direction of the largest obstacle of all: the 213-meter mast. Its impact on the analysis above was therefore almost zero. The

85 data during this cross-period show how large the magnitude of the effect of upwind obstacles can be. The grey points taken during this cross-period differed systematically from zero by about 0.2 µg m⁻³, reflecting that the gradients were different at different locations along the paths.

90 Figure S7. HT concentrations offset (after comparing with miniDOAS_{top}) correlation with ambient air temperature.

Figure S8. Full time series of the AGM (a) and EC (b) NH₃ fluxes. The grey areas depict measurement periods used for interinstrumental calibration of the miniDOAS_{bottom} and miniDOAS_{top} (i.e. cross-periods). The transparent lines either indicate measurement during low-mixing conditions ($u_* < 0.1 \text{ m s}^{-1}$) or outliers.

Figure S9. Cumulative EC and AGM NH₃ flux for the period after cross-period 2. Here, filtered NH₃ fluxes from only the green and light green wind directions where both systems have a valid flux observations were used. The bars represent the daily totals per system.

Figure S10. Mean diurnal cycle of the AGM and EC NH₃ flux. Only measurements after September 15 are included, when manure application was not allowed anymore. The error bars indicate the standard error of the hourly mean (σ/\sqrt{n}) . The number of hours averaged (n) are listed in blue text at the top. Here, filtered NH₃ fluxes from only the green and light green wind directions where both systems have a valid flux observation were used.

105

Figure S11. Box-and-whisker plots (box frame = 25 % to 75 % interquartile range (IQR), bold line = median, whisker = 1.5*IQR) of EddyPro theoretical method (TEO) and ICO experimental method calculated damping factors (DP) for NH₃, CO₂ and H₂O flux, respectively.

Figure S12. Normalized cospectra of temperature (red), NH₃ (orange), CO₂ (olive), and H₂O (blue) differentiated by their respective colours. Shown cospectra were averaged from 19 September 08:00 to 19 September 12:30. In the red box, average wind speed (u) and stability (ζ) are shown. Values were used to derive the Kaimal Cospectrum (black).

115

Figure S13. Comparison of the AGM NH₃ fluxes from the miniDOAS instruments and the EC NH₃ fluxes from the HT per categorised wind direction with ICO spectral correction method.

125 Figure S14. The NH₃ flux computed with the EC method using vertical wind component measurements from either sonic #1 (black) or sonic #2 (red). Damping correction either by ICO method (upper panel) or TEO (lower panel) during the overlapping period: Sep 30 – Oct. 1.

1.4 Discussion (extended)

130 1.4.1 Field performance

The miniDOAS system was steadily housed in an air-conditioned container, and was operational and measuring close to 100% of the campaign period. In the campaign, 35% of this time was spent on intercalibration of the two miniDOAS instruments, and the rest on flux measurements. Towards the end of the campaign, after the HT had been removed from the field, the miniDOAS instruments were intentionally kept in cross-setting for two extra weeks. These intercalibration measurements confirmed the baseline stability of the NH₃-difference measurements was better than 0.002 µg m⁻³ drift over a seven-week period. In future applications, the frequency and duration of the inter-instrumental calibration can be further optimized, increasing the percentage of operational flux measurements to well above 65%. The miniDOAS optical system was almost insensitive to degradation, although the parabola mirror and the lamp may need replacement after about a year. Hence, we

conclude that the miniDOAS gradient setup is field ready in its current configuration, also for longer-term measurements.

140

For the HT, $\sim 21\%$ missing data were caused by raindrops or dew on the optical mirrors, and the coating material of the mirror gradually deteriorated along time over the five-week period presumably due to rain as well. In addition, the HT instrument needed regular operator intervention (e.g. mirror cleaning). To make the instrument suitable for longer-term monitoring, in particular in areas with frequent rainfall, this needs to be addressed in future versions.

145 **1.4.2** Flexibility in application

For operation in the field, the miniDOAS system requires at least about 10 meter, preferably 20 meter, of relatively flat and horizontal surface between container and retroreflectors. It also requires structural stability to maintain the alignment between the miniDOAS instruments and their retroreflectors. That is feasible for ground-level operation but more difficult for a site with tall vegetation, for example when evaluating deposition above forest canopies from a tower. Besides, the miniDOAS

150 instruments also need ~ 200 W at 230 V each, and are operated from a container (2 × 2 × 2 m) with air conditioning. Hence, its operation depends on a substantial mains power supply. The light-weight and portable HT instrument, on the other hand, currently only needs a 12 V, 50 W power supply permitting use at remote sites without access to mains power. It can be supported by a solar panel and a battery.

		• 	ngs for sonic#1, sonic #2, F		·		
1. Metadata file	Canopy height	0.10 m					
1.1. Station	Displacement height	0.07 m					
	Roughness length	0.02 m					
1.2. Instruments		Anemometers Sonic#1 Gas Analys		fo and their related to sonic #1	Anemometers Sonic#2	Gas Analyser info and their related distances to sonic #2	
	Manufacturer	Gill	LI-COR	Other Generic Open	Gill	LI-COR	Other Generic Open
	Model	Windmaster Pro	LI-7500DS	Path	Windmaster	LI-7500DS	Path
	Embedded software version	2329-105-01	8.8.36	HT8700E	2329-701-01	8.8.36	HT8700E
	Instrument ID	Y071900			W211801		
	Height	2.80 m			2.80 m		
	Wind data format	U,V & W			U,V & W		
	North alignment	Spar			Spar		
	North off-set	40.0 °			320.0 °		
	Northward separation	Reference	-14.14 cm	-135.20 cm	Reference	95.46 cm	34.64 cm
	Eastward separation	Reference	14.14 cm	77.50 cm	Reference	-95.46 cm	-20.00 cm
	Vertical separation	Reference	3.00 cm	0.00 cm	Reference	0.00 cm	0.00 cm
	Longitudinal path length			50.00 cm			50.00 cm
	Transversal path length			10.00 cm			10.00 cm
	Time response	<u> </u>		0.10 s			0.10 s
1.3(a). Raw File Description for sonic#1	$1 \sim 4$	5~6	$7 \sim 8$	9	10		
Variable	u,v,w; sonic temperature		Ambient temperature and pressure	OSS	NH ₃		
Instrument Measurement type	Sonic 1: Windmaster Pro	Irga 1: LI-7500DS Molar/Mass density	Irga 1: LI-7500DS	Irga 2: Generic Open Path Other	Irga 2: Generic Open Path Molar/Mass density		
Input unit	m/s; K	mmol/m ³	K; Pa	Dimensionless	$\mu g/m^3$		
Nominal time log	0 s	0 s					
Minimum time log	0 s	-3.0 s	-3.0 s	-5.0 s	-5.0 s		
Maximum time log	0 s	3.0 s	3.0 s	5.0 s	5.0 s		

1.3(b). Raw File Description for sonic#2	1~4	5~6	7 ~ 8 Ambient temperature and	9	10			
Variable	u,v,w; sonic temperature	CO_2, H_2O	pressure	OSS	NH ₃			
Instrument	Sonic 2: Windmaster	Irga 1: LI-7500DS		Irga 2: Generic Open Path	Irga 2: Generic Open Path			
Measurement type	m/a.V	Molar/Mass densi mmol/m ³	ty K; Pa	Other Dimensionless	Molar/Mass density			
Input unit	m/s; K		K; Pa	Dimensionless	$\mu g/m^3$			
Nominal time log	0 s	0 s	- 0	• •				
Minimum time log	0 s	-5.0 s	-5.0 s	-3.0 s	-3.0 s			
Maximum time log	0 s	5.0 s	5.0 s	3.0 s	3.0 s			
2. Basic settings	Missing samples allowance	40%						
	Flux averaging interval: Cross wind correction of so	30 min						
	temperature applied by the anemometer firmware:	Yes						
3. Advanced settings		Raw data	processing for sonic #1	Raw data proces	ssing for sonic #2			
3.1 Processing options	Fix 'w boost' bug:	Yes		No				
	Angle-of-attack correction t wind components:	for Yes			Other settings are same as sonic #1			
	Rotation method:	Double rot	ation					
	Detrend method:	Linear det	rending					
	Time lag detection method:		e maximization with default					
	Random uncertainty estimation		and Sims(2001)					
			Cross-correlation first crossing 1/e					
		10.0 s						
	Flagging policy:							
		Mauder an	d Foken (2004)(0-1-2 system)		- .			
3.2 Spectral Correction Options	Low frequency range:		orrection of high-pass filtering effect f et al. 2004)	cts				
	High frequency range:		of low-pass filtering effects: Monc 7) - Fully analytic	rieff				

	Filter criteria		AGM miniD	OAS		EC HT	
		[nobs]	[hours]	[%]	[nobs]	[hours]	[%]
Total campaign duration		2283	1142	100%	1737	869	100 %
Gaps or intercalibration*		1491	746	65 %	1370	685	79 %
Filter 1	QF = 2	n/a	n/a	n/a	1229	615	71 %
Filter 2	u _* >0.1	1201	601	53 %	1035	517	60 %
Filter 3	2σ outlier filter	1193	597	52 %	1031	516	59 %
Filter 4	exclude 11-09-2022	1146	573	50 %	1002	501	58 %
Filter 5	both systems have flux	848	426	37 %	848	424	49 %
Wind sector	green	113	57	5 %	113	57	7 %
	lightgreen	115	58	5 %	115	58	7 %
	yellow	199	100	9 %	199	100	11 %
	red	421	211	18 %	421	211	24 %

Table S2: Number of AGM and EC NH₃ flux observations that were left after quality control steps.

160 *For the EC, data gaps were either weather-related and/or due to low optical signal strength (OSS). For the AGM, there were less observations due to the intercalibration of the miniDOAS instruments.

1.5 References

Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux measurements, Journal of Geophysical Research, 106, 3503, <u>https://doi.org/10.1029/2000JD900731</u>, 2001.
 LI-COR Inc: Using the LI-7500DS Open Path CO2/H2O Analyzer and SmartFlux 2 System, LI-COR Biosciences, Lincoln, 2022.

Mauder, M. and Foken, T.: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure Meteorologische Zeitschrift, 15, 597-609, https://doi.org/10.1127/0941-2948/2006/0167, 2006.

Wolff, V., Trebs, I., Ammann, C., and Meixner, F. X.: Aerodynamic gradient measurements of the NH₃-HNO₃-NH4NO₃ triad using a wet chemical instrument: an analysis of precision requirements and flux errors, Atmos. Meas. Tech., 3, 187-208, <u>https://www.doi.org/10.5194/amt-3-187-2010</u>, 2010.

170