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Abstract. In combination with observations from visible
satellite channels, near-infrared channels can provide valu-
able additional cloud information, e.g. on cloud phase and
particle sizes, which is also complementary to the informa-
tion content of thermal infrared channels. Exploiting near-
infrared channels for operational data assimilation and model
evaluation requires a sufficiently fast and accurate forward
operator. This study presents an extension to the method for
fast satellite image synthesis (MFASIS) that allows for simu-
lating reflectances of the 1.6 µm near-infrared channel based
on a computationally efficient neural network with the same
accuracy that has already been achieved for visible channels.
For this purpose, it is important to better represent vertical
variations in effective cloud particle radii, as well as mixed-
phase clouds and molecular absorption in the idealized pro-
files used to train the neural network. A new approach em-
ploying a two-layer model of water, ice and mixed-phase
clouds is described, and the relative importance of the dif-
ferent input parameters characterizing the idealized profiles
is analysed. A comprehensive data set sampled from Inte-
grated Forecasting System (IFS) forecasts together with dif-
ferent parameterizations of the effective water and ice parti-
cle radii is used for the development and evaluation of the
method. Further evaluation uses a month of ICOsahedral
Non-hydrostatic development based on version 2.6.1 (ICON-
D2) hindcasts with effective radii directly determined by the
two-moment microphysics scheme of the model. In all cases,
the mean absolute reflectance error achieved is about 0.01 or
smaller, which is an order of magnitude smaller than typi-
cal differences between reflectance observations and corre-
sponding model values. The errors related to the imperfect
training of the neural networks present only a small contri-

bution to the total error, and evaluating the networks takes
less than a microsecond per column on standard CPUs. The
method is also applicable for many other visible and near-
infrared channels with weak water vapour sensitivity.

1 Introduction

Over the last decades, satellite observations have become
the most important observation type assimilated in numeri-
cal weather prediction (NWP) systems. They dominate not
only in terms of the total number of assimilated observa-
tions, but also with respect to the overall impact on the fore-
cast quality of operational global NWP systems (Bormann
et al., 2019; Eyre et al., 2022). The preferred way to assim-
ilate satellite observations from imagers and sounders is the
direct assimilation of radiances, which requires a forward op-
erator to generate synthetic radiances from the NWP model
state. In contrast to assimilating retrievals, no external a pri-
ori information (e.g. from other models or climatologies) is
required in the direct assimilation approach, and in general
the characterization of errors is also less problematic (Errico
et al., 2007). Satellite radiances are increasingly assimilated
not only in clear-sky conditions, but also in the presence of
clouds and precipitation. This so-called “all-sky” approach
is being applied successfully to microwave (MW) observa-
tions in different global NWP systems (Geer et al., 2018),
and progress is being made towards the direct all-sky assim-
ilation of infrared (IR) observations (Geer et al., 2018, 2019;
Li et al., 2022). Similarly, satellite observations are also as-
similated in many regional models (Gustafsson et al., 2018)
with a particular focus on observations from geostationary
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imagers providing temperature, moisture and cloud informa-
tion with high temporal and spatial resolution (see e.g. Otkin
and Potthast, 2019; Okamoto, 2017).

Efforts to improve the exploitation of satellite observations
that are currently underutilized are ongoing, both in terms
of assimilating already operational data under all conditions
and over all surfaces and in terms of using channels that are
not yet directly assimilated at all (Valmassoi et al., 2022; Hu
et al., 2022). Solar satellite channels fall into the latter cat-
egory, mostly because sufficiently fast and accurate forward
operators are missing or have only become available recently.
The development of such operators was hampered by the fact
that standard radiative transfer (RT) methods for the solar
spectral range (with wavelengths λ < 4 µm) are computation-
ally very expensive, as they require the detailed modelling
of multiple scattering processes, which are much more im-
portant than in the thermal part of the spectrum (λ > 4 µm).
Moreover, 3D RT effects, i.e. effects involving horizontal
photon transport, e.g. related to inclined cloud tops, cloud
shadows or complex topography (see Marshak and Davis,
2005, for a detailed discussion), can be important for solar
channels, especially at high resolutions and for large zenith
angles. For visible channels Scheck et al. (2016) developed
a method for fast satellite image synthesis (MFASIS), an ef-
ficient 1D RT approach based on a strong simplification of
the vertical cloud structure and the use of precomputed re-
sults stored in compressed lookup tables (LUTs). This LUT-
based version of MFASIS has been integrated into the Ra-
diative Transfer for TOVS (RTTOV) satellite forward op-
erator package in v12.2 with subsequent improvements in
v12.3 and v13.1 (Saunders et al., 2018, 2020). MFASIS has
been used in several model evaluation studies (Heinze et al.,
2016; Stevens et al., 2020; Sakradzija et al., 2020; Geiss et
al., 2021) as well as data assimilation studies (Schröttle et
al., 2020; Scheck et al., 2020). The assimilation of visible
SEVIRI (Spinning Enhanced Visible and InfraRed Imager)
observations at 0.6 µm using RTTOV-MFASIS became op-
erational at DWD (Deutscher Wetterdienst, German Meteo-
rological Service) in March 2023. An extension to MFASIS
to account for the most important 3D RT effects in a com-
putationally efficient way is available (Scheck et al., 2018),
and recently a faster and more flexible version based on neu-
ral networks instead of LUTs has been developed (Scheck,
2021a) and integrated into RTTOV 13.2.

The cloud information contained in visible channels is
complementary to that available from thermal infrared chan-
nels. While visible channels provide almost no information
that could be used to determine the cloud top height or
discriminate frozen clouds from liquid clouds, they contain
much more information on the cloud water or cloud ice con-
tent as they saturate only for much thicker clouds than ther-
mal channels (Geiss et al., 2021). There is also some depen-
dency of visible radiances on the cloud particle sizes and the
surface structure of clouds.

Near-infrared (NIR) channels (0.75≤ λ≤ 4 µm) depend
on cloud particle sizes and angles in a different way, com-
pared to visible channels, and can thus provide additional in-
formation that could be very valuable for both model eval-
uation and data assimilation. The combined information of
visible and near-infrared channels has been successfully used
for many years to simultaneously retrieve cloud optical thick-
ness and effective particle radii (following Nakajima and
King, 1990). Such observations constraining the cloud mi-
crophysics are also of special relevance for NWP models em-
ploying advanced cloud physics schemes like two-moment
schemes that provide prognostic effective cloud particle sizes
(see e.g. Seifert and Beheng, 2006). Of particular interest is
the 1.6µm channel available on many satellite imagers be-
cause at this wavelength ice absorbs radiation considerably
stronger than water. In combination with a visible channel,
for which absorption by both water and ice is very weak, the
1.6µm channel can thus provide information that is helpful
for distinguishing liquid clouds from frozen clouds (but will
not in all cases allow for a clear distinction; see e.g. Fig. 4
in Coopman et al., 2019). While information on the cloud
phase is also available from thermal infrared channels, using
near-infrared channels in addition (Baum et al., 2000) or in-
stead (Nagao and Suzuki, 2021) can improve the reliability
of retrievals. Assimilating the 1.6µm channel could thus be a
promising way to reduce cloud-phase errors.

MFASIS can already be applied to NIR channels, and
LUTs for 1.6µm channels of different instruments are avail-
able as part of the RTTOV package. However, mainly due
to the rather approximate treatment of mixed-phase clouds,
the currently employed method is considerably less accurate
for this channel. Some corrections included in RTTOV 13.1
allow for avoiding the largest errors, but the accuracy in the
1.6µm channel is still lower than in visible channels. This
study demonstrates how to both improve the accuracy and
reduce the computational effort through using a machine-
learning-based approach. We focus on generating synthetic
images for the 1.6µm channel of the SEVIRI instrument
aboard Meteosat Second Generation (MSG) from global and
regional NWP model data. Building on the neural-network-
based results for visible channels of Scheck (2021a), suitable
network input parameters to account for the more complex
dependency of near-infrared radiances on the atmospheric
state will be identified. Networks with these input parame-
ters are then trained and tested on different data sets.

The rest of this study is organized as follows: data and
methods are discussed in Sect. 2, suitable network input pa-
rameters are derived in Sect. 3, the training of neural net-
works based on these profiles is discussed in Sect. 4, the full
method is evaluated using different data sets in Sect. 5 (also
for other solar channels) and conclusions are given in Sect. 6.
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2 Data and methods

2.1 Radiative transfer methods

2.1.1 DOM

For reference calculations and the generation of neural net-
work training data, the discrete ordinate method (DOM; see
Stamnes et al., 1988) is used. We rely on the implementation
of DOM in the RTTOV package (Saunders et al., 2018). The
required input data comprise vertical profiles of the cloud
water and cloud ice content, including the corresponding ef-
fective particle radii, a value for the surface albedo (A), so-
lar and satellite zenith angles (θ0, θ ), and the difference in
their azimuth angles (1φ). DOM solves the plane-parallel
radiative transfer equations and computes the resulting top-
of-atmosphere reflectance. In RTTOV, the liquid cloud opti-
cal properties used in this process are based on Mie (1908),
and for ice clouds the optical properties for the general habit
mixture of Baum et al. (2005, 2007) are used. Aerosols are
neglected in this study, but clear-sky Rayleigh scattering and
molecular absorption are taken into account.

2.1.2 MFASIS

DOM generates accurate 1D RT solutions but is signifi-
cantly too slow for operational applications like data assim-
ilation. For this reason, the fast method MFASIS (Scheck et
al., 2016) was developed and has subsequently been imple-
mented in RTTOV (beginning with version 12.2; see Saun-
ders et al., 2020). In MFASIS, the cloud top height and de-
tails of the vertical cloud structure are not taken into account
for computing the reflectance, and still the reflectance errors
with respect to the DOM solution are small. These proper-
ties of the input profiles can therefore be considered to be
not very important for the resulting reflectance. The complex
vertical profiles from NWP runs are in MFASIS replaced by
highly idealized profiles with the same total optical depths
and mean effective particle radii. These idealized profiles
contain a homogeneous ice cloud above a homogeneous wa-
ter cloud at fixed heights embedded in a standard atmosphere.
Only eight parameters are used to fully characterize the ideal-
ized radiative transfer problem: the optical depths and verti-
cally averaged effective particle radii for the water and the ice
cloud, three angles to define the sun–satellite geometry, and
the surface albedo. Reflectances for many combinations of
the parameters are precomputed using DOM and are stored
in an 8D lookup table (LUT). The latter is reduced from 8 GB
to 21 MB using a lossy compression method. To obtain re-
flectances for arbitrary input profiles, it is only necessary to
compute the input parameters from them and interpolate the
reflectance in the LUT at the corresponding location.1 This

1A linear interpolation is performed in the seven cloud and an-
gle dimensions, and the albedo dimension is treated differently, as
discussed in Sect. 4.1.

process only takes several microseconds and is thus orders
of magnitude faster than running DOM. Both the achieved
speed and the accuracy are sufficient for assimilation of visi-
ble radiance observations in operational applications.

While the simplification of the vertical profiles in MFASIS
causes reflectance errors that are acceptable for data assimila-
tion or model evaluation using visible channels, they remain
significantly larger for the 1.6µm near-infrared channel that
is considered in this study for three reasons:

– The absorption in ice is considerably stronger than in
water. Replacing mixed-phase clouds, which are often
dominated by liquid water at the top, by an ice cloud
above a water cloud therefore causes large errors.

– The 1.6µm channel is slightly affected by molecular ab-
sorption (due to CO2, CH2 and for wider channels like
the one on the SEVIRI instrument considered here also
water vapour), which means that the air mass between
the cloud and satellite will have a stronger influence on
the reflectance than in visible channels.2 For SEVIRI
the water vapour mass will also have some influence. To
give an example, for a relatively high column-integrated
water vapour content of 50 mm and solar and satellite
zenith angles of 60◦ the reflectance is reduced by about
5 %.

– The vertical variation in the effective particle radii is not
taken into account in the simplified profiles. While this
error source alone would still be acceptable (it is indeed
also present for visible channels), it contributes signif-
icantly to the total error, in addition to the two other
problems listed above. The problem is that the effective
radii in the uppermost cloud layers, from which photons
can escape after single-scattering events, may be differ-
ent from the effective radii at higher optical depths that
contribute to the reflectance by multiple scattering pro-
cesses. To approximate both the correct scattering an-
gle dependence of the reflectance, which is dominated
by single-scattering processes, and the correct angle-
averaged reflectance, which is often dominated by mul-
tiple scattering processes, at least two different radii are
required.

Preliminary solutions to account for the largest errors
were introduced into the MFASIS implementation in RT-
TOV v13.1: replacing ice within or below water clouds with
water clouds of the same optical depth reduced the errors for
mixed-phase clouds. The computation of the mean effective
radius was modified to give more weight to the upper cloud
layers for thick clouds. While these corrections succeeded in
removing the largest errors, the mean errors are still consider-
ably larger than in visible channels. In this study we present

2Visible channels also have a slight cloud top height dependence
due to Rayleigh scattering.
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a new approach, which is more accurate and faster as well as
based on neural networks.

2.1.3 Neural networks and MFASIS-NN

Artificial neural networks are the most popular machine
learning approach. They have the advantages that mature,
easy-to-use implementations are available and that many
CPUs and GPUs now support hardware-accelerated training
and evaluation of these networks. A neural-network-based
version of MFASIS for visible channels, in the following
referred to as MFASIS-NN, has been developed by Scheck
(2021a). While the simplification of vertical profiles in this
method is the same as in MFASIS, the LUT is replaced by a
deep feed-forward neural network. The input parameters of
the network correspond to the dimensions of the LUT. Re-
flectances for arbitrary albedo values can be computed from
the three output parameters approximating reflectances for
surface albedo values 0, 0.5 and 1 (see Eq. 6 in Scheck,
2021a, and the discussion in Sect. 4.1). The study shows
that networks with several thousand parameters in four to
eight hidden layers can be trained well enough to achieve
reflectance errors that are in general smaller than the ones of
the LUT version. The amount of data to be generated with
DOM for the training is a factor of 1000 smaller than the
8 GB required for the LUT-based MFASIS. Moreover, using
a computationally cheap activation function and a Fortran in-
ference code optimized for small networks, MFASIS-NN is
an order of magnitude faster than the LUT-based MFASIS.

As in Scheck (2021a), deep feed-forward neural networks
are used in this study. Networks with 8 hidden layers and 15,
25 or 32 nodes per layer are considered. The networks are
initialized with random numbers and trained with the open-
source TensorFlow package (Abadi et al., 2015) using stan-
dard methods. The mini-batch gradient descent method (with
a batch size of 256) and the Adam algorithm (see Chap. 8 in
Goodfellow et al., 2016) with a learning rate of 2.5× 10−4

were utilized for this purpose. About 1.4× 107 synthetic
training data samples were generated by assuming random
numbers for the normalized network input parameters (uni-
formly distributed in [0,1], which means that the unnormal-
ized, physical variables are uniformly distributed over the
ranges given by Table 2) and by computing the correspond-
ing reflectance with DOM. A total of 80 % of the samples
were used for the training, and 20 % served as independent
validation data. The networks were trained for 4000 epochs.
During the training, the updated network weights and biases
were stored only if they resulted in a reduced root-mean-
square error of the validation data set, an approach known as
early stopping. For the evaluation or inference of networks,
we employed FORNADO, an optimized Fortran code includ-
ing tangent linear and adjoint versions. To reduce the com-
putational effort, the “cheap soft unit” (CSU; see Fig. 2 in

Scheck, 2021a), defined as

fCSU(x)=


0, if x <−2

−1+ 0.25(x+ 2)2, if x ∈ [−2,0]

x, if x > 0,

(1)

was used as an activation function for the hidden layers.
This function is very similar to the well-known exponential-
linear unit (ELU), fELU(x)=min(ex − 1, |x|), but does not
involve a computationally expensive exponential function,
which can also prevent the compiler from using vector in-
structions. For the output nodes, we used the softplus func-
tion, fsoftplus(x)= ln(1+ ex), which guarantees that all out-
put values are positive.

2.2 NWP SAF profiles

A comprehensive set of profiles available from the Satel-
lite Application Facility for Numerical Weather Prediction
(NWP SAF) project is used to tune and evaluate the meth-
ods developed for this study. The data set comprises 5000
individual profiles selected from a year (1 September 2013–
31 August 2014) of short-range forecasts produced with the
Integrated Forecasting System (IFS) of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) using
an algorithm which only selects profiles that are sufficiently
different in cloud variables compared to the other selected
profiles. The profiles represent realistic seasonal variability,
and, as they are spread over the entire globe, global variabil-
ity is also well represented. About 30 % of the profiles are
located over land and about 40 % between the northern and
southern tropics. Refer to Eresmaa and McNally (2014) for
further information about the data set. It should be noted that
the cloud fraction profiles, c(z), were modified for this study.
To avoid having to take cloud overlap into account, for which
different assumptions exist (see e.g. Scheck et al., 2018) and
which is not the focus of this work, the cloud fraction was set
to zero for c < 1

2 and to one for c = 1
2 . While this simplifi-

cation certainly has some impact on the distribution of total
optical depths, it should not pose a serious limitation while
making reference calculations with DOM much cheaper.3

The NWP SAF profiles do not contain any information on
effective cloud particle sizes, which are required for RT cal-
culations. Therefore, parameterizations have to be used. For
effective radii of water cloud droplets, the parameterization
of Martin et al. (1994) is used, which depends on the liquid
water content and a droplet number concentration NC . Here,
we adopt either NC = 100 cm−3 or NC = 200 cm−3, which
are typical values used in NWP models. For effective ice par-
ticle sizes we rely either on the parameterization by McFar-
quhar et al. (2003), which depends only on the ice content,
or on the one by Wyser (1998), which depends in addition

3In RTTOV, DOM is called up to nz times instead of a single
call if cloud fractions 0< c < 1 are encountered, where nz is the
number of layers.
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Figure 1. Water cloud optical depth τw and ice cloud optical depth
τi for all profiles of the std data set (see Table 1).

on the temperature. All of these radius parameterizations can
produce unrealistically small radii for low water/ice contents
and under certain conditions also radii that are larger than
the maximum radii RTTOV accepts. To reduce the impact of
these cases, we limit the effective droplet radii to the range
[5µm,25µm] and the effective ice particle radii to the range
[20µm,60µm], as in Scheck et al. (2016). With these effec-
tive radii and the water/ice contents from the IFS data, extinc-
tion coefficient profiles for water and ice cloud layers (βw(z)

and βi(z)) can be computed using channel-specific conver-
sion factors provided by RTTOV. The vertical integrals of
βw(z) and βi(z) are the water and ice optical depths τw and
τi. From their distribution (Fig. 1) it is evident that there is a
wide variety of water, ice and mixed-phase clouds with opti-
cal depths up to several hundreds.

In Table 1 the different versions of the profile data set used
in this study are listed, which differ in their effective radius
parameterizations, the cloud types present in the profiles and
the vertical variation in the effective radii. The different pa-
rameterizations lead to significantly different mean effective
radius distributions, as shown in Fig. 2. A smaller droplet
concentration (Fig. 2b) leads to larger droplet radii than for
the standard value of NC = 200 cm−3 (Fig. 2a). The ice par-
ticle radii computed with Wyser (1998) (Fig. 2d) show more
spread and depend differently on the optical depth than those
computed using McFarquhar et al. (2003) (Fig. 2c). The data
sets with only water or only ice clouds allow for investigat-
ing these cloud types separately. The data sets in which the
effective radius profile is replaced by its mean value in each
profile are used to switch off the impact of vertical radius
gradients.

To compute top-of-atmosphere reflectances for the profiles
in these data sets using DOM, the cloud variables as well as
the sun and satellite angles and the surface albedo are re-
quired. For all the profiles, longitude, latitude and time are

known, so these additional parameters could be determined.
However, we follow a different approach, which increases
the number of test cases significantly. For each profile, re-
flectances are computed for 64 angle combinations that are
chosen randomly with the constraints α < 130◦, θ < 80◦ and
θ0 < 80◦, where α is the scattering angle with α = 0◦ mean-
ing backscattering and α = 180◦ forward scattering. More-
over, reflectances are not computed for the surface albedo
at the location of the profile, but for each viewing geometry
three reflectances are computed for albedo values 0, 1

2 and
1. The three reflectances allow for calculating reflectance for
arbitrary albedo values, as discussed in Sect. 3.3 of Scheck
(2021a). In total, 5000× 64× 3= 960 000 reflectances are
thus computed for each data set and RT method.

Of course the effective radii obtained for the IFS profiles
from parameterizations may not be fully realistic. Both fea-
tures in the vertical profiles and the distribution of mean radii
could differ from reality. For this reason, we additionally
consider data from a regional model with a two-moment mi-
crophysics scheme that generates prognostic information on
effective radii, which should be closer to reality (see next sec-
tion). However, as at least for the next few years most models
will be restricted to one-moment microphysics schemes and
as this study is aimed at generating synthetic satellite images
for these models, it seems appropriate to use effective radii
from parameterizations.

2.3 ICON hindcasts

For an additional evaluation of the results we use at-
mospheric profiles from a 30 d hindcast performed with
the convection-permitting, regional ICON-D2 (ICOsahe-
dral Non-hydrostatic, development version based on version
2.6.1; Zängl et al., 2015) model. This NWP model and the
resulting profiles are independent and different from the IFS
model, which is the basis for the NWP SAF profiles used in
the development of the MFASIS near-infrared approach, es-
pecially with regard to the cloud microphysics scheme and
the resulting effective cloud particle radii. The same ICON-
D2 setup as in Geiss et al. (2021) is used, with a domain
covering Germany and parts of its neighbouring countries,
a horizontal grid spacing of 2.1 km, and 65 vertical lev-
els. The 30 d hindcast is initialized once on 1 June 2020
at 00:00 UTC based on downscaled ICON-EU (Europe nest
of global ICON model) analysis initial conditions and uses
hourly boundary conditions from ICON-EU analyses.

The test period is characterized by various different sum-
mer time weather situations with a wide variety of clouds.
As is visible from Fig. 3, most of the clouds are limited to
τw < 100 and τi < 10. The even thicker clouds present in the
IFS profile data sets are probably related to the tropics and
are not present in the ICON-D2 domain.

An important difference, compared to the IFS-based NWP
SAF profiles, is that the ICON-D2 hindcast employs a two-
moment microphysics scheme (Seifert and Beheng, 2006).

https://doi.org/10.5194/amt-16-5305-2023 Atmos. Meas. Tech., 16, 5305–5326, 2023
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Table 1. Profile data sets used in this study, based on the NWP SAF profiles. In some of the data sets the water or ice cloud mixing ratios,Qw
and Qi, are set to zero; the effective radii are set to a constant value in each profile (the mean value in the profile); or the radii are computed
for a different droplet number concentration (specified in brackets) in the droplet size parameterization by Martin et al. (1994) or using the
Wyser (1998) parameterization instead of the McFarquhar et al. (2003) parameterization for ice particles.

Data set Parameterizations Modifications

std Martin [200 cm−3], McFarquhar –
rmod Martin [100 cm−3], Wyser –
w-only Martin [200 cm−3], McFarquhar Qi = 0
i-only Martin [200 cm−3], McFarquhar Qw = 0
w-rconst Martin [200 cm−3], McFarquhar Qi = 0, reff,w(z)= const
i-rconst Martin [200 cm−3], McFarquhar Qw = 0, reff,i(z)= const

Figure 2. Mean vertically averaged effective particle radii (dots) in logarithmically spaced optical depth bins for the std (a, c) and rmod (b, d)
profile data sets for water clouds (a, b) and ice clouds (c, d). The vertical lines connect the 5th and the 95th percentiles for each bin.

Figure 3. Distribution of water and ice cloud optical depths
throughout the domain for all 30 d of the ICON-D2 hindcast period
at 12:00 UTC (about 8.3× 106 profiles).

This microphysics scheme directly provides effective radii
that should in principle be more realistic than the radii com-
puted with parameterizations. For this reason the lower limit
for effective droplet radii applied before running RT calcula-
tions is reduced to 2.5 µm for the ICON hindcasts.

The effective radii from the two-moment scheme (Fig. 4)
show qualitatively different dependencies on the optical
depths compared to those obtained with parameterizations
(Fig. 2). For the two-moment calculations the mean effec-
tive droplet radius reaches a maximum at τw = 100 and de-
creases for higher optical depths, whereas for the parame-
terization there is a further increase for τw > 100. The mean
effective ice particle radii from the two-moment scheme are
more similar to the Wyser results (Fig. 2c) than to the McFar-
quhar results (Fig. 2d), with radii increasing at smaller opti-
cal depths and decreasing at higher optical depths. However,
for the two-moment scheme the maximum mean effective ra-
dius is already reached at τi = 4 (not τi = 30 as for Wyser).
Even more obvious differences between parameterized and

Atmos. Meas. Tech., 16, 5305–5326, 2023 https://doi.org/10.5194/amt-16-5305-2023
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two-moment radii are found for the spread. The parameteri-
zations mostly depend on quantities strongly correlated with
the optical depth, like liquid water content (LWC) and ice
water content (IWC), and are therefore quite well-defined
functions of the optical depth with a small spread. The only
exception is the Wyser parameterization (Fig. 2d), which has
an additional dependency on temperature and therefore a
larger spread. In contrast, the two-moment radii always show
a spread that is considerably larger than for the parameteri-
zations for both water and ice clouds, as is to be expected for
more realistic radii.

3 Selecting input parameters

3.1 Extending the MFASIS approach

For visible channels it is sufficient to characterize the ide-
alized profiles by only four numbers, optical depths and ef-
fective particle radii for a water and an ice cloud at fixed
heights. As discussed in Sect. 2.1, these idealized profiles
are too simplistic for near-infrared channels. Therefore, ad-
ditional parameters have to be included to account for the
clear-sky absorption, the impact of vertically varying effec-
tive radii and the fact that the uppermost part of mixed-phase
clouds is often dominated by liquid water.

As a minimal extension to account for vertically varying
effective radii, the one-layer ice and water clouds are re-
placed by two-layer clouds with different effective radii in
the upper and the lower layer. Moreover, for a better repre-
sentation of mixed-phase clouds we allow for the presence
of ice in the two-layer water cloud, which can therefore be
either a water or a mixed-phase cloud. In contrast, the ice
cloud located above this mixed-phase cloud is assumed to be
free of liquid water. Thus, in total, six optical depths τLC and
six effective particle radii rLC have to be specified to fully de-
fine the clouds in the idealized profile. Here, L ∈ [u; l] for
the upper/lower layers, C = i for the pure ice cloud, C = w
for the water content and C = wi for the ice content of the
mixed-phase cloud.

When the geometric height at the top, zL,top
C , and the bot-

tom, zL,bot
C , of each layer is known, the optical depths can be

computed as

τLC =

z
L,top
C∫
z
L,bot
C

βC(z)dz (2)

from the profile of the extinction coefficient βC(z) computed
from the NWP model output using the satellite-channel-
dependent factors provided by RTTOV (as part of the regres-
sion coefficient files). The mean effective particle radii are

computed as

rLC =
(
τLC
)−1

z
L,top
C∫
z
L,bot
C

reff,C(z)βC(z)dz (3)

from the effective radius profile reff,C(z) that is either in-
cluded in the NWP model output or computed using one of
the parameterizations listed in Sect. 2.2. For computing the
mixed-phase cloud top height in the NWP profile, we use the
cumulative optical depth

τ cml
C (z)=

ztoa∫
z

βC(z)dz, (4)

where ztoa is the height of the uppermost level of the model
profile. The mixed-phase cloud top height, zu,top

wi , is then de-
fined to be the height at which τ cml

w (z) exceeds a threshold
value of 1. To avoid gaps between the integration ranges
z

l,top
C = z

u,bot
C and to cover the full profile, we adopt zu,top

w =

z
u,top
i = ztoa and zl,bot

w = z
l,bot
wi = zsfc, where zsfc is the height

of the lowest level of the model profile.4 The only geomet-
ric heights that have not been defined so far are those that
determine how the two-layer clouds are split in an upper
and a lower part, zu,bot

i and zu,bot
w . A parameterization for the

cloud splitting that computes the optical depths of the two
parts, τ l

C and τ u
C , from the total optical depth of the cloud,

τC = τ
l
C + τ

u
C , is discussed in Sect. 3.3. Based on these opti-

cal depths, zu,bot
i and zu,bot

w can be determined.
The impact of clear-sky absorption by the well-mixed

trace gases carbon dioxide (CO2) and methane (CH4) de-
pends on the air mass above the cloud and, in the case
of semi-transparent clouds, also on the air mass above the
ground. The latter can be quantified by the cloud top pres-
sure, pct, and the surface pressure, psfc. Of course, pct and
psfc cannot exactly quantify the clear-sky impact for com-
plex multi-layer cloud situations, but they should still be use-
ful for an approximate description. In this study, the cloud
top pressure is defined as the pressure at which the total (wa-
ter plus ice cloud) optical depth exceeds a threshold value
of min

(
1
2τt,1

)
, where τt is the column-integrated total op-

tical depth of all water and ice cloud layers. This definition
presents a good compromise to prevent on the one hand that
very thin, high clouds above thicker clouds trigger the cloud
top detection and to avoid on the other hand that the cloud top
is detected too deep inside the cloud. Instead of pct, we use
the dimensionless ratio fct = pct/psfc as input parameter for
neural networks. Moreover, absorption by water vapour has
some influence on 1.6 µm SEVIRI reflectances, in particular

4A better definition for the cloud bottom level could have been
used here, but as integrating over cloud-free layers near the surface
will not change Eqs. (2) and (3), using zsfc is sufficient.
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Figure 4. Mean vertically averaged effective particle radii (dots) in logarithmically spaced optical depth bins of the 30 d of the ICON-D2
hindcast period at 12:00 UTC (about 8.3× 106 profiles) for water clouds (a) and ice clouds (b). The vertical lines connect the 5th and the
95th percentiles for each bin.

for high albedo values and large zenith angles. Water vapour
is not well-mixed, and therefore its impact can not be quan-
tified by just pct and psfc. As the impact is relatively weak,
it is sufficient to use just one parameter to describe the water
vapour profile, the vertically integrated water vapour content,

IWV=

ztoa∫
zsfc

ρ(z)qv(z)dz, (5)

where ρ is the density and qv is the specific humidity. Instead
of IWV, we will use the normalized

nIWV=
(IWV− IWVmin(psfc))

(IWVmax(psfc)− IWVmin(psfc))
(6)

as input parameter for neural networks. This ensures that
IWV remains within the range accepted by RTTOV. Details
on the fit functions IWVmin and IWVmax can be found in Ap-
pendix B.

The definitions that have been provided so far allow for
computing the neural network input parameters pct, psfc,
nIWV, τLC and rLC from NWP profiles, a step required before
reflectances can be computed with the network. For gener-
ating the synthetic training data for the network, the inverse
step is required: for given network input parameters we need
to define full idealized vertical profiles, as the latter are re-
quired by DOM to compute the corresponding reflectances.
These idealized profiles have to contain the four cloud lay-
ers with the desired τLC and rLC , have the correct IWV, have
the correct cloud top pressure pct (according to the definition
given above), and have to start at the correct surface pressure
psfc. The geometric thickness of the cloud layers should not
be very important for the reflectance. For the sake of simplic-
ity, we modify an IFS standard atmosphere such that one of
the pressure levels matches the cloud top pressure and that
the surface pressure has the desired value. Then only are the
four layers around pct filled with τLC , rLC , as shown in Fig. 5,
which also illustrates the integration ranges used to compute
τLC and rLC from an NWP model profile. A standard water

vapour profile is scaled such that the correct IWV results.
Details on how idealized profiles are computed from the in-
put parameters can be found in Appendix A.

The computation of reflectances for the idealized profiles
with two-layer clouds, including a mixed phase, surface and
cloud top pressures (as shown in the right half of Fig. 5), and
the scaled water vapour background, now requires in total 16
parameters. This assumes that the transmittances of the upper
and lower water and ice cloud layers can be computed as a
function of their overall optical depths τw and τi (see param-
eterization described in Sect. 3.3). For these input parameters
we use the abbreviation

p =
(
θ,θ0,1φ, psfc,fct,nIWV, τw, r

u
w, r

l
w, τi, r

u
i , r

l
i ,

τ u
wi,τ

l
wi, r

u
wi, r

l
wi
)
. (7)

Although also required as an input parameter for DOM, the
albedo A was not included in p because it is not an input
variable for the neural networks considered in this study (see
explanation in Sect. 4.1). In the rest of Sect. 3 only results
for A= 0.5 are discussed. Results for different albedo val-
ues are presented in Sect. 5. As is discussed in Sect. 3.4, the
splitting of the water cloud is also used for the ice content of
the mixed-phase cloud. Accordingly, not just one τwi but also
the optical depths for the upper and the lower parts have to
be specified.

Using the idealized profiles instead of the NWP model
profiles as input for DOM will lead to reflectance errors,
which should decrease with the number of parameters used
to characterize the idealized profiles. In the following, we
discuss the relative importance of the new input parameters
by using different profile data sets (see Table 1) and different
profile simplifications. Which profiles were used as input for
DOM to compute reflectances are indicated by the following
indices:

DOM – full non-idealized profiles (reference solution);

2Lay,mp – idealized profiles characterized by the 16 in-
put parameters in p;
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Figure 5. Schematic example of a complex profile from an NWP model (a) and the corresponding idealized profile (b) in which only
four layers are filled with clouds. The dashed blue and red lines separate the upper and lower parts of the ice and the mixed-phase cloud,
respectively. The purple line separates pure ice from mixed-phase ice. The dashed grey line indicates the cloud top pressure and the dotted
black line the surface pressure. The pressure labels correspond to the geometric heights z with the same indices defined in the text. The
thickness of the layers is exaggerated; the four cloud layers in the idealized profile are all close to pct.

2Lay – like 2Lay,mp but all ice is moved to the pure ice
cloud (12 parameters);

1Lay – like 2Lay but using only one layer per cloud (10
parameters);

1Lay,fix – like 1Lay but the cloud top and base are set
to fixed heights, no IWV (7 parameters).

For 2Lay, 1Lay and 1Lay,fix the integration ranges are cho-
sen such that all ice ends up in the pure ice cloud (zl,bot

i =

z
u,top
wi = zsfc). The 1Lay,fix setup corresponds to the original

MFASIS from Scheck et al. (2016), and the same fixed cloud
top and base heights are also adopted.

3.2 Impact of surface pressure and cloud top height

To quantify the impact of taking pct, psfc and IWV into ac-
count, it is helpful to exclude other sources of reflectance
error. For this purpose, the data sets w-rconst and i-rconst
(see Table 1) are used, which contain only clouds of one
phase with vertically constant effective radii. Errors related
to mixed-phase clouds and vertical radius gradients are thus
excluded, but errors related to the simplification of the verti-
cal cloud/clear-sky structure are present. These errors should
be smaller when in the idealized profiles pct and psfc have
the same value as in the original profile so that approximately
the same air masses above and below the cloud top influence
the reflectance by molecular absorption and Rayleigh scatter-
ing. In the absence of vertical radius gradients it is sufficient
to consider one-layer clouds, and we therefore compare re-
flectances computed with the cloud top and surface pressures
from the original profile, R1Lay, to the ones computed with
fixed cloud top and surface pressures, R1Lay,fix, which uses

the same idealized profiles as in Scheck et al. (2016). The
mean absolute errors |R1Lay−RDOM| and |R1Lay,fix−RDOM|

with respect to the reference solution for both water and ice
clouds are shown in Fig. 6 as a function of optical depth and
the maximum of the zenith angles.

The errors for the water clouds (Fig. 6a and b) are higher
than for the ice clouds (Fig. 6c and d), as for clouds located at
lower heights the air masses and their impact on reflectance
are higher. Larger zenith angles also lead to a stronger in-
fluence of molecular absorption and Rayleigh scattering and
thus higher errors in Fig. 6, as they increase the photon path
lengths. For both data sets a clear error reduction (Fig. 6a
and b; Fig. 6c and d) is visible when pct, psfc and IWV
are taken into account. In particular, errors at higher optical
depths are reduced (τw > 100, τi > 10), but at intermediate
optical depths (τw = 10. . .100, τi = 1. . .10) significant error
reduction can also be observed. For ice clouds, the remain-
ing mean absolute errors are of the order O(10−3), i.e. very
small (Fig. 6d). For water clouds, the errors at τw > 100 are
reduced to similarly low levels (Fig. 6b). For water clouds
of intermediate optical depths, errors are reduced consider-
ably, but mean absolute errors around 0.01 can still be found
when pct and psfc are taken into account. However, these er-
rors are already in an acceptable range. In fact, for both data
sets, only 15 % of the original mean absolute error (MAE)
and 25 % of the extreme errors (P99) remain (see Table 3).

3.3 Optimizing two-layer clouds

In Sect. 3.1 two-layer clouds are introduced as a simple way
to approximate the effect of vertical effective radius gradi-
ents. How the clouds in the idealized profiles should be split
up in an upper and a lower layer still has to be defined. For
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Figure 6. Mean absolute reflectance errors for simplified profiles without (a, c) and with (b, d) taking cloud top and surface pressure into
account with respect to the DOM reference solution for the full profiles of the w-rconst (a, b) and i-rconst (c, d) data sets in bins defined by
optical depth and the maximum of solar and satellite zenith angles.

optically thin clouds the probability of a photon to be scat-
tered in the upper or the lower half (in terms of optical depth)
of the cloud should be similar, so it makes sense to split them
such that τ u

C = τ
l
C (where C = w for water and C = i for ice

clouds) and to compute mean effective radii for the upper
and lower half. For denser clouds the contribution of lay-
ers deeper in the cloud to the top-of-atmosphere reflectance
should be smaller due to absorption. To resolve the effective
radius gradient in regions where it has the strongest impact
on the reflectance, it would in this case be more appropri-
ate to split the clouds in a thinner upper part and a thicker
lower part. The optimal optical depth to split at depends of
course also on the vertical effective radius profile. We as-
sume that a parameterization for a splitting factor fC =

τ u
C

τC
can be found that works reasonably well for many different
effective radius profiles, where τC = τ u

C + τ
l
C is the total op-

tical depth of the two-layer cloud. From the argumentation
above, the parameterization should produce a value of 1

2 for
small optical depths and decline with increasing τC . How-
ever, the zenith angles should also play a role because they
influence the path length in the cloud and thus also the prob-
ability of a photon to be absorbed. For the sake of simplicity,
we use the single parameter θm =max(θ0,θ), the maximum
of the two zenith angles, to quantify the zenith angle depen-
dence. For determining a reasonable function fC(τC,θm), the
mean error reduction |R1Lay−RDOM|−|R2Lay−RDOM| was

Figure 7. Mean absolute reflectance error reduction |R1Lay−
RDOM| − |R2Lay−RDOM| achieved by using two-layer clouds in-
stead of one-layer clouds for the i-only data set for different values
of the layer splitting factor fi and the optical depth τi in the zenith
angle bin 60◦ < θm < 70◦. Positive values mean the two-layer ap-
proach is better than the one-layer approach. The splitting factor
parameterization as defined in Eq. (8) is visualized by the white
line.

computed for the w-only and i-only data sets and many dif-
ferent bins defined by fC , τC and θm. As an example, the
case 60◦ < θm < 70◦ for ice clouds is shown in Fig. 7. It is
obvious that for low optical depths, where exactly the cloud
is split does not make much of a difference and that with in-
creasing optical depth the error can be reduced more strongly
when smaller values of fC are chosen.
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A function producing near-optimal values for the splitting
factor is given by

fC(τC,θm)=

1
2
−

[
1
2
− fhi(θm)

]
×

1
2

[1− cos(πtC(τC))] , (8)

where

tC(τC)=min
(

1,max
(

0,
log(τC)− log(τC,lo)

log(τC,hi)− log(τC,lo)

))
, (9)

with τi,lo = 0.6, τi,hi = 75 for ice clouds and τw,lo = 1.0,
τw,hi = 500 for water clouds and the zenith-angle-dependent
term

fhi(θm)= fzen−
θm

90◦
1fhor, (10)

with fzen = 0.1 and 1fhor = 0.05. The constants used in the
definition of fC(τC,θm) are chosen such that in plots like
Fig. 7 for all angle bins and both water and ice clouds the
parameterization yields a value of the splitting factor that
is close to maximizing the error reduction, as illustrated by
the example in Fig. 7 (black line). For both water and ice
clouds the parameterized splitting factors start at 1

2 for low
optical depths, decrease with increasing depth and saturate
at the same value for high optical depths (Fig. 8). For ice
clouds, which are optically considerably thinner than the wa-
ter clouds (see Fig. 1), the decline takes place at lower optical
depths.

For testing the two-layer approach, the data sets w-only
and i-only are considered, which do not contain mixed-phase
clouds but have vertically varying effective radii. For both
data sets the mean absolute errors for the one-layer approach
with surface and cloud top pressure taken into account are
considerably worse than for the corresponding data sets with-
out vertical radius gradients (compare Fig. 6b to Fig. 9a and
Fig. 6d to Fig. 9c, and see Table 3). In particular for optical
depths larger than 10 reflectance errors exceeding 0.05 can
be found. Switching from the one-layer to the two-layer ap-
proach with the parameterized splitting factors reduces the
error considerably (compare Fig. 9a and b as well as c and d)
at these moderate to high optical depths. The remaining er-
rors are around 0.01 or lower in most parts of the parame-
ter space; only for large zenith angles and very high optical
depths can somewhat larger values be found (Fig. 9b and d).

3.4 Accounting for mixed-phase clouds

So far, only data sets without mixed-phase clouds have been
used. For the std data set including mixed-phase clouds, the
two-layer approach without special treatment of mixed-phase
clouds results in strongly increased errors. The mean abso-
lute reflectance error, now computed for bins of the total op-
tical depth of all water and ice layers in the column, τt, and

Figure 8. The two-layer splitting factor parameterization
fC(τC ,θm) for water (orange) and ice clouds (blue) as a function
of the optical depth and for two different values of the zenith angle
parameter, θm = 20◦ (solid) and θm = 60◦ (dashed).

the zenith angle parameter θm can exceed 0.05 for high op-
tical depths (Fig. 10a), which is considerably higher than er-
rors for pure water (Fig. 9b) and pure ice clouds (Fig. 9d).
The misrepresentation of mixed-phase clouds can thus cause
errors that are similar in size to the ones related to not tak-
ing vertical effective radius gradients into account. By allow-
ing for mixed-phase ice in the two layers of the mixed-phase
cloud in the idealized profiles, as discussed in Sect. 3.1, these
errors can be reduced significantly. As shown in Fig. 10b, the
mean absolute reflectance errors are around 0.01 or lower in
most of the parameter space.

3.5 A simple bias correction

Most of the remaining mean absolute error in Fig. 10b is ac-
tually not a random error but related to a mean error or bias,
as is evident from Fig. 11a. A part of the bias may depend on
details of the profile data set and the effective radius param-
eterizations used here. However, most of it may be indepen-
dent of the details and directly related to the profile simpli-
fications and therefore would still be present for a “perfectly
realistic” data set. To confirm this conjecture it seems worth-
while to develop a simple bias correction to remove most of
the remaining mean errors for the std data set and investigate
later on if the correction is helpful for other data sets. Due
to the clear structure of the bias it is easy to derive a simple
function of the total optical depth and the zenith angle pa-
rameter θm, which reproduces the mean error. Here we use a
Gaussian-shaped correction

1Rbc(τt,θm)=
m+ n× (θm/90◦)k

√
2π τtσ exp

(
−
(log(τt)−µ)2

2σ 2

) (11)

with the parameters (σ = 1.1,µ= 7,m= 12,n= 30,k =
3.5) chosen such that the correction predominantly acts for
τt larger than approximately 50. As Fig. 11b shows, applying
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Figure 9. Mean absolute reflectance errors for simplified profiles with one-layer (a, c) and two-layer clouds (b, d) with respect to the DOM
reference solution for the full profiles of the w-only (a, b) and i-only (c, d) data sets in bins defined by optical depth and the maximum of
solar and satellite zenith angles. In all cases cloud top and surface pressure were taken into account.

Figure 10. Mean absolute reflectance errors for simplified profiles without (a) and with (b) special treatment of mixed-phase clouds with
respect to the DOM reference solution for the full profiles of the std data set in bins defined by total optical depth and the maximum of solar
and satellite zenith angles. In all cases cloud top and surface pressure were taken into account, and two-layer clouds were used.

the bias correction to the std data set removes most of the bias
and reduces the MAE by 25 % and the P99 by about 20 %
(see Table 3). For the rmod data set using different effective
radius parameterizations, the bias correction (Fig. 11c) also
still reduces the MAE and the P99 by about 20 % (see Ta-
ble 3). The fact that the bias correction reduces errors for
both data sets indicates that it does not depend strongly on

details of the std data set and that it seems to correct a more
generic error related to the profile simplification.

4 Network training

As discussed in the previous section, replacing vertical pro-
files from NWP model runs by the corresponding idealized
profiles characterized by the same parameters results in only
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Figure 11. Error probability density functions (PDFs; shaded) showing the deviation of different reflectance estimations (R) from DOM
reference computations (Rref) as a function of optical depth (log(τ )). These are not 2D PDFs – each horizontal cut through these images
represents the 1D PDF for the optical depth bin indicated on the vertical axis. The dashed blue lines depict the 1st (left) and 99th (right)
percentiles of the error, while the solid blue line shows the mean error. The error histograms are shown for 2Lay+MP (a) of the standard data
set, as well as for 2Lay+MP+BC of the standard (b) and rmod (c) data sets.

small reflectance errors. These profile parameters are thus in
principle suitable as input parameters for a neural network to
predict reflectances.

4.1 Setup

The function to be learned by the neural network is similar
but due to the additional parameters somewhat more com-
plex than in the case of the visible channel investigated in
Scheck (2021a). Therefore, we will investigate for the near-
infrared channel if networks of a similar or slightly larger
size as considered for the visible channel can be trained with
similar training settings to achieve comparable reflectance er-
rors. In this section only errors due to imperfect training of
the networks will be considered but not the errors caused by
simplifying the vertical structure, which have been discussed
in the previous section. Therefore, the R2Lay,mp reflectances
computed with DOM for idealized profiles with randomly
chosen parameters will serve as training and validation data.
About 30 million samples, i.e. tuples of input parameters and
reflectances, were generated for this purpose.

In Fig. 12 an example for the network structure is shown.
The nodes of the input layer correspond to the elements of
p (defined in Eq. 7) describing the idealized profiles and the
sun–satellite geometry. The range applied for the parameters
is listed in Table 2. There is no input node for the surface
albedo, as the latter is treated in a different way. As discussed
in more detail in Scheck (2021a), in plane-parallel RT the re-
flectance for an arbitrary albedo value can be computed ex-
actly if reflectances for three different values are known. If
the network is trained to generate reflectances for three dif-
ferent albedo values, albedo is thus not required as an input
parameter, and errors resulting from an imperfect representa-
tion of the albedo dependence by the network can be avoided.
Following Scheck (2021a), the reflectance for albedo zero,

R(0), and the reflectance differences, D 1
2
= R( 1

2 )−R(0)

and D1 = R(1)−R( 1
2 ), are chosen as output parameters,

where R(A) is reflectance as a function of surface albedo A.
These differences are used instead of R( 1

2 ) and R(1) because
the computation of reflectance for an arbitrary A requires
R(1) > R( 1

2 ) > R(0) to avoid numerical problems, and by
using softplus as an activation function for the output nodes
the constraints R(0) > 0, D 1

2
> 0 and D1 > 0 are automati-

cally fulfilled. Following the TensorFlow standard approach,
the root-mean-square error (RMSE) of all of the network out-
put variables, εTF, is minimized in the training.

In contrast to Scheck (2021a), we will not explore the full
parameter space of training- and network-related settings, but
we show only that for a plausible choice of training and net-
work structure settings sufficiently accurate networks result.
Only the most relevant setting for the network structure is
varied, which is the total number of parameters. For the visi-
ble channel, networks with 2000 parameters already resulted
in acceptable reflectance errors that were somewhat smaller
than the interpolation errors in the LUT version, and for 5000
parameters the errors were negligible compared to the error
caused by the profile simplification (Scheck, 2021a). Here we
investigate networks with 1983 (NN2k), 5053 (NN5k) and
8035 (NN8k) parameters, which are trained for 4000 epochs
using 14× 106 training samples.

4.2 Results

From Fig. 13, which shows the evolution of the RMSE of
the output parameters, εTF, during the training of the three
networks, it is obvious that for all of them errors of sev-
eral 10−3 are reached for both the training and the valida-
tion data sets. Due to the early-stopping strategy the errors
for the validation data set are somewhat smaller than for the
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Figure 12. Structure of the smallest network considered, with 16 input nodes (black), 8 hidden layers with 15 nodes per layer, and in total
1983 weight and bias parameters. As activation functions (see Sect. 2.1.3), CSU (Eq. 1) is used for the hidden layers (blue nodes) and softplus
for the output layer (red nodes). The lines in different shades of grey symbolize the network weights.

Table 2. List of input parameters for the neural networks, their abbreviation and their range.

Parameter Abbreviation Range

water optical depth τw ∈ [10−3,103
]

ice optical depth τi, τu
wi, τ

l
wi ∈ [10−3,102

]

water effective radius ru
w, r l

w ∈ [1µm,26µm]

ice effective radius ru
i , r l

i , ru
wi, r

l
wi ∈ [5µm,60µm]

surface pressure psfc ∈ [600hPa,1050hPa]
dimensionless cloud top pressure fct ∈ [0,1]
normalized column-integrated water vapour nIWV ∈ [0,1]
zenith angle θ , θ0 ∈ [0◦,85◦]
scattering angle 1φ ∈ [0◦,180◦]

training data set. The final errors provided in Fig. 13 sug-
gest that a number of parameters between 2000 and 5000
may be a reasonable choice, and not much accuracy is gained
by further increasing the number of parameters. It should be
noted that the NN8k network shows the first signs of over-
fitting – a small gap appears between the training data and
the validation data after about 2000 epochs. Further train-
ing of NN8k would thus require larger amounts of training
data. For the smaller networks the amount of training data
seems to be sufficient. The choice of the network size should
of course also depend on the computational costs for eval-
uating networks of different sizes. Benchmarks for different
network sizes and activation functions have already been in-
vestigated for the optimized FORNADO inference code (see
Fig. A12 in Scheck, 2021a). Evaluating the 1983, 5053 and
8035 parameter networks considered here takes 0.14, 0.30
and 0.51 µs per column, respectively, on a core of a stan-
dard Intel Xeon 8358 server CPU running at 3.3 GHz. For
comparison, the lookup-table-based MFASIS (using the LUT
with Nk =Nl = 3; see Table 3 of Scheck et al., 2016) takes
1.58 µs, and the DOM implementation in RTTOV (with 16
streams) takes about 17 ms per column on the same CPU.

These timings are only for the computation of reflectances
from the input parameters5 listed in Table 2. Although some
additional effort is required for computing the network in-
put parameters from the NWP profiles, it should be possible
to process e.g. 106 model columns in several CPU seconds
with these networks.

The networks and training procedures discussed here are
not yet fully optimized. Further gains in accuracy could be
expected e.g. from tuning the learning rate, the batch size
and the number of hidden layers. In addition, regularization
techniques could make the training more efficient, and using
a lower-precision data type, e.g. 16 bit instead of 32 bit float-
ing point values, could speed up training and inference. How-
ever, such tuning efforts are not in the scope of this study, and
in their current state the neural networks already seem to be
sufficiently fast and accurate.

5Except for DOM, where a small contribution from the compu-
tation of optical properties is also included.
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Figure 13. Evolution of the training (solid colour) and validation
(light colour) RMSEs during the course of the training for a net-
works with 1983 (NN2k, red), 5053 (NN5k, blue) and 8053 (NN8k,
green) parameters. The final validation RMSE values for each net-
work (indicated by the crosses) are 5.6×10−3 (NN2k), 2.7×10−3

(NN5k) and 2.2× 10−3 (NN8k).

5 Evaluation

In the previous sections, the reflectance errors related to sim-
plifying vertical profiles and using neural networks instead
of applying the DOM reference RT method to the simplified
profiles have been discussed separately. We now investigate
the total error and the relative importance of simplification
and neural network errors also using vertical profiles that are
different from those that have been used so far. To provide
an overview of all considered cases, values for the mean ab-
solute error (MAE), the mean error (ME) and the 99th per-
centile of the absolute error (P99) are listed in Table 3.

5.1 NWP SAF profiles

The mean absolute reflectance error for the std profile data
set with surface albedo A= 0.5 is shown in Fig. 10b as a
function of the total optical depth and the maximum of the
zenith angles, and the error is shown in Fig. 11b as a func-
tion of total optical depth. Here we investigate the full error
distribution and discuss the relative impacts of the different
input parameters and compare them to the effect the neural
network errors have on the distribution. The reflectance er-
ror distributions of DOM computations with simplified pro-
files, R1lay,fix, R1lay, R2lay, R2lay,mp and R2lay,mp,bc, and neu-
ral network calculation RNN5k are shown in Fig. 14 for the
std and rmod data sets and different albedo values. In ad-
dition, values for the mean absolute error (MAE), the mean
error (ME) and the 99th percentile of the absolute error (P99)
are provided in Table 3.

It is quite obvious from the distribution plots and the met-
rics in Table 3 that DOM computations based on the 1Lay,fix
idealized profiles (the original approach from Scheck et al.,
2016) result in rather large errors, in particular on the left
side of the histograms in Fig. 14 (light blue curves). Includ-

ing surface pressure, cloud top pressure and integrated wa-
ter vapour improves the distribution significantly for posi-
tive reflectance errors but not for the large negative errors
(orange curves). Consequently, these improvements, which
are related to profiles with high amounts of water vapour,
result only in a reduction in the MAE but not P99. The
strongest MAE reductions are seen for A= 1, which can be
expected, as in this case a wrong amount of water vapour
leads to the largest error in the radiance reflected from
the surface. Applying the two-layer approach (2Lay, pur-
ple curves) leads to further improvements for negative re-
flectance errors, resulting in lower mean and mean absolute
errors for all albedo values and both data sets. However, as
many cases with large reflectance underestimation are still
present, P99 still remains high. Improving the representation
of mixed-phase clouds (2Lay+MP, red curves) basically re-
moves all the extreme cases with negative errors and reduces
the P99s by about 80 % and the mean errors to very low lev-
els. In 2Lay+MP, dark mixed-phase ice is often located be-
low brighter water clouds, which leads to higher reflectances
than in 2Lay, where all ice is always located above the water
cloud. As already shown in Fig. 11, the remaining negative
errors partly result from a optical-depth-dependent bias. By
applying the simple bias correction from Sect. 3.5, the cases
with larger errors are shifted to the right in the histograms
(Fig. 14, green curves) without changing the position of the
peak. Consequently, all metrics are slightly improved.

Comparing the computations with simplified profiles to re-
sults for the neural network NN5k (dark blue curves) shows
that the additional network errors are small compared to the
simplification errors. In fact, the changes in histograms due
to additional NN errors are in most cases smaller than the
ones caused by the bias correction. Only for A= 1 a some-
what stronger impact of the NN errors is visible. Results for
the NN2k and NN8k networks (only included in Table 3, not
in Fig. 14) show that the smaller 1983 parameter network
causes non-negligible additional errors, whereas the larger
8053 parameter network does not lead to significantly im-
proved error metrics.

5.2 Regional ICON hindcasts

The results of the previous section show that our approach
also works if effective radius parameterizations that are dif-
ferent from the ones employed for defining the two-layer
splitting factor parameterizations and the bias correction are
used. In the following, we investigate profiles from a dif-
ferent NWP model, the regional ICON-D2 model, and use
effective radii determined by the two-moment microphysics
scheme in the model.

We focus on synthetic SEVIRI 1.6 µm images of the
ICON-D2 domain at 12:00 and 16:00 UTC in a 30 d test pe-
riod (June 2020). For each date and time, images were com-
puted using both DOM and the NN5k network. In total, al-
most 14× 106 test cases per time step are available for each
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Table 3. Error statistics for all data sets (the ones from Table 1 and the ICON hindcasts for 12:00 and 16:00 UTC), DOM computations for
idealized profiles with different numbers of parameters (see Sect. 3.1) and three differently sized neural networks. +BC means that the bias
correction from Sect. 3.5 was applied. Listed are the mean absolute error (MAE), the mean error (ME) or bias, and the 99th percentile of the
absolute error (P99). For each metric three values are provided, which correspond to the albedo values A= 0.0, 0.5 and 1.0. The ICON-D2
hindcasts are an exception – here we used for each profile only the actual albedo value.

Data Setup MAE ME P99

A= 0.0 A= 0.5 A= 1.0 A= 0.0 A= 0.5 A= 1.0 A= 0.0 A= 0.5 A= 1.0

Standard

1Lay, fix 0.018 0.022 0.027 0.014 0.015 0.016 0.180 0.180 0.180
1Lay 0.017 0.017 0.018 0.015 0.014 0.014 0.180 0.180 0.180
2Lay 0.011 0.011 0.012 0.009 0.009 0.008 0.174 0.174 0.173
2Lay+MP 0.004 0.004 0.005 0.001 0.001 0.001 0.031 0.029 0.029
2Lay+MP+BC 0.003 0.003 0.004 −0.001 −0.001 −0.002 0.026 0.024 0.023
NN2k 0.007 0.009 0.012 −0.003 −0.004 −0.005 0.046 0.042 0.042
NN5k 0.004 0.005 0.007 −0.002 −0.001 0.001 0.029 0.027 0.029
NN8k 0.004 0.005 0.007 −0.002 −0.003 −0.003 0.028 0.026 0.029

rmod

1Lay, fix 0.026 0.030 0.035 0.022 0.023 0.024 0.207 0.207 0.207
1Lay 0.025 0.025 0.026 0.023 0.023 0.022 0.205 0.205 0.205
2Lay 0.014 0.014 0.014 0.012 0.011 0.011 0.186 0.186 0.185
2Lay+MP 0.005 0.005 0.006 0.002 0.002 0.002 0.044 0.043 0.043
2Lay+MP+BC 0.004 0.004 0.005 0.000 0.000 0.000 0.037 0.035 0.035
NN2k 0.008 0.011 0.013 −0.001 −0.002 −0.003 0.050 0.047 0.048
NN5k 0.005 0.006 0.008 0.000 0.001 0.003 0.038 0.036 0.037
NN8k 0.005 0.006 0.008 0.000 −0.001 −0.002 0.039 0.037 0.038

ICON-D2 12:00 UTC NN5k 0.010 0.002 0.046
ICON-D2 16:00 UTC NN5k 0.013 0.002 0.056

time to compare DOM and the NN. As an example, Fig. 15a
depicts the synthetic satellite image computed using NN5k
for 4 June 2020 at 12:00 UTC. Compared to the DOM ref-
erence method, the errors in NN5k are predominantly below
0.04 (Fig. 15b), which is in a similar range as for the std and
rmod data sets.

These results confirm the robustness of our approach. Al-
though a completely different model and supposedly more
realistic (and certainly different) effective radii are used, the
errors are only increased slightly compared to the ones com-
puted for the IFS profile collection, which was also used for
the development and optimization of the approach.

The error distribution for all 12:00 and 16:00 UTC images
of the test period (Fig. 16) is similar to the one for the rmod
IFS profile data set (compare to Fig. 14b, blue line). The
mean absolute error (MAE) and P99 errors for the ICON-D2
case are only slightly higher, but the overall mean error (ME)
is similarly small (also see Table 3). The P99 for 16:00 UTC,
when the solar zenith angle is larger, is only slightly worse.

5.3 Other solar channels

The method developed here for the 1.6µm SEVIRI will not
provide satisfactory results for all solar channels. However,
for many visible and near-infrared channels the errors are in
a similar range as for the 1.6µm channel. To illustrate for
which channels our method is usable, we consider all purely
solar channels (we will not consider channels with ther-

mal contributions like 3.7–3.9 µm channels) of the current
and next-generation EUMETSAT satellite imagers. These
are SEVIRI on MSG, the Flexible Combined Imager (FCI)
on Meteosat Third Generation (MTG), the Advanced Very
High Resolution Radiometer (AVHRR) on the EUMETSAT
Polar System (MetOp) and Meteorological Imager (METim-
age) on MetOp Second Generation. The root-mean-square
profile simplification error computed with the IFS profile col-
lection for these channels is shown in Fig. 17. From these
results it is obvious that all channels with wavelengths up
to 0.7µm and many channels with larger wavelengths up
to 2.2µm have errors similar to or smaller than the 1.6µm
channel. In particular, the stronger absorption by clouds in
the case of the 2.2µm channel does not seem to be a prob-
lem. While stronger Rayleigh scattering could in principle
pose an additional challenge for channels with small wave-
lengths, the error for these channels is actually smaller than
for the 1.6µm channels. It seems that the cloud top pressure
and surface pressure input variables originally introduced to
quantify the absorption by CO2 and CH4 also characterize
the Rayleigh scattering sufficiently well. For those cases with
a profile simplification RMSE smaller than 0.01, we also
trained neural networks, and the full reflectance RMSE (due
to profile simplification and imperfect network training) is
shown as crosses in Fig. 17. We did not train all networks for
the same number of epochs, and in some cases we used net-
works with only 2000 and not 5000 parameters, which results
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Figure 14. Error histogram showing the deviation of different reflectance estimations (R) from DOM reference computations (Rref). Shown
are estimations calculated using 1Lay,fix (light blue), 1Lay (orange), 2Lay (purple), two-layer parameterization adding mixed-phase clouds
(2Lay+MP, red), and two-layer parameterization adding mixed-phase clouds and bias correction (2Lay+MP+BC, green), as well as the
realization using the trained neural network (NN5k, dark blue). The different panels show the standard data (std) set applying albedo 0.5 (a),
0.0 (c) and 1.0 (d). Furthermore, rmod is shown for an albedo of 0.5 in panel (b).

Figure 15. (a) Synthetic satellite image computed using the neural network NN5k for the ICON-D2 domain on 4 June 2020 at 12:00 UTC
and (b) its deviation from the reference DOM computation.
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Figure 16. Error histogram showing the deviation of NN5k from the
DOM reference computations. Data are sampled over the complete
domain (see Fig. 15) for 12:00 UTC (blue) and 16:00 UTC (orange).
This data set amounts up to about 4.5× 106 cloudy pixels.

Figure 17. Root-mean-square reflectance error due to profile sim-
plification (circles) and, where available, full errors (profile sim-
plification and network training error, crosses) for all purely solar
channels of the current and next generation of geostationary and
polar-orbiting imagers by EUMETSAT.

in some variation in the additional error related to the net-
work training. In none of the cases does the full reflectance
RMSE exceed 0.012, and further optimizations seem possi-
ble.

The channels for which the simplification error is rather
large are the ones for which absorption by water vapour is
stronger than for the 1.6µm SEVIRI channel and channels
sensitive to certain absorption features like the 0.76µm oxy-
gen A-band channel of MetOp SG. The influence of the spec-

tral response function explains the difference between the
0.8µm channels on FCI, METimage, SEVIRI and AVHRR.
On the older instruments the channels are wider and overlap
more with water vapour absorption bands, whereas on the
newer instruments the channels are narrower and experience
less absorption. Quantifying the impact of water vapour with
just one input parameter is sufficient for the newer instru-
ments with their weak water vapour sensitivity but leads to
larger errors for the more sensitive older ones. For all chan-
nels with higher simplification errors, additional input pa-
rameters would be required to better quantify the influence
of water vapour or other relevant gases.

6 Conclusions

A computationally efficient, machine-learning-based ap-
proach for the generation of synthetic 1.6 µm near-infrared
satellite images from NWP model output was developed. The
new method is based on earlier work for visible channels,
which involved a strong simplification of the cloud profiles
from the NWP model and a feed-forward neural network to
predict reflectances from parameters defining the simplified
profiles. For modelling the near-infrared channel, the repre-
sentation of vertical effective radius gradients, mixed-phase
clouds and molecular absorption was improved to achieve a
similar accuracy as for the visible channel. The method was
tested on a representative data set of IFS profiles using dif-
ferent effective radius parameterizations and additionally on
profiles from the regional ICON-D2 model, which computes
prognostic effective radii using a two-moment microphysics
scheme. For all network sizes and test data sets, the mean ab-
solute errors were found to be about an order of magnitude
lower than typical observation errors assumed for the assim-
ilation of visible channels, which are in the range 0.1–0.15
for the case study of Scheck et al. (2020), and for the oper-
ational assimilation of SEVIRI 0.6 µm reflectances at DWD.
The evaluation of the neural networks takes less than 1 µs per
column. The method should therefore be suitably accurate
and fast for operational data assimilation and model evalua-
tion. For both applications the 1.6 µm channel provides valu-
able additional information that is complementary to the in-
formation content of visible and thermal infrared channels.

One of the next steps will be to perform assimilation ex-
periments with both ensemble-based and variational data as-
similation methods, which should include a discussion of
the Jacobians of the neural network. Although the method
was developed for 1.6 µm channels, it also works for many
other solar channels, e.g. 2.2 µm channels and all channels
with wavelengths up to 0.7 µm of imagers on the current and
next-generation EUMETSAT satellites. For channels that are
more sensitive to water vapour (like the 0.9 and 1.3 µm chan-
nels) or special absorption features (like 0.76 µm oxygen A-
band channels), the errors related to the profile simplifica-
tion are still significantly higher but could probably be re-
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duced by means of additional input variables. The determi-
nation of suitable input parameters for the 1.6 µm channel
required considerable effort. In a future study we will in-
vestigate whether the ability of neural networks to extract
features can be used to automate parts of this process. The
method presented in this study is aimed at generating syn-
thetic images from NWP model profiles. It should be inves-
tigated whether such methods could also be applied on re-
trieved profiles, which could lead to further improvements
and new applications. Finally, in this study we neglected 3D
radiative effects, both in the design of the method and in our
evaluation methods. Neglecting 3D effects can cause errors,
in particular for high resolutions and large zenith angles. In
future investigations we will test how well the approach of
Scheck et al. (2018) to include 3D effects for visible chan-
nels works for near-infrared channels and whether it could
be improved using machine learning (also see Zhou et al.,
2021).

Appendix A: Minimum and maximum integrated water
vapour

The definition of a normalized integrated water vapour
amount (Eq. 6) requires functions defining the minimum and
maximum amount of water vapour above a given pressure
level. Hard limits for the water vapour content for the pres-
sure levels used in RTTOV are provided by the user guide
(Hocking et al., 2020). For Eq. (6) we define the following
smooth and differentiable functions that lie within the hard
RTTOV limits, as is visible in Fig. A1. The minimum amount
of water vapour above a pressure level p in units of millime-
tres is parameterized by

IWVmin(p)= 8.0× 10−11fmin(p)p
3

+ 10−5 (1− fmin(p))p, (A1)

where fmin(p)= tanh(log(p)− log(100)), and the maxi-
mum amount by

IWVmax(p)= 1.44× 103fmax(p)exp

(
−1.5× 103

p

)
+ 4.14× 10−5 (1− fmax(p))p, (A2)

with fmax(p)= tanh(0.1(log(p)− log(5))).

Appendix B: Definition of idealized profiles

The idealized profiles used to compute reflectances from
the input parameters are based on the IFS 90-level standard
atmosphere, which includes the geometric height zIFS

i , the
pressure pIFS

i and other variables for each level i = 1, . . .,90.
To construct a grid starting at the desired surface pres-
sure psfc, the corresponding height zsfc is obtained by in-
terpolation in the standard atmosphere. Then a new verti-
cal grid is defined as linear combination z̃i = z

IFS
i × (1−

Figure A1. Minimum and maximum integrated water vapour
amounts above a given pressure. The dashed lines are integrals over
the hard limits in Table 1 of Hocking et al. (2020); the solid lines
represent the functions defined in Eqs. (A1) and (A2).

fi)+
(
zsfc+ z

IFS
i − z

IFS
sfc
)
× fi of the original grid and a grid

shifted in the vertical such that the lowest level has the cor-
rect height. The factor fi = 1−

(
zIFS
i /zIFS

sfc
)2 is chosen such

that the original grid is retained for high altitudes and the
shifted grid dominates at lower altitudes. For each level the
pressure p̃i corresponding to z̃i is obtained by linear interpo-
lation in the standard atmosphere. Finally, the level ict in p̃
with a pressure closest to the desired cloud top pressure pct is
identified and the pressure on the five levels ict−2, · · ·, ict+2
is set to

[
pct−1p,pct−1p/2,pct,pct+1p/2,pct+1p

]
,

where 1p = p̃ict+1− p̃ict to obtain the final pressure grid pi .
Geometric heights zi corresponding to these pressure levels
are again computed by interpolation in the standard atmo-
sphere. The two-layer ice cloud is placed in the two layers
above the level ict and the two-layer mixed-phase cloud in
the two layers below.

Code and data availability. FORNADO, the optimized Fortran in-
ference code including tangent linear and adjoint versions used
in this study, is available from https://gitlab.com/LeonhardScheck/
fornado (Scheck, 2021b). RTTOV (Saunders et al., 2020, 2018)
including the DOM solver used for reference calculation can
be obtained from https://nwp-saf.eumetsat.int/site/software/rttov/
rttov-v13/ (EUMETSAT, 2023; the code is available for reg-
istered users). The IFS profile collection used for deriving
and evaluating our methods is available from https://nwp-saf.
eumetsat.int/site/software/atmospheric-profile-data (Eresmaa and
McNally, 2014) and https://nwp-saf.eumetsat.int/site/software/
atmospheric-profile-data (Eresmaa and McNally, 2016).

Author contributions. FB and LS designed and conducted exper-
iments. LS wrote the first draft with contributions from FB and
CKW. FB and LS produced the figures. All authors contributed to
data interpretation and to revising the paper.

https://doi.org/10.5194/amt-16-5305-2023 Atmos. Meas. Tech., 16, 5305–5326, 2023

https://gitlab.com/LeonhardScheck/fornado
https://gitlab.com/LeonhardScheck/fornado
https://nwp-saf.eumetsat.int/site/software/rttov/rttov-v13/
https://nwp-saf.eumetsat.int/site/software/rttov/rttov-v13/
https://nwp-saf.eumetsat.int/site/software/atmospheric-profile-data
https://nwp-saf.eumetsat.int/site/software/atmospheric-profile-data
https://nwp-saf.eumetsat.int/site/software/atmospheric-profile-data
https://nwp-saf.eumetsat.int/site/software/atmospheric-profile-data


5324 F. Baur et al.: Generating synthetic near-infrared satellite images

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This study was funded by the Hans Ertel Cen-
tre for Weather Research. This German research network of uni-
versities and research institutes as well as DWD is funded by
the Federal Ministry for Digital and Transport (BMDV, grant no.
DWD2014P8). The work was also supported by the EUMET-
SAT Satellite Application Facility on Numerical Weather Predic-
tion (NWP SAF). The authors wish to thank Alberto de Lozar for
providing the ICON-D2 hindcasts and Olaf Stiller for supporting
the implementation of MFASIS-NN in RTTOV. We would like to
thank Hartwig Deneke and the anonymous reviewer for their de-
tailed comments, which helped to significantly improve this paper.

Financial support. This research has been supported by the Bun-
desministerium für Verkehr und Digitale Infrastruktur (grant no.
DWD2014P8).

Review statement. This paper was edited by Gerrit Kuhlmann and
reviewed by Hartwig Deneke and one anonymous referee.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Joze-
fowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-
houcke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Sys-
tems, https://www.tensorflow.org/ (last access: 6 October 2023),
2015.

Baum, B. A., Soulen, P. F., Strabala, K. I., King, M.
D., Ackerman, S. A., Menzel, W. P., and Yang, P.: Re-
mote sensing of cloud properties using MODIS airborne
simulator imagery during SUCCESS: 2. Cloud thermody-
namic phase, J. Geophys. Res.-Atmos., 105, 11781–11792,
https://doi.org/10.1029/1999JD901090, 2000.

Baum, B. A., Yang, P., Heymsfield, A. J., Platnick, S., King,
M. D., Hu, Y.-X., and Bedka, S. T.: Bulk Scattering Prop-
erties for the Remote Sensing of Ice Clouds. Part II:
Narrowband Models., J. Appl. Meteorol., 44, 1896–1911,
https://doi.org/10.1175/JAM2309.1, 2005.

Baum, B. A., Yang, P., Nasiri, S., Heidinger, A. K., Heymsfield,
A., and Li, J.: Bulk Scattering Properties for the Remote Sens-
ing of Ice Clouds. Part III: High-Resolution Spectral Models

from 100 to 3250 cm−1, J. Appl. Meteorol. Clim., 46, 423,
https://doi.org/10.1175/JAM2473.1, 2007.

Bormann, N., Lawrence, H., and Farnan, J.: Global ob-
serving system experiments in the ECMWF assimilation
system, ECMWF Technical Memorandum 839, ECMWF,
https://doi.org/10.21957/sr184iyz, 2019.

Coopman, Q., Hoose, C., and Stengel, M.: Detection of
Mixed-Phase Convective Clouds by a Binary Phase In-
formation From the Passive Geostationary Instrument
SEVIRI, J. Geophys. Res.-Atmos., 124, 5045–5057,
https://doi.org/10.1029/2018JD029772, 2019.

Eresmaa, R. and McNally, A. P.: Diverse profile datasets from the
ECMWF 137-level short-range forecasts, EUMETSAT, https:
//nwp-saf.eumetsat.int/site/software/atmospheric-profile-data
(last access: 6 October 2023), 2014.

Eresmaa, R. and McNally, A. P.: NWP SAF 137L Profile Data,
NWP SAF [data set], https://nwp-saf.eumetsat.int/site/software/
atmospheric-profile-data (last access: 6 October 2023), 2016.

Errico, R. M., Bauer, P., and Mahfouf, J.-F.: Issues Regarding the
Assimilation of Cloud and Precipitation Data, J. Atmos. Sci., 64,
3785–3798, https://doi.org/10.1175/2006JAS2044.1, 2007.

EUMETSAT: NWP SAF RTTOV v13, NWP SAF [code], https:
//nwp-saf.eumetsat.int/site/software/rttov/rttov-v13/, last access:
6 October 2023.

Eyre, J. R., Bell, W., Cotton, J., English, S. J., Forsythe, M., Healy,
S. B., and Pavelin, E. G.: Assimilation of satellite data in numer-
ical weather prediction. Part II: Recent years, Q. J. Roy. Meteor.
Soc., 148, 521–556, https://doi.org/10.1002/qj.4228, 2022.

Geer, A. J., Lonitz, K., Weston, P., Kazumori, M., Okamoto, K.,
Zhu, Y., Liu, E. H., Collard, A., Bell, W., Migliorini, S., Cham-
bon, P., Fourrié, N., Kim, M.-J., Köpken-Watts, C., and Schraff,
C.: All-sky satellite data assimilation at operational weather
forecasting centres, Q. J. Roy. Meteor. Soc., 144, 1191–1217,
https://doi.org/10.1002/qj.3202, 2018.

Geer, A. J., Migliorini, S., and Matricardi, M.: All-sky assimilation
of infrared radiances sensitive to mid- and upper-tropospheric
moisture and cloud, Atmos. Meas. Tech., 12, 4903–4929,
https://doi.org/10.5194/amt-12-4903-2019, 2019.

Geiss, S., Scheck, L., de Lozar, A., and Weissmann, M.: Under-
standing the model representation of clouds based on visible and
infrared satellite observations, Atmos. Chem. Phys., 21, 12273–
12290, https://doi.org/10.5194/acp-21-12273-2021, 2021.

Goodfellow, I. J., Bengio, Y., and Courville, A.: Deep
Learning, MIT Press, Cambridge, MA, USA, 781 pp.,
ISBN-10: 0262035618, ISBN-13: 978-0262035613,
http://www.deeplearningbook.org (last access: 6 October
2023), 2016.
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