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Abstract. In this study, we aimed to estimate cloud cover
with high accuracy using images from a camera-based im-
ager and a convolutional neural network (CNN) as a poten-
tial alternative to human-eye observation on the ground. Im-
age data collected at 1h intervals from 2019 to 2020 at a
staffed weather station, where human-eye observations were
performed, were used as input data. The 2019 dataset was
used for training and validating the CNN model, whereas the
2020 dataset was used for testing the estimated cloud cover.
Additionally, we compared satellite (SAT) and ceilometer
(CEI) cloud cover to determine the method most suitable for
cloud cover estimation at the ground level. The CNN model
was optimized using a deep layer and detailed hyperparam-
eter settings. Consequently, the model achieved an accuracy,
bias, root mean square error (RMSE), and correlation coeffi-
cient (R) of 0.92, —0.13, 1.40 tenths, and 0.95, respectively,
on the test dataset, and exhibited approximately 93 % high
agreement at a difference within £2 tenths of the observed
cloud cover. This result demonstrates an improvement over
previous studies that used threshold, machine learning, and
deep learning methods. In addition, compared with the SAT
(with an accuracy, bias, RMSE, R, and agreement of 0.89,
0.33 tenths, 2.31 tenths, 0.87, and 83 %, respectively) and
CEI (with an accuracy, bias, RMSE, R, agreement of 0.86,
—1.58 tenths, 3.34 tenths, 0.76, and 74 %, respectively), the
camera-based imager with the CNN was found to be the most
suitable method to replace ground cloud cover observation by
humans.

1 Introduction

In general, clouds are a well-known natural phenomenon
that plays an important role in balancing atmospheric radi-
ation and global heat, the hydrological cycle, and weather
and climate changes in the atmosphere—Earth system (Shi et
al., 2021; Zhou et al., 2022). Ground cloud cover observa-
tion data are particularly important for weather prediction,
environmental monitoring, and climate change prediction
(Krinitskiy et al., 2021). In addition, cloud cover is an impor-
tant meteorological factor for solar-energy-related research
fields; aviation operation-related businesses; and monsoon,
El Nifio, and La Nifia studies based on ocean observations
(Taravat et al., 2014). Ground cloud cover estimation is cur-
rently being automated with instrumental observation; how-
ever, thus far, it has been combined with human-eye observa-
tion according to the synoptic observation guidelines of the
World Meteorological Organization (WMO, 2021). Human-
eye observation may lack consistency depending on the ob-
server’s condition or observation period and is performed at
a low frequency temporally (Kim et al., 2021b). Therefore,
automatic observations are essential to reduce the uncer-
tainty in cloud observations and increase periodicity. How-
ever, clouds have different optical properties according to
their shape, type, thickness, and height (Wang et al., 2020);
thus, instrument-based cloud detection and cloud cover esti-
mation on the ground remain challenging.

Remote and automatic observation as well as estimation
of cloud cover on the ground can be achieved using meteo-
rological satellites (SATs), ceilometers (CEls), and camera-
based imagers. Meteorological SATs have the advantage of
obtaining observational data over a wide spatial range and at
dense temporal intervals. However, the uncertainty of cloud
detection (Kim et al., 2018; Zhang et al., 2018) and bias due
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to geometric distortion are large, depending on the height of
the cloud (Sunil et al., 2021). In the case of a CEI, a narrow-
width beam is emitted vertically, clouds are detected from
the returned signal strength, and cloud cover is estimated by
weighting the previously detected cloud information (Kim et
al., 2021b). Therefore, an incorrectly estimated cloud cover
can be obtained even if the cloud does not fall within the
beam width range of the CEI or if it is not detected. Neverthe-
less, it is used at several weather stations owing to the advan-
tage of “automatic observation”. In the case of camera-based
imagers, cloud cover can be estimated using the color infor-
mation in an image captured from a sky-dome image that is
similar to human-eye observations (Kim and Cha, 2020; Kim
etal., 2016). Imagers are widely used to estimate cloud cover,
and the estimation accuracy is higher than that of other re-
mote observations (Alonso-Montesinos, 2020; Kim and Cha,
2020).

Cloud cover estimation using ground-based imagers can
be performed using traditional methods, machine learning
(ML), and deep learning (DL). Traditional methods estimate
the cloud cover by setting a constant (or variable) value for
the ratio or difference in red, green, and blue (RGB) color in
the image as a threshold and distinguishing between cloud
and sky (non-cloud) pixels (Shi et al., 2021; Wang et al.,
2020). However, empirical methods do not adequately dis-
tinguish between the sky and clouds under various atmo-
spheric and light source conditions (Kim and Cha, 2020; Kim
et al., 2015., 2016; Yang et al., 2015). By contrast, ML and
DL methods have achieved relatively highly accurate cloud
cover estimation results, addressing the limitations of em-
pirical methods through image learning (Kim et al., 2021b;
Xie et al., 2020). In particular, DL methods can learn im-
ages deeper than ML methods; therefore, they can hierarchi-
cally extract various contextual information and global fea-
tures from images to statistically estimate the cloud cover
(Wang et al., 2020). Various algorithms are used for image
learning, with the convolutional neural network (CNN) be-
ing the most commonly used. A CNN can design a model
with high accuracy by setting the hyperparameters, such as
the layer depth, feature size, and activation function, accord-
ing to the characteristics of the input data. The aim of this
study was to estimate cloud cover with high accuracy using
images from a camera-based imager and a CNN as a potential
alternative to human-eye observation on the ground. The es-
timated cloud cover was evaluated by comparing cloud cover
data observed from staffed weather stations, meteorological
SATs, and CEIs.

2 Research data and methods
2.1 Imager information and input dataset

The camera-based imager used in this study was an auto-
matic cloud observation system (ACOS) developed by the

Atmos. Meas. Tech., 16, 5403-5413, 2023

B.-Y. Kim et al.: Estimation of 24 h continuous cloud cover

Figure 1. Appearance of the automatic cloud observation system
(ACOS) (a) and installation environment (b) (Kim and Cha, 2020).

Korea Meteorological Administration (KMA), National In-
stitute of Meteorological Sciences (NIMS), and A&D Sys-
tem Co., Ltd., as shown in Fig. 1. The ACOS is installed
in the Daejeon Regional Office of Meteorology (36.37° N,
127.37°E) and continuously captures the sky dome over a
180° field of view (FOV) (fisheye lens) for 24 h at 10 min in-
tervals and saves it as images. As summarized in Table 1, the
ISO and exposure time were automatically set such that the
objects (clouds) could be continuously captured during the
day and night (Kim et al., 2021b). In addition, a heating and
ventilation device was installed such that the clouds can be
captured without artificially managing the ACOS. The im-
age data used were captured at 1 h intervals and on time from
2 January 2019 to 9 December 2020, matching the typical
human-eye observation interval. According to the KMA sur-
face weather observation guidelines, cloud cover should be
observed every hour (KMA, 2022). However, a slight dif-
ference in observation time may occur, depending on the
observer. In this study, it was assumed that the time differ-
ence between the images observed and the human observa-
tions would not be significant. Instances of equipment main-
tenance, power outages, or unfavorable weather conditions,
such as snow cover or fog preventing the capture of images
or making it impossible to visually identify cloud cover, were
excluded from the image data. In addition, KMA cloud cover
observations were performed at 1 h intervals during the day
and at 1-3 h intervals at night (Kim and Cha, 2020). There-
fore, 5607 and 4742 images were collected in 2019 and 2020,
respectively, excluding the unavoidable cases.

In this study, the 2019 dataset was used for training and
validating the CNN model, whereas the 2020 dataset was
used for testing. For training and validating the CNN model,
500 data points were randomly sampled with a replacement
for each cloud cover class in 2019, and 5500 data points
were randomly selected at a ratio of 8:2 to form training
(4400 cases, including duplicate data) and validation (897
cases, excluding duplicate data) datasets. The frequency dis-
tribution by class of observed cloud cover data in 2019
was as high as approximately 61 % in the O-tenth class (ap-
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Table 1. Detailed automatic cloud observation system (ACOS) specifications.

Function Description

Size 264 mm (L) x 264 mm (W) x 250mm (H), 6.5 kg
Pixels 2432 x 2432

Focal length 8 mm, 180° fisheye lens

Sensor CMOS

Aperture F8 (daytime) ~ F11 (nighttime)

Shutter speeds 1/1000 s (daytime) ~ 5 s (nighttime)

ISO 100 (daytime) ~ 25 600 (nighttime)

Observation periods
Additional features

24 h operation, hourly observation for 10 min
24 h automatic heating (below —2°) and ventilation

proximately 36 %) and 10-tenth class (approximately 26 %),
and the remaining 1-9-tenth class exhibited a low-frequency
distribution of approximately 39 % (minimum at 1-tenth
class: approximately 2 %, maximum at 9-tenth class: ap-
proximately 8 %). Therefore, when training all the data from
2019, the model can overfit for the O-tenth and 10-tenth
classes. To prevent the potential overfitting that can occur
in specific classes, we employed random sampling with re-
placement, which limits the number of images for each cloud
cover class. This approach ensures that the model is designed
and trained such that there is sufficient weight update in each
layer of the CNN for classes with fewer cases (Park et al.,
2022).

The ACOS captures a sky dome similar to human-eye ob-
servation and saves it as a two-dimensional image. However,
images captured with a fisheye lens are distorted because the
size of the objects placed at the edge of the image is rela-
tively smaller than that at the center of the image (Lothon et
al., 2019). Therefore, we performed an orthogonal projection
distortion correction for the relative sizes of the objects in
the image (Kim et al., 2021b). In addition, because the FOV
of the imager is 180°, the horizontal plane is permanently
shielded by surrounding objects (buildings, equipment, and
trees) (Kim et al., 2015, 2016). Therefore, only the pixel data
within a FOV of 160° (zenith angle of 80°) were used in
this study. In addition, the image produced by the imager
was converted into 128 x 128 pixels and used for training,
validating, and testing the CNN model, thus ensuring the es-
timation of cloud cover even in a resource-constrained DL
environment.

2.2 Verification dataset

Traditional cloud cover observation estimates the amount of
cloud cover in the sky by observing visible clouds from the
ground (Spankuch et al., 2022; WMO, 2021). In other words,
by observing clouds in various directions of the sky dome
through the human eye, the cloud cover is determined as a
tenth of O to 10 by comprehensively estimating the amount
of covered cloud using human cognitive abilities and previ-
ously learned memories. Therefore, in this study, the accu-
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racy of the cloud cover estimated by the CNN was evalu-
ated by considering the human-eye observation (OBS) cloud
cover as the true value. In addition, to determine the suit-
ability of camera-based ground cloud cover estimation, its
estimation performance was compared with the cloud cover
estimation performance of meteorological SAT and CEI. We
used accuracy, bias, root mean square error (RMSE), and cor-
relation coefficient (R) for a comparative analysis of the data
using Egs. (1)—(4).

TP+ TN
Accuracy = €))
TP+ TN+ FP+FN
> (M—0)

bias = 2
ias N ()

A2
RMSE:,/Z(MTO) 3)

> (M~ ¥)(0 - 0) “

) \/2<M —-M)?2/> (0 —5>2’

where TP, TN, FP, and FN denote the number of true posi-
tives, true negatives, false positives, and false negatives, re-
spectively; O denotes the observed cloud cover; M denotes
the estimated cloud cover (CNN, SAT, or CEI); and N de-
notes the number of data.

For the meteorological SAT, cloud cover data from
GeoKOMPSAT-2A (GK-2A), a geostationary SAT of the
KMA National Meteorological Satellite Center (NMSC),
were used. The cloud cover of GK-2A was estimated using a
cloud fraction within a radius of 5km after converting the
Cartesian coordinates of the grid (resolution 2 km x 2 km)
around the reference grid point into spherical coordinates.
In this case, considering the cloud height, zenith angle, and
cloud cover observed on the ground, an approximation of the
cloud cover on the ground was determined using a regres-
sion equation to which weights under each condition were
applied (NMSC, 2021). Because these data are provided as
integer values from 0 % to 100 %, they were converted into
tenths from O to 10, as listed in Table 2. The CEI (Vaisala
CL31) used in this study uses cloud detection information

R
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sampled four times per minute to estimate the cloud cover by
weighting the information for 30 min. As the estimated cloud
cover was recorded in oktas, it was converted into tenths, as
summarized in Table 2. In the case of 2 and 6 oktas, they
were converted into tenths (2 or 3 tenths and 7 or 8 tenths),
with the smallest difference from the observed cloud cover at
the same observation time (if the observed cloud cover was
3 tenths, the 2 oktas were converted into 3 tenths). The time
resolution of the two datasets was determined at the same 1 h
interval as the observation interval, and missing data were
excluded from the test dataset.

3 CNN model architecture

A CNN is a DL method used in various computer vision ap-
plications, including image classification and object detec-
tion. For tree-, vector-, and regularization-based ML meth-
ods, the models are trained using predefined features (Kim
et al., 2022a, b, c). Therefore, when using an ML method,
it is necessary to understand the chromatic statistical charac-
teristics of the input data before constructing a model (Kim
et al., 2021b). By contrast, DL methods, such as CNNs, ex-
tract spatial characteristics from the input image while iter-
atively performing forward and backward propagation, en-
abling the model to learn the features of the image (Ye et
al., 2017). This process can enable the design of a highly ac-
curate model by setting hyperparameters such as layer depth,
feature map size, activation function, and learning rate (Wang
et al., 2020). In this study, the CNN model comprised an in-
put layer, seven convolutional layers (Conv), six pooling lay-
ers, three fully connected layers (Fc), and an output layer, as
shown in Fig. 2, and the hyperparameters of each layer were
set as follows.

The image is inputted into the input layer as 128 x 128 x 3
three-dimensional tensor data comprising 128 x 128 RGB
channels. At each step of the convolutional layer, several
n x n filters (kernels) scan the input data and extract their
convolved feature maps. The filter of the convolutional layer
has a weight associated with a specific area of the image
and recognizes a specific pattern or structure of the image by
learning the weight (Yao et al., 2021). In this study, a 3 x 3
filter was used, and zero padding was used to maintain the
feature map characteristics of multiples of 2. At each stage of
the pooling layer, each feature map is downsampled to a size
of 1/n using an n x n size filter to reduce the image size. The
pooling process is used to abstract images and improve the
generalizability of the model (Zhou et al., 2021). In addition,
this process avoids overfitting, and the prediction accuracy
is improved because fewer unnecessary details are learned in
addition to the main features. Max pooling, which extracts
the maximum value within a 2 x 2 filter, is used (Geng et
al., 2020). In the fully connected layer, the feature map out-
put from the last convolutional layer is input and flattened
to one dimension to estimate the cloud cover using a mul-
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tilayer perceptron neural network. In this process, the first
fully connected layer randomly reduces 10 % of the neurons
(dropout = 0.1) to avoid overfitting (Srivastava et al., 2014).

An activation function exists between the convolutional,
pooling, and fully connected layers, which converts the in-
put signal such that it has nonlinear characteristics before
being transmitted to the output signal. Because of the na-
ture of the CNN model, as the convolutional layer deepens,
the problem of exploding or vanishing weights may occur.
We update the weights using a leaky rectified linear unit
(LeakyReLU =0.1) activation function to address these two
problems (Yuen et al., 2021). In the last fully connected layer,
the probability distribution of the 11 cloud cover classes is
obtained using the softmax activation function, and the class
with the highest probability is classified as a cloud cover.

In the output layer, the error between the output value
and correct answer (label) is minimized using gradient de-
scent while adjusting the weights of each layer, whereas for-
ward and backward propagation is repeated. We used adap-
tive moment estimation (ADAM) for the gradient descent.
ADAM is a combination of momentum optimization and root
mean square propagation algorithms and is an optimization
algorithm with excellent performance (Onishi and Sugiyama,
2017). The learning rate of the CNN model was set to 0.001,
and the number of data points used for learning once per
epoch (batch size) was set to 256. The training and validation
results of the CNN model are evaluated in terms of categor-
ical loss (mean square error (MSE)) and accuracy by epoch,
as shown in Fig. 3. If the validation loss of the learned re-
sult did not improve compared to the loss before the fifth
epoch, the weight of the epoch with the lowest previous loss
was selected to determine the optimal CNN model. Conse-
quently, the estimation performance of the model with the
weights updated 70 times (70 epochs) was the best; that is,
compared with the OBS cloud cover, the model achieved a
bias, RMSE, and R of —0.04 tenths, 0.67 tenths, and 0.98 on
the training dataset and —0.03 tenths, 1.00 tenth, and 0.96 on
the validation dataset, respectively. This result is an improve-
ment compared to the cloud cover estimation performance on
the training (bias, RMSE, and R of 0.07 tenths, 1.05 tenths,
and 0.96, respectively) and validation (bias, RMSE, and R
of 0.06 tenths, 1.51 tenths, and 0.93, respectively) datasets
achieved by the supervised-learning-based support vector re-
gression method presented by Kim et al. (2021b).

Clouds exhibit varying colors at different times of the
day, including daytime, nighttime, and sunrise/sunset time;
therefore, the threshold method (traditional method), which
uses the ratio or difference of RGB brightness, cannot effec-
tively distinguish the clouds from the sky. Using the thresh-
old method, Kim et al. (2016), Shields et al. (2019), and
Kim and Cha (2020) estimated the cloud cover by dividing
the daytime and nighttime algorithms. In this case, estimated
cloud cover at sunrise and sunset time may appear discon-
tinuous, and the degree of uncertainty is large. Furthermore,
depending on the shape, thickness, and height, the clouds in
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Table 2. Tenth cloud cover conversion table of satellite (%) and ceilometer (okta) cloud cover.

% <5 5-15 1525 25-35 3545 45-55 55-65 65-75 75-85 8595 >95
Okta 0 1 2 2 3 4 5 6 6 7 8
Tenth 0 1 2 3 4 5 6 7 8 9 10
Feature maps . "1 Max-pooling layer Fel  Fe2
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Figure 2. Architecture of CNN model for cloud cover classification.
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Figure 3. Categorical loss and accuracy by epoch for training and
validation datasets.

Table 3. Seasonal accuracy, bias, RMSE, and R of estimated (CNN)
cloud cover for the test dataset.

Season N Accuracy Bias RMSE R
Winter 1029 094 -0.26 1.38 095
Spring 1448 094 —0.02 1.53  0.93
Summer 1186 093 —-0.13 1.31 091
Fall 1079 093 —-0.16 1.33 095
All season 4742 092 —-0.13 1.40 0.95

the image can appear dark, bright, or transparent. Therefore,
it is necessary to distinguish the sky and clouds using the spa-
tial characteristics of the image. However, Kim et al. (2021b)
discovered that an ML method that learns using the statisti-
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cal characteristics (mean, kurtosis, skewness, quantile, etc.)
of the RGB color in the image can reflect the nonlinear visual
characteristics effectively but not the spatial characteristics.
Therefore, a DL method capable of accurately reflecting the
visual and spatial characteristics of an image, such as the one
utilized in this study, is suitable for estimating cloud cover
for a sky dome. In this study, more data were used for train-
ing each cloud cover class through random sampling with a
replacement than those used by Xie et al. (2020) and Ye et
al. (2022). Furthermore, using DL supervised learning, the
ability to extract image features was further improved by us-
ing deeper convolutional layers compared with Onishi and
Sugiyama (2017).

4 Results
4.1 Evaluation of the CNN model on the test dataset

The CNN and OBS cloud covers estimated using the test
dataset are shown as density heatmap plots for all cases and
seasonal cases in Fig. 4. The column in each plot indicates
the ratio (%) of the cloud cover estimated by the CNN to
those by OBS; that is, a higher frequency in the diagonal
one-to-one grids results in a higher agreement between the
OBS and CNN cloud covers. The Korean Peninsula shows
various distributions and visually different characteristics of
cloud cover, owing to the influence of seasonal air masses
and geographical characteristics (Kim et al., 2021b). In other
words, in winter, the sky is generally clear, and cloud oc-
currence frequency and cloud height are low, owing to the
influence of the Siberian air mass; in summer, the weather is
generally cloudy, and cloud occurrence frequency and cloud
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Figure 4. Density heatmap plots of observed (OBS) and estimated (CNN) cloud cover for all cases (a) and seasonal cases (b—e) for the test
dataset. The number of parentheses in each column denotes the number of OBS cloud cover cases.

height are high, owing to the influence of the Okhotsk Sea
and North Pacific air mass; and in spring and fall, the weather
is fluid, owing to the influence of the Yangtze River air mass
(Kim and Lee, 2018; Kim et al., 2020a, 2021a). In addition,
the Korean Peninsula is located in the westerly wind zone,
and cumulus heat clouds generated in the West Sea flow in-
land and develop (Kim et al., 2020b). The distribution of
cloud cover by season is shown in Fig. 4b—e, and the test re-
sults of the estimated cloud cover are summarized in Table 3.
By season, the cloud cover of 0 and 10 tenths had a high
agreement, and the spread between 1 and 9 tenths was large;
however, it generally exhibited a linear distribution with that
of OBS. The CNN cloud cover exhibited a small difference
from that of OBS in terms of seasonal mean, with an ac-
curacy of 0.93 or higher and a high correlation coefficient
of 0.91 or higher. The evaluation of the CNN cloud cover
for all cases exhibited an accuracy, RMSE, and R of 0.92,
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1.40 tenths, and 0.95, respectively, indicating improved es-
timation performance compared to that described by Kim et
al. (2021b) using an ML method (accuracy, RMSE, and R
of 0.88, 1.45 tenths, and 0.93, respectively). Figure 5 shows
the daily mean cloud cover of OBS and CNN for the test
dataset. The daily mean estimation results also exhibited a
bias, RMSE, and R of —0.15 tenths, 0.63 tenths, and 0.99,
respectively, indicating improved results compared to those
described by Kim et al. (2021b) (RMSE and R of 0.92 tenths
and 0.96, respectively).

The CNN cloud cover during daytime, nighttime, and sun-
rise/sunset time is summarized in Table 4. In this study, day-
time was defined as a solar zenith angle (SZA) of less than
80°, nighttime was defined as an SZA > 100°, and sunrise/-
sunset time was defined as 100° > SZA > 80°. In general, the
daytime and nighttime CNN cloud cover did not exhibit a
large difference compared with the OBS cloud cover; how-
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Figure 5. Observed (OBS) and estimated (CNN) daily mean cloud
cover time series for the test dataset.

ever, the bias and RMSE were relatively large, and R was
low during sunrise/sunset time. This is because the sky and
clouds become reddish or bluish, owing to the sky glow dur-
ing sunrise/sunset time, making it difficult to distinguish be-
tween the sky and clouds (Kim and Cha, 2020; Kim et al.,
2016, 2021b). Humans observe the sky dome in three dimen-
sions and easily detect covered clouds within the sky glow
based on previous observations; however, there are limita-
tions in the method using only limited information (images)
such as this study (Al-Lahham et al., 2020; Krinitskiy et
al., 2021). In particular, there were many cases where the
CNN cloud cover was smaller than the OBS cloud cover in
the 9- and 10-tenth classes during sunrise/sunset time. The
mean SZAs of the two classes were 85.13° and 98.11°, re-
spectively, and the error was relatively large when the sun
moved completely above and below the horizon (i.e., at
07:00-08:00 and 19:00-20:00 LST, respectively). Moreover,
unsupervised-learning-based DL methods (e.g., segmenta-
tion and clustering) can generate large errors (Fa et al., 2019;
Xie et al., 2020). These methods have the advantage of being
able to estimate cloud cover without learning previously ac-
cumulated data. However, because there is no correct answer,
the estimation performance deteriorates if the sky and clouds
are not clearly distinguished, as in these limitations (Zhou
et al., 2022). Therefore, optical image correction for a sky
dome such as that described by Hasenbalg et al. (2020) will
be required to estimate the cloud cover from these images.
Moreover, in this study, images acquired at sunrise/sunset
time accounted for 16.23 % of all learning datasets. In other
words, the images acquired at sunrise/sunset time learned 2
to 3 times fewer images for each cloud cover class than im-
ages acquired at daytime and nighttime. The DL method can
degrade training performance when the amount of labeled
data is limited (Ker et al., 2017). Conversely, the DL method
can extract image features with a more complex structure by
more complex and deeper learning as the amount of data in-
creases (LeCun et al., 2015). Therefore, it is expected that
more robust and accurate results can be obtained if more im-
ages are acquired during sunrise/sunset time (Geng et al.,
2021; Qian et al., 2022). Nevertheless, this study achieved
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Table 4. Accuracy, bias, RMSE, and R for daytime, nighttime, and
sunrise/sunset time of estimated cloud cover for the test dataset.

Time N Accuracy Bias RMSE R
Daytime 2163 093 —-0.12 1.27  0.95
Nighttime 1838 093 —0.08 1.39  0.95
Sunrise/sunset 741 090 —-0.29 1.74  0.92

better cloud cover estimation results compared to those of
Kim et al. (2016) for daytime (RMSE and R of 2.12 tenths
and 0.87, respectively) and those of Kim and Cha (2020)
for nighttime (RMSE and R of 1.78 tenths and 0.91, respec-
tively) using the threshold method. In addition, the accuracy
and R by time exhibited improved results than those of Kim
et al. (2021b) (accuracy and R values of 0.89 and 0.95, 0.86
and 0.93, and 0.85 and 0.90 for daytime, nighttime, and sun-
rise/sunset time, respectively) using the ML method.

The relative frequency distribution by season and time of
cloud cover difference between the OBS and CNN cloud
cover is shown in Fig. 6. In this relative frequency distribu-
tion, a higher frequency at which the difference is O tenths
results in a higher agreement between the OBS and CNN
cloud cover observations. In general, a comparison between
automatic instrument observations and cloud cover observed
by humans allows for a difference of two levels (i.e., 2 tenths
or 2 oktas) (Ye et al., 2022). Table 5 summarizes the agree-
ment for the 0-3-tenth cloud cover difference between the
OBS and CNN. The agreement of the difference between 0
and 2 tenths was greater than approximately 61 %, 83 %, and
91 % for all seasons, and the high agreements were 63.79 %,
84.65 %, and 92.66 % for all cases, respectively. This result
is an improvement of approximately 22 %, 5 %, and 3 %, re-
spectively, compared with the agreement for the 0-2-tenth
difference reported by Kim et al. (2021b) using the ML
method. During nighttime and sunrise/sunset time, the agree-
ment for a O-tenth difference between the OBS and CNN
cloud cover improved significantly to approximately 26 %
and 27 %, respectively, whereas that for a 1-tenth difference
improved to approximately 8 % and 11 %, respectively. The
CNN cloud cover in this study exhibited a high agreement of
approximately 93 % with that of OBS within a difference of
2 tenths and exhibited a higher agreement than 80 %-91 %
agreements of previous studies using the threshold, ML, and
DL methods (Fa et al., 2019; Kim and Cha, 2020; Kim et al.,
2015, 2016, 2021b; Krinitskiy and Sinitsyn, 2016; Wang et
al., 2021; Xie et al., 2020).

4.2 Verification with satellite and ceilometer data

To determine the suitability of the cloud cover estimation
method using the camera-based imager presented in this
study, OBS, SAT, and CEI cloud cover data were compared.
For comparison, cloud cover data from 4634 cases were used,
excluding data with missing SAT or CEI cloud cover in the
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Figure 7. Density heatmap plots of satellite (SAT) and ceilometer (CEI) cloud covers for the test dataset. The number of parentheses in each

column denotes the number of OBS cloud cover cases.

test dataset. A density heatmap plot of the OBS cloud cover
and the SAT and CEI cloud covers is shown in Fig. 7. Un-
like the density heatmap plot of the CNN cloud cover, the
SAT and CEI cloud covers showed overestimation or under-
estimation of the cloud cover. In other words, the frequen-
cies of OBS and CNN cloud cover were extremely simi-
lar in the relative frequency distribution by cloud cover, as
shown in Fig. 8, whereas SAT cloud cover had a high fre-
quency in 10 tenths and a low-frequency distribution in other
mostly cloudy cases. Conversely, the CEI cloud cover ex-
hibited a low-frequency distribution in the 10 tenths and a
high-frequency distribution in partly cloudy cases. The SAT
and CEI cloud cover evaluation results are summarized in
Table 6. Both remote observation results exhibited low ac-
curacy, large bias, low RMSE, and low R values and agree-
ments. Although SAT data have several spatial and tempo-
ral advantages, large cloud detection errors occur due to the
large spatial resolution of 2km x 2km and uncertainty in
cloud cover estimation based on cloud height (NMSC, 2021;
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Zhang et al., 2018). Using a CEI, it is difficult to accurately
detect and estimate clouds located in the sky dome by ob-
serving only a narrow beam-width area (Utrillas et al., 2022).
Therefore, to estimate cloud cover from the ground, the com-
bination of images acquired with a camera-based imager and
a CNN is the most suitable and closest method to replace
human-eye observation.

5 Summary and conclusions

In this study, images captured using a camera-based imager
and a CNN were used to estimate 24 h continuous cloud
cover from the ground. Data collected over a long period
were used to capture various visual clouds and estimate cloud
cover. Images were captured by a staffed weather station
from 2019 to 2020 at 1h intervals, matching the time in-
terval typically used for human-eye observations. The 2019
data were used for training and validating the CNN model,
whereas the 2020 data were used for testing. The training
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B.-Y. Kim et al.: Estimation of 24 h continuous cloud cover

5411

Table 5. Agreements of differences (Diff.) between observed (OBS) and estimated (CNN) cloud cover by season and time for the test dataset.

Diff. Winter  Spring  Summer Fall Annual Daytime Nighttime Sunrise/

sunset
+0tenths 6647  64.71 60.96 63.11 63.79 61.12 69.64 57.09
=+1 tenth 86.78  84.05 82.88 85.36 84.65 84.47 88.08 76.65
+2tenths  93.39  90.88 93.68 93.23 92.66 93.39 93.80 87.72
+3tenths 9650 94.61 97.30  96.85 96.20 96.99 96.52 93.12

Table 6. Accuracy, bias, RMSE, R, and agreements of satellite and ceilometer for the test dataset. The unit of bias and RMSE is tenths, and

agreement for the 0-3-tenth differences is %.

Accuracy Bias RMSE R £Otenths =£I1tenth =£2tenths =3 tenths

SAT 0.89 0.33 231 0.87 59.09 73.87 82.82 88.78

CEL 0.86 —1.58 334 0.76 46.72 66.81 73.54 77.13
24 the threshold, ML, and DL methods. In addition, the camera-
a 8,33 based imager with a CNN was found to be the most suitable
o | - iéf for cloud cover estimation on the ground compared to the
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Figure 8. Relative frequency distribution by cloud cover of obser-
vation (OBS), estimation (CNN), satellite (SAT), and ceilometer
(CEI) cloud cover for the test dataset.

dataset did not use the entirety of the collected data but used
randomly sampled data with replacements for each cloud
cover class to organize the dataset. In other words, overfitting
of the cloud cover class with a high observation frequency
was prevented, and weight was assigned to the class with
a low observation frequency. In this study, a novel method
was attempted to learn a DL model for cloud cover estima-
tion. Compared to the datasets of previous studies (e.g., Fa
et al., 2019; Kim et al., 2021b; Xie et al., 2020; Ye et al.,
2022), more images were learned, and long-term estimated
data were analyzed. Furthermore, the estimated results were
compared with observational data from a staffed weather sta-
tion and other remote observational data (i.e., from a satellite
and ceilometer). Consequently, the cloud cover estimated for
the test dataset exhibited an accuracy, RMSE, R, and agree-
ment of 0.92, 1.40 tenths, 0.95, and within a +2-tenth differ-
ence of approximately 93 %, respectively, with OBS cloud
cover. This result shows improved cloud cover estimation
performance compared with that of previous studies using

https://doi.org/10.5194/amt-16-5403-2023

estimation using a SAT and CEI. SAT and CEI remote obser-
vations can determine the temporal, spatial, and vertical dis-
tributions of clouds; however, their uncertainty is extremely
large. A camera-based imager with a CNN, as in this study,
is the most suitable method for replacing ground cloud cover
observations. Depending on the characteristics of the data to
be learned, it is possible to estimate the cloud cover in per-
cent instead of oktas and tenths; accordingly, the time resolu-
tion can also be estimated in minutes rather than hourly inter-
vals. This configuration can be fully utilized, even in a lim-
ited computer resource environment, using a low-cost fisheye
camera-based imager and edge computing. The formation of
these dense observation networks and the accumulation of
data make it possible to maintain the consistency of mete-
orological data. Therefore, various observation devices and
methods that can replace cloud observation methods that use
human-eye observations on the ground should be developed
and tested.
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